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Abstract. Software-defined networking (SDN) allows operators to control the
behavior of a network by programatically managing the forwarding rules installed
on switches. However, as is common in distributed systems, it can be difficult to
ensure that certain consistency properties are preserved during periods of recon-
figuration. The widely-accepted notion ofper-packet consistencyrequires every
packet to be forwarded using the new configuration or the old configuration, but
not a mixture of the two. If switches can be updated in some (partial) order which
guarantees that per-packet consistency is preserved, we call this order aconsis-
tent order update. In particular, switches that are incomparable in this order can
be updated in parallel. We call a consistent order updateoptimalif it allows max-
imal parallelism. This paper presents a polynomial-time algorithm for finding an
optimal consistent order update. This contrasts with otherrecent results in the
literature, which show that for other classes of properties(e.g., loop-freedom and
waypoint enforcement), the optimal update problem isNP-complete.

1 Introduction
Software-defined networking (SDN) replaces conventional network management

interfaces with higher-level APIs. While SDN has been used to build a wide variety
of useful applications, in practice, it can be difficult for operators tocorrectlyandeffi-
cientlyreconfigure the network, i.e., update the global set of forwarding rules installed
on switches (known as aconfiguration). Even if the initial and final configurations are
free of errors, naı̈vely updating individual switches (referred to in this paper asswitch-
updates) can lead to incorrect transient behaviors such as forwarding loops, blackholes,
bypassing a firewall, etc. In certain cases, updating switches in parallel can lead to incor-
rect transient behavior, but in other cases we can correctlyparallelize switch updates.
Therefore, we need a partial order on switch-updates which ensures that correctness
properties hold before, during, and after the update.
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Consistent order updates.This paper investigates the problem of computing aconsis-
tent order update. Given an initial and final network configuration, a consistent order
update is a partial order on switch-updates, such that if theswitches are updated accord-
ing to this order, an important consistency property calledper-packet consistency[15]
is guaranteed throughout the update process. This propertyguarantees that each packet
traversing the network will follow a single global configuration: either the initial one,
or the final one, but not a mixture of the two. In particular, this means that if the initial
and the final configurations are loop-free, blackhole-free,prevent bypassing a firewall,
etc., then so do all intermediate configurations.

Optimal consistent order updates.In implementing a consistent order update, we would
generally prefer to use one that is optimal. A consistent order update isoptimal if it
allows the most parallelism among all consistent order updates. Formally, recall that a
consistent order update is a partial order on switch-updates—an optimal partial order is
one where the length of the longest chain in the order is the smallest among all possible
correct partial orders. Intuitively, this means the updatecan be performed in the smallest
number of “rounds,” where rounds are separated by waiting for in-flight packets to exit
the network and by waiting for all the switch updates from theprevious rounds to finish.

Single flow vs. multiple flows.A flow is a restriction of a network configuration to pack-
ets of a single type, corresponding to values in packet headers. A packet type might
include the destination address, protocol number (TCP vs. UDP), etc. We show that if
we consider flows to besymbolic(i.e. represented by predicates over packet headers,
potentially matching multiple flows), then the problem isCO-NP-hard. In this paper, we
focus on the problem of updating anindividualflow—i.e., we are interested in the situ-
ation where the flows to be updated can be enumerated. Furthermore, as we are looking
for efficient consistent order updates, we focus on the case where each switch can be
updated at most once, from its initial to its final configuration.

Main result. Our main result is that for updating a single flow, there is a polynomial-
time algorithm, withO(n2(n+m)) complexity wheren is the number of switches and
m the number of links. The result is interesting both theoretically and practically. On the
theoretical side, recent papers have presented complexityresults for network updates.
However, for many other consistency properties (loop-freedom, waypoint enforcement)
and network models, the optimal network update problem isNP-hard [3, 5, 8, 9, 10, 11].
The same is true for results that study these problems with a model which is the same
as ours (single flows, update every switch at most once). In contrast, we provide a
positiveresult that there exists a polynomial-time algorithm for optimal order updates
for a single flow, with respect to the per-packet consistencyproperty. The consistency
properties studied in these papers (loop-freedom and waypoint enforcement) are weaker
than per-packet consistency, which offers a trade-off: enforcing only (for instance) loop-
freedom allows more updates to be found, but it is an (exponentially) harder problem.
In practice, network operators might wish to update only a small number of flows, and
here our polynomial-time algorithm would be advantageous.A potential limitation is
that if many flows are considered separately, it could lead tolarge forwarding tables.
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Fig. 2: Double diamond: no consistent update order exists.

Algorithm. Our algorithm models a network configuration as a directed graph with un-
labeled edges, and an update from an initial configuration toa final configuration as a se-
quence of individual switch-updates—i.e., updating the outgoing edges at each switch.
In order to determine whether a switchn can be updated while properly respecting the
per-packet consistency property, we define a set of conditions on the pathsupstreamand
downstreamfrom n. We show that these conditions can be checked inO(n(n +m))
time. In this way, the algorithm produces a partial order on switches, representing the
consistent order update (if such an order does not exist, ouralgorithm reports a failure).
Additionally, we show that if the partial order is constructed greedily (i.e., all nodes
that can be updated are immediately updated in parallel), itresults in anoptimalcon-
sistent order update. The challenging part of the proof is toshow that this algorithm is
complete (i.e., always finds a consistent order update if oneexists) and optimal.

2 Overview

This section presents a number of simple examples to help develop intuition about
the consistent order updates problem and the challenges that any solution must address.

Consistent order updates.Consider Figure 1. In the initial configurationCi (denoted
by solid edges), the forwarding-table rules (outgoing edges) on each switch are set up
such that hostH1 is sending packets toH2 along the pathH1→A→C→B→H2. Let us
assume that switchC is scheduled for maintenance, meaning we must first transition to
configurationCf (denoted by thedashededges). Note that the two configurations differ
only for nodesA andD. If the nodeA is updated before nodeD, packets fromH1 will
be dropped atD. On the other hand, updatingD beforeA leads to a consistent order
update. Note that since we model networks as graphs, we will use the termsswitch
andnodeinterchangeably based on the context, and similarly for thetermsedgeand
forwarding rule. Pathwill be used to describe a sequence of adjacent edges.

In Figure 2, regardless of the order in which we update nodes,there will always be
inconsistency. Note that here the nodesA andD can be updated first, but a problem
arises due to nodesH1 andC. Specifically, ifC is updated beforeH1, then the network
is in a configuration containing a pathH1→B→C⇢D⇢H2, which is not in eitherCi

or Cf . In other words,H1 cannot be updated unless the (downstream) path fromC to
H2 is first updated. On the other hand,C cannot be updated unless the (upstream) path
fromH1 toC is first updated. We refer to this case as adouble diamond. If we consider
the notion of dependency graphs [12], where there is an edge from a nodex to nodey
if the update ofy can only be executed after the update ofx, then our double diamond
example corresponds to a cyclic dependency graph betweenH1 andC.



Unfortunately, the presence of a double diamond (cyclic dependency) does not
necessarily indicate that there cannot be a solution. Consider Figure 3, where there
is a double diamond betweenD and J . UpdatingB removes the old traffic toD,
and then after updatingB, the nodesD,E,G,F,H, I, J have no incoming traffic.
At this point, these nodes can be updated without violating per-packet consistency.
Thus, the circular dependency has been eliminated, allowing a valid update order such
as [A,H1,K,L,B,D,E,F,G,H, I, J,C,M]. This shows that an approach (such as
[6, 17]) based on a static dependency graph might miss some cases where a consistent
order update exists—a limitation that our algorithm does not exhibit.
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Fig. 3: Removable double diamond.
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Fig. 4: Wait example.

Waits. As mentioned, it may be impossible to parallelize certain updates—we may need
to make sure that some nodex is updated before another nodey. We may need towait
during the sequence of switch-updates to ensure that such updates are executed one
after the other. This requirement can arise because when updating a node, we may need
to ensure that (1) all of the previous switch-updates have been completed, and (2) all of
the packets that were in the network since before the previous update have exited the
network. The former type we call aswitch-wait, and the latter apacket-wait.

In Figure 3, we see thatL must be updated before updatingB. To ensure that edges
outgoing fromL are ready, we must wait after sending the update command toL, in
order to ensure that its forwarding rules have been fully installed. In other words, we
say that there is aswitch-waitrequired between updates ofL andB. After updating
B, the switchD becomes disconnected, but there may still be some packets intransit
on theB→D path. Before updatingD, we must ensure that packets along these old
removed paths have been flushed from the network. For this reason, we need apacket-
wait between updates of nodesD andB.

If we are interested only in finding a correct sequence of updates, we can wait
(for an amount of time larger than the maximum switch-wait and packet-wait duration)
after every node update. However, waits may not be necessaryafter every update if
we update switches from separate parts of the network. For the Figure 3 example, the
correct sequence with aminimal number of waits is[A,H1,K,L, s◯,B, p◯,D,E,F,

G,H, I, J, s◯,C,M], where p◯ denotes a packet-wait ands◯ denotes a switch-wait. In
this example, nodesA, H1, K, L can be updated in parallel. Similarly, nodesD, E, F ,
G, H , I can be updated in parallel, etc. There are three waits, meaning this consistent
order update requiresfour switch-updaterounds.



The example in Figure 4 highlights the relationship betweenswitch-waits and
packet-waits. Observing that the configurations are roughly symmetrical, let us exam-
ine the relationship between nodesA, B,C. The correct order of updates between these
nodes isH1,A, p◯,B, s◯,C. There must be aswitch-waitbetween the updates ofB and
C, due to the presence of aCf pathC⇢B. There must be apacket-waitbetween updates
of switchesA andB, due to the presence of aCi pathA→B.

As is common elsewhere (e.g. [8]), in this paper, we do not distinguish between
packet-waits and switch-waits, and only use the termwait—our goal is to maximize the
parallelism of switch-updates, i.e. minimize the number ofswitch-update rounds.

3 Network Model
Network and Configurations.A topology of a network is a graphG = (N,E), where
N is a set of nodes, andE is a set of directed edges. A configurationC ∈ P(E) is a
subset of edges inE. A properconfiguration is such that (a) it has one sourceH1 and
(b) it is acyclic. Here, a source is a designated node with no incoming edges, represent-
ing the point where packets enter the network. Note that cycles in a configuration are
undesirable, as this would mean that traffic might loop forever in the network. We first
consider the case with one source, and in Section 6, we describe a simple reduction for
the case of multiple sources. Our goal is to transition from an initial configurationCi to
a final configurationCf by updating individual nodes. ConsiderCi andCf to be fixed
throughout the paper, and assume both are proper.

Updates.Letu be a node, and letC be a configuration. We define a functionout(C,u)
which returns the set of edges fromC whose source isu. The functionupd

1
(C,u) re-

turns the configurationC′ such thatC′ = (C∖out(Ci, u))∪out(Cf , u). That is,C′ has
the nodeu updated to the final configuration. LetR be the set of all sequences that can
be formed using nodes inN without repetition. We extendupd

1
to sequences of nodes

by defining the functionupd that, given a configurationC and a sequence of nodesS,
returns a configurationC′ = upd(C,S). The functionupd is defined byupd(C, ε) = C
(whereε is the empty sequence), andupd(C,uS) = upd(upd

1
(C,u), S). We consider

sequences of nodes without repetition, because our goal is to find update sequences that
update every node at most once.

Paths.Given a configurationC, a C-path is a directed path (finite or infinite) whose
edges are inC. For a pathp, we writep ∈ C if p is aC-path. ACi-only path is one
which is inCi and not inCf . Similarly, aCf -only path is inCf but notCi. The function
nodes takes a pathq as an argument and returns a setQ of all nodes on a path. Lets
andt be two nodes, and letC be a configuration. The functionpaths(s, t,C) returns
the set of all paths betweens andt in configurationC. A pathp in a configurationC
is maximalif it is either (a) finite, and its last node has no outgoing edges inC, or (b)
infinite. The functionmaxpaths(s,C) returns the set of all maximal paths starting at
nodes in configurationC.

Path and Configuration Consistency.We say that a pathp is consistentif p ∈

maxpaths(H1,Ci) ∨ p ∈ maxpaths(H1,Cf ), and a configurationC is consistentif
and only if∀p ∈ maxpaths(H1,C), we have thatp is consistent. Intuitively, all max-
imal paths starting atH1 are maximal paths in either the old configuration or the new



configuration—this corresponds to per-packet consistency[15]. If initial configuration
Ci and final configurationCf are proper, then so is every consistent configuration.

Waits. Let U = u1u2⋯uk be a sequence of node updates. LetCj = upd(Ci, Uj) be the
configuration reached after updating a sequenceU = u1u2⋯uj for 1 ≤ j ≤ k, and let
C0 = Ci. For l, u such that0 ≤ l ≤ u ≤ k, let Cu

l be the configuration obtained as a
union of configurationsCl ∪ ⋯ ∪ Cu. We say that await is neededbetweenuj anduk

in U if and only if the configurationCk
j−1 is not consistent. To illustrate, let us return to

the example in Figure 4 (note that we no longer distinguish between packet-waits and
switch-waits). As mentioned, after updatingH1 andA, we need a wait before updating
B. Let the configurationCv be the union of all the intermediate configurations until
after the update toB. ThenCv has the pathH1→A→B→, where we take the solid edge
from A to B and a dashed outgoing edge fromB, meaning a wait is needed. In this
case, using the union of the configurations captures the reason for the wait.

Consistent update sequence.For any set of nodesS, let π(S) be the set of sequences
that can be formed by nodes inS, without repetition. LetZ = S1S2⋯Sk be a se-
quence such that eachSi is a subset ofN . Letπ(Z) be the set of sequences defined by
{r1r2⋯rk ∣ r1 ∈ π(S1) ∧ r2 ∈ π(S2) ∧⋯ ∧ rk ∈ π(Sk)}.

The sequenceZ = S1S2⋯Sk is aconsistent update sequenceif and only if
1. The setsS1, S2,⋯, Sk form a partition of the set of nodesN . Note that this ensures

that∀U ∈ π(Z), we haveupd(Ci, U) = Cf , i.e., after updatingu, we are inCf .
2. ∀U ∈ π(Z), for every prefixU ′ of U ,C=upd(Ci, U

′) is a consistent configuration.
3. ∀U ∈ π(Z), letU ′ = u1u2⋯uj andU ′′ = u1u2⋯uk be prefixes ofu, s.t.k > j, then

if a wait is needed betweenuj, uk in U , thenuj, uk are in different setsS andS′.

Consistent Order Update Problem.Given an initial configurationCi and the final con-
figurationCf , the consistent order update problemis to find a consistent update se-
quence if there exists one.

Optimal Consistent Order Update Problem.GivenCi andCf , if a consistent update
sequence exists, theoptimal consistent update problemis to find a consistent update
sequence of minimal length.

4 OrderUpdate Algorithm
This section presents an algorithm (Algorithm 1) that solves the consistent order

update problem. It works by repeatedly finding and updating anode that can be up-
dated without violating consistency. For clarity, we focusfirst on correctness. Section 5
presents an improved version that finds an optimal update.

Correct Sequence.A correctsequence of node updatesT = t1t2⋯t∣N ∣ refers to a con-
sistent update sequence of singleton setsZ = S1S2⋯S∣N ∣ s.t.∀j ∈ [1, ∣N ∣] ∶ Sj = {tj}.
Algorithm 1 uses a subroutine at Line 6 (in this section, the subroutine is Algorithm 2;
in Section 5 we will replace it with Algorithm 3 to achieve optimality) to find a correct
update sequence. It takesCi,Cf as input and returns two sequences of nodes,R,Rw.
SequenceR is the solution to the consistent order update problem (a sequence of sin-
gleton sets). SequenceRw contains information about the placement of waits, which
will be the same asR in this section, since we initially wait after every node update.



Upstream
(Condition forpaths(H1, s,Cc))

Downstream
(Condition formaxpaths(s,Cc))

A Ya(s) =/∃ p ∈ paths(H1, s,Cc) Z†
a(s) = (out(s,Cf) = ∅) ∨

∀p ∈ maxpaths(s,upd(Cc, s)) ∶
p ∈maxpaths(s,Cf)

B Yb(s) = ¬Ya(s)∧∀p ∈ paths(H1, s,Cc) ∶
p ∈ paths(H1, s,Ci)

∧ p ∈ paths(H1, s,Cf )

Zb(s) = ∀p ∈ maxpaths(s,upd(Cc, s)) ∶
p ∈maxpaths(s,Ci)

∨ p ∈maxpaths(s,Cf)

C Yc(s) = ¬Ya(s) ∧ ¬Yb(s)
∧ ∀p ∈ paths(H1, s,Cc) ∶

p ∈ paths(H1, s,Cf)

Zc(s) = ∀p ∈ maxpaths(s,upd(Cc, s)) ∶
p ∈maxpaths(s,Cf)

D Yd(s) = ¬Ya(s) ∧ ¬Yb(s)
∧ ∀p ∈ paths(H1, s,Cc) ∶

p ∈ paths(H1, s,Ci)

Zd(s) = ∀p ∈ maxpaths(s,upd(Cc, s)) ∶
p ∈maxpaths(s,Ci)

E Ye(s) = ¬Ya(s) ∧ ¬Yb(s)
∧ ¬Yc(s) ∧ ¬Yd(s)

= (∃pf ∈ paths(H1, s,Cc) ∶
pf ∈ paths(H1, s,Cf )

∧ pf /∈ paths(H1, s,Ci))
∧ (∃pi ∈ paths(H1, s,Cc) ∶

pi ∈ paths(H1, s,Ci)
∧ pi /∈ paths(H1, s,Cf ))

Ze(s) = ∀p ∈ maxpaths(s,upd(Cc, s)) ∶
p ∈maxpaths(s,Ci)

∧ p ∈maxpaths(s,Cf)

Fig. 5: Necessary conditions for updating a nodes in current configurationCc

4.1 Necessary Conditions for Updating a Node

To determine which node updates lead to consistent configurations, we assume that
the network is in a consistent configurationCc, and identify a set of necessary condi-
tions which must hold in order for the update to preserve consistency. We classify nodes
into five categories based on the types of paths that are incoming to them fromH1. The
classification is given in the left-hand side of Figure 5.

Upstream Paths and Candidate Nodes.Paths from sourceH1 to a nodes are called
upstreampaths tos (in some configuration). The condition on these paths is called
the upstream condition. If a node satisfies the upstream condition for one of the five
categories/types, it is known as acandidateof that type.

Downstream Paths and Valid Nodes.Downstream paths from a nodes are maximal
paths starting ats (in some configuration). For each of the upstream conditions, there
is a downstream condition which must be satisfied, in order toensure that all maximal
paths starting fromH1 in upd(Cc, s) throughs are consistent. If a candidate node
satisfies the corresponding downstream condition, it is calledvalid. A node which is not
valid is calledinvalid. Note that upstream paths tos are the same inCc andupd(Cc, s).

Lemma 1. In a consistent configurationCc, if a valid node s is updated, then
upd(Cc, s) is consistent.
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Fig. 6: Type B Valid Node.
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Fig. 7: Type E Valid Node.

Proof. Given a consistent configurationCc, ∀p ∈ maxpaths(H1,upd(Cc, s)) ∶ s /∈
nodes(p) → p ∈ maxpaths(H1,Cc). Maximal paths that are not touched bys are
retained fromCc in upd(Cc, s). From consistency ofCc, these paths are consis-
tent. For checking the consistency ofupd(Cc, s), it is enough to ensure that∀p ∈
maxpaths(H1, upd(Cc, s)) ∶ s ∈ nodes(p) → p is consistent. We use this in the rest of
the proof. Our necessary conditions for updating a node ensure that all maximal paths,
starting fromH1, in upd(Cc, s) throughs are consistent. Figure 5 identifies nodes as
Types A-E based on upstream conditions. The upstream conditions are exhaustive and
mutually exclusive, meaning each node is a candidate of exactly one of the types. For
each type, we show that if the node is valid, then updating it preserves consistency.

– Type A: no upstream paths incoming to nodes in Cc. Type A candidate
nodes are also called adisconnectednodes. Updatings does not add down-
stream maximal paths starting fromH1 to Cc. So, maxpaths(H1,Cc) =
maxpaths(H1,upd(Cc, s)), meaning updatings preserves consistency. However,
to simplify the presentation, Algorithm 1 imposes a downstream condition. We will
show that if a correct sequence exists, then there also exists some correct sequence
that updates nodes with this optional downstream condition(Za in Figure 5).

– Type B: paths to s from H1 in Cc, are in both paths(H1, s,Ci) and
paths(H1, s,Cf ). Downstream paths inupd(Cc, s) from s must be in either
maxpaths(s,Ci) or maxpaths(s,Cf). This s is a Type B valid node in Figure 6,
where highlighted edges are inCc.

– Type C: all paths tos from H1 in Cc, arepaths(H1, s,Cf ). To ensure consis-
tency ofupd(Cc, n), downstream maximal paths froms in upd(Cc, s) must lie in
maxpaths(s,Cf ).

– Type D: all paths tos from H1 in Cc, arepaths(H1, s,Ci). To ensure consis-
tency ofupd(Cc, n), downstream maximal paths froms in upd(Cc, s) must lie in
maxpaths(s,Ci).

– Type E: some non-empty set of upstream paths tos in Cc, are inpaths(H1, s,Cf )∖
paths(H1, s,Ci), and some non-empty set of upstream paths tos are in
paths(H1, s,Ci) ∖ paths(H1, s,Cf ). This s is a Type E valid node in Figure 7,
where highlighted edges are inCc. Downstream paths froms in upd(Cc, s) must
be in bothmaxpaths(s,Ci) andmaxpaths(s,Cf).

Using Lemma 1, each node updated by OrderUpdate leads to a valid intermediate
configuration. So, we change fromCi toCf without going through an inconsistent state,
and since we wait between all updates, we obtain a consistentsequence.



Theorem 1. Any sequenceR of nodes produced by Algorithm 1 (using subroutine
Algorithm 2) is correct.

Proof. Every node updated by OrderUpdate preserves consistency inthe network. Let
a sequenceS = s1⋯s∣N ∣ be generated by OrderUpdate. Then, using Lemma 1,∀r ∈
[1, ∣N ∣] ∶ upd(Ci, s1⋯sr−1) is consistent. Finally, since all nodes are updated inS,
upd(Ci, S) = Cf . So, if a sequence of updates is generated by Algorithm 1 using
subroutine SequentialPickAndWait, it is a correct sequence.

4.2 Careful Sequences

Previously, we said that Type A candidates (disconnected nodes) do not require
a downstream condition to be updated. However, Algorithm 1 imposes a downstream
condition on disconnected nodes for them to be valid and updated. We refer to se-
quences that respect this downstream condition (i.e., update only valid nodes) ascare-
ful sequences. Lets be a node andC be a configuration, and definevalid1(C, s)
to be true iff s in valid in configurationC. We extendvalid1 to a sequence of
nodes by definingvalid asvalid(ε,C) = true (whereε is the empty sequence) and
valid(C,uS) = valid(upd(C,u), S) ∧ valid 1(C,u).

Careful SequenceA carefulsequenceT = t1t2⋯t∣N ∣ is a correct sequence of nodes s.t.
∀l ∈ [1, ∣N ∣] ∶ valid(upd(Ci, t1t2⋯tl−1), tl).

Type A candidates do not have to be valid to be updated, but we enforce the down-
stream condition for them to be valid. The downstream condition for a Type A valid
nodes in Figure 5 has two clauses:

– The first clause (final-connectivity condition) is true whens is connected inCi, but
disconnected inCf . If there are no outgoingCf edges froms after its update, then
it is a node which will be disconnected inCf . After s becomes disconnected, it re-
mains disconnected, as it has no incoming/outgoingCf edges, and can be updated.

– The second clause states that all maximal paths downstream,after update, are in
maxpaths(s,Cf ). This simplifies the proof of claims about correct sequences.

We will now prove that if there exists a correct sequence of updates, then there is also
a careful sequence of updates. Before proving this, we first observe the following prop-
erties of correct sequences:

Property 1. If we have two sequencesA and a permutationA′ of A s.tvalid(C,A) ∧
valid(C,A′), thenupd(C,A) = upd(C,A′).

Proof. This is becauseA andA′ both update the same nodes in the graph. Additionally,
the final configuration after both updates has the same edges regardless of the update
order betweenA andA′.

Lemma 2. LetT = UnV be a correct sequence wheren is an invalid Type A candidate,
then∃T ′ = Un′V ′, a correct sequence in whichn′ is a valid node, andV ′ is a sequence
s.t.n′V ′ is a permutation ofnV .

Proof. If n is an invalid disconnected node, it was not disconnected inCf (final-
connectivity condition). Letvp be the first node in sequenceV = v1v2⋯vk s.t.
there is a path fromH1 to n in upd(Ci, Unv1v2⋯vp). Let us consider a sequence



Algorithm 1: OrderUpdate

Input : Set of all nodesN , Initial configurationCi, Final configurationCf

Result: An consistent order of node updatesR, Updates before which there are waitsRw

1 R = Rw = P0 ← ∅;k ← 1 // initialize R, Rw, P0 and k

2 Cc ← Ci // Cc starts with the initial value of Ci

3 while Cc ≠ Cf do // stop when Cc and Cf are equal

4 U ← {s ∣ s ∈ N ∧ ((Ya(s) ∧Za(s)) ∨ (Yb(s) ∧ Zb(s)) ∨
(Yc(s)∧Zc(s))∨ (Yd(s)∧Zd(s))∨ (Ye(s)∧Ze(s)))} // valid nodes

5 if U = ∅ then EXIT ; // no consistent order of updates exists

6 s = PickAndWait() // by default, use Algorithm 2

7 Cc ← (Cc ∖ out(s,Ci)) ∪ out(s,Cf) // update Cc

8 N ← N − {s} // remove updated nodes from node list

9 return (R,Rw)

Algorithm 2: SequentialPickAndWait

1 s = Pick(U) // pick any valid node

2 Rw ← Rw.s // by default, there is a wait after every update

3 R← R.s // append s to the end of result R

V ′′ = Uv1v2⋯vp−1nvp⋯vk. Let us define∀r ∈ [1, p) ∶ Cr = upd(Ci, Unv1⋯vr) and
C′r = upd(Ci, Uv1⋯vr)). ∀r ∈ [1, p) ∶ maxpaths(H1,Cr) = maxpaths(H1,C

′
r) be-

cause there is no path fromH1 to n in all configurationsCr andC′r. So inV ′′, updates
of nodesv1, v2,⋯, vp−1 lead to consistent configurations. InV ′′, n was disconnected
beforevp was updated, so updatingn aftervp−1 leads to a consistent configuration. Fi-
nally, from Property 1,∀r ∈ [p, k] ∶ upd(Ci, Unv1⋯vr) = upd(Ci, Uv1⋯nvp⋯vr),
so every node aftervp can be updated inV ′′, since it could be updated inT . Let
C1 = upd(Ci, Unv1v2⋯vp−1) be the configuration before updatingvp in T . To connect
n to H1, the update ofvp when the network is in configurationC1 will add aCf -only
edge upstream ton and create aCf path betweenvp andn. For consistency with this
Cf -only edge, inC1, all downstream maximal paths fromn are inmaxpaths(n,Cf).
In C1, n satisfies the Type A downstream condition.C1 = upd(Ci, Unv1v2v3⋯vp−1) =
upd(Ci, Uv1v2⋯vp−1n), so inV ′′, n satisfies the downstream condition and is a Type
A valid node. IfV ′′ starts with a disconnected invalid node, we repeat this process until
we findV ′′′ = n′V ′ wheren′ is a valid node. We are guaranteed to findV ′′′, because
we continue changing invalid disconnected nodes to valid nodes, and there can be only
a finite number of invalid disconnected nodes inT .

Theorem 2. If a correct sequence of updates exists, then a careful sequence also exists.

Proof. Let Q = s1s2⋯sn be a correct update sequence. Let r be the first index s.t.∀i <
r ∶ si is valid andsr is invalid. Then using Lemma 2, there is a sequenceQ′ = s′

1
s′
2
⋯s′n

s.t.∀i ≤ r ∶ s′i is valid. Using this argument for every index up ton, we can find aQ′′

s.t.Q′′ is a careful sequence.



Algorithm 3: OptimalPickAndWait

1 if k = 1 then // we do not need a wait before first node

2 P0 ← U // all nodes initially valid are P0

3 if P0 = ∅ then // we have to pick a lower priority node

4 P0 ← U // all nodes in U become P0 after waiting.

5 s = Pick(P0); R← R.s; Rw ← Rw.s; k ← k + 1; // pick P0 node, append

s to result R, add wait, increment number of rounds k

6 else
7 s = Pick(P0); R← R.s // pick any P0 node, add s to result R

4.3 Completeness of the OrderUpdate Algorithm

The OrderUpdate Algorithm (with the SequentialPickAndWait subroutine) is com-
plete, i.e., if there exists any correct sequence, we find one. We can observe that if two
nodesa andb are both valid in configurationCc, thenupd(Cc, ab) andupd(Cc, ba)
are both consistent configurations. This property holds forany number of nodes and for
all carefulsequences, but not for allcorrectsequences. We prove this behavior in the
following lemma, which is the key to observe completeness ofOrderUpdate Algorithm.

Lemma 3. If T = UV nY is a careful sequence, andvalid(upd(Ci, U), n), thenT ′ =
UnV Y is also careful.

H1
vr

n

Fig. 8: Lemma 3 Case 1.

H1 n

vr

Fig. 9: Lemma 3 Case 2.

Proof. Let V = v1⋯vk, then ∀r ∈ [1, k] ∶ Cr = upd(Ci, Uv1⋯vr) and C′r =

upd(Ci, Unv1⋯vr) are the configurations after updatingvr in T and T ′ respec-
tively. We will argue for each nodevr in V , that C′r is consistent. It is trivial to
see that∀p ∈ maxpaths(H1,C

′
r) ∩ maxpaths(H1,Cr) ∶ p is consistent. So, we

only need to prove that∀p ∈ maxpaths(H1,C
′
r) ∖ maxpaths(H1,Cr) ∶ p is consis-

tent. Eachvr can be classified into one of several types based on maximal paths in
maxpaths(H1,C

′
r) ∖maxpaths(H1,Cr).

– Case 1: ∃p ∈ paths(H1, vr,C
′
r) ∶ p /∈ paths(H1, vr,Cr) ∧ ¬(∃p ∈

maxpaths(vr,C
′
r) ∶ p /∈ maxpaths(vr,Cr)). See Figure 8. There are upstream

paths tovr in C′r not present inCr. No downstream maximal paths fromvr were
added inC′r. Consider sets of paths inC′r touchingvr:
1. up = paths(H1, vr,Cr) – set of upstream paths tovr in Cr.



2. up′ = {p ∣ p ∈ paths(H1, vr,C
′
r) ∶ p /∈ Cr} – set of upstream paths tovr in C′r

which are not inCr . Updating a node addsCf -only edge(s) to the network, so
for any pathp containing any of these edgesp ∈ Cf ∧ p /∈ Ci. Hence,∀p ∈ up′ ∶
p ∈ Cf ∧ p /∈ Ci.

3. down = maxpaths(vr,C
′
r) ⊆ maxpaths(vr,C

′
r) – set of downstream paths

from vr in C′r.
Let us define the⋅ operator on two sets of pathsS andS′. We useS ⋅S′ to mean the
set of all paths formed by the concatenation of any two pathsp ∈ S andp′ ∈ S′ s.t.p′

starts at the same node wherep ends. All paths inmaxpaths(H1,Cr) ⊇ up ⋅ down
are consistent.

∀p ∈ (up ⋅ down) ∶ p ∈maxpaths(H1,Ci) ∨ p ∈maxpaths(H1,Cf ) (1)
Let us partitiondown into down1 anddown2. The setdown1 contains downstream
maximal paths fromvr that existed inC′r−1 and down2 = down ∖ down1. We
inductively assumemaxpaths(H1,C

′
r−1) ⊇ (up ∪ up′) ⋅ down1 is consistent.

∀p ∈ (up′ ⋅ down1) ∶ p ∈ maxpaths(H1,Ci) ∨ p ∈maxpaths(H1,Cf ) (2)
We knowdown2 ∈maxpaths(vr,Cf) since they were added by some update. Paths
in up′ areCf paths.

∀p ∈ (up′ ⋅ down2) ∶ p ∈maxpaths(H1,Cf ) (3)
From Equations 1, 2, and 3, we conclude that:

∀p ∈ ((up′ ∪ up) ⋅ down) ∶ p ∈maxpaths(H1,Ci) ∨ p ∈maxpaths(H1,Cf)
Thus,C′r is consistent, since all maximal paths fromH1 that touchvr are consistent.

– Case 2: ¬(∃p ∈ paths(H1, vr,C
′
r) ∶ p /∈ paths(H1, vr,Cr)) ∧ (∃p ∈

maxpaths(vr,C
′
r) ∶ p /∈ maxpaths(vr,Cr)). See Figure 9. There are downstream

maximal paths fromvr in C′r which were not present inCr. No upstream paths to
vr were added. Similar to the previous case, let us define three sets of paths inC′r
that touchvr:
1. down = maxpaths(vr,Cr) – set of downstream paths inCr.
2. down ′ = {p ∣ p ∈ maxpaths(vr,C

′
r) ∶ p /∈ Cr} – set of downstream maximal

paths fromvr not present inCr but are present inC′r. Similar toup′ in Case 1 ,
∀p ∈ down ′ ∶ p ∈ Cf ∧ p /∈ Ci.

3. up = paths(H1, vr,C
′
r) ⊆ paths(H1, vr ,Cr) – set of upstream paths tovr in

Cr.
We know thatmaxpaths(H1,Cr) ⊇ up ⋅ down is a consistent configuration, so
Equation 1 holds. Since updatingn made changes to the downstream paths fromvr,
noden lies on a downstream maximal path fromvr. Also,∀p ∈ paths(vr, n,C′r) ∶
p ∈ Cf , because ifvr andn are connected by a path only inCi, then updating
n beforevr in T ′ would not be able to addCf paths toC′r (due to consistency
reasons). This leads to one of two cases:
● ∀p ∈ paths(vr, n,C

′
r) ∶ p ∈ Cf ∧ p ∈ Ci, i.e.vr andn were connected from the

start. Since all paths indown ′ touchn (Cr andC′r were different becausen
was updated inC′r), the update ofvr in Cr−1 does not add any paths todown ′.
∀p ∈ down ′ ∶ p ∈ maxpaths(vr,Cr−1). ConfigurationCr−1 is consistent and
maxpaths(H1,Cr−1) ⊇ up ⋅ down

′, ∀p ∈ (up ⋅ down′) ∶ p was consistent.
● ∃p ∈ paths(vr, n,C

′
r) ∶ p ∈ Cf ∧ p /∈ Ci, i.e. vr andn are connected by a

Cf -only path. This path existed inCr, so paths inup can exist in a consistent



configuration with downstream maximalCf -only paths. Paths inup can exists
with paths indown′ in a consistent configuration.
∀p ∈ (up ∪ down

′) ∶ p ∈ maxpaths(H1,Ci) ∨ p ∈ maxpaths(H1,Cf ) (4)
From Equation 1 and Equation 4:∀p ∈maxpaths(H1,C

′
r = up ∪ down ∪ down ′) ∶

p ∈ maxpaths(H1,Ci) ∨ p ∈ maxpaths(H1,Cf ), meaningC′r is a consistent state
andvr can be updated.

– Case 3:∃p ∈maxpaths(vr,C
′
r) ∶ p /∈ maxpaths(vr,Cr)∧∃p ∈ paths(H1, vr ,C

′
r) ∶

p /∈ Cr, i.e. updatingn added some upstream paths tovr and some downstream
maximal paths fromvr. So,n was both upstream tovr and downstream fromvr.
This case is not possible because updatingn does not add any cycles to the network.

– Case 4: /∃ p ∈ maxpaths(vr,C
′
r) ∶ p /∈ maxpaths(vr,Cr)∧ /∃ p ∈

paths(H1, vr,C
′
r) ∶ p /∈ Cr, i.e. there has been no change in upstream and down-

stream paths. So,C′r is a consistent state.
We have seen that everyvr in the sequenceV can be updated inT ′. Also, using Prop-
erty 1,upd(Ci, UnV ) = upd(Ci, UV n), nodes inY can be updated in sequence. Hence
we showed that ifT = UV nY is a correct careful sequence,T ′ = UnV Y is a correct
careful sequence.

Lemma 3 shows that if there are multiple valid nodes in some configurationC, then
these nodes can be updated in any order. This is because once anode becomes valid,
it does not become invalid. This is why we introduced carefulsequences because this
lemma is not true for arbitrary correct sequences. Using this lemma, we can prove the
completeness of Algorithm 1 (with the Algorithm 2 subroutine).

Theorem 3. Algorithm 1, using subroutine Algorithm 2, generates a correct order of
updatesR if there exists one, or fails (in Line 5) if such an order does not exist.

Proof. We proved the correctness of Algorithm 1, using subroutine SequentialPickAnd-
Wait, in Theorem 1. So we know that if it generates an order of updates, it is correct.

Let us consider the case where a correct sequence of updates exists but Algorithm 1
fails. LetQcareless be the correct sequence of updates, andQalg = a1a2⋯ak be the se-
quence of nodes updated by Algorithm 1 before it fails. UsingTheorem 2, letQcareful =

s1s2⋯sn be a careful sequence. Let r be the first index s.t.∀i < r ∶ si = ai ∧ sr ≠ ai.
If r < k, then using Lemma 3, there is another careful sequenceQ′careful = s′

1
s′
2
⋯s′n

s.t.∀i ≤ r ∶ s′i = ai. Using this argument for every index up tok, we can find a cor-
rect careful sequenceQ′′careful s.t.Qalg is a prefix sequence ofQ′′careful . So, there is a
correct node after nodes inQalg were updated and Algorithm 1 could not have failed.
Therefore, if Algorithm 1 fails, then no correct sequence ofupdates exists.

Running Time.Let ∣V ∣ be the number of nodes and∣E∣ be the number of edges inG.
In each iteration of its outer loop, Algorithm 1 usingSequentialPickAndWait (Algo-
rithm 2) as a subroutine, makes a list of valid nodes and picksone to update. The set of
valid nodesU in Line 4 can be found using a graph search onCc for each node, which
takesO(∣V ∣(∣V ∣ + ∣E∣)) steps. The loop runs∣V ∣ times and updates each node, so the
overall runtime isO(∣V ∣2(∣V ∣ + ∣E∣)). This analysis relies on the fact that the graph
search is implemented in a way that goes through each edge andnode a constant num-
ber of times. Once a node has been visited, it is markedF , I, or B, based on whether



the maximal paths downstream from it are maximal paths starting from it in Ci, Cf , or
both. This would avoid visiting the node (and its outgoing edges) again.

5 Optimal OrderUpdate Algorithm
Thus far, we solved the consistent order update problem by generating a consistent

sequence with only singleton sets. This corresponds to requiring a wait at every step of
the update sequence, which does not allow any parallelism. However, we have seen in
Section 2 that some nodes can be updated in parallel. In Section 3, we defined when
a wait is needed in the sequence of updates. In this section, we provide a sequence of
updates where there is a wait if and only if it is needed, solving the optimal version of
the problem. We use Algorithm 1, but replace the subroutineSequentialPickAndWait

(Algorithm 2) withOptimalPickAndWait (Algorithm 3). The algorithm returns a so-
lution for the optimal consistent update problem in the following format.

Correct Waited Sequence.A correct waited sequence of updates is a tuple(T,W ) of
node sequences without repetition, whereW is a subsequence ofT and (T,W ) =
(t1t2⋯t∣N ∣,w1w2⋯wk−1), such that a consistent update sequenceS1S2⋯Sk can be
formed by takingS1 = {t1,⋯, tm} wheretm1

= w1, ∀i ∈ (1, k) ∶ Si = {tli ,⋯, tmi
}

wheretli = wi−1 andtmi
= wi, andSk = {tlk ,⋯, t∣N ∣} wheretlk = wk−1.

Intuitively, T specifies a correct sequence of updates, with some waits, while W

specifies the nodes, immediately before which a wait is placed. If we simply group the
nodes betweeni-th and(i + 1)-st waits into a setSi+1 we obtain the consistent update
sequence of Section 3. Considering solutions to the problemin the form of a sequence
of nodes and waits simplifies the arguments we use to prove correctness and optimality.

Minimal Correct Waited Sequence.A minimal correct waited sequenceis a correct
waited sequence(T,W ) such that∣W ∣ is minimal.

Since we always pick valid nodes, we need to prove that if there exists a minimal
correct waited sequence, then there exists a minimal correct waited sequence that up-
dates only valid nodes.

Careful Waited Sequence.A careful waited sequenceof updates (T,W ) =

(t1t2⋯t∣N ∣,w1w2⋯wk−1) is a correct waited sequence s.t.∀j ∈ [1, ∣N ∣] ∶

valid(upd(Ci, t1⋯tj−1), tj) A minimal careful waited sequenceis a careful waited
sequence(T,W ) s.t. ∣W ∣ is minimal. We prove the following for such sequences.

Lemma 4. Let Z = (UnV,W = w1⋯wk) be a correct waited sequence wheren is
an invalid disconnected node, then∃Z ′ = (Un′V ′,W ′), a correct waited sequence in
whichn′ is a valid node, andV ′ is a sequence s.t.n′V ′ = π(nV ) and∣W ∣ = ∣W ′∣.

Proof. To prove Lemma 4, we use the same transformation as Lemma 2 andupdaten
immediately beforevp, the node that connects it to the network, in a waited sequence
Z ′ = (V ′′,W ′), whereV ′′ = Uv1v2⋯vp−1nvp⋯vk, and prove that∣W ∣ = ∣W ′∣.

Let us consider the case where there was no wait beforen in Z, i.e.n was not in
sequenceW . For each nodes ≠ n, let Cs andC′s be configurations after updatings
in Z andZ ′ respectively. For any nodes ≠ n, let r be the latest node updated before
s in Z which had a wait before it (r is the last node inW ). Let us form two unions



S = Cr ∪ ⋯ ∪ Cs andS′ = C′r ∪ ⋯ ∪ C′s, consisting of unions of all intermediate
configurations betweenr ands in Z andZ ′.

– Nodes was updated beforen in Z. In this caseS = S′ as there was no change in
updates beforen in Z ′. SinceS = S′, no wait is required befores in Z ′ if no wait
was required inZ.

– Nodes was updated betweenn andvp in Z. In Z ′, n was not updated. There are
two subcases:
● Node r was updated aftern in Z. For this subcaseS′ ∖ S = out(n,Ci) ∖
out(n,Cf). However, sincen was disconnected in all configurations between
Cr andCs, consistency ofS′ is not affected by these edges, as there are no
maximal paths fromH1 that go throughn. HenceS′ is consistent ifS is con-
sistent.

● Noder was updated beforen in Z. For this subcase,S′ had only edges from
out(s,Ci). Additionally,S had edges from bothout(s,Ci) andout(s,Cf).
So,S′ ∖ S = ∅. S′ is consistent ifS is consistent.

In both subcases, no additional waits are required befores in Z ′.
– We haves = vp, or s was updated aftervp. There are again two subcases here:

● Noder was updated beforevp in Z. In this subcase,S′ ∖ S = out(s,Ci) ∖
out(s,Cf). Let us considerC1 = upd(Ci, Uv1⋯vp−1n) and C2 =

upd(Ci, Uv1⋯vp−1nvp). ConfigurationC2 adds aCi path p from vp to n

which was not present inC1. Since there was no wait betweenn andvp,C1∪C2

in consistent. So, because there wasCf upstream path fromH1 to n in C2, C1

had downstream maximal paths fromn which were all inCf . However,C1

had paths inout(n,Ci). This is only possible ifout(n,Ci) ⊆ out(n,Cf). So,
out(s,Ci) ∖ out(s,Cf) = ∅ andS = S′. S′ is consistent ifS is consistent.

● We haver = vp, or r was updated aftervp in Z. In this case,S = S′ because
∀j > p ∶ Cj = C

′
j . So,S′ is consistent ifS is consistent.

We argued for alls ≠ n that the waits do not move. Now, let us argue forn. Letm be
the latest node beforen s.t. for somej, wj =m. Then two cases are possible:

– In Z, no node in the sequencev1⋯vp−1 is in W . Let Cm be the configuration
before updatingm in Z. Since there was no wait beforen in Z, we know that
S = Cm ∪ ⋯ ∪ upd(Ci, U) ∪ upd(Ci, Un) is consistent. We proved that waits
in Z ′ for nodess ≠ n are required at the same location asZ. So,S′ = Cm ∪

⋯ ∪ upd(Ci, U) ∪ upd(Ci, Uv1) ∪ ⋯ ∪ upd(Ci, Uv1⋯vp−1) is consistent. Let us
considerS′′ = S′ ∪ upd(Ci, Uv1⋯vp−1n). If there were any inconsistent paths in
S′′, they were also a part ofS (sincen is not connected toH1 in any configuration
upd(Ci, Uv1⋯vl) wherel < p). So, there is no wait needed beforen.

– In Z, ∃r ∈ [1, p) s.t.vr is in W . Let q be the greatest index for whichvq satisfies
this condition. ConsiderS = upd(Ci, Unv1⋯vq) ∪⋯∪ upd(Ci, Unv1⋯vp−1) and
S′ = upd(Ci, Uv1⋯vq) ∪ ⋯ ∪ upd(Ci, Uv1⋯vp−1) ∪ upd(Ci, Uv1⋯vp−1n). We
proved that waits inZ ′ for nodess ≠ n are required at the same location asZ. So,
in Z ′, vq was the latest node inV before which there was a wait. Then, maximal
paths fromH1 in bothS andS′ are the same, sincen was not connected toH1

beforevp is updated. So there is no wait needed beforen.



In case there was a wait beforen in Z, we consider a sequenceZ ′′ =
(Uv1nv2⋯vkY,W

′′). In Z ′′ there is a wait beforev1 but not beforen. This is be-
causen adds edges that are disconnected from the network. So, thereis no requirement
for a wait betweenv1 andn. ForZ ′′, this becomes the case with no wait beforen.

Theorem 4. If a minimal correct waited sequence exists, then a minimal careful se-
quence exists as well.

Proof. The proof uses Lemma 4 and is similar to the proof of Theorem 2.

5.1 Condition for Waits

Partial Careful Waited Sequence.Given careful waited sequenceZ = (T =

t1⋯t∣N ∣,W = w1⋯wk−1), a partial careful waited sequence isZ ′ = (T ′ = t1⋯tr,W
′
=

w1⋯ws) such thatT ′ is a prefix ofT andW ′ is a prefix ofW . The update mecha-
nism starts with a partial careful waited sequence with no nodes and at every step, it
adds a node in a way that ensures that the obtained sequence isa partial careful waited
sequence, i.e., it can be extended to a careful waited sequence.

Wait Condition.Let us define a functionwait that takes a partial careful waited se-
quenceS = (t1t2⋯tr,w1w2⋯ws) and noden s.t.valid(Ci, Ut1⋯tr) as an argument
and returnstrue if there needs to be a wait before its update. It is defined as fol-
lows: wait(n,S) = true iff node ∃x ∈ [1, r] ∶ ¬valid(upd(Ci, t1⋯tx), n) ∧ ¬(∃y ∈
[1, s],∃z ∈ (x, r] ∶ wy = tz). In other words, in the partial careful waited sequence,
there must be a wait before updating a valid noden if and only if it was not valid until
its dependencies were updated, and there was no wait after their update. If this is true,
thenn must be updated in a new round, after a wait.

The following showscompletenessof the wait condition, i.e., if a wait is needed (as
defined in Section 3) after updatingS and before updatingn, thenwait(n,S) is true.

Lemma 5. If (1) n is the node picked for update, and (2) the partial careful waited
sequence built before updatingn is S = (t1t2⋯tr,w1w2⋯ws), and (3)ws = ty for
somey ∈ [1, r], and (4) we define∀x ∈ [1, r] ∶ Ctx = upd(Ci, t1⋯tx), and then
wait(n,S)↔ Cty ∪⋯∪Ctr ∪ upd(Ctr , n) is inconsistent.

Proof. Let us first prove thatwait(n,S)→ Cty ∪⋯∪Ctr ∪upd(Ctr , n) is inconsistent.
For somea > y, let Cta be the configuration of the network in whichn was invalid.
We knowta was updated afterty, so there was no wait between the update ofta and
tr. Updatingn in Cta would lead to a inconsistent configurationC′ta = upd(Cta , n) =
(Cta ∖ out(n,Ci)) ∪ out(n,Cf). Now, Cta ∖ out(n,Ci) ⊂ Cta andout(n,Cf ) ⊂
upd(Ctr , n). Therefore,(Cta ∖ out(b,Ci)) ∪ out(b,Cf ) = C

′
ta
⊆ Cta ∪ upd(Ctr , n) .

Therefore, ifwait(n,S) = false, thenCta ∪ upd(Ctr , n) cannot be consistent.
Now let us prove that¬wait(n,S) → Cty ∪ ⋯ ∪ Ctr ∪ upd(Ctr , n) is consistent.

Sincewait(n,S) = false, there are no waits betweenty and tr, n was valid in ev-
ery configuration reached between the updates ofty andtr. This means∀z ∈ [y, r] ∶
upd(Ctz , n) is consistent. AlsoW = Cty ∪ ⋯ ∪ Ctr is consistent. Let us assume that
W ′
= Cty ∪⋯∪Ctr ∪upd(Ctr , n) is inconsistent. Then there is an inconsistent path in

W ′. However, sinceW was consistent, this path was not from the union of configura-
tions inW . So, this path had edges from setW ′

∖W = out(n,Cf ) ∖ out(n,Ci). Let



us form the setadd(tl) = out(tl,Ci) ∖ out(tl,Cf ) which is the set of edges that are
added toCtl after its update. Consider these cases for each inconsistent pathp in W ′.

– p has no edges fromadd(tl) for anytl, soupd(Cty , n) is inconsistent (impossible).
– p has edges from setsadd(tl1) ∪ ⋯ ∪ add(tlz) for some nodestl1⋯tlz between
ty andtr (inclusive), then lettlg be the node in set{tl1 ,⋯, tlz} that occurs latest
in sequencet1⋯tr. So, p existed inupd(Ctg , n). However, since we know that
upd(Ctg , n) is consistent, this condition is also impossible.

Using this argument for every inconsistent path inW ′, we proveW is consistent. So,
we have proved that the wait condition defined by functionwait is complete.

5.2 Algorithm for Optimal Consistent Order Updates

We now present theOptimalPickAndWait (Algorithm 3) subroutine, that mini-
mizes the number of waits, solving the optimal consistent update problem. Our strategy
for minimizing waits is to assign one of two priorities to nodes:P0 (higher priority) and
P1 (lower priority). LetS be a partial sequence. A node is inP0 iff ¬wait(n,S), i.e.
P0 nodes do not require waiting before update. A node is inP1 iff wait(n,S), i.e. we
must wait before updating aP1 node. We greedily updateP0 nodes first.

Correctness and optimality follow from the correctness argument in the previous
section, and from Lemma 5. Intuitively, updating a node inP0 which does not need a
wait allows theP1 list to build up. This means we need to place a single wait for as many
P1 nodes as possible. When we place a wait in the partial carefulwaited sequence, every
valid node that was inP1 moves toP0. The last key property needed for the following
theorems is that once a node acquires priorityP0, it remains inP0.

Lemma 6. If a noden is valid in configurationC, then it is valid in configuration
upd(C,n′) for some valid noden′ ≠ n.

Proof. For validity, we do not consider the waits. We can directly apply Lemma 3. If
a noden is valid in a correct sequenceT = Unn′V , then if valid(upd(Ci, U), n

′),
T ′ = Un′nV is a correct sequence, meaningvalid(upd(Ci, Un′), n). So, the update of
any other node does not affect the validity ofn.

Lemma 7. If during the update, a node has priorityP0, it retains priorityP0 until it is
updated.

Proof. Noden is a priority P0 node when the partial careful waited sequenceZ =

(t1t2⋯tr,w1w2⋯ws) has been built. Ifn is updated aftertr,wait(n,Z) = false. How-
ever, from Lemma 6, sincen stays valid in every configuration after the update oftr,
wait(n,Z) = false no matter wheren is updated.

Theorem 5. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces a
correct waited sequence.

Proof. Using Lemma 5, every node that is not valid at the start is a priority P1 node
when it becomes valid. We pickP0 nodes with higher priority, and do not wait before
them. WhenP0 = ∅, we wait before we pick any node inP1. By definition, adding a
wait changes the priority of all nodes inP1 to P0. From Lemma 7, these nodes retain
priority P0 until they are updated, showing that waits are correctly placed.



We now prove that our greedy scheme is optimal. For this purpose, let us prove the
following two lemmas:

Lemma 8. If Z = (T,W ) = (UV nY,w1⋯wk) is a careful waited sequence, and inZ,
after updating nodes inU , n ∈ P0, thenZ ′ = (T ′,W ′) = (UnV Y,w′

1
⋯w′k) is a careful

waited sequence.

Proof. From Lemma 3, we know thatT ′ is a correct sequence. Here, in addition to
n being a valid node,n is a PriorityP0 node. Sincen ∈ P0 after updatingU , from
Lemma 7,s ∈ P0 in bothZ andZ ′. So,n does not get added inW ′. The partial careful
waited sequence consisting only of nodes inU is the same for bothZ andZ ′. Let us
complete this sequence by arguing for each nodes in V Y .

– Case 1: InZ, s ∈ P1 (s was inW ). In Z ′, we keeps in W ′. We do not add any
nodes inW ′ as compared withW .

– Case 2: InZ, s ∈ P0 (s was not inW ). In Z ′, s ∈ P0. Since we have kept the waits
at the same position asZ, if a wait was needed between any two nodes (excluding
n) in Z, there is a wait inZ ′. In Z, if s became valid in some configurationC, then
s is also valid inupd(C,n) (Lemma 6). A wait is needed before updatings in Z ′,
if it was needed inZ.

Hence we proved thatZ ′ is a careful waited sequence with∣W ∣ = ∣W ′∣.

Lemma 9. If Z = (T,W ) = (UV nY,w1⋯wk) is a careful waited sequence, and inZ,
after updating nodes inU , P0 = ∅∧ n ∈ P1, thenZ ′ = (T ′,W ′) = (UnV Y,w′

1
⋯w′k) is

a careful waited sequence.

Proof. Similar to Lemma 3, the partial careful waited sequence consisting only of nodes
in U is the same for bothZ andZ ′. Let V = v1⋯vg. Then sinceP0 = ∅ after updating
U , v1 is in W . To constructZ ′, let us swapn for v1 in W ′. After this wait,v1 ∈ P0, so
we do not need to addv1 toW ′. Then for all nodess in v2⋯vgY , we argue in the same
way as in Lemma 3, and prove thatZ ′ is a careful waited sequence with∣W ∣ = ∣W ′∣.

Theorem 6. Algorithm 1 with Algorithm 3 as its subroutine on Line 6 produces a
correct and optimal waited sequence of updates, if there exists a correct waited sequence
of updates.

Proof. We have seen the correctness and completeness of Algorithm 1. We also
proved the correctness of our approach for minimizing waits(Theorem 5). We will
now prove the optimality of Algorithm 1 with the Algorithm 3 modification. Let
Qcareless = (Tcareless,Wcareless) be an minimal correct waited sequence, andQalg =

(a1a2⋯an, b1⋯bn′) be the sequence generated by Algorithm 1 with Algorithm 3
as its subroutine. Using Lemma 4, we know there is a minimal careful waited se-
quenceQcareful = (s1s2⋯sn,w1⋯wk). Let r be the first index s.t.∀i < r ∶ si =

ai ∧ sr ≠ ar. In Qalg, if ar ∈ P0, then by Lemma 8, we can generate a careful se-
quenceQ′ = (s′

1
s′
2
⋯s′n,w

′
1
⋯w′k) s.t. ∀i ≤ r ∶ s′i = ai. In Qalg, if ar ∈ P1, then

from Algorithm 3 we know thatar was picked becauseP0 = ∅ after updating nodes
s1s2⋯sr−1 = a1a2⋯ar−1. By Lemma 9, we can again generate a minimal careful
waited sequenceQ′ = (s′

1
s′
2
⋯s′n,w

′
1
⋯w′k) s.t. ∀i ≤ r ∶ s′i = ai. Using this argu-

ment for every index fromi to n, we can find a minimal careful waited sequence
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Q′′ = (s′′
1
s′′
2
⋯s′′n,w

′′
1
⋯w′′k) s.t ∀i ∶ s′′i = ai. Now since∀i ∶ s′′i = ai, and our wait

condition is complete (Lemma 5), son′ = k.

Running Time.The OrderUpdate Algorithm with theOptimalPickAndWait subrou-
tine has the same time complexity that it had with theSequentialPickAndWait subrou-
tine. TheOptimalPickAndWait subroutine introduces a priority-based node selection
mechanism—after every wait, it simply moves nodes from the valid setU to the higher
priority list P0, which requires onlyO(∣N ∣) additional steps in each iteration.

6 Discussion
Multiple hosts and sinks.We can extend our single-source approach to a network with
multiple sourcesHA,HB,HC ,⋯. To do this, we assume that there is a master source
H1, and every actual source is connected toH1, as shown in Figure 10. This approach
works because we update every node only once, meaning we cannot artificially disable
and then re-enable some sources and keep others.

Multiple packet types.Our approach can be applied in contexts where there are multi-
ple (discrete) packet types, as long as each forwarding rulematches on asinglepacket
type—in this case, we simply compute an update for each packet type, and perform
these (rule-granularity) updates independently. In the more realistic case withsym-
bolic forwarding rules (i.e., matching based onfirst-order formulae over packet header
fields), deciding whether a consistent update exists isCO-NP-hard. Specifically, there is
a reduction from SAT to this problem. In this case, we can consider each edge in a con-
figuration as being labeled by a formula, and only packets whose header fields satisfy
this formula can be forwarded along that edge. To show the reduction, we consider a
double diamond (Figure 11) with one edge labelled by such a formulaϕ, and all other
edges labelled withtrue (⊺). We have already seen that a consistent update for this dou-
ble diamond example is not possible in the situation where packets (of any type) can
flow along all of the edges, so we can see thatthere exists a consistent update if and
only if ϕ is unsatisfiable. This completes the reduction.

7 Related Work
Consistency.Our core problem is motivated by earlier work by Reitblatt etal. [15] that
proposedper-packet consistencyand provided basic update mechanisms.

Exponential Search-Based Network Update Algorithms.There are various approaches
for producing a sequence of switch updates guaranteed to respect certain path-based



consistency properties (e.g., properties representable using temporal logic, etc.). For
example, McClurg et al. [14] use counter-example guided search and incremental LTL
model checking, FLIP [16] uses integer linear programming,and CCG [18] uses custom
reachability-based graph algorithms. Other works such as Dionysus [6], zUpdate [7],
and Luo et al. [11], seek to perform updates with respect to quantitative properties.

Complexity results.Mahajan and Wattenhofer [12] introduce dependency-graphsfor
network updates, and propose properties which could be addressed via this general ap-
proach. They show how to handle one of the properties (loop-freedom) in a minimal
way. Yuan et al. [17] detail general algorithms for buildingdependency graphs and us-
ing these graphs to perform a consistent update. Förster etal. [5] extend [12], and show
that forblackhole-freedom, computing an update with a minimal number of rounds is
NP-hard (when memory limits are assumed on switches). They also showNP-hardness
results for rule-granular loop-free updates with maximal parallelism. Per-packet con-
sistency in our problem is stronger than loop freedom and blackhole freedom, but we
only consider solutions where each switch is updatedonce, and where a switch update
swaps the entire old forwarding table with the new one simultaneously.

Förster and Wattenhofer [4] examine loop-freedom, showing that maximizing the
number for forwarding rules updated simultaneously isNP-hard. Ludwig et al. [9] show
how to minimize number of update rounds with respect to loop-freedom. They show
that deciding whether a k-round schedule exists isNP-complete, and they present a
polynomial algorithm for computing a weaker variant of loop-freedom. Amiri et al. [1]
present anNP-hardness result for greedily updating a maximal number of forwarding
rules in this context. Additionally, Ludwig et al. [8] investigate optimal updates with re-
spect to a stronger property, namelywaypoint enforcementin addition to loop freedom.
They produce an update sequence with a minimal number of waits, using mixed-integer
programming. Ludwig et al. [10] show that the decision problem isNP-hard.

Mattos et al. [13] propose a relaxed variant of per-packet consistency, where a
packet may be processed by several subsequent configurations (rather than asingle
configuration), and they present a corresponding polynomial graph-based algorithm for
computing updates. Dudycz et al. [3] show that simultaneously computingtwonetwork
updates while requiring a minimal number of switch updates (“touches”) isNP-hard.
Brandt et al. [2] give a polynomial algorithm to decide if congestion-free update is
possible when flows are “splittable” and/or not restricted to be integer.

8 Conclusion
We presented a polynomial-time algorithm to find a consistent update order on a

single packet type. We then presented a modification to the algorithm, which finds a
consistent update order with a minimal number of waits. Finally, we proved that this
modification is correct, complete, and optimal.
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