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Abstract. This paper presents a first step of our research on designing
an effective and efficient GP-based method for symbolic regression. First,
we propose three extensions of the standard Single Node GP, namely (1)
a selection strategy for choosing nodes to be mutated based on depth and
performance of the nodes, (2) operators for placing a compact version
of the best-performing graph to the beginning and to the end of the
population, respectively, and (3) a local search strategy with multiple
mutations applied in each iteration. All the proposed modifications have
been experimentally evaluated on five symbolic regression benchmarks
and compared with standard GP and SNGP. The achieved results are
promising showing the potential of the proposed modifications to improve
the performance of the SNGP algorithm. We then propose two variants of
hybrid SNGP utilizing a linear regression technique, LASSO, to improve
its performance. The proposed algorithms have been compared to the
state-of-the-art symbolic regression methods that also make use of the
linear regression techniques on four real-world benchmarks. The results
show the hybrid SNGP algorithms are at least competitive with or better
than the compared methods.

Keywords: Genetic Programming, Single Node Genetic Programming,
Symbolic Regression

1 Introduction

This paper presents a first step of our research on genetic programming (GP) for
the symbolic regression problem. The ultimate goal of our project is to design an
effective and efficient GP-based method for solving dynamic symbolic regression
problems where the target function evolves in time. Symbolic regression (SR) is
a type of regression analysis that searches the space of mathematical expressions
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to find the model that best fits a given dataset, both in terms of accuracy and
simplicity?.

Genetic programming belongs to effective and efficient methods for solving
the SR problem. Besides the standard Koza’s tree-based GP [12], many other
variants have been proposed. They include, for instance, Grammatical Evolution
(GE) [20] which evolves programs whose syntax is defined by a user-specified
grammar (usually a grammar in Backus-Naur form). Gene Expression Program-
ming (GEP) [4] is another GP variant successful in solving the SR problems. Sim-
ilarly to GE it evolves linear chromosomes that are expressed as tree structures
through a genotype-phenotype mapping. A graph-based Cartesian GP (CGP)
[18], is a GP technique that uses a very simple integer based genetic representa-
tion of a program in the form of a directed graph. In its classic form, CGP uses
a variant of a simple algorithm called (1 + \)-Evolution Strategy with a point
mutation variation operator. When searching the space of candidate solutions,
CGP makes use of so called neutral mutations, meaning that a move to the
new state is accepted if it does not worsen the quality of the current solution.
This allows an introduction of new pieces of genetic code that can be plugged
into the functional code later on and allows for traversing plateaus of the fitness
landscape.

A Single Node GP (SNGP) [9], [10] is a rather new graph-based GP system
that evolves a population of individuals, each consisting of a single program node.
Similarly to CGP, the evolution is carried out via a hill-climbing mechanism
using a single reversible mutation operator. The first experiments with SNGP
were very promising as they showed that SNGP significantly outperforms the
standard GP on various problems including the SR problem. In this work we take
the standard SNGP as the baseline approach and propose several modifications
to further improve its performance.

The goals of this work are twofold. The first goal is to verify performance
of the vanilla SNGP compared to the standard GP on various SR benchmarks
and to investigate the impact of the following three design aspects of the SNGP
algorithm:

— a strategy to select the nodes to be mutated,

— a strategy according to which the nodes of the best-performing expression
are treated in the population,

— and a type of the search strategy used to guide the optimization process.

The second goal is to propose a hybrid variant of SNGP which incorporates
the LASSO regression technique for creating linear-in-parameters nonlinear mod-
els. We compare its performance with other state-of-the-art symbolic regression
methods which also make use of linear regression techniques.

The paper is organized as follows. Section 2 describes the SNGP algorithm.
In Section 3, three modifications of the SNGP algorithm are proposed. Exper-
imental evaluation of the modified SNGP and its comparison to the standard
SNGP and standard Koza’s GP is presented in Section 4. Section 5 describes two

4 https://en.wikipedia.org/wiki/Symbolic_regression
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variants of the SNGP utilizing the linear regression technique, LASSO, to im-
prove its performance. The two versions of SNGP with LASSO are compared to
other symbolic regression methods making use of the linear regression techniques
in Section 6. Finally, Section 7 concludes the paper and proposes directions for
the further research on this topic.

2 Single Node Genetic Programming

2.1 Representation

The Single Node Genetic Programming is a GP system that evolves a population

of individuals, each consisting of a single program node. The node can be either
terminal, i.e. a constant or a variable node, or a function from a set of functions
defined for the problem at hand. Importantly, individuals are not isolated in the
population, they are interlinked in a graph structure similar to that of CGP,
with population members acting as operands of other members [9].

Formally, a SNGP population is a set of N individuals M = {mqg, m1,...,mn_1},

with each individual m; being a single node represented by the tuple m; =
(ug, fi, Suce;, Pred;, O;), where

— u; € TULF is either an element chosen from a function set F' or a terminal
set T defined for the problem,

— f; is the fitness of the individual,

— Swucc; is a set of successors of this node, i.e. the nodes whose output serves
as the input to the node,

— Pred; is a set of predecessors of this node, i.e. the nodes that use this indi-
vidual as an operand,

— O; is a vector of outputs produced by this node.

Typically, the population is partitioned so that the first Nye,, nodes, at
positions 0 to Nyerm — 1, are terminals (variables and constants in case of the SR
problem), followed by function nodes. Importantly, a function node at position i
can use as its successor (i.e. the operand) any node that is positioned lower down
in the population relative to the node 4. This means that for each s € Succ; we
have 0 < s < ¢ [9]. Similarly, predecessors of individual ¢ must occupy higher
positions in the population, i.e. for each p € Pred; we have i < p < N. Note
that each function node is in fact a root of a direct acyclic graph that can be
constructed by recursively traversing through successors until the leaf terminal
nodes.

2.2 Evolutionary model

In [9], a single evolutionary operator called successor mutate (smut) has been
proposed. It picks one individual of the population at random and then one of its
successors is replaced by a reference to another individual of the population mak-
ing sure that the constraint imposed on the successors is satisfied. Predecessor
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lists of all affected individuals are updated accordingly. Moreover, all individuals
affected by this action must be reevaluated as well. For more details refer to [9].

The evolution is carried out via a hill-climbing mechanism using a smut
operator and an acceptance rule, which can have various forms. In [9], it was
based on fitness measurements across the whole population, rather than on sin-
gle individuals. This means that once the population has been changed by a
single application of the smut operator and all affected individuals have been
re-evaluated, the new population is accepted if and only if the sum of the fitness
values of all individuals in the population is no worse than the sum of fitness
values before the mutation. Otherwise, the modifications made by the mutation
are reversed. In [10] the acceptance rule is based only on the best fitness in the
population. The latter acceptance rule will be used in this work as well. The
reason for this choice is explained in Section 3.4.

3 Proposed Modifications

In this section, the following three modifications of the SNGP algorithm will be
proposed:

1. A selection strategy for choosing nodes to be mutated based on depth and
performance of nodes.

2. Operators for placing a compact version of the tree rooted in the best per-
forming node to the beginning and to the end of the population, respectively.

3. A local search strategy with multiple mutations applied in each iteration.

In the following text, the term ”best tree” is used to denote the tree rooted
in the best performing node.

3.1 Depthwise Selection Strategy

The first modification focuses on the strategy for selecting the nodes to be mu-
tated. In the standard SNGP, the node to be mutated is chosen at random.
This means that all function nodes have the same probability of selection ir-
respectively of (1) how well they are performing and (2) how well the trees of
which they are a part are performing. This is not in line with the evolutionary
paradigm where the well fit individuals should have higher chance to take part
in the process of an evolution of the population.

One way to narrow this situation is to select nodes according to their fitness.
However, this would prefer just the root nodes of trees with high fitness while
neglecting the nodes at the deeper levels of such well-performing trees which
themselves have rather poor fitness. In fact, imposing high selection pressure on
the root nodes might be counter-productive in the end as the mutations applied
on the root nodes are less likely to bring an improvement than mutations applied
on the deeper structures of the trees.

We propose a selection strategy that takes into account the quality of the
mutated trees, so that better performing trees are preferred, as well as the depth
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of the mutated nodes so that deeper nodes of the trees are preferred to the shallow
ones. The selection procedure has four steps:

1. A function node n is chosen at random.

2. A tree t with the best fitness out of all trees that use the node n is chosen.

3. All nodes of the tree ¢ are collected in a set S. Each node is assigned a score
equal to its depth in the tree t.

4. One node is chosen from the set S using a binary tournament selection
considering the score values in the higher the better manner.

3.2 Organization of the Population

The second modification aims at improving the exploration capabilities of the
SNGP algorithm. Two operators for placing a compact version of the best per-
forming graph to the beginning and to the end of the population, respectively,
are proposed.

Move left operator. Let us first describe the motivation for and the re-
alization of the operator that places the compact version of the best graph to
the beginning of the population. The motivation for this operator, denoted as
moveLe ft operator, is that well-performing nodes (and the whole graph struc-
ture rooted in this node) can represent a suitable building block for constructing
even better trees when used as a successor of other nodes in the population.
Since the chance of any node of being selected as a successor is higher if the
node is more to the left in the population, it might be beneficial to store the
well-performing graphs at lower positions in the population. Thus, the operator
takes the best graph, Gpest, and places it in a compact form to the very begin-
ning of the population. By the compact form of a graph G we mean a sequence
of nodes representing the whole G such that it contains only nodes involved in
G. The moveLe ft operator works as follows:

1. Extract nodes of the graph Gjes: rooted in the best-performing node and
put the nodes into a compact ordered list L.

2. Set all successor and predecessor links of nodes within L so that L represents
the same graph as the original graph Gpes:.

3. Place L to the beginning of the population, i.e. the first node of L being at
the first function node position in the population.

4. Update the successor links of nodes of the original graph Gpes: so that it
retains the same functionality as it had before the action.
It must be made sure that all nodes of the original Gpes; have properly set
their successors. If for example some successor of a node of the original Gpest
gets modified (i.e. the successor falls into the portion of the population newly
occupied by the compact form of the Gpest), then the successor reference is
updated accordingly. In Fig. 1, this is for example the case of the second
successor of the node at position 8, which originally pointed to the node
number 4 and after the moveLe ft operation has been redirected to the node
number 2.



6 Jif{ Kubalik, Eduard Alibekov, Jan Zegklitz, and Robert Babuska

Population 0 1 2 3 4 5 6 7 8 9 10 11

u x | + - * + / * + - / + *
Succ| - 10,0]01(001]03(13]03]|04]|04]56]|68]|238
Pred| - |25 ]| 11 |456] 78| 9 (9,10 - [10.11 - - -
Extract nodes of the best-performing expression
and store them in the compact form L o
L 0 1 2 3 4 5 ‘ °
u X * + * - + e e a
Succ| - 10,0 01 ]01]02]|34
Pred| - |23 ]| 4 5 5 - 9 9

Put L to the beginning of the population
and adjust all successor and predecessor links accordingly

Population’ 0 1 2 3 4 5 6 7 8 9 10 11

u X * + * - + * + - / + *
Succ| - (0,0 (01| 01]02]|34]|01]|04]|02]56]6,8]228
Pred| - 12,36/ 48| 5 |57 9 (910 - (1011] - - -

Fig. 1. Illustration of the moveLeft operator. Function nodes involved in the original
and compact form of the best graph are shown in red. After the application of the
moveLeft operator the population contains two occurrences of the best graph, the one
represented by a sequence of nodes [0, 1, 2, 6, 8, 10] and the one represented by nodes
[0, 1, 2, 3, 4, 5].

5. Update the predecessor lists of nodes in the compact form of Gpes:) in order
to reestablish links to other nodes in the population that use the nodes as
SUCCESSOrs.

In the example in Fig. 1 this is the case of the predecessor number 7 of node
number 4 and the predecessor number 9 of node number 5, respectively.

Note that after the application of the moveLeft operator the population
contains two versions of the Gpest, the original one and the compact one, see the
example in Fig. 1.

Move right operator. Similarly, an operator that places the compact ver-
sion of the best graph Gpes: to the end of the population is proposed. The moti-
vation for this operator, denoted as moveRight operator, is that a performance of
some well-performing graphs can more likely be improved by mutations applied
to the nodes on deeper levels of the graph than by mutations applied to the root
node or shallow nodes of the graph. In order to increase the number of possible
structural changes to the deeper nodes of the best graph the compact version of
the graph is placed to the end of the population. The working scenario for the
operator is similar to the one of the moveLeft operator, see Fig. 2. Note that
the application of the moveRight operator might result in the final population
that contains just a single occurrence of the Gpes:. This might happen when the
nodes of the original Gpeq fall into the area of its compact form.



Hybrid Single Node Genetic Programming for Symbolic Regression 7

Population 0 1 2 3 4 5 6 7 8 9 10 11

u x|+ | - | x|+ /| *|+]- /| + | %
Succ| - [00]01]00]03(|13[03]|04]04]|56]|68]|28
Pred| - | 25| 11 (45678 9 |9,10| - [10,11] - - -
Extract nodes of the best-performing expression
and store them in the compact form L e
L 0 7 8 9 10 11
u [x 1+ 1+ ]*] -]+ ©® B/ ®
Succ| - [0,0]0,7]07]|08 |9,10
Pred| - |89 |10 | 11 | 11 - 9 °

Put L to the end of the population
and adjust all successor and predecessor links accordingly

Population’ 0 1 2 3 4 5 6 7 8 9 10 11

u X | + - * + / * * | + * - +
Succ| - 10,0(0,1[00[03]|13]|03/[00]0,7]0,7]0,8]9,10
Pred| - 25| - [456] - - - (8910 |11 | 11| -

Fig. 2. [llustration of the moveRight operator. Function nodes involved in the original
and compact version of the best graph are shown in red. In this example, the final
population contains just one occurrence of the best graph represented by a sequence
of nodes [0, 7, 8, 9, 10, 11].

3.3 Local Search Strategy

The last modification of the standard SNGP algorithm consists in allowing mul-
tiple mutation in a single iteration of the local search procedure. The idea behind
this modification is rather straightforward. During the course of the optimization
process the population might converge to the local optimum state where it is
hard to find further improvement by just one application of the smut operator.
With multiple mutations applied in each iteration, the probability of getting
stuck in such local optimal should be reduced. In this work, a parameter upTolN
specifying the maximum number of mutation applications is used. Thus, if the
parameter is set for example to 5, a randomly chosen number from interval (1, 5)
of mutations are applied to the population in each iteration.

3.4 Outline of Modified SNGP Algorithm

This section presents an outline of the generic SNGP algorithm with possible
utilization of the proposed modifications, see Fig. 3. In each generation, k& mu-
tations are applied to nodes of the population, see steps 8-10. In case of the
standard SNGP just a single mutation is applied in each generation. After all
k mutations have been applied, the nodes affected by this action gets reevalu-
ated. If the best fitness of the modified population is not worse than the current
best-so-far fitness than the modified population becomes the current population
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1 Initialize population of nodes, P

2 evaluate P

3 bestSoFar < best of P

4 i+0 // number of generations

5 do

6 P+ P // work with a copy of P

7 Choose the no. of mutations, k € (1, upToN),
to be applied to nodes from P’
for(n=1...k)

9 Choose the node to be mutated, N

10 P’ + Apply mutation to node N of P’

11 evaluate P’

12 currBest < best of P’

13 if(currBest is not worse than bestSoFar)

14 bestSoFar < currBest

15 P+ P // update the population

16 If applicable, apply either moveLeft

or moveRight operator to P
17 i i+1
18 while (¢ < maxGeneration)
19 return bestSoFar

Fig. 3. Outline of the modified SNGP algorithm.

for the next generation, see step 15. Here, the fitness of each individual is calcu-
lated as the sum of absolute errors (SAE) generated by the individual over all
training samples. In step 16, the operators moving the best tree to the beginning
or to the end of the population are applied to the population, if applicable. Then
the fitness evaluation counter is incremented and if there are still some fitness
evaluations left the next generation is carried out. Once the maximal number
of fitness evaluations is used the best node (and its tree) of the population is
returned.

In this work, we use the acceptance criterion, step 13, working with the best
fitness in the population, not the average fitness of the population. The reason
is that when the moveLeft and moveRight operators are used, they might
significantly change the average fitness of the population while the best fitness
stays intact.

4 Experiments with Modified SNGP

This section presents experiments carried out with standard GP, standard SNGP
and SNGP with the proposed modifications.
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4.1 Artificial Benchmarks
The algorithms have been tested on five symbolic regression benchmarks

— fi(z) = 42t — 323 + 222 — 2,

32 training samples equidistantly sampled from (0, 1.0),
— fo(z) = 28 — 22 + 22,

100 training samples equidistantly sampled from (—1.0,1.0)
— f3(z) = 25 — 2.62* + 1.722,

100 training samples equidistantly sampled from (—1.0,1.0)
— fa(z) = 25 — 2.62* + 1.722 — =,

100 training samples equidistantly sampled from (—1.4,1.4)

z1—3)*+(22—3)% —(z2—
= fs(x1,m2) = = 3)(:2(—22)43_,)_10( 2 3);

100 training samples equidistantly sampled from (0.05, 6.05)

The first two functions are rather simple polynomials with small integer
constants. We chose the function f; since it was used in the original SNGP paper
[9]. Function f; is the Koza-3 function taken from [17]. Functions f3 and f4 are
modifications of the Koza-3 function so that they involve non-trivial decimal
constants. Thus, these functions should represent harder instances than f; and
f2. The function f4 is made even harder than fs while breaking the symmetry
by adding the term ”—x”. The last function f5 is a representative of a rational
function of two variables. This function, known as Vladislavleva-8 function [17],
represents the hardest SR problem used in this work.

4.2 Experimental Setup

All the tested variants of the SNGP use a population of size 400. The population
starts with terminal nodes representing the variable x; and x5 and a constant
1.0 followed by function nodes of types {+, -, *, /}. SNGP was run for 25,000
iterations, in each iteration just a single population reevaluation is computed
(note, just the nodes that were affected by the mutation are reevaluated). The
number of iterations was chosen so as to make the comparisons of the GP and
SNGP as fair as possible. This way a balance between processed nodes and fitness
evaluations is found, see [19].

The proposed modifications of the SNGP algorithm are configured with the
following parameters:

— upToN € {1,5},

— selection is either random (denoted as 'r’) or depthwise (denoted as ’d’)

— moveT'ype is either moveLeft (denoted as '), moveRight (denoted as ’r’)
or no move (denoted as 'n’).

Names of the tested configurations of the SNGP are constructed as fol-
lows "SNGP_upToN _selection_moveType”. The standard SNGP is denoted as
SNGP_1.r.n, i.e. SNGP with a random selection and no move operator applying
a single mutation per generation.

Standard GP with generational replacement strategy was used with the fol-
lowing parameters:
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— Function set: {+, -, *, /}

— Terminal set: {z1, z2, 1.0}

— Population size: 500

— Initialization method: Ramped half-and-half

— Tournament selection: 5 candidates

— Number of generations: 55, i.e. 54 generations plus initialization of the whole
population

— Crossover probability: 90%

— Reproduction probability: 10%

— Probability of choosing internal node as crossover point: 90%

For the experiments with the GP we used the Java-based Evolutionary Com-
putation Research System ECJ 22°.

One hundred independent runs were carried out with each tested algorithm
on each benchmark and the observed performance characteristics are

— fitness — the mean best fitness (i.e. the sum of absolute errors) over 100 runs;

— sample rate — the mean number of successfully solved samples by the best-
fitted individual calculated over 100 runs, where the sample is considered to
be successfully solved by the individual iff the absolute error achieved by the
individual on this sample is less then 0.01;

— solution rate — the percentage of complete solutions found within 100 runs,
where the runs completely solves the problem iff the best individual generates
on all training samples the absolute error less than 0.01;

— size — the mean number of nodes of the best solution found calculated over
100 runs.

Table 1: Results of the modified SNGP variants and standard GP on arti-
ficial benchmarks f1 - f5. The best mean fitness value for each benchmark
is highlighted.

function algorithm fitness sample rate (%) solution rate (%) nodes
GP 0.14 828 49 151
SNGP_1.rn 0.65 37.2 5 26.8
SNGP_1.dn 0.29 63.4 18 33.7
SNGP_1rl 0.62 38.1 3 22.5

fi SNGP_1.d1 0.25 68.4 24 33.9
SNGP_1rr 0.66 35.9 4 34.5
SNGP_1drxr 0.28 66.9 17 56.6
SNGP.5.dn 0.16 78.8 49 32.3
SNGP.5.d1 0.17 77.5 49 28.5
SNGP.5dr 0.14 84.7 53 52.4

Continued on next page

® https://cs.gmu.edu/ eclab/projects/ecj/
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Table 1 — continued from previous page

function algorithm fitness sample rate (%) solution rate (%) nodes
GP 0.78 88.7 69 175.1
SNGP_1rn 0.85 73.4 33 277
SNGP_1.d-n 0.17 94.4 78 27.6
SNGP_1rl1l 0.75 78 33 30.8
fo SNGP_1.d1 0.25 92.8 65 27.7
SNGP_1rr 0.84 72.7 17 47
SNGP_1dr 0.15 94.3 82 40.9
SNGP_5.d.n 1le-6" 100 100 22.6
SNGP.5.d1 0.08 97.8 87 21.2
SNGP.5.dr 0.05 98.2 91 37.2
GP 1.19 684 0 155
SNGP_1rn 2.7 40 0 28.9
SNGP_1.dn 1.5 54.0 0 33.6
SNGP_1rl1 2.39 43.7 0 30.1
fa SNGP_1dl1 1.4 59.2 0 35
SNGP_1rr 2.75 37.2 0 43.4
SNGP_1dr 1.6 51.6 0 56.2
SNGP.5.dn 1.37 59.2 0 32.6
SNGP.5.d1 1.23 65.6 0 30.3
SNGP.5.dr 1.35 60.8 0 57.2
GP 11.0 19.4 0 146.8
SNGP_1rn 10.5 12.9 0 26.1
SNGP_1.dn 7.8 21.7 0 34.2
SNGP_1rl 11.2 10.8 0 26.5
fa SNGP_1.d1 8.3 19.0 0 32.9
SNGP_1xr 89 19.0 0 45.8
SNGP_1drxr 7.4 22.4 0 53.9
SNGP.5dn 7.15 25.8 0 31.5
SNGP.5dl1 7.4 24.0 0 28
SNGP5dr 6.7 27.2 0 50.8
GP 71.2 4.4 0 194.3
SNGP_1rn 64.1 4.0 0 26.0
SNGP_1.dn 61.6 3.8 0 35.6
SNGP_1rl 64.9 3.8 0 27.3
fs SNGP_1d1 60.0 4.1 0 34.9
SNGP_1rr 63.6 4.4 0 44.3
SNGP_1.dr 61.1 4.1 0 51.6
SNGP.5.dn 60.7 3.7 0 32.8
SNGP.5.d1 60.9 3.6 0 31.9
SNGP.5.dr 60.4 4.0 0 51.1

11
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4.3 Results

Results obtained with the compared algorithms are presented in Table 1. The
first observation is that the results obtained on the benchmark f; are quite
different than the results presented in [9], as the performance of the SNGP is
not as good as the SNGP performance presented there whilst the standard GP
performs much better than presented in [9]. This might be caused by different
configurations of the SNGP and GP used in our work and in [9]. We used different
acceptance criterion in SNGP and the generational instead of the steady-state re-
placement strategy in GP. This observation might indicate that both approaches
are quite sensitive to the proper setting of their individual components.

The second observation is that the modified versions of SNGP systematically
outperform the standard SNGP with respect to the fitness, sample rate and
solution rate performance measures. On the other hand, the modified SNGP is
not a clear winner over the standard GP. The SNGP outperforms GP on fs, f4
and f5. On f; it performs equally well as the GP. On f3, all versions of SNGP
get outperformed by the GP with respect to the fitness. It turns out functions
f3, fa and f5 represent a real challenge for all tested algorithms since no one was
able to find a single correct solution within the 100 runs. We hypothesize the
hardness of f3 and f; stems from the fact these benchmarks involve non-trivial
constants that might be hard to evolve. Function f5 is hard since it is a rational
function.

The third observation is that there is a clear trend showing that the depthwise
node selection works significantly better than the random one. Whenever the
SNGP configurations differ just in the selection type the one using the depthwise
selection outperforms the one with the random selection.

The fourth observation is that the reorganization of the population using
either the moveLeft or moveRight operator does not have any systematic im-
pact on the overall performance of the algorithm. It happens only rarely that
the SNGP using moveLeft or moveRight outperforms its counterpart configu-
ration with no move operator used. In particular, the moveLeft operator was
significantly better® than noM ove in four cases, the move Right operator was sig-
nificantly better than noM ove in two cases, all the cases indicated by underlined
values. On the other hand, the noMove configuration happened to outperform
both the moveLeft and moveRight configuration on function f; as indicated
by an asterisk.

The fifth observation is that the local search strategy allowing multiple mu-
tations in one iteration outperforms the standard local search procedure with
just a single application of the mutation operator per iteration. This is with
agreement with our expectations.

Last but not least, the SNGP consistently finds much smaller trees than
the GP. This is very important since very often solutions of small size that are
interpretable by human are sought in practice.

5 Checked using the t-test calculated with the significance level o = 0.05
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5 Hybrid SNGP with Linear Regression

It has widely been reported in the literature that the evolutionary algorithms
work much better when hybridized with local search techniques, the concept
known as the memetic algorithms [7]. EA serves as a global search strategy,
while the local search technique provides an efficient means for fine-tuning the
solutions. A similar approach can be used to develop efficient methods for sym-
bolic regression.

Recently, several methods emerged [1], [2], [15], [21], [22] that explicitly re-
strict the class of models to generalized linear models, i.e. to a linear combination
of possibly non-linear basis functions. With the help of linear regression tech-
niques applied to the basis functions, such models can be learned much faster.

GPTIPS [21], [22] is an open-source SR toolbox for MATLAB. It is an im-
plementation of Multi-Gene Genetic Programming (MGGP) [8] and thus has its
roots in classical GP. Each solution is composed of multiple independent trees,
called genes, and their outputs are linearly combined. The coefficients of this
linear combination are computed optimally with respect to the MSE of the final
output to the true target values by classical least-squares linear regression. GP-
TIPS (MGGP) is based on classical Genetic Program- ming. This means that
it works with a population of fixed size, subtree mutation, subtree crossover,
tournament selection, standard initialization procedures, and is able to handle
the internal constants of the model (to certain extent) using ephemeral random
constants. The output of GPTIPS is a population of models; it is up to the
user to choose the final one. By default, GPTIPS uses Lexicographic Parsimony
Pressure [13] using (by default) Expressional Complexity [24] of the models.
MGGP was shown to be faster and more accurate than conventional GP [8] and
also a comparable or better alternative to classical methods like Support Vector
Regression and Artificial Neural Networks [6].

FFX, or Fast Function Extraction [2], is a deterministic algorithm for sym-
bolic regression. It first exhaustively generates a massive set of basis functions,
which are then linearly combined using Pathwise Regularized Learning [5], [25]
to produce sparse models. The algorithm produces a Pareto-front of models with
respect to their accuracy and complexity. Again, it is up to the user to choose
the final model. There are two kinds of bases that are generated: univariate bases
and bivariate bases. Univariate bases are: a variable raised to a power (chosen
from a fixed set of options) and (non-linear) functions applied to another univari-
ate base. Bivariate bases are products of all pairs of univariate bases excluding
the pairs where both the bases are of function-type; the author argues that such
products are “deemed to be complex”. FFX also includes a trick that allows it to
produce rational functions of the bases using the same learning procedure. The
original paper reports FFX to be more accurate than many classical methods
including conventional GP, neural networks and SVM.

EFS, or Evolutionary Feature Synthesis [2] is a recent evolutionary-based
algorithm. In EFS, the population does not consist of complete models but
rather of features which, collectively, form a single model. The initial population
is formed by the original features of the dataset. Then, in each generation, a
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model is composed of the features in the current population by Pathwise Reg-
ularized Learning and is stored if it is the best. The next step in a generation
is the composition of new features by applying unary and binary functions to
the features already present in the current population. This way, more complex
features are created from simpler ones. Also, the features are selected during
this composition step according to the Pearson correlation coefficient with the
feature’s parents. EFS does not build the symbolic model explicitly — it works
with the data of the features in a vectorial fashion and only stores the structure
for logging purposes. This results in a very fast algorithm. The original paper
reports EFS being comparable to neural networks and similar or better than
Multiple Regression Genetic Programming [1] which itself was reported to out-
perform conventional GP, multiple regression and Scaled Symbolic Regression
[11].

In this section we propose two variants of hybrid SNGP that make use of
the linear regression technique to improve its performance. Both use the Least
Absolute Shrinkage and Selection (LASSO) regression technique, the one used
in EFS, to build generalized linear regression models. The first one, denoted as
Single-Run SNGP with LASSO (s-SNGPL), evolves a population of candidate
features for the LASSO regression in a single run of the SNGP. The second
variant, denoted as Iterated SNGP with LASSO (i-SNGPL), builds the LASSO
model in an iterative manner where in each iteration a new feature for the
LASSO model is evolved in a separate SNGP run.

5.1 Single-Run SNGP with LASSO

In this method, all features of the generalized linear regression model are evolved
in a single run of the SNGP. The outline of the algorithm, see Fig. 4, is very
much like the one of the modified SNGP, see Fig. 3. The only difference is
in the evaluation of individual nodes in the population and in assessment of
the overall population’s quality after the content of the population has been
altered in each generation. First, a quality of each node is calculated as the
Pearson product-moment correlation coefficient between the node’s output and
the desired output values (line 11). Then, a generalized linear regression model
of a subset of features present in the population is calculated using the LASSO
technique (line 12). Finally, the fitness of the whole population is calculated as
the sum of absolute errors between the LASSO regression model output and
the desired output values. Thus, the hybrid SNGP uses the same fitness as the
modified SNGP, see 3.4.

The complexity of the LASSO model is controlled by (1) the maximal depth
of features evolved in the population and (2) the maximum number of features
the LASSO model can be composed of. Note, the features can be non-linear
functions.
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1 initialize population of nodes P
2 calculate fitness of nodes in P
based on their correlation with expected outputs
3 build LASSO regression model LM (P)
4 i+0 // number of generations
5 do
6 P+ P // work with a copy of P
7 Choose the no. of mutations, k € (1, upToN),
to be applied to nodes from P’
for(n=1...k)
9 choose the node to be mutated, N
10 P’ < Apply mutation to node N of P’
11 calculate fitness of nodes in P’
based on their correlation with expected outputs
12 build LASSO regression model LM (P’)
13 if (LM (P') is not worse than LM (P))
14 P+ P // update the population
15 1141

16 while (¢ < maxGenerations)
17  return LM(P)

Fig. 4. Outline of the Single-Run SNGP with LASSO.

5.2 TIterated SNGP with LASSO

Unlike the s-SNGPL, here the set of candidate features F for the LASSO re-
gression model is not evolved within a single population of SNGP. Instead, an
external set F is build incrementally, starting from an empty set and adding one
feature in each iteration, see Fig. 5.

Each feature f; is evolved in a separate run of the SNGP (line 6) such that
it correlates the most with the residua R (i.e. the vector of error values over all
training samples) produced by the current LASSO regression model composed of
i — 1 features. The residua are initialized to desired output values of the training
samples. The idea is that in each iteration a new feature is evolved such that it
possibly helps to reduce the error of the resulting LASSO model. The algorithm
stops when either the set of candidate features reached the preset maximum or
the error of the LASSO model becomes zero.

6 Experiments with Hybrid SNGP

First experiments with hybrid SNGP variants s-SNGPL and i-SNGPL are car-
ried out on the artificial benchmarks listed in Section 4.1. Another series of
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1 i+0 // number of candidate features

2 initialize feature set F = ()

3 initialize residua R

4 do

5 14 1+1

6 evolve a new feature f; using separate SNGP
based on its correlation with R

7 add f; to F

8 build Lasso model LM (F') using all features in F

9 update residua R

10 while (i < maxFeatures and R # 0)
11  return LM

Fig. 5. Outline of the Iterated SNGP with LASSO.

experiments are carried out on real-world benchmarks described in the following
section.

6.1 Real-World Benchmarks

Following four real-world benchmarks, acquired from the UCI repository [14],
were used in this work

— Energy Efficiency of Cooling (ENC) and Heating (ENH) are datasets
regarding the energy efficiency of cooling and heating of buildings. Dimension
is 8, number of datapoints is 768.

— Concrete Compressive Strength (CCS) is a dataset representing a
highly non-linear function of concrete age and ingredients. Dimension of
the dataset is 8, the number of datapoints is 1030.

— Airfoil Self-Noise (ASN) is a dataset regarding the sound pressure levels
of airfoils based on measurements from a wind tunnel. Dimension of the
dataset is 5, the number of datapoints is 1503.

These benchmarks were used in the work on EFS [2] and other relevant
literature.

Each dataset was split 100 times (using the 0.7/0.3 ratio for training/testing).
Each algorithm was run once on each of the dataset instances producing a single
model. The accuracy and complexity of the resulting models are then aggregated
and statistically compared.

6.2 Experimental Setup

We compare the proposed hybrid SNGP algorithms to the GPTIPS, EFS and
FFX. We used GPTIPS version 2 retrieved from [23], FFX in version 1.3.4 re-
trieved from [16], EFS was retrieved from [3]. The goal is to perform a comparison
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of the chosen methods as ready-to-use tools. Therefore we didn’t modify to the
code of the algorithms?, and we left all of the settings at their default values.
We set a timeout to 10 minutes for both EFS and GPTIPS. FFX has no support
for timeout. However, the algorithms’s performances have not been analyzed
from the computation time point of view. No parameter tuning method was
used to find an optimal configuration of the compared algorithms for particular
benchmarks.

The most important for our evaluation purposes is how the algorithms control
the resulting model complexity. GPTIPS has (user-defined) limits on the maxi-
mum number of nodes and/or maximum depth, and on the maximum number
of bases. By default there is a depth limit of 4, and maximum number of bases
(not counting the intercept) is also 4. EFS computes the maximum number of
bases from the number of input features, p; the number of bases was set to 3p
and maximum number of nodes in a base is hard-coded to 5. The FFX procedure
results in a maximum model depth of 5.

The hybrid SNGP algorithms with LASSO regression were run on artificial
benchmarks with the same population size and the sets of terminals and functions
as were used in Section 4.2. The maximum number of generations of s-SNGPL
was set to 1000. The maximum number of generations of each individual SNGP
run of the i-SNGPL was set to 1000 as well. The maximum number of features
the LASSO model can be composed of was set to 15 and the maximum depth
of the evolved features was set to 4.

The modified SNGP and hybrid SNGP algorithms with LASSO regression
were run on real-world benchmarks with the following changes in the configura-
tion. The set of terminals was extended with constants 2.0, 3.0 and 4.0 and the
set of functions was extended with functions square, cube, sqrt and sin. Similarly
to EFS, the maximum number of features was set to 3p, unless stated otherwise.

On the real-world benchmarks, we compare the resulting models with respect
to the root mean square error (RMSE) and the number of nodes used in the
model. We define the number of nodes as a sum of the numbers of nodes in the
model’s bases, i.e. we count neither the coefficients (including the intercept) of
the linear combination, nor the multiplications between these coefficients and the
bases. FFX’s hinge functions, having a form maxz(0; x — threshold) or similar,
count as 5 nodes.

6.3 Results on Artificial Benchmarks

Table 2 shows results of the modified SNGP algorithm and the two hybrid SNGP
algorithms using LASSO regression on the artificial benchmarks. Only the best
performing configuration of the modified SNGP is selected for each benchmark
based on the results presented in Table 1.

" The only exception is EFS: we changed the round variable to false (which was orig-
inally hard-coded to true) according to the issue on the algorithm’s GitHub reposi-
tory, see https://github.com/exgp/efs/issues/1.
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There is no single winner algorithm consistently outperforming the others
on all five benchmarks. However, there is a clear trend showing that the SNGP
without LASSO is doing well on rather simple benchmarks f; and fo (it is even
better than both hybrid algorithms on f3), i.e. the polynomials that involve only
trivial integer constants. As the difficulty of the target model increases (from f3
to f5) the hybrid SNGP algorithms start to dominate. Of the two variants the
i-SNGPL is better with respect to the SAE performance measure. Note, the
superiority of the i-SNGPL is achieved at the cost of rather highly complex
models, approximately 150 nodes and more compared to 65 to 118 nodes in case
of s-SNGPL and 30 to 50 nodes in case of simple SNGP. These observations are

in accordance with our expectations.
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Table 2: Comparisons of the modified SNGP with two variants of hybrid
SNGP using LASSO regression on artificial benchmarks fi - fs. The
best mean SAE value in each row is highlighted. For fs, f4 and f5 the
highlighted mean value was significantly better than the other two values
as supported by the t-test calculated with the significance level a = 0.05.

function algorithm SAE sample rate (%) solution rate (%) nodes
SNGP.5.dr 0.14 84.7 53 52.4
fi s-SNGPL 0.58 44.1 0 42.0
i-SNGPL 0.11 97.5 54 74.8
SNGP_5.d.n 1le-6 100 100 22.6
f2 s-SNGPL 0.07 99.9 97 85.5
i-SNGPL 0.34 93.6 44 124.5
SNGP5.d1 1.23 65.6 0 30.3
f3 s-SNGPL 0.13 99.5 84 83.6
i-SNGPL 04 908 40 146.6
SNGP5.dr 6.7 27.2 0 50.8
fa s-SNGPL 6.3 18.0 0 64.8
i-SNGPL 2.53 34.5 0 147
SNGP_1.dl1 60.0 4.1 0 34.9
f5 s-SNGPL 278 3.3 0 117.9
i-SNGPL 15.9 4.0 0 170.1

6.4 Results on Real-World Benchmarks

This section presents comparisons of the proposed modified and hybrid SNGP
algorithms with GPTIPS, EFS, and FFX on the real-world benchmarks. The
first observation based on results in Table 3 is that the simple SNGP without

LASSO regression gets defeated by the other algorithms on all benchmarks.
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Table 3. Comparisons of SNGP_5.d.n, s-SNGPL and i-SNGPL with GPTIPS, EFS
and FFX on the real-world benchmarks with respect to the median RMSE observed
on testing data. The best value in each row is highlighted. In all cases the highlighted
value was significantly better than the other values as supported by the Mann-Whitney
U-test calculated with the significance level a = 0.01.

GPTIPS EFS FFX SNGP.5.dn s-SNGPL i-SNGPL

ENC 29073 1.6398 1.7906 3.5657 1.7076 1.3978
ENH  2.5375 0.5455 1.0455 3.4295 0.6583 0.4754
CCS 8.7618 6.4293 5.9860 10.55 6.4052 6.2144
ASN 41384 3.6232 3.5804 6.6852 6.1353 2.9561

Table 4. Median number of nodes for each algorithm and dataset

GPTIPS EFS FFX SNGP.5.dn s-SNGPL i-SNGPL

ENC 48 108 136 22 115.5 201
ENH 47.5 105 146 20.5 107 196.5
CCS 43 108 474.5 23 127 201
ASN 58 67 525 22.5 88 131

The i-SNGPL outperforms the other algorithms on all benchmarks but the
CCS, where the FFX exhibits the best median RMSE value. However, this is
at the cost of very large models produced, see Table 4. Also the superiority of
i-SNGPL on the three benchmarks is thank to large models produced by the
algorithm. The s-SNGPL is competitive to the three compared algorithms with
respect to the median RMSE as well as the model size.

Tables 5 and 6 show the performance of s-SNGPL and i-SNGPL achieved
with smaller LASSO models. Values kj ... k4 specify the maximum number of
features the algorithms are allowed to use in the LASSO regression models. An
interesting observation is that both algorithms, and especially the i-SNGPL one,
stay competitive with the compared algorithms even when producing smaller
models.

Figure 6 presents progress plots observed for the s-SNGPL algorithm on real-
world benchmarks. In each generation, the mean of the best-so-far fitness (i.e.
SAE) calculated over 100 independent runs is shown. It illustrates the effect
of the evolutionary component of the algorithm as there is a clear continuous
improvement in the best-so-far fitness along the whole run.

7 Conclusions

This paper deals with the Single Node Genetic Programming method, proposes
its modifications and ways of hybridization to improve its performance.
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Table 5. Median RMSE and median number of nodes observed for s-SNGPL on test-
ing data. Performance of the algorithms is tested for different values of the maximum
number of features allowed for the LASSO model. Values k1 = 12, k2 = 16, ks = 20
and k4 = 24 are tested on benchmarks ENC, ENH and CCS. Values k1 = 8, ko = 10,
ks = 12 and k4 = 15 are tested on benchmark ASN.

k1 ko ks ks
RMSE #nodes RMSE #nodes RMSE #nodes RMSE nodes

ENC 1.8582 585  1.7694 82 1.6897 94 1.7076 115.5
ENH 1.0842 60 0.8461 75 0.8123 95 0.6583 107
CCS  6.8929 63 6.6912 82 6.5595 102 6.4053 127
ASN 4.0013 48 3.8395 61 3.7463 70 3.4817 88

Table 6. Median RMSE and median number of nodes observed for i-SNGPL on test-
ing data. Performance of the algorithms is tested for different values of the maximum
number of features allowed for the LASSO model. Values k1 = 12, ks = 16, ks = 20
and k4 = 24 are tested on benchmarks ENC, ENH and CCS. Values k1 = 8, ko = 10,
ks = 12 and k4 = 15 are tested on benchmark ASN.

kl kz k)3 k4
RMSE #nodes RMSE #nodes RMSE #nodes RMSE nodes

ENC 1.5490 101.5 1.4502 133 1.4085 170 1.3978 201.5
ENH 0.5648 97 0.5179  130.5 0.4978 166 0.4754 196.5
CCS  6.5912 103 6.4412 135 6.2973 167 6.2144 201
ASN  3.3894 71 3.2492  89.5  3.0989 106 2.9561 131

First, three extensions of the standard SNGP, namely (1) a selection strategy
for choosing nodes to be mutated based on the depth and performance of nodes,
(2) operators for placing a compact version of the best-performing graph to the
beginning and to the end of the population, respectively, and (3) a local search
strategy with multiple mutations applied in each iteration were proposed.

These modifications have been experimentally evaluated on five artificial
symbolic regression benchmarks and compared with standard GP and SNGP.
The achieved results are promising showing the potential of the proposed mod-
ifications to improve the performance of the SNGP algorithm.

Further, two variants of hybrid SNGP utilizing the linear regression tech-
nique, LASSO, were proposed. The proposed hybrid algorithms have been com-
pared to the state-of-the-art symbolic regression methods making use of the lin-
ear regression techniques on four real-world benchmarks. The results show the
proposed algorithms are at least competitive with or better than the compared
methods.
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Fig. 6. Plots showing an average progress of the best SAE value for s-SNGPL on
real-world benchmarks.

The next step of our research will be to carry out a thorough experimental
evaluation of the modified SNGP algorithms with the primary objectives being
the speed of convergence and the ability to react fast to the changes of the
environment in order to be able to deploy the algorithm within the dynamic
symbolic regression scenario. Further investigations will include utilization of
new mutation operators, identification of suitable ”high-level” basic functions to
the SNGP’s function set, design of mechanisms to evolve inner constants of the
models and mechanisms for escaping from local optima.
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