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DRAWING PLANAR GRAPHS WITH PRESCRIBED FACE AREAS ∗

Linda Kleist ∗∗

Abstract. We study straight-line drawings of planar graphs where every inner face has
a prescribed area. A plane graph is area-universal if for every assignment of positive real
numbers to the inner faces, there exists a straight-line drawing in which the area of each
inner face equals to the assigned number. The only non-area-universal graphs known so far
are those containing the octahedron graph as a subgraph.

We give a simple counting argument that allows us to prove non-area-universality
for a large class of triangulations, namely Eulerian triangulations. Adding some geometric
arguments, the concept can be used to show non-area-universality for other graphs such as
the icosahedron graph.

Relaxing the straight-line property by allowing the edges to bend, we show that one
bend per edge is sufficient to realize any face area assignment of every plane graph, i.e.,
the 1-subdivision of every plane graph is area-universal. For the subclass of plane bipartite
graphs, it even suffices that half of the edges have a bend.

not area-universal area-universal

1 Introduction

Various real-life problems are connected to embedded graphs on the surface of our planet.
Therefore, planar graphs and their representations have many practical applications, e.g.,
in the manufacture of chips and electrical circuits, as well as in the design of network infra-
structure such as roads, subways, and utility lines. Other applications are in cartography,
geography, and visualization. Consequently, there is a large body of theoretical and applied
work on representations of planar graphs with special features [1, 6, 17, 21, 25].
∗A preliminary version appeared in the proceedings of WG 2016 [18].
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One line of research deals with the representation of planar graphs with prescribed
face areas and is inspired by cartograms. A cartogram is a map in which regions (countries,
districts, . . . ) are scaled according to some statistical parameter such as the population or the
gross national product. As a mathematical abstraction, proportional contact representations
of planar graphs have been studied. In this context, vertices are represented by interiorly
disjoint simple polygons with prescribed areas and adjacencies are represented by contacts
between the corresponding polygons [3, 12, 13].

As an alternative abstraction, we are interested in drawings of plane graphs such that
the inner faces have prescribed areas. To describe our concepts, we introduce some notation.
Let G = (V,E) be a plane graph, i.e, a graph with a fixed planar drawing. We consider
two planar drawings of G as equivalent if the outer face and the rotation systems coincide
in both drawings, i.e., for every vertex the cyclic ordering of its incident edges coincides in
both drawings. We denote the set of all straight-line drawings equivalent to G by D and
the set of the inner faces of G by F ′. An area assignment is a function A : F ′ → R>0. Let
area : F ′ × D → R be the function measuring the area of an inner face f ∈ F ′ in a specific
drawing D of G. A drawing D in D is A-realizing if area(f,D) = A(f) for each face f ∈ F ′;
an area assignment A is realizable if there exists an A-realizing drawing. A plane graph G
is area-universal if every area assignment of G is realizable. We say that G is equiareal if
there exists a drawing D in D such that area(f,D) = 1 for each face f ∈ F ′.

1.1 Previous Work & Our Contribution

Ringel [23] can be seen as the initiator of the study of drawings of planar graphs with
prescribed face areas. He gave examples of equiareal graphs and proved that not every
plane graph is equiareal. Moreover, Ringel conjectured that every plane 3-regular graph
is equiareal. This turned out to be true when Thomassen [26] proved something stronger:
Every plane graph with maximum degree 3 is area-universal. There are further area-universal
graph classes. Biedl & Ruiz Velázquez [8] showed that planar partial 3-trees are area-univer-
sal and have realizing drawings with rational coordinates if the area assignment is rational.
Moreover, it is straight-forward to observe that the subgraphs of an area-universal graph
are also area-universal. Dobbins et al. [11, 20] study the computational complexity of area-
universality. They conjecture that deciding area-universality is complete for the complexity
class ∀∃R, a natural generalization of ∃R. They support the conjecture by showing ∀∃R-
completeness for several variants of area-universality. For triangulations with a certain
vertex order, Kleist [19] presents a sufficient criterion for area-universality that only requires
the investigation of one area assignment. In fact, if the sufficient criterion applies to one
plane triangulation, then all embeddings of the corresponding planar graph are also area-
universal. It is open whether area-universality is a property of plane or planar graphs.

In this paper, we give negative and positive results. Surprisingly, the octahedron and
its supergraphs were the only graphs in literature which are proved to be not area-universal.1

In terms of negative results, we were wondering whether a graph is area-universal if and only

1By now, our attention has been drawn to the bachelor thesis of Bernáthová [7] which indicates that
some other small triangulations are also not area-universal. Based on the methods developed in this paper,
non-area-univerality of small triangulations with up to ten vertices has been proved in [16, 19].
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if it does not contain the octahedron graph as a subgraph. Since a random triangulation
includes with high probability any fixed planar subgraph [22], in particular the non-area-
universal octahedron, it follows that almost no triangulation is area-universal. However,
a 4-connected graph does not contain any (other) triangulation except for K3 as a sub-
graph. Therefore, we investigate the relationship of high connectivity and area-universality,
specifically whether highly connected graphs are area-universal. The answers to these ques-
tions are negative. In Section 2, we give a broad class of non-area-universal triangulations,
namely Eulerian triangulations. This class contains many 4-connected graphs. Additionally,
we prove that the 5-connected icosahedron graph is not area-universal. Consequently, high
connectivity does not imply area-universality.

In Section 3, we investigate polyline drawings as natural relaxations of straight-line
drawings. We show that every plane graph has a drawing realizing any area assignment, such
that each edge has at most one bend. In other words, the 1-subdivision of every plane graph
is area-universal. For plane bipartite graphs we improve this by showing the existence of an
area-universal subdivision where at most half of the edges are subdivided exactly once.

2 Non-Area-Universal Graphs

In this section, we discuss non-area-universality. We mentioned before that the octahedron
graph, which is an Eulerian triangulation, is not area-universal. Two proofs of this fact
are known already; both of which use a similar non-realizable area assignment. Ringel [23]
shows that a system of polynomial equations, expressing the prescribed areas of each face,
has no real solution. Since this is a necessary condition for each realizing drawing, the non-
existence of a real solution proves the non-realizability of the specific area assignment. A
different proof relies on a classical geometric result on the area of a triangle inscribed into
a triangle: Choosing one point on each side of a triangle and connecting all pairs of these
three points by segments, one obtains a triangle partitioned into four triangles. Then the
central triangle does not have the strictly smallest area among the four triangles [4, 24].
Note that the inner vertices of the octahedron are forced to lie on the outer edges when the
area of the three triangles incident to the outer edges is supposed to vanish. In this way,
we obtain a triangle inscribed into a triangle. The idea of this argument has been used by
Alam et al. [2].

In contrast, we present a simple counting argument in order to show that the octahe-
dron graph is not area-universal. Interestingly, this argument can be extended to prove that
no plane Eulerian triangulation is area-universal. Recall that a triangulation is Eulerian if
and only if all vertex degrees are even. We will use the fact that the dual graph of a plane
Eulerian triangulation is bipartite, and hence has an inner face 2-coloring, i.e., a coloring of
the inner faces with white and black such that every inner edge is incident to a white and
black face. Figure 1 (a) depicts an inner face 2-coloring for the octahedron graph. Indeed,
Eulerian triangulations are characterized by the existence of an inner face 2-coloring.

I Proposition 1. A triangulation has an inner face 2-coloring if and only if it is Eulerian.

Proof. It remains to show that every triangulation with an inner face 2-coloring is Eulerian.
Suppose there is a plane triangulation T with an inner face 2-coloring that is not Eulerian.
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Clearly, any inner vertex of T has even degree and the number of vertices with odd degree
is even. Hence, T has exactly two outer vertices u and v of odd degree. Deleting the edge
(u, v) results in an Eulerian near-triangulation with 3n − 7 edges. However, by Tsai and
West [27], the number of edges of an Eulerian near-triangulation is divisible by three. J

In order to prove Theorem 1, we make use of several observations. The first observa-
tion follows directly from the fact that triangles are affine equivalent. Hence, any realizing
drawing of a triangulation can be transformed by an affine linear transformation. If the de-
terminant of the associated matrix is 1, the areas are maintained. For an area assignment A,
let the total area ΣA of A be the sum of all assigned areas, i.e., ΣA :=

∑
f∈F ′ A(f).

I Observation 2. Let T be a plane triangulation with a realizable area assignment A. Then
there exists an A-realizing drawing within every given outer face of area ΣA.

In a planar drawing, no two edges intersect except in common vertices. Here, we are
slightly more general and allow all drawings that can be obtained as the limit of a sequence of
planar drawings. If a vertex lies on a non-incident edge or even on another vertex, we speak
of a degenerate drawing. In particular, face areas of 0 can only be realized in degenerate
drawings. Indeed, a straight-line drawing of a plane triangulation is degenerate if and only if
the area of some triangle vanishes. A straight-line drawing of a graph with n vertices can be
encoded by the 2n coordinates of the vertices, and hence, by a point in the Euclidean space
R2n. Consequently, we may think of a straight-line drawing as a vector in R2n. For a plane
graph G, D+(G) ⊆ R2n denotes the set of vectors representing equivalent and possibly
degenerate straight-line drawings of G. By D+

4(G), we denote the subset of drawings of
D+(G) in which the outer face is restricted to a fixed triangle 4.

I Observation 3. For a plane triangulation T , D+(T ) is closed and D+
4(T ) is compact.

With the help of this observation, we obtain a very handy lemma. Recall that an area
assignment assigns positive real numbers to the inner faces. A non-negative area assignment
is a function A : F ′ → R≥0, i.e., every inner face is assigned to a non-negative real number.

I Lemma 4. Let T be a plane triangulation, and A the set of non-negative area assignments
with total area 1. Then A ∈ A is realizable if and only if in every open neighborhood of A
in A there exists a realizable area assignment.

Proof. Suppose A ∈ A is realizable, then clearly A itself is in every of its open neighborhoods
and serves as a certificate of a realizable area assignment.

Suppose in every open neighborhood of A, there exists a realizing drawing. Hence,
we may construct a sequence of realizable assignments (Ai)i∈N converging to A. For each Ai,
we pick a realizing drawing Di. By Observation 2, we may assume that the outer face of each
drawing Di is a fixed triangle 4. Consequently, the sequence (Di)i∈N is contained in D+

4(T )
and, thus, bounded by Observation 3. Therefore, by the Bolzano-Weierstrass theorem, the
sequence (Di)i∈N contains a converging subsequence with limit D. By the closedness, D is
contained in D+

4(T ). By construction of D and the continuity of area, for every inner face f
it holds that:

area(f,D) = lim
i→∞

area(f,Di) = lim
i→∞
Ai(f) = A(f).

Consequently, the drawing D is A-realizing and A is realizable. J
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Lemma 4 implies immediately that every non-realizable area assignment has an open
neighborhood of non-realizable area assignments. This gives the following property.

� Corollary 5. If a triangulation has a non-negative area assignment that is not realizable,
then it also has a (positive) non-realizable area assignment.

Now we are ready to prove the theorem.

� Theorem 1. No plane Eulerian triangulation on n ≥ 4 vertices is area-universal.

Proof. Let T be a plane Eulerian triangulation on at least 4 vertices with an inner face
2-coloring. For an example consider Figure 1 (a). We denote the set of white faces by W
and the set of black faces by B. Recall that a triangulation with n vertices has 2n− 5 inner
faces. Without loss of generality we assume that |W | > |B| and therefore |W | ≥ n− 2. We
show that the following non-negative area assignment A of T is not realizable.

A(f) :=

{
0 if f ∈W,
1 if f ∈ B.

For the purpose of contradiction, suppose that there exists an A-realizing drawing D
of T . We show that D has two contradicting properties.

Firstly, every white face has an angle of size π; we call such an angle a flat angle:
Note that every inner edge is incident to a black face and thus has positive length in D;
otherwise, the area of the black face is not realized. Moreover, the area of a white face
vanishes only if one of its vertices lie on the opposite, non-incident edge. Due to the positive
edge lengths, the vertex lies in the interior of the non-incident edge. Consequently, one angle
of every white face in D is flat.

Secondly, the number of white flat angles is bounded by the number of inner vertices:
In D, we assign (the flat angle of) every white face to the vertex with the flat angle and

(a) In every flat angle assignment of A, two
white faces are assigned to the same inner
vertex. This fact is used to prove Theorem 1.

(b) A non-realizable area assignment based
on Lemma 7. Every flat angle assignment
yields a base-bounded seesaw.

Figure 1: Inner face colorings of the octahedron graph depicting non-realizable area assign-
ments; white faces are assigned to 0 and black faces to 1.
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obtain a flat angle assignment. Since the boundary of the outer face is a triangle with
positive area, only inner vertices may have flat angles. Here we use the fact that n > 3.
Moreover, every inner vertex has degree at least 4 and is incident to a black face. Suppose
there exists an inner vertex v in D which has two flat angles. Then, no space remains to
realize the area of any black face incident to v. Therefore, in D every inner vertex has at
most one flat angle and the number of white flat angles is bounded by the number of inner
vertices.

Recall that T has at least n − 2 white faces and n − 3 inner vertices. Thus, the
number of white faces exceeds the number of inner vertices and we obtain a contradiction.
Therefore, A is not realizable and Corollary 5 guarantees the existence of a non-realizable
(positive) area assignment. �

Remark 1. Note that in the proof of Theorem 1, we only used the fact that the black faces
are assigned to positive real numbers. Consequently, any non-negative area assignment of an
Eulerian triangulation with an inner face 2-coloring where each white face is assigned to 0
and each black face to some positive real number is not realizable.

The proof of Theorem 1 implies that one cannot hope for drawings realizing the areas
up to a constant factor. For a real number c > 1, we say a straight-line drawing D of G is
c-approximating an area assignment A if for each inner face f it holds that

1/c · A(f) ≤ area(f,D) ≤ c · A(f).

I Proposition 6. For any c > 1, every Eulerian triangulation T on n ≥ 4 vertices admits
an area assignment A such that no drawing of T is c-approximating A.

Proof. We consider an inner face 2-coloring of T . For every k ∈ N, let Ak denote the area
assignment of T where each white face is assigned to 1/k and each black face to 1. Suppose
every Ak has a drawing Dk which is c-approximating Ak. We may assume that the outer
face of T in Dk is a right triangle where two outer vertices coincide for all Dk. Then the
sequence (Dk)k∈N is bounded and by the Bolzano–Weierstrass theorem, it has a converging
subsequence with limit D. In Dk, the area of a white face is at most c/k and the area of a
black face is at least 1/c. Consequently, in D, the area of each white face is 0 and the area
of each black face is positive. However, by Remark 1, such a drawing of T does not exist. J

Since every Eulerian triangulation (with at least four vertices) has a vertex of degree
four, the graphs of Theorem 1 are at most 4-connected. Adding some geometric arguments,
we can use similar ideas to show that the 5-connected icosahedron graph is not area-universal.
We start with the geometric argument.

Let ABCD be a quadrangle, and let E be a point on the segment CD. Together with
the segments AE and BE we call this configuration a seesaw with base AB. A seesaw is base-
bounded if there exists a pair of parallel lines `A and `B through A and B, respectively, such
that the seesaw lies (not necessarily strictly) between the lines `A and `B. For example, if the
two lines are vertical then in a base-bounded seesaw with horizontal base, the x-coordinates
of C and D are bounded by the x-coordinates of A and B. Figure 2 (a) depicts a base
bounded seesaw. We call a seesaw equiareal if the three triangles AED, ABE, and BCE
have the same positive area.
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(a) A base-bounded seesaw.
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E
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`A `B

T
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(b) AED is smaller than ABE.

Figure 2: Illustration of Lemma 7 and its proof.

I Lemma 7. No base-bounded seesaw is equiareal.

Proof. For a contradiction, suppose that there exists a base-bounded equiareal seesaw.
Without loss of generality, we assume that AB is horizontal and that E lies above AB. Note
that E lies strictly between `A and `B; otherwise the triangle AED or BCE has area 0. By
symmetry, we may assume that D does not lie above C as depicted in Figure 2 (b). Let x
denote the intersection point of the segment AB and the line parallel to `A through E;
let y be the intersection point of `A and the horizontal line through E. Since E lies strictly
between `A and `B, x lies strictly between A and B. Therefore, the triangle T := AxE is
strictly contained in ABE and has the same area as T ′ := AEy. By assumption D is not
to the left of `A and not above E and therefore D is contained in T ′. Thus, it holds that

area(ABE) > area(T ) = area(T ′) ≥ area(AED).

This is a contradiction to the equiareality of the seesaw and therefore proves the claim. J

Remark 2. Lemma 7 gives an alternative proof that the octahedron is not area-universal:
Consider the area assignment where all inner faces have area 1 but the central triangle has
area 0, as depicted in Figure 1 (b). Then the flat angle of the central face must be assigned
to an inner vertex. This yields a base-bounded seesaw which is not equiareal by Lemma 7.
In fact, this even implies that no area assignment of the octahedron is realizable when each
black face is assigned to 1, the central white face to 0, and every other white face to 0 or 1.

Moreover, Lemma 7 enables us to show the following fact.

� Theorem 2. The icosahedron graph is not area-universal.

Proof. We show that there exists no straight-line drawing of the icosahedron in which the
white faces in Figure 3 vanish and the total area is distributed evenly among all black faces.
Then Corollary 5 guarantees the existence of a non-realizable (positive) area assignment.

By contradiction, we suppose that there exists a realizing drawing D. Note that in
the face colored icosahedron there exist three edges which are adjacent to two white faces;
namely the red edges in Figure 3. For a white face incident to a red edge, there exists two
possibilities in D: either the red edge is contracted or one of its angles is flat. Thus, we
distinguish four cases according to how many of the red edges are contracted. Specifically,
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Figure 3: The icosahedron with a face coloring depicting a non-realizable area assignment;
from left to right, no, one, two and three edges are contracted.

in case i, we contract exactly i edges with i ∈ {0, 1, 2, 3}. Then, the remaining white faces
must have a flat angle. Moreover, every inner vertex is incident to a black face and thus may
only be incident to at most one flat angle. Therefore, we say a flat angle assignment is valid
if no two faces are assigned to the same vertex. In each case, we either find a base-bounded
seesaw or no valid flat angle assignment.

Case 0: If no edge is contracted, then there are ten white faces and nine inner
vertices. By the pigeonhole principle, there exists no valid flat angle assignment.

Case 1: The contraction of one edge results in a graph with eight white faces and
eight inner vertices. Hence, in any valid flat angle assignment each inner vertex has exactly
one flat angle. We label the vertices as depicted in Figure 4. In particular, v1, v3, v4, v5, v6
are assigned by a unique white face. In total, there are two different flat angle assignments,
where the vertices v2, v7, v8 are either assigned in clockwise or counter clockwise direction.
Since these two flat angle assignments are mirror images of each other, we consider without
loss of generality the one displayed in Figure 4 (a).

To obtain a contradiction, we consider a realizing drawingD within the triangle ABC
with vertices (0,0), (1,0), (0,1) where the collinearities from the flat angle assignment are re-
spected and all remaining faces have the same area. For an illustration of D, see Figure 4 (b).

v2v6

C

A B

v8

v7

v4

v1

v5 v3

(a) The up to symmetry unique flat angle
assignment in Case 1.

v1

v5

s1

v2

v4

v6

v7 s2

v3

T1

T ′
2h

v8

C

A B

(b) A drawing respecting the flat angle as-
signment; it contains a seesaw with base v5A.

Figure 4: Illustration of Case 1 of the proof of Theorem 2.
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For a vertex vi, we denote its coordinates in D by (xi, yi). We will show that D contains
a base-bounded seesaw. Specifically, a straight-line drawing of the subgraph induced by
the vertices A, v1, v6, v7, v5 yields a seesaw with base v5A, as highlighted in violet in Fig-
ure 4 (b). If y5 ≥ y7, then a pair of horizontal lines certifies that the seesaw is base-bounded
and Lemma 7 yields a contradiction. Therefore, it remains to show that y5 ≥ y7. By
contradiction, we suppose that y5 < y7.

First note that, since v4 lies on the segment v8v3, the (artificial) segment v5v3 inter-
sects segment Cv4. Moreover, v5 and v3 lie on the outer segments AC and BC, respectively.
Hence, all inner vertices are contained in the quadrangle Q := ABv3v5. Since y5 < y7 by
assumption, it follows that y5 < y3.

Next, we show that y3 < 1/2. Consider the two black faces incident to v3, namely
T1 := v4v3C and T2 := v3v2B. Due to the flat angle assignment, v4 lies on the segment v2v3
and the triangle T ′2 := v3v4B is strictly contained in the triangle T2. Consequently, it holds
that area(T1, D) = area(T2, D) > area(T ′2, D). When we consider the segments s1 and s2 on
BC as the base segments of T1 and T ′2, respectively, then their heights coincide. Therefore,
area(T1, D) > area(T ′2, D) implies directly that s1 > s2, and hence, y3 < 1/2.

Since the quadrangle Q strictly contains seven facial triangles, it covers at least 7/9
of the area in D. The area of Q can be expressed as the sum of the triangles Av3v5 with
base length y5 and height x3 and ABv3 with base length 1 and height y3. With the facts
that y5 < y3 < 1/2 and x3 = 1− y3, we obtain the following chain of inequalities:

7/9 ≤ 2 · area(Q) = y5x3 + y3 < 1/2 · (1− y3) + y3 = 1/2 · (1 + y3) < 3/4.

This is a contradiction. Consequently, we have that y5 ≥ y7. This finishes Case 1.

Case 2: The contraction of two edges results in a graph with a unique flat angle
assignment which is shown in Figure 5 (a). Consider Figure 5 (b) to note that every straight-
line drawing respecting this flat angle assignment contains two seesaws. Due to its symmetry,
we assume without loss of generality that y5 ≥ y3. Hence, v6 induces a seesaw with base Av5
in the quadrangle Av1v7v5; the base-boundedness is certified by a pair of horizontal lines.
By Lemma 7, the base-bounded seesaw is not equiareal and we obtain a contradiction.

v4

v1

v5

A B

v3

C

v6 v2

v7

(a) The unique angle assignment when two
edges are contracted.

v5 v3

C

A Bv1

v2
v6

v7

v4

(b) A drawing respecting the flat angle as-
signment; it contains two seesaws.

Figure 5: Illustration of Case 2 of the proof of Theorem 2.
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Case 3: Contraction of three edges leads to a super graph of the octahedron graph
as depicted in the rightmost image of Figure 3. This graph has four white faces and three
inner vertices adjacent to white faces. Hence, there exists no valid flat angle assignment. �

This finishes the section on non-area-universal graphs. We now turn our attention
to realizing drawings.

3 Drawing Planar Graphs with Bends

We now aim for realizing each area assignment of every plane graph. As discussed in
Section 2, this is impossible with straight-line drawings. Therefore, we relax the straight-
line property by allowing the edges to have bends. A drawing of a plane graph is a k-bend
drawing if each edge is a concatenation of at most k + 1 segments. These drawings are
also known as polyline drawings. Interpreting the bend as a subdivision vertex, the polyline
drawing corresponds to a straight-line drawing of a subdivision of the graph. In this sense,
the notions of planar, degenerate and realizing drawings immediately translate to polyline
drawings. In this section, we show that one bend per edge is sufficient.

� Theorem 3. Let G be a plane graph and A : F ′ → R>0 an area assignment of G. Then,
there exists an equivalent 1-bend drawing of G realizing A.

Proof. Without loss of generality, we assume that G is a plane triangulation: If G is not
a triangulation, there exists a triangulation T such that G is an induced subgraph. For
each face of G, partition the assigned area between its subfaces in T and obtain the area
assignment A′ of T . Given an A′-realizing 1-bend drawing of T , delete the artificial vertices
and edges. The result is an A-realizing 1-bend drawing of G.

We construct the final drawing of G in four steps (see definitions below). Figure 6
visualizes the steps for the octahedron graph.

1. Take a ⊥-contact representation C which yields a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D⊥.
4. Construct a non-degenerate drawing D∗⊥ from D⊥.

G with a

2

1

Schnyder Wood

1

2

3

0 21 2 3 4

u u

w

vv

C L′ D⊥ D∗⊥

w

u

v

w w

u u

vv

Figure 6: Construction of a realizing 1-bend drawing in four steps.
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In the first step, we construct a ⊥-contact representation C of G. A ⊥-shape is the
union of a horizontal and vertical segment such that the lower end of the vertical segment lies
in the horizontal segment. We call this point of intersection the heart of the ⊥-shape. Each
of the other three ends of the segments is an end of the ⊥-shape. A ⊥-contact representation
of a graph G = (V,E) is a family of ⊥-shapes {⊥v : v ∈ V } where ⊥u and ⊥v intersect if
and only if (u, v) ∈ E. Moreover, if ⊥u and ⊥v intersect then the intersection must consist
of a single point which is an end of either ⊥u or ⊥v.

� Theorem 4 ([10]). Every plane triangulation has a ⊥-contact representation such that
each inner face is represented by a rectangular region.

Following the ideas of de Fraysseix et al. [10], the ⊥-contact representation C can be
constructed as described in detail by Alam et al. [3, Section 3.1]. Observe that the ⊥-shapes
of three outer vertices may be pruned to segments such that the outer face is the complement
of a rectangle. Moreover, note that every horizontal segment has a unique vertical segment
touching it from above. The segments of the ⊥-shapes of inner vertices partition the outer
rectangle into finitely many rectangles; such a partition is called a rectangular layout. By
Theorem 4, C yields a rectangular layout L in which every rectangle r corresponds to a
face fr of G. In a generic rectangular layout no four rectangles meet in one point. In this
case, we may define a segment of L as a maximal segment belonging to the boundary of the
rectangles. Indeed, C can be constructed such that all horizontal and vertical segments of C
have their private supporting line. Therefore, the segments of C are segments of L and are
interiorly disjoint.

In the second step, we want to achieve correct areas in a weakly equivalent layout.
Two rectangular layouts are weakly equivalent if there exist bijections between their horizon-
tal and vertical segments, respectively, which preserve the ends on-relation, i.e., a segment s
ends on a segment t in one layout if and only if the same holds for their images in the other
layout. We make use of the following theorem.

� Theorem 5 ([12]). For every rectangular layout with area assignment a on the inner
rectangles, there exists a weakly equivalent rectangular layout realizing the areas of a.

For this theorem several variants and proofs are known; we refer to [12, 14, 28].
For each rectangle r corresponding to the face fr, we set a(r) := A(fr). By Theorem 5,
we obtain a weakly equivalent rectangular layout L′ in which the area of each rectangle r
is a(r). Due to the weak equivalence of L and L′, the layout L′ can be viewed as a ⊥-contact
representation C′, which now realizes the areas. The weakly equivalent layout L′ is unique
and may have four rectangles meeting in a point. This corresponds to the fact that two
segments of L both end in the same point of a segment in L′ from different sides. For our
further construction, we consider these two segments as two segments of L′.

In the third step, we obtain a 1-bend drawing of G. We define the following, usually
degenerate, drawing D⊥ with the help of C′:
• Place each vertex v in the heart of ⊥v; for a pruned ⊥-shape, the heart is the bottom

or left endpoint of the segment.
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• An edge e = (u, v) is supported by the segments of C ′ in the following way: Since the
two vertices u and v share an edge, ⊥u and ⊥v have a point of contact c in which
a vertical and a horizontal segment meet. We draw the edge e from the heart of ⊥u

along a segment of ⊥u to the contact point c and then along a segment of ⊥v to the
heart of ⊥v, see Figure 7. Note that e has a unique bend point c.

u

v

c

Figure 7: Definition of D⊥.

u

p
p′

v

Figure 8: A parallel shift from p to p′.

Note that two edges may intersect along segments but never form a proper crossing.
Hence the properties of a degenerate drawing of G are fulfilled. By construction, each edge
consists of a horizontal and a vertical segment and, hence, has at most one bend.

I Observation 8. The drawing D⊥ is a degenerate 1-bend drawing of G realizing A.

For the fourth step, it remains to remove the degeneracies of D⊥. For an edge e, we
interpret its bend point pe as a vertex of degree 2, and refer to the two incident edges of pe
as its horizontal and vertical segments. As part of the degeneracies, bend points intersect
non-incident edges. We handle this issue by parallel shifts. A parallel shift of a bend point p
in a drawing D yields a (degenerate) drawing D′ of G in which only the position of p and
its edges changed: Let p and p′ denote the positions of the bend in D and D′, respectively,
and let u and v denote its the two neighbors. A (degenerate) drawing D′ of D is obtained
by a parallel shift of p if the segment pp′ is parallel to the segment uv, see Figure 8. A bend
point p is shiftable in D if there exists a parallel shift of p. For instance, the topmost blue
bend in Figure 9 (a) is not shiftable since every shift of it results in a proper crossing.

I Observation 9. A parallel shift of a bend point keeps all face areas invariant.

The contact representation C′ induces a coloring and an orientation of the inner
edges: each edge corresponds to a contact point of two ⊥-shapes. Orient the edge such
that it is an outgoing edge for the vertex belonging to ⊥-shape whose end is the contact
point. Color the edge red, blue, or green, depending on the type of end which belongs to
the contact point: Red for the top end, blue for the left end, and green for the right end of
the ⊥-shape. (Such a coloring and orientation is called a Schnyder wood of G.)

We analyze the structure of the neighborhood for a vertex v in D⊥, see Figure 9 (a).
By construction, v has three outgoing edges such that all incoming edges partially run on
one of these outgoing edges. As noted before, in C ′ every horizontal segment has a unique
vertical segment touching it from above and the point of contact corresponds to the heart
of the ⊥-shape. By definition of D⊥, a vertex is placed in this contact point. Thus, in D⊥
every horizontal segment has no segment touching it from above. Therefore, the bend point
of the lowest green and lowest blue incoming edges is shiftable upwards. Due to the fact
that every rectangle has positive area, some space is guaranteed. Therefore, we can parallel
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not shiftable

shiftable

(a) The structure of the neighborhood of a
vertex in the degenerate drawing D⊥.

(b) The structure of the neighborhood of a
vertex in the final 1-bend drawing.

Figure 9: The structure of the neighborhood of a vertex in D⊥ and in the final drawing.

shift the bend point such that its edges are free of degeneracies. In particular, the bend
point does not intersect non-incident edges anymore. Consequently, the bend point of the
second lowest incoming edge of v becomes shiftable. We iterate this process for all vertices
such that all blue and green bend points are free of degeneracies. Afterwards, only red bend
points are involved in degeneracies.

For every vertex, we consider the incoming red edges, which have either a left or a
right bend with respect to the orientation. Note that there may be a unique red incoming
edge for each vertex without a bend. Consider the rightmost right bend point (and likewise
the leftmost left bend point). Its horizontal segment has no segment touching it from below
since it is rightmost (leftmost) and the vertical segment is free of degeneracies, since by the
first step there is no green or blue bend point on a red segment. Consequently, the rightmost
right (leftmost left) bend point is shiftable to the bottom. We shift it parallel downwards
such that no new degeneracies are introduced. Hence, the number of degeneracies decreased.
Moreover, this process achieved that the second rightmost (leftmost) bend point becomes
shiftable. By iterating, we remove all degeneracies. Finally, we obtain a 1-bend drawing D∗⊥
of G which is free of degeneracies and realizes A. �

3.1 Bounds on the bend number

Knowing that one bend per edge is always sufficient, we wonder how many bends may be
necessary to realize an area assignment of a plane graph? We define the bend number of a
plane graph G, denoted by b(G), as the minimum number of bends which is always sufficient
and sometimes necessary to realize any given area assignment of G.

Alternatively, Theorem 3 establishes the fact for every plane graph, there exists an
area-universal subdivision. The subdivision number of a plane graph G, denoted by s(G),
is the minimum number of subdivision vertices which need to be inserted such that the
subdivision of G is area-universal. If G is area-universal, then s(G) = 0. Clearly, the bend
number is upper bounded by the subdivision number. However, equality of both parameters
is not clear since for the bend number the bended edges can be chosen with respect to the
area assignment whereas for the subdivision number the bended edges must coincide for all
area assignments. Theorem 3 assures the following proposition.
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I Proposition 10. For every plane graph G = (V,E) it holds that 0 ≤ b(G) ≤ s(G) ≤ |E|.

We construct a family of graphs with the octahedron graph showing that the bend
number, and thus the subdivision number, may be linear in the number of edges.

I Lemma 11. For every k ≥ 8, there is a plane triangulation Gk = (V,E) on n := 4k − 6
vertices and an area assignment A, such that in every A-realizing polyline drawing of Gk at
least 1/12 of the edges have a bend, i.e., b(Gk) ≥ 1/12|E|.

Proof. Recall that, by Theorem 1, the octahedron graph is not area-universal. Hence, there
exists an area assignment A0 which has no realizing straight-line drawing. Thus in every
A0-realizing polyline drawing of the octahedron at least one of twelve edges has a bend.

Now, we construct a plane triangulation Gk for each k ≥ 8. For k ∈ {3, 6}, and
k ≥ 8, there exists an Eulerian triangulation on k vertices.2 Therefore, we take an Eulerian
triangulation T on k vertices and consider an inner face 2-coloring with (k− 2) white faces.
We insert a copy of the plane octahedron graphH into each white face f of T in the following
way: identify three outer vertices of H with the vertices of f . This yields a graph Gk on
k + 3(k − 2) = n vertices, consisting of (k − 2) octahedron graphs which are pairwise edge-
disjoint. Let A be an area assignment such that the restriction to any copy of H results in
A0 and the remaining black faces of T obtain some arbitrary value.

In an A-realizing polyline drawing D of Gk, each copy of H has at least one bended
edge, since A0 is not realizable by a straight-line drawing. By the edge-disjointness, every
bended edge may satisfy at most one copy of a octahedron. Consequently, at least k − 2 of
the 12(k − 2) edges have a bend. This implies the claim. J

� Corollary 12. Let Gm be the set of plane graphs with m edges. For the maximum bend
and subdivision number of Gm it holds that:

b1/12 ·mc ≤ max
G∈Gm

{b(G)} ≤ max
G∈Gm

{s(G)} ≤ m.

We note that the octahedron graph may not yield a better lower bound.

I Proposition 13. The plane octahedron graph has bend number and subdivision number 1.

Proof. Let G denote the plane octahedron graph. Since, by Theorem 1, G is not area-
universal, it clearly holds that 1 ≤ b(G) ≤ s(G).

In the remainder we show that s(G) ≤ 1. The proof consists of two ideas. Firstly,
let e be an edge of the triangle of inner vertices, see Figure 10. Deleting e in G gives a
4-face q. Replacing e by the other diagonal edge e of q yields a plane 3-tree G′. Since plane
3-trees are area-universal [8], we can find a realizing drawing for every area assignment of G′.
In particular, for a given area assignment A of G, we may consider an A′-realizing drawing
D′ of G′ where A′ conforms to A except to the fact that the two faces of q in G′ obtain the
sum of the prescribed areas of the two faces of q in G.

2The existence of such an Eulerian triangulation follows from the following observation: Applying the
P -rule defined by Batagelj [5] to an Eulerian triangulation on k vertices results in an Eulerian triangulation
on k + 2 vertices. Moreover, there exists an Eulerian triangulation on six vertices (the octahedron) and on
nine vertices (e.g., identify the outer face of a copy of the octahedron with an inner face of the octahedron).
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ē
e

Figure 10: This subdivision of the octahe-
dron graph is area-universal.

Figure 11: The plane quadrangulation Q5 is
strongly area-universal.

Secondly, the intermediate value theorem asserts a position for a bend point of e on
ē in D′ such that the area of q is arbitrarily split among the two adjacent faces of e. Hence,
each area assignment of G is realizable with a bend on e. J

A similar argument shows that the unique plane quadrangulation on five vertices,
depicted in Figure 11, is area-universal in a strong sense. For simplicity, we denote it by Q5.
We say a graph is strongly area-universal if for every area assignment A there exists an
A-realizing drawing within every outer face of area ΣA.

I Lemma 14. The plane quadrangulation Q5 is strongly area-universal.

Proof. Let A be an area assignment of Q5. For a prescribed outer face O of area ΣA,
we consider a curve C within O connecting the two non-neighbors of the inner vertex v.
Moving v along C, the area of the two inner faces changes continuously. Therefore, the
intermediate value theorem guarantees a position of v which yields an A-realizing drawing.
Note that it is crucial that the outer face of Q5 is a 4-face. J

This yields the following fact.

I Proposition 15. Every 2-degenerate quadrangulation is strongly area-universal.

Proof. Any 2-degenerate quadrangulation can be constructed from a plane 4-cycle by itera-
tively inserting a vertex of degree 2 (acting as a subdivided diagonal) into an inner 4-face.
In other words, in every step we choose an inner 4-face f of a quadrangulation and insert a
copy of Q5 by identifying the boundaries of f and of the outerface of Q5. Thus, Lemma 14
implies the claim. J

Indeed, it may be true that plane bipartite graphs are area-universal. If so, this has
interesting consequences for the subdivision number of plane triangulations.

I Proposition 16. If plane bipartite graphs are area-universal, then for every plane trian-
gulation T = (V,E) it holds that b(T ) ≤ s(T ) ≤ 1/3|E|.

Proof. Recall that a plane triangulation T on n vertices has 2n−4 faces (including the outer
face). The dual graph T ∗ of T is a bridgeless cubic graph and hence, by Petersen’s theorem,
has a perfect matching M∗ of size n − 2. Deleting the dual edges M of M∗ in T yields a
quadrangulation Q. If plane bipartite graphs are area-universal, then there exists a realizing
straight-line drawing for every area assignment of Q. By Lemma 14, we may reinsert the
deleted edges of M with one bend each. Therefore, subdividing the edges of M in T yields
an area-universal subdivision where n− 2 of the 3(n− 2) edges are subdivided. J
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3.2 Fewer Bends for Plane Bipartite Graphs

Now, we discuss the subdivision number of plane bipartite graphs. Interestingly, no plane
bipartite graph is known that needs a bend. Besides Proposition 15, Evans et al. [13] show
that (square) grid graphs are area-universal. Otherwise, area-universality of plane bipartite
graphs is wide open. In this section, we improve the upper bound on the number of bends
that always suffice for plane bipartite graphs. We show that at most half of the edges need a
bend. Indeed, we can place the bends on the same edges independent of the area assignment.
Hence, we obtain a bound on the subdivision number.

� Theorem 6. Let G = (X ∪ Y,E) be a plane bipartite graph. Then, s(G) ≤ 1/2|E|.

Proof. First, we consider the case that G is a quadrangulation and show that an arbitrary
but fix area assignment A has an A-realizing 1-bend drawing of G with at most 1/2|E| bends.
Moreover, we place the bends on the same edges independent of A. The proof consists of
four steps, illustrated in Figure 12. The main difference to the proof of Theorem 3 lies in
Step 1. Moreover, Steps 3 and 4 are a little more intricate. The procedure is as follows:

0. (Augment G to a quadrangulation.)
1. Take a segment contact representation C yielding a rectangular layout L.
2. Obtain a weak equivalent rectangular layout L′ realizing the areas.
3. Define a degenerate drawing D on L′ .
4. Construct a non-degenerate drawing D∗ from D by parallel shifts.

2 3 40 1

C L′G D D∗

Figure 12: Construction of a 1-bend drawing realizing the prescribed areas in four steps.

In the first step, we take a segment contact representation of G = (X ∪ Y,E). This is a
family {sv|v ∈ X ∪ Y } of horizontal and vertical segments where sv and su intersect if and
only if (u, v) ∈ E. Moreover, each non-empty intersection consists of a single point which is
an endpoint of at least one of the segments.

� Theorem 7 ([9, 15]). Every plane quadrangulation has a segment contact representation
such that each inner face is represented by a rectangle.

Let C be a segment contact representation of G. We assume that the vertices ofX are
represented by vertical segments. The segments of C partition a rectangle into rectangles, and
hence, C yields a rectangular layout L. In the second step, we obtain a weakly equivalent
rectangular layout L′ realizing the areas by Theorem 5; let C′ denote the corresponding
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segment contact representation. In the third step, we define a degenerate drawing D from C′.
The challenge is to place the vertices such that, firstly, we insert the bends on the same
edges, secondly, we save one bend per vertex, and thirdly, we can remove the degeneracies
by parallel shifts. We distinguish two cases depending on the minimal degree δ of G. Note
that in a quadrangulation δ is 2 or 3.

Case 1: δ(G) = 3. Since every segment has only two endpoints but at least three contacts,
every segment has an inner contact point. For a vertical segment sv, an inner contact point
is right if it is the endpoint of a horizontal segment touching sv from the right. Otherwise, it
is left. Likewise, we distinguish inner top and bottom contact points of horizontal segments.
We construct D from C′ as follows:
• A vertex v ∈ X is placed on topmost right inner contact point of the segment sv if it

exists; otherwise v is placed on the topmost left inner contact point.
• A vertex v ∈ Y is placed on leftmost bottom inner contact point of the segment sv if

it exits; otherwise v is placed on the leftmost top inner contact point.
• An edge e = (v, w) ∈ E is drawn from v along sv to the contact point of sv and sw,

and then along sw to w.

Note that with this definition the vertices are placed on the same contact points independent
of the area assignment. This allows us to obtain an area-universal subdivision of G. By
placing a vertex on an inner contact point of its segment, the corresponding edge has no
bend. Hence, we save one bend per vertex and the number of bends is at most |E| − |V |.

I Observation 17. The drawing D is a degenerate 1-bend drawing of G realizing A with
at most |E| − |V | bends.

In the fourth step, we remove the degeneracies by parallel shifts of bend points. By
the placement of the vertices, a vertical segment sv has no right bend point above v and a
horizontal segment sv has no bottom bend point left of v. This property is our invariant 40.
For a vertex v ∈ X (v ∈ Y ) with a vertical (horizontal) segment sv, we partition the inner
bend points into three sets: B1(sv), the set of right (bottom) bend points on sv, B2(sv),
the set of left (top) bend points on sv which are below (right of) v, and B3(sv), the set of
remaining bend points, i.e., left (top) bend points on sv which are above (left of) v, see also
Figure 13 (a). For a segment sv and all i ∈ {1, 2, 3}, a bend point b ∈ Bi(s) is smaller than
b′ ∈ Bi(s) if b is closer to v in D than b′.

∅

B1B2

B3

B1

B2B3

∅

(a) Definition of D and Bi. (b) Illustration of Step 41. (c) Illustration of Step 42.

Figure 13: Illustration of Step 3 and Step 4 in Case 1 of the proof of Theorem 6.
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We remove the degeneracies in three steps. For i ∈ [3], Step 4i is defined as follows:

Step 4i: For each v ∈ X ∪Y , do: while Bi(sv) is not empty, choose the smallest b ∈ Bi(sv),
parallel shift b, and delete b from Bi(sv).

If Step 4i is completed successfully, then invariant 4i holds, namely that every seg-
ment has no bend points in Bj(sv) for 0 ≤ j ≤ i. Indeed invariant 4i is necessary in order
to perform Step 4i+1. Clearly, invariant 43 guarantees a non-degenerate 1-bend drawing
of G which realizes A and has at most |E| − |V | bends. Hence it remains to show that the
smallest b ∈ Bi(sv) is shiftable if invariant 4i−1 holds.

Consider a vertex v ∈ X with vertical segment sv and the smallest b ∈ B1(sv), see
Figure 13 (b). By invariant 40, the horizontal edge of b is free of bottom contact points.
Since b is the smallest in B1(sv), the vertical edge of b is free of right contact points.
Therefore, b is shiftable bottom-rightwards. Moreover, after shifting and deleting b, the
new smallest bend point becomes shiftable. The argument for v ∈ Y is analogous. More
generally, for i ∈ {1, 2, 3}, the smallest bend point b ∈ Bi(sv) is shiftable since both of its
edge are free of bend points to one side; for one edge this is guaranteed by the invariant 4i−1,
for the other edge by the fact that b is the smallest bend point in b ∈ Bi(sv).

Case 2: δ(G) = 2. If it exists, choose an inner vertex of degree 2 and remove the segment sv
in C′. This results in a quadrangulation where two faces are unified to one new face. Assign
the sum of the two face areas to the new face. Delete inner vertices of degree 2 until all inner
vertices are of degree at least 3. This yields a graph G′ with area assignment A′. Proceed
with G′ as in Case 1 with some extra care. If one or several outer vertices have degree 2, we
place them on distinct ends of their segments; for instance in clockwise order. Moreover, we
make the parallel shifts small enough, such that the following special property is fulfilled in
an A′-realizing drawing of G′: up to a tiny ε with nε� Amin, each face f of G′ contains an
axis-aligned rectangle with area A′(f)− ε, where Amin := minf∈F ′(G)A(f).

We use the special property to reinsert the degree 2 vertices in reverse order of
deletion and obtain a sequence of drawings (G′k)k. We use the invariant that G′k is a non-
degenerate drawing where each face area is realized by an axis-aligned rectangle up to kε.
Consider the (k + 1)th vertex v of degree 2 and the face f in Gk where v must be inserted.
Assume f has area a1 + a2 and must be split into two faces f1 and f2 of area a1 and a2. By
assumption, a1, a2 ≥ Amin and f contains an axis-aligned rectangle R of area a1+a2−kε, see
Figure 14. Assume that v ∈ X. By the intermediate value theorem, there exists a vertical
segment s within R such that s dissects f into two parts of area a1 and a2, respectively.
Place v on one endpoint of s and a bend point b on the other endpoint of s. Note that the
areas of f1 and f2 are realized by a rectangle up to kε. In order to remove the degeneracies,

s

Figure 14: Insertion of an inner vertex of degree 2 in Case 2.
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use parallel shifts of v and b which are small enough to guarantee that fi contains a rectangle
of area ai − (k + 1)ε. This ends our treatment of Case 2.

If G is not a quadrangulation, then we consider a quadrangulation Q with G as an
induced subgraph. For each face in G, we partition its area assignment among its subfaces
in Q and obtain A′. Clearly, an A′-realizing 1-bend drawing of Q induces an A-realizing
1-bend drawing of G. However, the number of bends may exceed 1/2|E|. Therefore, we
ensure to save one bend per vertex by placing the vertices on inner contact points which
belong to edges of G. To do so, delete all segments belonging to artificial vertices in C. If
necessary, remove vertices of low degree iteratively as in Case 2. Afterwards, place vertices,
remove degeneracies and reinsert vertices of G with low degree as in Case 1 and Case 2.
Note that degree 1 vertices may also appear, but can easily be reinserted.

A planar bipartite graph has at most 2|V |−4 edges. Therefore, the number of edges
with bends is at most |E| − |V | ≤ |V | − 4, and the number of edges without bends is at
least |V |. Consequently, in all cases the number of bends is less than 1/2|E|. �

If in the third step of the last proof, the vertices are placed in fortunate positions,
one can save additional bends. In particular, every corner of the outer rectangle has two
closest contact points, one on each incident segment; if in both of these a vertex is placed,
then one bend can be saved. For the cube graph this allows to save four bends and shows
that the cube graph as a planar partial 3-tree is not only area-universal but also convex
area-universal, i.e., every area assignment has a realizing drawing with convex faces.

I Proposition 18. The cube graph is convex area-universal.

Proof. Let A be an area assignment of the cube graph. Then A′ denotes the area assignment
where the areas of the four boundary faces are doubled with respect to A. Theorem 6
guarantees the existence of a 1-bend drawing realizing A′. Indeed, already the drawing D
defined in the third step of the proof of Theorem 6 is free of degeneracies. Moreover, as
illustrated in Figure 15 (c), every outer edge has exactly one bend and all inner edges are
segments. Replacing the outer edges by segments halves the area of the boundary faces and
consequently gives an A-realizing straight-line drawing with convex faces. J

a d

b c

e

(a) The cube graph with an
area assignment A.

2a

2b

2ce

2d

(b) A rectangular layout re-
alizing A′.

a

b

ce

d

b

a d

c

(c) A convex straight-line
drawing realizing A.

Figure 15: Illustration of the proof of Proposition 18.
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4 Further research directions

Various interesting questions remain open. We comment on three directions.

Area-universal graph classes A very promising candidate for a further area-universal
graph class are the plane bipartite graphs. In the conference version of this article [18],
we asked if 3-connected quadrangulations are even convex area-universal. In the meantime,
we were able to answer this question in the negative. A counter example can be found in
my PhD thesis [19] – together with some first tools to tackle the open problem. Further
partial results in this direction are the area-universality of 2-degenerate quadrangulations
as discussed in Proposition 15 and the fact that grid graphs are area-universal [13].

Computational Complexity As mentioned in the introduction, Dobbins et al. [11, 20]
conjecture that the computational complexity of deciding whether a plane graph is area-
universal is ∀∃R-complete. The complexity class ∀∃R is a natural generalization of ∃R,
a complexity class capturing the computational complexity of many interesting geometric
problems. It lies somewhere between NP and PSPACE:

NP ⊆ ∃R ⊆ ∀∃R ⊆ PSPACE.

Area-universality may turn out to be the first natural geometric problem that is complete
for this class. This would give the complexity class ∀∃R some relevance.

Optimal Bend Drawings Theorem 3 establishes the fact that one bend per edge always
suffices to realize any given area assignment for every plane graph. But how many bends
are really necessary? It seems that the number of necessary bends may be a lot smaller.
In Section 3, we introduced the bend number and subdivision number of a plane graph as
possible notions for optimal bend drawings. Recall that, by Proposition 10, for every plane
graph G = (V,E), it holds that

0 ≤ b(G) ≤ s(G) ≤ |E|.

For optimal bend drawings, one can start with the following questions:

• What are the bend and subdivision numbers of the icosahedron graph?
• What is the maximum subdivision number of a plane graph with m edges?

(Lemma 11 and Theorem 3 show that the number lies between bm/12c and m.)
• Do there exist graphs for which the bend number and the subdivision number differ?

Is the subdivision number bounded by a function of the bend number?

Acknowledgements. I thank Stefan Felsner, Udo Hoffmann, and Daniel Schmidt genannt
Waldschmidt for discussions about the problem and helpful comments on drafts of this
manuscript. Moreover, I would like to thank the anynomous reviewers for valuable sugges-
tions that helped to improve the presentation of this paper.

http://jocg.org/


JoCG 9(1), 290–311, 2018 310

Journal of Computational Geometry jocg.org

References

[1] graphdrawing.org. http://www.graphdrawing.org/.

[2] Muhammad Jawaherul Alam, Therese C. Biedl, Stefan Felsner, Michael Kaufmann, and
Stephen G. Kobourov. Proportional contact representations of planar graphs. Journal
of Graph Algorithms and Applications, 16(3):701–728, 2012.

[3] Muhammad Jawaherul Alam, Therese C. Biedl, Stefan Felsner, Michael Kaufmann,
Stephen G. Kobourov, and Torsten Ueckerdt. Computing cartograms with optimal
complexity. Discrete & Computational Geometry, 50(3):784–810, 2013.

[4] Anders Bager. Lösung der Aufgabe 260. Elemente der Mathematik, 12:43, 1957.

[5] Vladimir Batagelj. An improved inductive definition of two restricted classes of trian-
gulations of the plane. Banach Center Publications, 25(1):11–18, 1989.

[6] Giuseppe Di Battista, Peter Eades, Roberto Tamassia, and Ioannis G. Tollis. Graph
Drawing: Algorithms for the Visualization of Graphs. Prentice Hall, Upper Saddle
River, NJ, 1998.

[7] Anna Bernáthová. Kreslení grafu s podmínkami na velikosti sten. Bachelor thesis,
Charles University Prague, 2009. Available at https://is.cuni.cz/webapps/zzp/
detail/63479/20281489/.

[8] Therese C. Biedl and Lesvia Elena Ruiz Velázquez. Drawing planar 3-trees with given
face areas. Computational Geometry, 46(3):276–285, 2013.

[9] Hubert de Fraysseix, Patrice Ossona de Mendez, and János Pach. Representation of
planar graphs by segments. Intuitive Geometry, 63:109–117, 1991.

[10] Hubert de Fraysseix, Patrice Ossona de Mendez, and Pierre Rosenstiehl. On triangle
contact graphs. Combinatorics, Probability and Computing, 3:233–246, 1994.

[11] Michael G. Dobbins, Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. Is area
universality ∀∃R-complete? In Andreas Brandstädt, Ekkehard Köhler, and Klaus Meer,
editors, Proc. Int. Graph-Theoretic Concepts in Computer Science (WG 2018), LNCS,
Berlin, Heidelberg, 2018. Springer. accepted, preprint ArXiv:1712.05142.

[12] David Eppstein, Elena Mumford, Bettina Speckmann, and Kevin Verbeek. Area-
universal and constrained rectangular layouts. SIAM Journal on Computing, 41(3):537–
564, 2012.

[13] William Evans, Stefan Felsner, Michael Kaufmann, Stephen G. Kobourov, Debajyoti
Mondal, Rahnuma Islam Nishat, and Kevin Verbeek. Table cartogram. Computational
Geometry, 68:174–185, 2017. Special Issue in Memory of Ferran Hurtado.

[14] Stefan Felsner. Exploiting air-pressure to map floorplans on point sets. Journal of
Graph Algorithms and Applications, 18(2):233–252, 2014.

http://jocg.org/
http://www.graphdrawing.org/
https://is.cuni.cz/webapps/zzp/detail/63479/20281489/
https://is.cuni.cz/webapps/zzp/detail/63479/20281489/


JoCG 9(1), 290–311, 2018 311

Journal of Computational Geometry jocg.org

[15] Irith Ben-Arroyo Hartman, Ilan Newman, and Ran Ziv. On grid intersection graphs.
Discrete Mathematics, 87(1):41–52, 1991.

[16] Henning Heinrich. Ansätze zur Entscheidung von Flächenuniversalität. Masterarbeit,
Technische Universität Berlin, 2018. Available at www.math.tu-berlin.de/~felsner/
Diplomarbeiten/heinrich.pdf.

[17] Michael Kaufmann and Dorothea Wagner, editors. Drawing Graphs: Methods and
Models, volume 2025 of LNCS. Springer, 2003.

[18] Linda Kleist. Drawing planar graphs with prescribed face areas. In Pinar Heggernes,
editor, Proc. Int. Graph-Theoretic Concepts in Computer Science (WG 2016), volume
9941 of LNCS, pages 158–170, Berlin, Heidelberg, 2016. Springer.

[19] Linda Kleist. Planar Graphs and Face Areas – Area-Universality. PhD thesis, Technis-
che Universität Berlin, 2018.

[20] Linda Kleist, Tillmann Miltzow, and Paweł Rzążewski. Is area universality ∀∃R-
complete? In Proceedings of the 33th European Workshop on Computational Geometry
(EuroCG 2017), pages 181–184, 2017.

[21] Takao Nishizeki and Md. Saidur Rahman. Planar Graph Drawing, volume 12 of Lecture
Notes Series on Computing. World Scientific, 2004.

[22] L. Bruce Richmond and Nicholas C. Wormald. Random triangulations of the plane.
European Journal of Combinatorics, 9(1):61–71, 1988.

[23] Gerhard Ringel. Equiareal graphs. In Rainer Bodendiek, editor, Contemporary Methods
in Graph Theory, in honour of Prof. Dr. K. Wagner, pages 503–505. Wissenschaftsver-
lag, Mannheim, 1990.

[24] Esther Szekeres. Einfache Beweise zweier Dreieckssätze. Elemente der Mathematik,
22:17–18, 1967.

[25] Roberto Tamassia, editor. Handbook of Graph Drawing and Visualization. CRC Press,
Boca Raton, FL, 2013.

[26] Carsten Thomassen. Plane cubic graphs with prescribed face areas. Combinatorics,
Probability & Computing, 1(4):371–381, 1992.

[27] Mu-Tsun Tsai and Douglas B. West. A new proof of 3-colorability of Eulerian triangu-
lations. Ars Mathematica Contemporanea, 4(1), 2011.

[28] Shmuel Wimer, Israel Koren, and Israel Cederbaum. Floorplans, planar graphs, and
layouts. IEEE Transactions on Circuits and Systems, 35:267–278, 1988.

http://jocg.org/
www.math.tu-berlin.de/~felsner/Diplomarbeiten/heinrich.pdf
www.math.tu-berlin.de/~felsner/Diplomarbeiten/heinrich.pdf

	Introduction
	Previous Work & Our Contribution

	Non-Area-Universal Graphs
	Drawing Planar Graphs with Bends
	Bounds on the bend number
	Fewer Bends for Plane Bipartite Graphs

	Further research directions

