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t. An EPG-representation of a graph G is a 
olle
tion of pathsin a grid, ea
h 
orresponding to a single vertex of G, so that two verti
esare adja
ent if and only if their 
orresponding paths share in�nitely manypoints. In this paper we fo
us on graphs admitting EPG-representationsby paths with at most 2 bends. We show hardness of the re
ognitionproblem for this 
lass of graphs, along with some sub
lasses.We also initiate the study of graphs representable by unaligned polylines,and by polylines, whose every segment is parallel to one of pres
ribedslopes. We show hardness of re
ognition and explore the trade-o� be-tween the number of bends and the number of slopes.1 Introdu
tionThe 
on
ept of edge interse
tion graphs of paths in a grid (EPG-graphs) wasintrodu
ed by Golumbi
 et al. [7℄. By an EPG-representation of a graph G wemean a mapping from verti
es of G to paths in a grid, su
h that two verti
esare adja
ent if and only if their 
orresponding paths share a grid edge. As ea
hgraph 
an be represented in this way [7℄, it makes sense to 
onsider representa-tions with some restri
ted set of shapes. A usual parameterization is by boundingthe number k of times ea
h path is allowed to 
hange the dire
tion. Graphs withsu
h a representation are 
alled k-bend graphs. So far, the 
ase of 1-bend graphsre
eived most attention [7, 4℄.Sin
e 0-bend graphs are just interval graphs, they 
an be re
ognized in poly-nomial time [1℄. The re
ognition of 1-bend graphs is NP-
omplete [8℄, even if therepresentation is restri
ted to any pres
ribed set of 1-bend obje
ts [4℄. However,the problem be
omes trivially solvable when k is at least the maximum degreeof the input graph [8℄. Thus it is un
lear whether k-bend graphs are hard tore
ognize for all k ≥ 2.It is worth mentioning the 
losely related notion of Bk-VPG-graphs. Thesegraphs are de�ned as interse
tion graphs of axis-aligned paths with at most kbends. So, unlike in the EPG-representation, paths that share a �nite number
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of points de�ne adja
ent verti
es. Chapli
k et al. [5℄ showed it is NP-
ompleteto re
ognize Bk-VPG-graphs, for all k ≥ 0.In this paper we explore the problem of re
ognition of sub
lasses of EPG-graphs. Namely, we show that it is NP-
omplete to re
ognize 2-bend graphs. Wealso 
onsider some restri
tions, where we permit just some types of the 
urvesin an EPG-representation (similarly to [4℄). One of these restri
tions, i.e., mono-toni
 EPG-representations, where ea
h path as
ends in rows and 
olumns, wasalready 
onsidered by Golumbi
 et al. [7℄. Our hardness proof even shows thatbetween monotoni
 2-bend graphs and 2-bend graphs, no polynomially re
og-nizable 
lass 
an be found.The 
lass of 2-bend graphs 
an be per
eived as a generalization of quitewell-studied 
lass of 1-bend graphs. We also 
onsider some generalizations ofthe 
on
ept of EPG-representations. We do not require individual segments tobe axis-aligned, but we permit them to use any slope. We 
all su
h graphs un-aligned EPG-graphs and study the number of bends in this setting. After thisgeneralization, we may ask about parti
ular restri
tions. These restri
tions arerepresented by restri
ting number of slopes that segments may use or even byusing just pres
ribed shapes (in a �avor similar to [4℄).For unaligned EPG-graphs, we show that it is NP-hard to determine whethera graph is an unaligned 2-bend graph (hardness of the re
ognition for 1-bendgraphs follows from [4℄).Having introdu
ed unaligned EPG-graphs, we observe that there is a trade-o�between the number of bends and the number of slopes used in a representation.We also show that representing an unaligned 2-bend graph on n verti
es, mayrequire using Ω(
√
n) slopes. This result follows from our hardness redu
tion.2 PreliminariesFor an EPG-representation of a graph G, by Pv we shall denote the path rep-resenting a vertex v. Often we shall identify the vertex v with Pv. For example,if we say that two paths are adja
ent, we mean that they share in�nitely manypoints (note that if two paths interse
t, one 
ommon point is enough).A 
entral notion in the study of EPG-graphs is the bend number. The bendnumber of a graph G, denoted by b(G), is the minimum k, su
h that G has anEPG-representation, in whi
h every paths 
hanges it dire
tion at most k times.W.l.o.g. we 
an assume that every path in a k-bend EPG-representation bendsexa
tly k times [4℄.Ea
h 2-bend path will be 
lassi�ed as verti
al or horizontal, if its middlesegment is resp. verti
al or horizontal. This middle segment will be 
alled thebody of the path, while the remaining two segments will be referen
ed as its legs.For a set X of shapes of polylines (i.e., pie
ewise-linear 
urves), by X-graphswe shall denote the 
lass of graphs admitting an EPG-representation, in whi
hthe shape of every path is in X (similar notation was used in [4℄). So for examplemonotoni
 2-bend graphs are exa
tly { , }-graphs.Golumbi
 et al. [7℄ analyzed the stru
ture of 
liques in 1-bend graphs andproved that in 1-bend graphs ea
h 
lique C is either an edge 
lique or a 
law-
lique. A maximal edge 
lique 
onsists of verti
es whose representing paths share



a 
ommon grid edge. A 
law is a set of three distin
t grid edges sharing a singleendpoint and a maximal 
law-
lique 
onsists of all paths 
ontaining two outof three edges of a given 
law. Sin
e we 
an safely assume that ea
h 1-bendrepresentation of a graph with n verti
es 
an be embedded in a 2n× 2n grid, weobtain that the number of maximal 
liques in a 1-bend graph is at most O(n2),i.e., is polynomial in n. This is no longer the 
ase with 2-bend graphs.Let n be an integer and let K−
2n be the 
o
ktail-party graph, i.e., a 
ompletegraph on 2n verti
es with a perfe
t mat
hing removed. It is 
lear that K−

2n has
2n = 2|V (K−

2n)|/2 maximal 
liques. Fig. 1 (left) shows that K−
2n is a 2-bend graph.Proposition 1. 2-bend graphs 
an have exponentially many maximal 
liques.The restri
ted stru
ture of 
liques in 1-bend graphs follows from the fa
tthat the 1-bend paths representing pairwise adja
ent verti
es must all share atleast one grid point. It is easy to observe that 
liques in 2-bend graphs do nothave su
h a simple stru
ture. One 
ould be in
lined by Fig. 1 (left) that everymaximal 
lique is 
ontained in the union of two edge-
liques or 
law-
liques (asimilar situation appears in unit disk graphs and is the main ingredient of apolynomial algorithm for Clique in these graphs [3℄). However, Fig. 1 (right)shows it is not true.

Fig. 1: Left:K−

10
as 2-bend graph. Right: A 
lique is not 
ontained in two edge-
liques.3 Aligned 2-bend graphsThe main results of this se
tion is the following 
omplexity result.Theorem 1. It is NP-
omplete to de
ide if a given graph is a 2-bend graph.Proof. The NP-membership is obvious. As a polynomial 
erti�
ate we use a listof 
oordinates denoting start- and end-points of straight-line segments. Su
h arepresentation has polynomial size w.r.t. the given graph.For the NP-hardness we use a polynomial redu
tion from Pure-Nae-3-Sat.The instan
e of this problem is a set of 
lauses, ea
h 
ontaining three variables.We ask for the existen
e of a truth assignment, su
h that ea
h 
lause 
ontainsat least one true variable and at least one false variable (we say that su
h a
lause is satis�ed). The problem is NP-
omplete and equivalent to 2-
oloring of3-uniform hypergraphs [9℄.For a given formula ϕ, we shall 
onstru
t a graph G, whi
h is a 2-bend graphi� the formula is satis�able. We start by repli
ating ϕ 21 times (ea
h time over



a distin
t 
opy of the set of variables), obtaining an equivalent formula ϕ′. Thereason of this operation will be made 
lear in a while.We start the 
onstru
tion ofG with two spe
ial verti
es a and b. Then for ea
hvariable i of ϕ, we add a vertex vi adja
ent to both a and b. For ea
h o

uren
e of
i in a 
lause z of ϕ′, we add another vertex oi,z, adja
ent to a, b, and vi. Finally,for ea
h 
lause z = (i, j, k) we add mutually non-adja
ent verti
es cz, dz, ez, and
fz, with the following neighbors: N(cz) = {oi,z, oj,z, ok,z}; N(dz) = {oi,z, oj,z};
N(ez) = {oi,z, ok,z}; and N(fz) = {oj,z, ok,z} (see Fig. 2 (left)).
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ezFig. 2: Left: The graph obtained from a formula 
onsisting of a single 
lause z =
(1, 2, 3). For 
larity we did not repli
ate the formula. Right: An EPG-representationof the graph on the left. The variable 1 is false, while 2 and 3 are true.Now let us explain the main ideas behind the redu
tion. The purpose ofverti
es a and b is to 
over the legs of ea
h Pvi and Poi,z , keeping just theirbodies exposed for possible interse
tions with 
lause-verti
es. This assumptionmay fail, as some Pvi or Poi,z 
an be positioned over an end of a segment of Pa or
Pb, or on an interse
tion point of Pa and Pb. However, ea
h end 
an be used atmost on
e and ea
h interse
tion point at most twi
e (see Fig. 3). As Pa and Pb

Fig. 3: Left: 6 pairwise non-adja
ent segments may exit a 2-bend path without havingto bend inside it.Right: Atmost 8 pairwise non-adja
ent 2-bend paths may be adja
entto both Pa and Pb and 
ontain their interse
tion point.have (together) 12 ends of segments and at most 4 interse
tion points, we haveat most 20 spe
ial situations. But sin
e we repli
ated ϕ 21 times, we are surethat for at least one 
opy of ϕ our assumption holds (this type of tri
k we 
allthe �quantitative tri
k� and we use it to 
ope with some obstru
tions whi
h mayappear only a 
onstant number of times). Let us fo
us on this �
lean� 
opy of ϕ in
ϕ′. One leg of ea
h Poi,j is adja
ent to a and the other one is adja
ent to b. Also,at least one of them has to be adja
ent to Pvi , sin
e otherwise 
lause-verti
es



would be adja
ent to vi. Thus the body of Poi,j is exposed for representing 
lause-related verti
es. Moreover, the orientation of the body (and this of whole path) isthe same as the orientation of Pvi , so all variable-o

uren
es are �syn
hronized�.The orientation of the paths will de
ide on truth assignment (horizontal meansfalse, verti
al means true).First we show irrepresentabililty of the graph for an unsatis�able formula. Let
z = (i, j, k) be an unsatis�ed 
lause. We will show that it 
annot be represented.Observe that it is impossible to have a 2-bend path adja
ent to three parallel,pairwise non-
ollinear segments, while it is possible for two parallel and oneperpendi
ular segments (see Fig. 4 left).The situation with three parallel segments 
orresponds to all-true or all-false
lause. So, if no pair of middle segments of Poi,z , Poj,z , Pok,z

(and thus Pvi , Pvj ,
Pvk) is 
ollinear, we 
annot represent cz.However, it might still happen that the bodies of, say, Poi,z and Poj,z arelying on the same line. But this pair of segments 
annot be adja
ent to morethan one 2-bend path (see Fig. 4 (middle)). So if we represent cz, then we 
annotrepresent dz , ez, or fz. This shows irrepresentability of an unsatis�ed 
lause.
Not enough bends!

Not enough bends! ...Fig. 4: Left: It is impossible to interse
t three parallel, pairwise non-
ollinear seg-ments with a 2-bend path, while two parallel and one perpendi
ular segments 
an beinterse
ted. Middle: Two 
ollinear segments 
annot be adja
ent to two mutually non-adja
ent 2-bend paths. Right: This is possible for two mutually interse
ting segmentsor two non-
ollinear parallel segments.For a representable formula, we build a 
anoni
al representation shown inFig. 2 (right) (for a 
lause with one false and two true literals, we rotate ev-erything ex
ept of a and b by 90 degrees). Figure 2 shows one 
lause in one of(21) repli
ated 
opies and one o

uren
e of ea
h variable. The full 
onstru
tionwith all 21 
opies would 
onsist of 21 
opies of all items present in the pi
ture,ex
ept for Pa and Pb. Note that there are no edges between verti
es belongingto di�erent 
opies of ϕ. Further o

uren
es, e.g., of v2 in the same formula 
anbe represented next to o2,z interse
ting v2 in the bottom (or top) horizontal leg(where it simultaneously interse
ts a (or b, respe
tively and it has to avoid legs ofother possible o

uren
es). Anyway, their truth assignments are �syn
hronized�in all possible 
ases as they have to interse
t a or b together with the vertex rep-resentative v2. Considering two (and more) 
lauses in the representation, ea
h
lause has its own o

uren
es, so the representation of one 
lause does not in�u-en
e representations of other 
lauses (as representatives of distin
t o

uren
esare not mutually adja
ent, i.e., they are disjoint up to �nitely many points). Inthis representation, the body of ea
h Poi,z interse
ts the body of ea
h Poj,z , forall i evaluated to true and j evaluated to false. Thus it is possible to representall 
lause-verti
es, just as depi
ted. ⊓⊔



3.1 Sub
lasses of aligned 2-bend graphsHere we fo
us on the re
ognition of parti
ular sub
lasses of 2-bend graphs. Notethat as there are many 
lasses (whose re
ognition is often NP-hard), it is im-portant to ask whether even some polynomially re
ognizable 
lass 
an exist �inbetween�. This 
on
ept is 
alled sandwi
hing. Formally, having two 
lasses ofgraphs A ⊆ B, a 
lass C is sandwi
hed between A and B if A ⊆ C ⊆ B. Foroptimization problems, it holds that if an algorithm works for 
lass B, it worksalso for the 
lass A. Also a hardness result for A 
arries over to B. However,the re
ognition problem behaves in a di�erent way. As a trivial example we maypi
k a 
lass A 
ontaining only 
omplete graphs (this 
lass is polynomially re
og-nizable), for 
lass B we may take 
lass of all graphs (whi
h is also polynomiallyre
ognizable) and between them we 
an �nd, e.g., 
lasses of 2-bend graphs, whosere
ognition is NP-
omplete, as shown in Theorem 1. Similarly, between two NP-hard 
lasses, a polynomially-re
ognizable 
lass 
an be sandwi
hed (
onsider e.g.3-
olorable planar graphs, planar graphs, and 4-
olorable graphs).In this se
tion we do not only show the re
ognition hardness of individual
lasses, but we are trying to �nd the smallest 
lass A and the largest 
lass B,su
h that no polynomially-re
ognizable 
lass 
an be sandwi
hed between them.We start with �rst two sub
lasses where our redu
tion for 2-bend graphs
an be applied dire
tly. One of them is a 
lass of monotoni
 2-bend graphs (i.e.,
{ , }-graphs) and the other is the 
lass of { , }-graphs.We observe that in the proof of Theorem 1 we produ
e a monotoni
 2-bendgraph from ea
h satis�able formula. As a non-satis�able formula 
annot be rep-resented by any 2-bend graph, if there was a polynomially-re
ognizable 
lassbetween monotoni
 2-bend graphs and 2-bend graphs, we would be able to dis-tinguish satis�able formulae from non-satis�able ones, showing P=NP.It is very simple to redraw the representation used in the proof of Theorem 1,using only and -shapes.Corollary 1. It is NP-
omplete to re
ognize monotoni
 2-bend graphs and { , }-graphs. Moreover, between 2-bend graphs and any of these 
lasses, or even theirinterse
tion, no polynomially re
ognizable 
lass 
an be sandwi
hed (unless P=NP).Now we shall modify the 
onstru
tion a bit to show a 
as
ade of furtherresults. Note that there are four possible patterns of horizontal paths ( , , ,)and another four for verti
al paths. As we want to show that it is NP-
ompleteto re
ognize graphs of any 
lassX ∈ { , , , }×{ , , , }, we need to startwith exploring the symmetries, to 
lassify possible 
lasses X .So 
onsider a pair or shapes, one of whi
h is horizontal and the other one isverti
al. If both legs of ea
h shape bend in the same dire
tion, we obtain the 
lass
{ , }, whi
h is equivalent to ea
h { , }, { , }, and { , } (
onsider a rotationof �ipping of an EPG-representation). If both legs of one shape bend in the samedire
tion, and the legs of the other shape bend in opposite dire
tions, we get the
lass { , } (again, up to symmetry). Finally, if the legs of both shapes bendin opposite dire
tions, we get two possibilities, i.e., { , } (monotoni
 2-bendgraphs) and { , }. Although for the latter two 
lasses we have already shown



NP-hardness, now we show yet one 
onstru
tion that works for all four 
ases.Su
h a general 
onstru
tion is important from the point of view of sandwi
hing.The new 
onstru
tion, in fa
t, is just a simpli�ed version of the one in theproof of Theorem 1. Again, for a formula ϕ, we repli
ate it to obtain ϕ′ (using�quantitative tri
k�) and introdu
e variable-verti
es vi and o

uren
e-verti
es
oi,z . The di�eren
e is that now ea
h 
lause z = (i, j, k) is represented by justone vertex cz, adja
ent to oi,z , oj,z, and ok,z (so we omit verti
es dz, ez, and fz).For a formula ϕ, let us 
all su
h 
onstru
ted graph G(ϕ′).Using this 
onstru
tion we 
an show that it is NP-
omplete to re
ognize X-graphs for ea
h of the pairs X of permitted shapes, one of whi
h is verti
al andthe other horizontal.Lemma 1. It is NP-
omplete to re
ognize X-graphs, for any X ∈ { , , , }×
{ , , , }.Note that the lemma above shows that, both, an interse
tion and a union ofthe mentioned sub
lasses (as well as anything sandwi
hed between them) isNP-hard to get re
ognized. Also, note that it does not show that all 
lassesrepresentable by a given subset of 2-bend shapes (whi
h in
ludes at least oneverti
al and at least one horizontal shape) are NP-
omplete to get re
ognized.It still may happen that there exists su
h a set X of patterns, that X-graphs
an be polynomially re
ognized. However, we know that if su
h a 
lass exists, itmust not 
ontain even the interse
tion of { , }-graphs and { , }-graphs.Finally, let us try to explore limits of the original hardness redu
tion for 2-bend graphs (Theorem 1). We know that it works for 2-bend graphs, for { , }-graphs, and for { , }-graphs (and where the in
lusion-relation applies, thenalso for everything in between). However, we may show that the redu
tion worksalso for all triples of 2-bend shapes, in whi
h at least one shape is verti
al, atleast one is horizontal, and they are not symmetri
 to the triple { , , }, i.e.,w.l.o.g., two verti
al shapes, one having its legs in the same dire
tion, the otherhaving legs in mutually opposite dire
tions, and the legs of the horizontal onego in the same dire
tion and yet in the dire
tion �towards the 
ommon angle� ofthe other two gadgets. It is easy to observe that the �simpli�ed� 
onstru
tion 
anbe represented, so we need to show, for a parti
ular satis�ed 
lause z = (i, j, k),how to represent verti
es dz, ez, and fz. Suppose w.l.o.g. i, j are evaluated trueand k is evaluated false. The path Pcz passes through the interse
tion point of
Poi,z and Pok,z

, and through the interse
tion point of Poj,z and Pok,z
. In orderto represent dz (adja
ent to oi,z and oj,z) we need to use the same interse
tion-point, i.e., we need the angle obtained from cz rotated by 180 degrees. The 
aseanalysis shows that this is possible.As a 
orollary of the previous statement, the redu
tion works for all su
h4-tuples of 2-bend shapes, where at least one shape is verti
al and at least onehorizontal (non-trivial situation arises only when extending { , , }). Notealso that the redu
tion works for any k-tuple of 2-bend shapes for k ≥ 5 (asthere are just 4 verti
al and 4 horizontal shapes, we are sure that at least onewill be horizontal and at least one will be verti
al).Summing up the results from this se
tion, we obtain the following.



Theorem 2. It is NP-
omplete to re
ognize X-graphs, where X is:(i) any of { , , , } × { , , , },(ii) any triple of 2-bend shapes 
ontaining at least one verti
al and one horizontalshape, and is not symmetri
 to { , , }.(iii) any 4-tuple of 2-bend shapes, 
ontaining at least one horizontal and oneverti
al shape.(iv) any k-tuple of 2-bend shapes for k ≥ 5.Moreover, one 
annot sandwi
h any polynomially re
ognizable 
lass between:(a) the interse
tion of { , , , } × { , , , }(b) interse
tion of 
lasses given in (ii),and the 
lass of 2-bend graphs.4 More slopesIn this se
tion we relax the de�nition of an EPG-representation. By an unalignedEPG-representation of a graph G we mean a mapping from verti
es of G to a setof polylines (pie
ewise linear 
urves), su
h that two verti
es are adja
ent i� their
orresponding polylines share in�nitely many points. Again, we are interested inkeeping the number of bends (or equivalently, segments in a polyline) small.Here we show hardness of the re
ognition of unaligned 2-bend graphs and
on
lude the se
tion with dis
ussion of a trade-o� between the number of slopesused and the number of bends.Theorem 3. It is NP-hard to re
ognize unaligned 2-bend graphs.Proof. This time we redu
e from 3-Coloring. For a graph G we shall 
onstru
ta graph H , whi
h is an unaligned 2-bend graph i� G is 3-
olorable.The redu
tion uses ideas similar to the redu
tion for aligned 2-bend graphs.This time we use 12 servi
e verti
es and again we want our gadgets to avoidbeing represented over the ends of segments of these servi
e verti
es, and overtheir mutual interse
tion points. So we use the �quantitative tri
k� again. Thistime we may have no more than 1 260 spe
ial pla
es (12 · 2 · 3 ends of segments,
(

12
2

)

· 9 possible interse
tion points, ea
h of whi
h 
an be used at most twi
e).Thus we take 1 261 disjoint 
opies of the graphG, obtaining the graphG′ (
learly
G′ is 3-
olorable i� G is 3-
olorable).The main idea of the redu
tion is that one servi
e vertex of H , named a,simulates the 3-
oloring of G′. The individual segments of Pa 
orrespond tothree 
olor 
lasses. Ea
h vertex v of G′ will be represented by several verti
esof H . One of them, 
alled v2, will have the property that one of the legs of Pv2lies on a segment of Pa (thus de�ning the 
olor of v in a 3-
oloring of G′), andthe remaining two segments of Pv2 will be fully 
overed by some other paths,non-adja
ent to edge-representatives. An edge uv of G′ will be represented by apair of mutually non-adja
ent verti
es of H . Both of them will be made adja
entto a and the representatives of both u and v. The main idea is that we 
annot
onstru
t edge-representatives, if v2 and u2 are adja
ent to the same segment of
a (and thus v and u get the same 
olor). This part of H is illustrated in Fig. 5.
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Fig. 5: Left: The graph G. Middle: The main part of H . For 
larity, just the mainvertex-representants are depi
ted. Also the repli
ation (�quantitative tri
k�) was notperformed. Right: An unaligned 2-bend representation of H . Note that we are unableto represent the edge vw (having �xed representations of v2 and u2).Formally, the graphH has 12 servi
e verti
es a0, a0.5, a1, a1.5, a2, a2.5, a3, a3.5,
a, b, aB, and bB. For ea
h vertex v of G′, we add to H verti
es v1, v1.5, v2, v2.5, v3,and vb (we will 
all them v-verti
es). The vertex vb is adja
ent to all other v-verti
es. Furthermore, v1.5 is adja
ent to v1, v2, and v2.5 is adja
ent to v2, v3.Finally, ea
h v-vertex is adja
ent to two servi
e verti
es: v1 to a0, a1, v1.5 to
a0.5, a1.5, v2 to a, b, v2.5 to a2.5, a3.5, v3 to a2, a3. For ea
h edge e = uv we adda pair of mutually non-adja
ent verti
es e1, e2, both adja
ent to a, u2, and v2.Suppose we have an unaligned 2-bend representation of H . First, by the�quantitative tri
k�, we know that at least for one 
opy of G, for any vertex v, allverti
es vi (i ∈ {1, 1.5, 2, 2.5, 3, b}) are represented by 2-bend paths having bothlegs 
overed by the segments of the appropriate pair of servi
e verti
es. Let usfo
us on this 
opy of G.We observe that the body of Pv2 (for any v) is 
overed by (at least) Pvb .This follows from the fa
t that Pvb 
an interse
t the other v-verti
es only byits body (as one leg lies on PaB

, and the se
ond on PbB ). Thus the bodies of
Pv1 , Pv1.5 , . . . , Pv3 , Pvb must form an interval representation ofH [{v1, v1.5, . . . , v3, vb}]and in no su
h representation the body of Pv2 
an ex
eed the body of Pvb . There-fore the body of Pv2 is fully 
overed by (at least) the body of Pvb .Now, we are in a desired situation. Consider an edge e = uv. For ea
h Pu2

and
Pv2 , only the leg lying on Pa, 
an be made adja
ent to both Pe1 and Pe2 , as usingany other segment would 
ause some unwanted adja
en
y. If these legs are ondistin
t segments of Pa, obviously we 
an represent both e1 and e2. Conversely,if they are on the same segment of Pa, we 
an represent at most one of them(similarly to Fig. 4 (left)). This shows irrepresentability for a non-3-
olorable G.On the other hand, if G has a 3-
oloring, we use it for distributing segmentsof Pv2 of ea
h vertex v over the segments of Pa. Note that we may 
reate arepresentation, where the bodies of Pv2 , for all v, are parallel. Then other v-verti
es may be represented in the way shown in Fig. 6. For any edge e, paths
Pe1 and Pe2 
onne
t two non-
ollinear segments, whi
h 
an be easily done. ⊓⊔
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Fig. 6: Left: A graph H for G being an edge uv (repli
ation is omitted). Unla-beled verti
es between aB and bB are, respe
tively: a0, a1, a0.5, a1.5, a, b, a2.5, a3.5, a2, a3.Right: Unaligned 2-bend representation of H .4.1 Slopes and bendsDe�ning unaligned bend graphs permits us to introdu
e a new measure of 
om-plexity of a representation, i.e., the number of slopes used. There is an obvioustrade-o� between the number of bends and the number of slopes. Before we ex-plore this relation a little more, let us try to minimize the number of di�erentslopes used by the unaligned 2-bend representation.Proposition 2. In order to represent all unaligned 2-bend graphs on n verti
es,we need Ω(
√
n) slopes.Proof. The proof follows from the 
onstru
tion in the proof of Theorem 3. Let

G ∼ Km,m,1 be a 
omplete bipartite graph with biparition 
lasses X,Y , both ofsize m, and one extra vertex z adja
ent to all other ones.We repli
ate G 1261 times, obtaining G′, and 
onstru
t H in the way de-s
ribed in the proof of Theorem 3. Sin
e G has 2m+1 verti
es and Θ(m2) edges,
H has n = Θ(m2) verti
es.As G is 3-
olorable, H has an unaligned 2-bend representation. As always,we will fo
us on the �
lean� 
opy of G. Consider the path Pa, and let p, q, rdenote its three segments. By the properties of H , w.l.o.g. one leg of every Px2for x ∈ X lies on p, while one leg of every Py2

for y ∈ Y lies on r.Now 
onsider the paths Pe1 (for e = xy, x ∈ X , y ∈ Y ). There are m2 su
hpaths. We observe that every slope ℓ 
an be used by the bodies of at most 2mpaths Pe1 . To see this, we use a sweeping line, parallel to ℓ. As ea
h path Pe1
onne
ts a pair of segments of a di�erent pair (Px2
, Py2

), the sweeping line mustleave at least one of the segments before meeting a new one. As there are in total
2m segments of Px2

or Py2
on Pa, at most 2m paths Pe1 
an have their bodiesparallel to ℓ. Thus we need at least ⌈m2

2m

⌉

= Θ(m) = Θ(
√
n) di�erent slopes torepresent the bodies of paths Pe1 . ⊓⊔To see a trade-o� between the number of bends and the number of slopes,observe that the for G ∼ Km,m,1, the graph H 
an be easily represented by3-bend paths, using only 2 slopes (Pa is represented by a -shape with segmentsof Pv2 on three di�erent segments of it).



4.2 d-bend numberLet us 
on
lude the se
tion with some generalization of the bend number. Fixa set D of d pairwise non-parallel lines (slopes) 
ontaining the origin point. Wesay that an unaligned EPG-representation is a EPG(D)-representation if everysegment of ea
h polyline is parallel to some line in D.The d-bend number bd(G) of a graph G is the minimum k for whi
h thereexists a set D of d slopes, su
h that G has an EPG(D)-representation in whi
hevery path bends at most k times. We also de�ne b∞(G) := min
d∈N

bd(G), whi
h
orresponds to unaligned EPG-representations.Observe that the 2-bend number is just the 
lassi
al bend number. It is alsostraightforward to observe that if d1 < d2, then bd1
(G) ≥ bd2

(G) for all graphs
G. Moreover, if there exists d ∈ N su
h that bd(G) = 0, then bd′(G) = 0 for all
d′ ∈ N (as this means that G is an interval graph).As we have seen in Proposition 2, introdu
ing more slopes may help us redu
ethe number of bends needed to represent a given graph. Here we show two moreexamples of this. Consider a wheel graph Wn on n+1 verti
es (n ≥ 3). It followsfrom the work of Golumbi
 et al. [7℄ that Wn is not a 1-bend graph (using 2slopes only) and one 
an easily �nd a representation using 2 bends. On the otherhand, for d ≥ 3, we 
an representWn using 1-bend paths (see Fig. 7 (left)). Thus
b2(Wn) = 2 and bd(Wn) = 1 for all d ≥ 3.
Fig. 7: Left: Representation of a wheel using 1-bend paths. Right: Representations of
K2,s with 1-bend paths.Another examples of graphs with bend number depending on the numberof slopes are 
omplete bipartite graphs. Consider e.g. a graph K2,s. When only2 slopes are available, then K2,s has a 1-bend representation only for s ≤ 4.Introdu
ing a third slope allows us to represent K2,5 and K2,6. Fourth slopeallows representing K2,7 and K2,8. By analyzing the possible interse
tion pointsof two 1-bend paths, we observe that K2,s for any s ≥ 9 does not have a 1-bendrepresentation for any number of slopes. On the other hand, every K2,s is a2-bend graph on 2 slopes (see Fig. 7 (right) and Fig. 4 (right)).5 Con
lusions and open problemsAlthough all non-trivial 
lasses of EPG-graphs are 
onsidered hard for re
ogni-tion, not mu
h is known. It is an open problem whether the re
ognition problemremains NP-hard for k-bend graphs (for k ≥ 3).



Problem 1. Is the re
ognition of k-bend graphs NP-
omplete for every �xed k ≥ 1?For unaligned bend graphs and aligned bend graphs, using more than 2slopes, naturally arises the question on in
lusions between di�erent 
lasses. Alsothe 
omplexity of the re
ognition problem is unknown (for more than 1 bend,when we restri
t the number of slopes). Note that none of our redu
tions 
an beeasily used. The unaligned version in
reases the number of slopes, while in thealigned version a new slope introdu
es a new �truth value�, but in a way thatdoes not seem to be suitable for a redu
tion from any form of 
oloring.As mentioned before, the Clique problem is polynomially solvable in 1-bendgraphs. On the other hand, the problem is shown to be NP-
omplete in 2-intervalgraphs [6℄. Sin
e every 2-interval graph is a 3-bend graph and also a 2-bend graphwith 3 slopes, we know that the problem is NP-
omplete is these 
lasses as well.The 
omplexity for 2-bend graphs remains open.Problem 2. What is the 
omplexity of the Clique problem is 2-bend graphs?It is not hard to observe that for any two sets D,D′ with |D| = |D′| = 3,one 
an transform an EPG(D)-representation of any graph G to its EPG(D′)-representation. However, it is not 
lear if the same holds for sets with at least 4dire
tion of slopes. It is worth mentioning that there are in�nitely many 
lassesof interse
tion graphs of segments, ea
h of whi
h is parallel one of 4 slopes [2℄.Problem 3. Is the minimum number of bends (per path) in an EPG(D)-representationof a graph G always equal to bd(G), for any set D of d > 3 slopes?Our generalization rises yet further questions. Espe
ially, we may put in-dividual verti
es into points with integral 
oordinates. Now, we may ask, howlarge grid is ne
essary and su�
ient to represent any graph with n verti
es andpres
ribed number of permitted slopes, or even, with pres
ribed slopes.Referen
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