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3 Warsaw University of Tehnology, Faulty of Mathematis and Information Siene,Warszawa, Poland. E-mail: p.rzazewski�mini.pw.edu.plAbstrat. An EPG-representation of a graph G is a olletion of pathsin a grid, eah orresponding to a single vertex of G, so that two vertiesare adjaent if and only if their orresponding paths share in�nitely manypoints. In this paper we fous on graphs admitting EPG-representationsby paths with at most 2 bends. We show hardness of the reognitionproblem for this lass of graphs, along with some sublasses.We also initiate the study of graphs representable by unaligned polylines,and by polylines, whose every segment is parallel to one of presribedslopes. We show hardness of reognition and explore the trade-o� be-tween the number of bends and the number of slopes.1 IntrodutionThe onept of edge intersetion graphs of paths in a grid (EPG-graphs) wasintrodued by Golumbi et al. [7℄. By an EPG-representation of a graph G wemean a mapping from verties of G to paths in a grid, suh that two vertiesare adjaent if and only if their orresponding paths share a grid edge. As eahgraph an be represented in this way [7℄, it makes sense to onsider representa-tions with some restrited set of shapes. A usual parameterization is by boundingthe number k of times eah path is allowed to hange the diretion. Graphs withsuh a representation are alled k-bend graphs. So far, the ase of 1-bend graphsreeived most attention [7, 4℄.Sine 0-bend graphs are just interval graphs, they an be reognized in poly-nomial time [1℄. The reognition of 1-bend graphs is NP-omplete [8℄, even if therepresentation is restrited to any presribed set of 1-bend objets [4℄. However,the problem beomes trivially solvable when k is at least the maximum degreeof the input graph [8℄. Thus it is unlear whether k-bend graphs are hard toreognize for all k ≥ 2.It is worth mentioning the losely related notion of Bk-VPG-graphs. Thesegraphs are de�ned as intersetion graphs of axis-aligned paths with at most kbends. So, unlike in the EPG-representation, paths that share a �nite number
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of points de�ne adjaent verties. Chaplik et al. [5℄ showed it is NP-ompleteto reognize Bk-VPG-graphs, for all k ≥ 0.In this paper we explore the problem of reognition of sublasses of EPG-graphs. Namely, we show that it is NP-omplete to reognize 2-bend graphs. Wealso onsider some restritions, where we permit just some types of the urvesin an EPG-representation (similarly to [4℄). One of these restritions, i.e., mono-toni EPG-representations, where eah path asends in rows and olumns, wasalready onsidered by Golumbi et al. [7℄. Our hardness proof even shows thatbetween monotoni 2-bend graphs and 2-bend graphs, no polynomially reog-nizable lass an be found.The lass of 2-bend graphs an be pereived as a generalization of quitewell-studied lass of 1-bend graphs. We also onsider some generalizations ofthe onept of EPG-representations. We do not require individual segments tobe axis-aligned, but we permit them to use any slope. We all suh graphs un-aligned EPG-graphs and study the number of bends in this setting. After thisgeneralization, we may ask about partiular restritions. These restritions arerepresented by restriting number of slopes that segments may use or even byusing just presribed shapes (in a �avor similar to [4℄).For unaligned EPG-graphs, we show that it is NP-hard to determine whethera graph is an unaligned 2-bend graph (hardness of the reognition for 1-bendgraphs follows from [4℄).Having introdued unaligned EPG-graphs, we observe that there is a trade-o�between the number of bends and the number of slopes used in a representation.We also show that representing an unaligned 2-bend graph on n verties, mayrequire using Ω(
√
n) slopes. This result follows from our hardness redution.2 PreliminariesFor an EPG-representation of a graph G, by Pv we shall denote the path rep-resenting a vertex v. Often we shall identify the vertex v with Pv. For example,if we say that two paths are adjaent, we mean that they share in�nitely manypoints (note that if two paths interset, one ommon point is enough).A entral notion in the study of EPG-graphs is the bend number. The bendnumber of a graph G, denoted by b(G), is the minimum k, suh that G has anEPG-representation, in whih every paths hanges it diretion at most k times.W.l.o.g. we an assume that every path in a k-bend EPG-representation bendsexatly k times [4℄.Eah 2-bend path will be lassi�ed as vertial or horizontal, if its middlesegment is resp. vertial or horizontal. This middle segment will be alled thebody of the path, while the remaining two segments will be referened as its legs.For a set X of shapes of polylines (i.e., pieewise-linear urves), by X-graphswe shall denote the lass of graphs admitting an EPG-representation, in whihthe shape of every path is in X (similar notation was used in [4℄). So for examplemonotoni 2-bend graphs are exatly { , }-graphs.Golumbi et al. [7℄ analyzed the struture of liques in 1-bend graphs andproved that in 1-bend graphs eah lique C is either an edge lique or a law-lique. A maximal edge lique onsists of verties whose representing paths share



a ommon grid edge. A law is a set of three distint grid edges sharing a singleendpoint and a maximal law-lique onsists of all paths ontaining two outof three edges of a given law. Sine we an safely assume that eah 1-bendrepresentation of a graph with n verties an be embedded in a 2n× 2n grid, weobtain that the number of maximal liques in a 1-bend graph is at most O(n2),i.e., is polynomial in n. This is no longer the ase with 2-bend graphs.Let n be an integer and let K−
2n be the oktail-party graph, i.e., a ompletegraph on 2n verties with a perfet mathing removed. It is lear that K−

2n has
2n = 2|V (K−

2n)|/2 maximal liques. Fig. 1 (left) shows that K−
2n is a 2-bend graph.Proposition 1. 2-bend graphs an have exponentially many maximal liques.The restrited struture of liques in 1-bend graphs follows from the fatthat the 1-bend paths representing pairwise adjaent verties must all share atleast one grid point. It is easy to observe that liques in 2-bend graphs do nothave suh a simple struture. One ould be inlined by Fig. 1 (left) that everymaximal lique is ontained in the union of two edge-liques or law-liques (asimilar situation appears in unit disk graphs and is the main ingredient of apolynomial algorithm for Clique in these graphs [3℄). However, Fig. 1 (right)shows it is not true.

Fig. 1: Left:K−

10
as 2-bend graph. Right: A lique is not ontained in two edge-liques.3 Aligned 2-bend graphsThe main results of this setion is the following omplexity result.Theorem 1. It is NP-omplete to deide if a given graph is a 2-bend graph.Proof. The NP-membership is obvious. As a polynomial erti�ate we use a listof oordinates denoting start- and end-points of straight-line segments. Suh arepresentation has polynomial size w.r.t. the given graph.For the NP-hardness we use a polynomial redution from Pure-Nae-3-Sat.The instane of this problem is a set of lauses, eah ontaining three variables.We ask for the existene of a truth assignment, suh that eah lause ontainsat least one true variable and at least one false variable (we say that suh alause is satis�ed). The problem is NP-omplete and equivalent to 2-oloring of3-uniform hypergraphs [9℄.For a given formula ϕ, we shall onstrut a graph G, whih is a 2-bend graphi� the formula is satis�able. We start by repliating ϕ 21 times (eah time over



a distint opy of the set of variables), obtaining an equivalent formula ϕ′. Thereason of this operation will be made lear in a while.We start the onstrution ofG with two speial verties a and b. Then for eahvariable i of ϕ, we add a vertex vi adjaent to both a and b. For eah ourene of
i in a lause z of ϕ′, we add another vertex oi,z, adjaent to a, b, and vi. Finally,for eah lause z = (i, j, k) we add mutually non-adjaent verties cz, dz, ez, and
fz, with the following neighbors: N(cz) = {oi,z, oj,z, ok,z}; N(dz) = {oi,z, oj,z};
N(ez) = {oi,z, ok,z}; and N(fz) = {oj,z, ok,z} (see Fig. 2 (left)).
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(1, 2, 3). For larity we did not repliate the formula. Right: An EPG-representationof the graph on the left. The variable 1 is false, while 2 and 3 are true.Now let us explain the main ideas behind the redution. The purpose ofverties a and b is to over the legs of eah Pvi and Poi,z , keeping just theirbodies exposed for possible intersetions with lause-verties. This assumptionmay fail, as some Pvi or Poi,z an be positioned over an end of a segment of Pa or
Pb, or on an intersetion point of Pa and Pb. However, eah end an be used atmost one and eah intersetion point at most twie (see Fig. 3). As Pa and Pb

Fig. 3: Left: 6 pairwise non-adjaent segments may exit a 2-bend path without havingto bend inside it.Right: Atmost 8 pairwise non-adjaent 2-bend paths may be adjaentto both Pa and Pb and ontain their intersetion point.have (together) 12 ends of segments and at most 4 intersetion points, we haveat most 20 speial situations. But sine we repliated ϕ 21 times, we are surethat for at least one opy of ϕ our assumption holds (this type of trik we allthe �quantitative trik� and we use it to ope with some obstrutions whih mayappear only a onstant number of times). Let us fous on this �lean� opy of ϕ in
ϕ′. One leg of eah Poi,j is adjaent to a and the other one is adjaent to b. Also,at least one of them has to be adjaent to Pvi , sine otherwise lause-verties



would be adjaent to vi. Thus the body of Poi,j is exposed for representing lause-related verties. Moreover, the orientation of the body (and this of whole path) isthe same as the orientation of Pvi , so all variable-ourenes are �synhronized�.The orientation of the paths will deide on truth assignment (horizontal meansfalse, vertial means true).First we show irrepresentabililty of the graph for an unsatis�able formula. Let
z = (i, j, k) be an unsatis�ed lause. We will show that it annot be represented.Observe that it is impossible to have a 2-bend path adjaent to three parallel,pairwise non-ollinear segments, while it is possible for two parallel and oneperpendiular segments (see Fig. 4 left).The situation with three parallel segments orresponds to all-true or all-falselause. So, if no pair of middle segments of Poi,z , Poj,z , Pok,z

(and thus Pvi , Pvj ,
Pvk) is ollinear, we annot represent cz.However, it might still happen that the bodies of, say, Poi,z and Poj,z arelying on the same line. But this pair of segments annot be adjaent to morethan one 2-bend path (see Fig. 4 (middle)). So if we represent cz, then we annotrepresent dz , ez, or fz. This shows irrepresentability of an unsatis�ed lause.
Not enough bends!

Not enough bends! ...Fig. 4: Left: It is impossible to interset three parallel, pairwise non-ollinear seg-ments with a 2-bend path, while two parallel and one perpendiular segments an beinterseted. Middle: Two ollinear segments annot be adjaent to two mutually non-adjaent 2-bend paths. Right: This is possible for two mutually interseting segmentsor two non-ollinear parallel segments.For a representable formula, we build a anonial representation shown inFig. 2 (right) (for a lause with one false and two true literals, we rotate ev-erything exept of a and b by 90 degrees). Figure 2 shows one lause in one of(21) repliated opies and one ourene of eah variable. The full onstrutionwith all 21 opies would onsist of 21 opies of all items present in the piture,exept for Pa and Pb. Note that there are no edges between verties belongingto di�erent opies of ϕ. Further ourenes, e.g., of v2 in the same formula anbe represented next to o2,z interseting v2 in the bottom (or top) horizontal leg(where it simultaneously intersets a (or b, respetively and it has to avoid legs ofother possible ourenes). Anyway, their truth assignments are �synhronized�in all possible ases as they have to interset a or b together with the vertex rep-resentative v2. Considering two (and more) lauses in the representation, eahlause has its own ourenes, so the representation of one lause does not in�u-ene representations of other lauses (as representatives of distint ourenesare not mutually adjaent, i.e., they are disjoint up to �nitely many points). Inthis representation, the body of eah Poi,z intersets the body of eah Poj,z , forall i evaluated to true and j evaluated to false. Thus it is possible to representall lause-verties, just as depited. ⊓⊔



3.1 Sublasses of aligned 2-bend graphsHere we fous on the reognition of partiular sublasses of 2-bend graphs. Notethat as there are many lasses (whose reognition is often NP-hard), it is im-portant to ask whether even some polynomially reognizable lass an exist �inbetween�. This onept is alled sandwihing. Formally, having two lasses ofgraphs A ⊆ B, a lass C is sandwihed between A and B if A ⊆ C ⊆ B. Foroptimization problems, it holds that if an algorithm works for lass B, it worksalso for the lass A. Also a hardness result for A arries over to B. However,the reognition problem behaves in a di�erent way. As a trivial example we maypik a lass A ontaining only omplete graphs (this lass is polynomially reog-nizable), for lass B we may take lass of all graphs (whih is also polynomiallyreognizable) and between them we an �nd, e.g., lasses of 2-bend graphs, whosereognition is NP-omplete, as shown in Theorem 1. Similarly, between two NP-hard lasses, a polynomially-reognizable lass an be sandwihed (onsider e.g.3-olorable planar graphs, planar graphs, and 4-olorable graphs).In this setion we do not only show the reognition hardness of individuallasses, but we are trying to �nd the smallest lass A and the largest lass B,suh that no polynomially-reognizable lass an be sandwihed between them.We start with �rst two sublasses where our redution for 2-bend graphsan be applied diretly. One of them is a lass of monotoni 2-bend graphs (i.e.,
{ , }-graphs) and the other is the lass of { , }-graphs.We observe that in the proof of Theorem 1 we produe a monotoni 2-bendgraph from eah satis�able formula. As a non-satis�able formula annot be rep-resented by any 2-bend graph, if there was a polynomially-reognizable lassbetween monotoni 2-bend graphs and 2-bend graphs, we would be able to dis-tinguish satis�able formulae from non-satis�able ones, showing P=NP.It is very simple to redraw the representation used in the proof of Theorem 1,using only and -shapes.Corollary 1. It is NP-omplete to reognize monotoni 2-bend graphs and { , }-graphs. Moreover, between 2-bend graphs and any of these lasses, or even theirintersetion, no polynomially reognizable lass an be sandwihed (unless P=NP).Now we shall modify the onstrution a bit to show a asade of furtherresults. Note that there are four possible patterns of horizontal paths ( , , ,)and another four for vertial paths. As we want to show that it is NP-ompleteto reognize graphs of any lassX ∈ { , , , }×{ , , , }, we need to startwith exploring the symmetries, to lassify possible lasses X .So onsider a pair or shapes, one of whih is horizontal and the other one isvertial. If both legs of eah shape bend in the same diretion, we obtain the lass
{ , }, whih is equivalent to eah { , }, { , }, and { , } (onsider a rotationof �ipping of an EPG-representation). If both legs of one shape bend in the samediretion, and the legs of the other shape bend in opposite diretions, we get thelass { , } (again, up to symmetry). Finally, if the legs of both shapes bendin opposite diretions, we get two possibilities, i.e., { , } (monotoni 2-bendgraphs) and { , }. Although for the latter two lasses we have already shown



NP-hardness, now we show yet one onstrution that works for all four ases.Suh a general onstrution is important from the point of view of sandwihing.The new onstrution, in fat, is just a simpli�ed version of the one in theproof of Theorem 1. Again, for a formula ϕ, we repliate it to obtain ϕ′ (using�quantitative trik�) and introdue variable-verties vi and ourene-verties
oi,z . The di�erene is that now eah lause z = (i, j, k) is represented by justone vertex cz, adjaent to oi,z , oj,z, and ok,z (so we omit verties dz, ez, and fz).For a formula ϕ, let us all suh onstruted graph G(ϕ′).Using this onstrution we an show that it is NP-omplete to reognize X-graphs for eah of the pairs X of permitted shapes, one of whih is vertial andthe other horizontal.Lemma 1. It is NP-omplete to reognize X-graphs, for any X ∈ { , , , }×
{ , , , }.Note that the lemma above shows that, both, an intersetion and a union ofthe mentioned sublasses (as well as anything sandwihed between them) isNP-hard to get reognized. Also, note that it does not show that all lassesrepresentable by a given subset of 2-bend shapes (whih inludes at least onevertial and at least one horizontal shape) are NP-omplete to get reognized.It still may happen that there exists suh a set X of patterns, that X-graphsan be polynomially reognized. However, we know that if suh a lass exists, itmust not ontain even the intersetion of { , }-graphs and { , }-graphs.Finally, let us try to explore limits of the original hardness redution for 2-bend graphs (Theorem 1). We know that it works for 2-bend graphs, for { , }-graphs, and for { , }-graphs (and where the inlusion-relation applies, thenalso for everything in between). However, we may show that the redution worksalso for all triples of 2-bend shapes, in whih at least one shape is vertial, atleast one is horizontal, and they are not symmetri to the triple { , , }, i.e.,w.l.o.g., two vertial shapes, one having its legs in the same diretion, the otherhaving legs in mutually opposite diretions, and the legs of the horizontal onego in the same diretion and yet in the diretion �towards the ommon angle� ofthe other two gadgets. It is easy to observe that the �simpli�ed� onstrution anbe represented, so we need to show, for a partiular satis�ed lause z = (i, j, k),how to represent verties dz, ez, and fz. Suppose w.l.o.g. i, j are evaluated trueand k is evaluated false. The path Pcz passes through the intersetion point of
Poi,z and Pok,z

, and through the intersetion point of Poj,z and Pok,z
. In orderto represent dz (adjaent to oi,z and oj,z) we need to use the same intersetion-point, i.e., we need the angle obtained from cz rotated by 180 degrees. The aseanalysis shows that this is possible.As a orollary of the previous statement, the redution works for all suh4-tuples of 2-bend shapes, where at least one shape is vertial and at least onehorizontal (non-trivial situation arises only when extending { , , }). Notealso that the redution works for any k-tuple of 2-bend shapes for k ≥ 5 (asthere are just 4 vertial and 4 horizontal shapes, we are sure that at least onewill be horizontal and at least one will be vertial).Summing up the results from this setion, we obtain the following.



Theorem 2. It is NP-omplete to reognize X-graphs, where X is:(i) any of { , , , } × { , , , },(ii) any triple of 2-bend shapes ontaining at least one vertial and one horizontalshape, and is not symmetri to { , , }.(iii) any 4-tuple of 2-bend shapes, ontaining at least one horizontal and onevertial shape.(iv) any k-tuple of 2-bend shapes for k ≥ 5.Moreover, one annot sandwih any polynomially reognizable lass between:(a) the intersetion of { , , , } × { , , , }(b) intersetion of lasses given in (ii),and the lass of 2-bend graphs.4 More slopesIn this setion we relax the de�nition of an EPG-representation. By an unalignedEPG-representation of a graph G we mean a mapping from verties of G to a setof polylines (pieewise linear urves), suh that two verties are adjaent i� theirorresponding polylines share in�nitely many points. Again, we are interested inkeeping the number of bends (or equivalently, segments in a polyline) small.Here we show hardness of the reognition of unaligned 2-bend graphs andonlude the setion with disussion of a trade-o� between the number of slopesused and the number of bends.Theorem 3. It is NP-hard to reognize unaligned 2-bend graphs.Proof. This time we redue from 3-Coloring. For a graph G we shall onstruta graph H , whih is an unaligned 2-bend graph i� G is 3-olorable.The redution uses ideas similar to the redution for aligned 2-bend graphs.This time we use 12 servie verties and again we want our gadgets to avoidbeing represented over the ends of segments of these servie verties, and overtheir mutual intersetion points. So we use the �quantitative trik� again. Thistime we may have no more than 1 260 speial plaes (12 · 2 · 3 ends of segments,
(

12
2

)

· 9 possible intersetion points, eah of whih an be used at most twie).Thus we take 1 261 disjoint opies of the graphG, obtaining the graphG′ (learly
G′ is 3-olorable i� G is 3-olorable).The main idea of the redution is that one servie vertex of H , named a,simulates the 3-oloring of G′. The individual segments of Pa orrespond tothree olor lasses. Eah vertex v of G′ will be represented by several vertiesof H . One of them, alled v2, will have the property that one of the legs of Pv2lies on a segment of Pa (thus de�ning the olor of v in a 3-oloring of G′), andthe remaining two segments of Pv2 will be fully overed by some other paths,non-adjaent to edge-representatives. An edge uv of G′ will be represented by apair of mutually non-adjaent verties of H . Both of them will be made adjaentto a and the representatives of both u and v. The main idea is that we annotonstrut edge-representatives, if v2 and u2 are adjaent to the same segment of
a (and thus v and u get the same olor). This part of H is illustrated in Fig. 5.
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Fig. 5: Left: The graph G. Middle: The main part of H . For larity, just the mainvertex-representants are depited. Also the repliation (�quantitative trik�) was notperformed. Right: An unaligned 2-bend representation of H . Note that we are unableto represent the edge vw (having �xed representations of v2 and u2).Formally, the graphH has 12 servie verties a0, a0.5, a1, a1.5, a2, a2.5, a3, a3.5,
a, b, aB, and bB. For eah vertex v of G′, we add to H verties v1, v1.5, v2, v2.5, v3,and vb (we will all them v-verties). The vertex vb is adjaent to all other v-verties. Furthermore, v1.5 is adjaent to v1, v2, and v2.5 is adjaent to v2, v3.Finally, eah v-vertex is adjaent to two servie verties: v1 to a0, a1, v1.5 to
a0.5, a1.5, v2 to a, b, v2.5 to a2.5, a3.5, v3 to a2, a3. For eah edge e = uv we adda pair of mutually non-adjaent verties e1, e2, both adjaent to a, u2, and v2.Suppose we have an unaligned 2-bend representation of H . First, by the�quantitative trik�, we know that at least for one opy of G, for any vertex v, allverties vi (i ∈ {1, 1.5, 2, 2.5, 3, b}) are represented by 2-bend paths having bothlegs overed by the segments of the appropriate pair of servie verties. Let usfous on this opy of G.We observe that the body of Pv2 (for any v) is overed by (at least) Pvb .This follows from the fat that Pvb an interset the other v-verties only byits body (as one leg lies on PaB

, and the seond on PbB ). Thus the bodies of
Pv1 , Pv1.5 , . . . , Pv3 , Pvb must form an interval representation ofH [{v1, v1.5, . . . , v3, vb}]and in no suh representation the body of Pv2 an exeed the body of Pvb . There-fore the body of Pv2 is fully overed by (at least) the body of Pvb .Now, we are in a desired situation. Consider an edge e = uv. For eah Pu2

and
Pv2 , only the leg lying on Pa, an be made adjaent to both Pe1 and Pe2 , as usingany other segment would ause some unwanted adjaeny. If these legs are ondistint segments of Pa, obviously we an represent both e1 and e2. Conversely,if they are on the same segment of Pa, we an represent at most one of them(similarly to Fig. 4 (left)). This shows irrepresentability for a non-3-olorable G.On the other hand, if G has a 3-oloring, we use it for distributing segmentsof Pv2 of eah vertex v over the segments of Pa. Note that we may reate arepresentation, where the bodies of Pv2 , for all v, are parallel. Then other v-verties may be represented in the way shown in Fig. 6. For any edge e, paths
Pe1 and Pe2 onnet two non-ollinear segments, whih an be easily done. ⊓⊔
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Fig. 6: Left: A graph H for G being an edge uv (repliation is omitted). Unla-beled verties between aB and bB are, respetively: a0, a1, a0.5, a1.5, a, b, a2.5, a3.5, a2, a3.Right: Unaligned 2-bend representation of H .4.1 Slopes and bendsDe�ning unaligned bend graphs permits us to introdue a new measure of om-plexity of a representation, i.e., the number of slopes used. There is an obvioustrade-o� between the number of bends and the number of slopes. Before we ex-plore this relation a little more, let us try to minimize the number of di�erentslopes used by the unaligned 2-bend representation.Proposition 2. In order to represent all unaligned 2-bend graphs on n verties,we need Ω(
√
n) slopes.Proof. The proof follows from the onstrution in the proof of Theorem 3. Let

G ∼ Km,m,1 be a omplete bipartite graph with biparition lasses X,Y , both ofsize m, and one extra vertex z adjaent to all other ones.We repliate G 1261 times, obtaining G′, and onstrut H in the way de-sribed in the proof of Theorem 3. Sine G has 2m+1 verties and Θ(m2) edges,
H has n = Θ(m2) verties.As G is 3-olorable, H has an unaligned 2-bend representation. As always,we will fous on the �lean� opy of G. Consider the path Pa, and let p, q, rdenote its three segments. By the properties of H , w.l.o.g. one leg of every Px2for x ∈ X lies on p, while one leg of every Py2

for y ∈ Y lies on r.Now onsider the paths Pe1 (for e = xy, x ∈ X , y ∈ Y ). There are m2 suhpaths. We observe that every slope ℓ an be used by the bodies of at most 2mpaths Pe1 . To see this, we use a sweeping line, parallel to ℓ. As eah path Pe1onnets a pair of segments of a di�erent pair (Px2
, Py2

), the sweeping line mustleave at least one of the segments before meeting a new one. As there are in total
2m segments of Px2

or Py2
on Pa, at most 2m paths Pe1 an have their bodiesparallel to ℓ. Thus we need at least ⌈m2

2m

⌉

= Θ(m) = Θ(
√
n) di�erent slopes torepresent the bodies of paths Pe1 . ⊓⊔To see a trade-o� between the number of bends and the number of slopes,observe that the for G ∼ Km,m,1, the graph H an be easily represented by3-bend paths, using only 2 slopes (Pa is represented by a -shape with segmentsof Pv2 on three di�erent segments of it).



4.2 d-bend numberLet us onlude the setion with some generalization of the bend number. Fixa set D of d pairwise non-parallel lines (slopes) ontaining the origin point. Wesay that an unaligned EPG-representation is a EPG(D)-representation if everysegment of eah polyline is parallel to some line in D.The d-bend number bd(G) of a graph G is the minimum k for whih thereexists a set D of d slopes, suh that G has an EPG(D)-representation in whihevery path bends at most k times. We also de�ne b∞(G) := min
d∈N

bd(G), whihorresponds to unaligned EPG-representations.Observe that the 2-bend number is just the lassial bend number. It is alsostraightforward to observe that if d1 < d2, then bd1
(G) ≥ bd2

(G) for all graphs
G. Moreover, if there exists d ∈ N suh that bd(G) = 0, then bd′(G) = 0 for all
d′ ∈ N (as this means that G is an interval graph).As we have seen in Proposition 2, introduing more slopes may help us reduethe number of bends needed to represent a given graph. Here we show two moreexamples of this. Consider a wheel graph Wn on n+1 verties (n ≥ 3). It followsfrom the work of Golumbi et al. [7℄ that Wn is not a 1-bend graph (using 2slopes only) and one an easily �nd a representation using 2 bends. On the otherhand, for d ≥ 3, we an representWn using 1-bend paths (see Fig. 7 (left)). Thus
b2(Wn) = 2 and bd(Wn) = 1 for all d ≥ 3.
Fig. 7: Left: Representation of a wheel using 1-bend paths. Right: Representations of
K2,s with 1-bend paths.Another examples of graphs with bend number depending on the numberof slopes are omplete bipartite graphs. Consider e.g. a graph K2,s. When only2 slopes are available, then K2,s has a 1-bend representation only for s ≤ 4.Introduing a third slope allows us to represent K2,5 and K2,6. Fourth slopeallows representing K2,7 and K2,8. By analyzing the possible intersetion pointsof two 1-bend paths, we observe that K2,s for any s ≥ 9 does not have a 1-bendrepresentation for any number of slopes. On the other hand, every K2,s is a2-bend graph on 2 slopes (see Fig. 7 (right) and Fig. 4 (right)).5 Conlusions and open problemsAlthough all non-trivial lasses of EPG-graphs are onsidered hard for reogni-tion, not muh is known. It is an open problem whether the reognition problemremains NP-hard for k-bend graphs (for k ≥ 3).



Problem 1. Is the reognition of k-bend graphs NP-omplete for every �xed k ≥ 1?For unaligned bend graphs and aligned bend graphs, using more than 2slopes, naturally arises the question on inlusions between di�erent lasses. Alsothe omplexity of the reognition problem is unknown (for more than 1 bend,when we restrit the number of slopes). Note that none of our redutions an beeasily used. The unaligned version inreases the number of slopes, while in thealigned version a new slope introdues a new �truth value�, but in a way thatdoes not seem to be suitable for a redution from any form of oloring.As mentioned before, the Clique problem is polynomially solvable in 1-bendgraphs. On the other hand, the problem is shown to be NP-omplete in 2-intervalgraphs [6℄. Sine every 2-interval graph is a 3-bend graph and also a 2-bend graphwith 3 slopes, we know that the problem is NP-omplete is these lasses as well.The omplexity for 2-bend graphs remains open.Problem 2. What is the omplexity of the Clique problem is 2-bend graphs?It is not hard to observe that for any two sets D,D′ with |D| = |D′| = 3,one an transform an EPG(D)-representation of any graph G to its EPG(D′)-representation. However, it is not lear if the same holds for sets with at least 4diretion of slopes. It is worth mentioning that there are in�nitely many lassesof intersetion graphs of segments, eah of whih is parallel one of 4 slopes [2℄.Problem 3. Is the minimum number of bends (per path) in an EPG(D)-representationof a graph G always equal to bd(G), for any set D of d > 3 slopes?Our generalization rises yet further questions. Espeially, we may put in-dividual verties into points with integral oordinates. Now, we may ask, howlarge grid is neessary and su�ient to represent any graph with n verties andpresribed number of permitted slopes, or even, with presribed slopes.Referenes1. K. Booth, G. Lueker, Testing for the onseutive ones property, interval graphs, andplanarity using PQ-tree algorithms. J. Comput. System Si. 13, 1976, pp. 335�389.2. J. �erný, D. Král, H. Nyklová, O. Pangrá, On Intersetion Graphs of Segmentswith Presribed Slopes. GD 2001 Pro., LNCS 2265, 2002, pp. 261�271.3. B. Clark, C. Colbourn, D. Johnson, Unit Disk Graphs. Dis. Math. 86, 1990, pp. 165�177.4. K. Cameron, S. Chaplik, C. T. Hoang, Edge intersetion graphs of L-shaped pathsin grids. Dis. Appl. Math (in press, available online), 2015.5. S. Chaplik, V. Jelínek, J. Kratohvíl, T. Vysko£il, Bend-Bounded Path IntersetionGraphs: Sausages, Noodles, and Wa�es on a Grill. WG 2012 Pro., LNCS 7551,2012, pp. 274�285.6. M. Franis, D. Gonçalves, P. Ohem, The Maximum Clique Problem in MultipleInterval Graphs. Algoritmia 71, 2015, pp. 812�836.7. M. Golumbi, M. Lipshteyn, M. Stern, Edge intersetion graphs of single bend pathson a grid. Networks 54, 2009, pp. 130 � 138.8. D. Heldt, K. Knauer, T. Uekerdt, Edge-intersetion graphs of grid paths: Thebend-number. Dis. Applied Math. 167, 2014, pp. 144 � 162.9. L. Lovász, Coverings and oloring of hypergraphs. 4th SEICCGTC Pro., 1973, pp.3�12.


