
Single-Key to Multi-Key Functional Encryption
with Polynomial Loss

Sanjam Garg(B) and Akshayaram Srinivasan

University of California, Berkeley, USA
{sanjamg,akshayaram}@berkeley.edu

Abstract. Functional encryption (FE) enables fine-grained access to
encrypted data. In a FE scheme, the holder of a secret key FSKf (associ-
ated with a function f) and a ciphertext c (encrypting plaintext x) can
learn f(x) but nothing more.

An important parameter in the security model for FE is the number
of secret keys that adversary has access to. In this work, we give a trans-
formation from a FE scheme for which the adversary gets access to a
single secret key (with ciphertext size sub-linear in the circuit for which
this secret key is issued) to one that is secure even if adversary gets
access to an unbounded number of secret keys. A novel feature of our
transformation is that its security proof incurs only a polynomial loss.

1 Introduction

Functional encryption [SW05,BSW11,O’N10] generalizes the traditional notion
of encryption by providing recipients fine-grained access to data. In a functional
encryption (FE) system, holder of the master secret key MSK can derive secret
key FSKf for a circuit f . Given a ciphertext c (encrypting x) and the secret
key FSKf , one can learn f(x) but nothing else about x is leaked. Functional
encryption emerged as a generalization of several other cryptographic primitives
like identity based encryption [Sha84,BF01,Coc01], attribute-based encryption
[GPSW06,GVW13] and predicate encryption [KSW08,GVW15].

Single-Key vs Multi-Key. Results by Sahai and Seyalioglu [SS10] and
Goldwasser, Kalai, Popa, Vaikuntanathan, and Zeldovich [GKP+13] provided
FE scheme supporting all of P/poly circuits (based on standard assumptions).
However, these constructions provide security only when the adversary is limited
to obtaining a single functional secret key.1 We call such a scheme as a single-
key FE scheme. On the other hand, Garg, Gentry, Halevi, Raykova, Sahai and
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Waters [GGH+13] construct an FE scheme for P/poly circuits and supporting
security even when the adversary has access to an unbounded (polynomial) num-
ber of functional secret keys. We call such as scheme as a multi-key FE scheme.
However, the work of Garg et al. assumes indistinguishability obfuscation (iO)
[GGH+13].

A single-key FE scheme is said to have weakly compact ciphertexts if the size
of the encryption circuit grows sub-linearly with the circuit for which secret key
is given out. Ananth and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15]
showed that using single-key FE with weakly compact ciphertexts one can con-
struct iO which can then be used to construct multi-key FE [GGH+13,Wat15].
However, this transformation incurs an exponential loss in security reduction.
We ask:

Can we realize multi-key FE from single-key FE with only a polynomial loss in
the security reduction?

1.1 Our Results

In this work, we answer the above question positively. More specifically, we give
a generic transformation from single-key, compact FE to multi-key FE. Below,
we highlight two additional features of our transformation:

1. Our transformation works even if the single key scheme we start with is
weakly selective secure. The selective notion of security considered in litera-
ture restricts the adversary to commit to the challenge messages before see-
ing the public parameters but still allows functional secret key queries to be
adaptively made (after seeing the challenge ciphertext and the public parame-
ters). The weakly selective security (denoted by Sel∗) restricts the adversary
to commit to her challenge messages as well as make all the functional secret
key queries before seeing the public parameters. Nonetheless, the multi-key
scheme that we obtain is selectively secure.

2. For our transformation to work it is sufficient if the single-key scheme has
weakly compact ciphertexts. However, the multi-key scheme resulting from
our transformation has fully compact ciphertexts (independent of the circuit
size).

Comparison with Concurrent and Independent Work. In a concurrent
and independent work, Li and Micciancio [LM16] obtain a result similar to our,
but using very different techniques. Their construction is based on two building
blocks: SUM and PRODUCT constructions. The SUM and PRODUCT construc-
tions take two FE schemes as input with security when q1 and q2 secret keys are
given to the adversary, respectively. These constructions output a FE scheme
with security when q1 + q2 and q1 · q2 secret keys are provided to the adversary,
respectively. Using these two building blocks, they present two constructions
of multi-key FE with different security and efficiency tradeoffs. A nice feature
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of their result is that their construction just uses length doubling pseudoran-
dom generator in addition to FE. However, their resultant multi-key FE scheme
inherits the security and compactness property of the single-key scheme they
start with. In particular, if the starting scheme in their transformation is weakly
selectively secure (resp., weakly compact) then the resulting multi-key scheme is
also weakly selectively secure (resp., weakly compact). On the other hand, our
transformation always yields a selectively secure and fully compact scheme.

1.2 Obtaining Compactness and Adaptivity in FE

Using the transformation of Ananth, Brakerski, Segev and Vaikuntanathan
[ABSV15] we can boost the security of our transformation from selectively to
adaptive (while maintaining a polynomial loss). However, we note this trans-
formation does not preserve compactness. In particular, even if the input to
this transformation is a fully compact scheme, the resulting FE scheme is non-
compact (where the ciphertext size can depend arbitrarily on the circuit size).
In contrast, note that Ananth and Sahai [AS16] do provide an adaptively secure
fully compact FE scheme based on iO. Whether adaptive security with full com-
pactness can be obtained from poly-hard FE is an interesting open problem. Par-
tial progress on this question can be obtained using Hemenway et al. [HJO+15]
who note that using the transformation of Ananth and Sahai [AS16] (starting
with a fully compact selective FE, something that our transformation provides)
along with adaptively secure garbled circuits [BHR12,HJO+15] yields an adap-
tively secure FE scheme whose ciphertext size grows with the on-line complexity
of garbled circuits. The state of the art construction of adaptively secure garbled
circuits [HJO+15] achieves an online-complexity that grows with the width of
the circuit to be garbled. Hence, this yields a FE scheme with width compact

Fig. 1. Relationships between different notions of IND-FE parameterized by
(xx, yy, zz). xx ∈ {1,Unb} denotes the number of functional secret keys. yy ∈
{Sel∗, Sel,Adp} denotes weakly selective, selective or adaptive security. zz ∈
{NC,WC,FC,WidC} denotes the efficiency of the system: NC denotes non-compact
ciphertexts, WC denotes weakly compact ciphertexts, FC denotes fully-compact cipher-
texts and WidC denotes width-compact ciphertexts. Non-trivial relationships are given
by solid arrows, and trivial relationships are given by dashed arrows.
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ciphertexts (WidC); for which the size of the ciphertext grows with the width
of circuits for which secret-keys are given out. We note that Ananth, Jain and
Sahai [AJS15] and Bitansky and Vaikuntanthan [BV15] provide techniques for
obtaining compactness in FE schemes. However, these results are limited to the
selective security setting. Figure 1 shows known relationship between various
notions of FE and the new relationships resulting from this work.

2 Our Techniques

We now give an overview of the techniques used in constructing multi-key, selec-
tive FE from single-key, weakly selective FE. We first give a description of a multi-
key, selective FE scheme based on indistinguishability obfuscation (iO). Though
this result is not new, our construction is arguably different than the schemes
of Garg et al. [GGH+13] and Waters [Wat15] and makes use of garbled circuits
[Yao86]. Later, using techniques from works of Garg et al. [GPS15,GPSZ16] we
obtain a FE scheme whose security can be based on polynomially hard single-key,
weakly selective FE. The main novelty lies in designing a FE scheme from iO
that is “amenable” to the techniques of Garg et al. [GPS15,GPSZ16] to avoid
exponential loss in security.

iO Based Construction. Recall that a circuit garbling scheme (or randomized
encoding in general) allows to encode an input x and a circuit C to obtain
garbled input labels x̃ and garbled circuit ˜C respectively. Informally, the security
of garbled circuits ensures that given x̃ and ˜C, it is possible to learn C(x) but
nothing else. An additional feature of Yao’s garbled circuits is that it is possible
to encode the input x and the circuit C separately as long as the two encoding
schemes share the same random tape.

At a high level, the ciphertext of our FE scheme corresponds to garbled input
labels and the functional secret key corresponds to the garbled circuit. Intuitively,
from the security of garbled circuits we can deduce that given the FE ciphertext
c (encrypting x) and the functional secret key FSKf it is possible to learn f(x)
but nothing else. But as mentioned before, to enable encoding the input x and
the circuit C separately, the random coins used must be correlated in a certain
way. The main crux of the construction is in achieving this correlation using
indistinguishability obfuscation (iO).

The correlation between the randomness used for garbling the input labels
and the circuit is achieved by deriving the coins pseudorandomly using a PRF
key S. This PRF key S also serves as the master secret key of our FE scheme.
We now give the details of how the public key and the functional secret keys are
derived from the master secret key S.

The public key of our FE scheme is an obfuscation of a program that takes
as input some randomness r and outputs a “token” t = PRG(r) where PRG is
a length doubling pseudorandom generator and a key K = PRF(S, t). The key
K is used for deriving the input labels for the garbled circuit scheme say, that
the two labels of the i-th input wire are given by {PRF(K, i‖b)}b∈{0,1}. The FE
ciphertext encrypting a message m is given by the token t and the input labels
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Fig. 2. Program implementing the public key

Fig. 3. Program implementing the functional secret key for a circuit Cf

corresponding to m i.e. (t, {PRF(K, i‖mi)}i∈[n]). The description of the program
implementing the public key is given in Fig. 2.

The functional secret key for a circuit Cf is an obfuscation of another program
that takes as input the token t and first derives the key K = PRF(S, t). It then
outputs a garbled circuit ˜Cf where the garbled input labels are derived using key
K. In particular, the input labels “encrypted” in the garbled evaluation table
of ˜Cf are given by {PRF(K, i‖b)}i∈[n],b∈{0,1}. The description of the program
implementing the functional secret key is given in Fig. 3. The FE decryption
corresponds to evaluation of this garbled circuit using the input labels given in
the ciphertext. We now argue correctness and security.

The correctness of the above construction follows from having the “correct”
input labels encrypted in the garbled evaluation tables in ˜Cf . It remains to show
that the security holds when the obfuscation is instantiated with iO. To achieve
this, we use the punctured programming approach of Sahai and Waters [SW14].

We now give a high level overview of the security argument. The goal is to
change from a hybrid where the adversary is given a challenge ciphertext encrypt-
ing message mb for some b ∈ {0, 1} to a hybrid where she is given a challenge
ciphertext independent of the bit b. This is accomplished via a hybrid argument.
In the first hybrid, we change the token t in the challenge ciphertext to an uni-
formly chosen random string t∗ relying on the pseudorandomness property of the
PRG. Next, we change the public key to be an obfuscation of a program that has
the PRF key S punctured at t∗ hardwired instead of S. The rest of the program
is same as described in Fig. 2. Intuitively, the indistinguishability follows from iO
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Fig. 4. Program implementing the functional secret key for a circuit Cf in the security
proof

security as the PRG has sparse images. In the next hybrid, the functional secret
keys are generated as described in Fig. 4 where ˜C∗

f hardwired in the program
is exactly equal to garbled circuit ˜Cf with {PRF(K, i‖bi)}i∈[n],bi∈{0,1} (where
K = PRF(S, t∗)) as the input labels and generated using PRF(Sf , t∗) as the ran-
dom coins. The indistinguishability of the two hybrids follows from iO security
as the two programs described in Figs. 3 and 4 are functionally equivalent. Now,
relying on the pseudorandomness at punctured point property of the PRF we
change the input labels in the challenge ciphertext as well as the random coins
used for generating ˜C∗

f to uniformly chosen random strings. We can now change
the challenge ciphertext to be independent of the bit b by relying on the security
of garbled circuit. To be more precise, we change the input labels in the challenge
ciphertext and ˜C∗

f to be output of the garbled circuit simulator. Notice that we
can still use the security of garbled circuits even if several garbled circuits share
the same input labels. Thus, the above construction achieves security against
unbounded collusions.

Construction from Poly Hard FE. The main idea behind our construction
from polynomially hard, single-key, selectively secure FE is to simulate the effect
of the obfuscation in the above construction using FE. To give a better insight
into our construction we would first recall the FE to iO transformation of Ananth
and Jain [AJ15] and Bitansky and Vaikuntanathan [BV15]. We note that this
reduction suffers an exponential loss in security and we will be modifying this
construction to achieve our goal of relying only on polynomially hard FE scheme.
For this step, we rely on the techniques built by Garg et al. in [GPS15,GPSZ16]
to avoid the exponential loss in security reduction. Parts of this section are
adapted from [GPS15,GPSZ16].

FE to iO Transformation. We describe a modification of iO construction from
FE of Bitansky and Vaikuntanathan [BV15] (Ananth and Jain [AJ15] take a
slightly different route to achieve the same result). We note that the modified
construction is not sufficient to obtain iO security but is “good enough” for our
purposes.
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The “obfuscation” of a circuit C : {0, 1}κ → {0, 1}κ consists of the fol-
lowing components: a FE ciphertext CTφ and κ + 1 functional secret keys
FSK1, · · · ,FSKκ+1 generated using independently sampled master secret keys
MSK1, · · · ,MSKκ+1. CTφ encrypts the empty string φ under the public key PK1.
The first κ functional secret keys FSK1, · · · ,FSKκ implement the bit-extension
functionality. To be more precise, FSKi implements the function Fi that takes
as input an (i − 1)-bit string x and outputs two ciphertexts CTx‖0 and CTx‖1
encrypting x‖0 and x‖1 respectively under PKi+1. The final function secret key
FSKκ+1 implements the circuit C.

Let us discuss how to evaluate the “obfuscated” circuit on an input x =
x1 · · · xκ where xi ∈ {0, 1}. The first step is to decrypt CTφ using FSK1 to
obtain CT0,CT1. Depending on x1 we choose either the left encryption (CT0) or
the right encryption (CT1) and recursively decrypt the chosen ciphertext under
FSK2 and so on. After κ + 1 FE decryptions, we obtain the output of the circuit
on input x1 · · · xκ.

An alternate way to view this evaluation (which would be useful for this
work) is as a traversal along a path from the root to a leaf node of a complete
binary tree. The binary tree has the empty string at the root and traversal
chooses either the left or the right child depending on the bits x1, x2, · · · , xκ i.e.
at level i, bit xi is used to determine whether to go left or right. We would refer
to this binary tree as the evaluation binary tree.

Our Construction. Recall that our main idea is to simulate the effect of obfus-
cation by appropriately modifying the above FE to iO transformation. We first
explain the modifications to the “obfuscation” computing the master public key.

Let Cpk[S] (having S hardwired) be the circuit that implements the public
key of our iO-based construction. Recall that this circuit takes as input some
randomness r, expands it using the PRG to obtain the token t and outputs
(t,PRF(S, t)). The goal is to produce an “obfuscation” of this circuit using FE
to iO transformation explained above. Recall that the FE to iO transformation
has κ+1 functional secret keys FSK1, · · · ,FSKκ+1 and an initial ciphertext CTφ

encrypting the empty string. The final functional secret key FSKκ+1 implements
the circuit Cpk[S]. The first observation is that we cannot naively hardwire
the PRF key in the circuit Cpk. This is because to achieve some “meaningful”
mechanisms of hiding the PRF key (via puncturing) we need to go via the iO
route that incurs an exponential loss in security. Therefore, the first modification
is to change Cpk such that it takes the PRF key S as input instead of having it
hardwired. We now include the PRF key S in the initial ciphertext CTφ i.e. CTφ

is now an encryption of (φ, S). We run into the following problem: the initial
ciphertext now contains the PRF key S whereas we actually need S to be given
as input to the final circuit Cpk that is implemented in FSKκ+1. Therefore, we
need a mechanism to make the PRF key S “available” to the final functional
secret key FSKκ+1 so that it can compute PRF evaluation on the token. In other
words, we need to “propagate” the PRF key S from the root to every leaf.

To propagate the PRF key, we make use of the “puncturing along the path”
idea of Garg, Pandey and Srinivasan [GPS15]. This idea uses a primitive called
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as prefix puncturable PRF introduced in [GPS15]. Informally, prefix puncturable
PRF allows to puncture the PRF key S at a specific prefix z to obtain Sz. The
correctness guarantee is that given Sz, one can evaluate the PRF on any input x
such that z is a prefix of x. The security guarantee is that as long as any adversary
does not get access to Sz where z is a prefix of x, PRF(S, x) is indistinguishable
from random string. An additional feature is that prefix puncturing can be done
recursively i.e. given Sz one can obtain Sz‖0 and Sz‖1. Additionally, if we need
to puncture the PRF key at an input x it is sufficient to change the distribution
of FE ciphertexts only along the root to the leaf x in the evaluation binary tree.
This gives us hope of basing security on polynomially hard FE. As a result,
if we were to use this primitive, the problem reduces to the following: design a
mechanism wherein the PRF key S prefix punctured at token t is available at the
final functional secret key FSKκ+1 as this can then be used to derive PRF(S, t).

Recall that the circuit Cpk generates the token t as PRG(r) by taking r as
input. If we naively try to combine this circuit with the “puncturing along the
way” trick of Garg et al., we obtain Sr at the final functional secret key. It is
not clear if there is a way of obtaining SPRG(r) from Sr. Garg et al. [GPSZ16]
faced a similar challenge in designing the sampler for trapdoor permutation and
fortunately the solution they provide is applicable to our setting. The solution
given in their work is to consider a different token generation mechanism. To
be more precise, instead of generating the token as an output of a PRG on the
input randomness r, the token now corresponds to a public key of a semantically
secure encryption scheme. To give more details, the circuit Cpk now takes as
input P which is a public key that also functions as the token. The circuit now
computes PRF(S, P ) and outputs a public key encryption of PRF(S, P ) using P
as the public key.2 We combine this circuit with the “puncturing along the way”
technique of Garg et al. to obtain the “obfuscation” of our public key.

The functional secret key for a function Cf (denoted by FSKf ) is constructed
similarly to that of the public key. Recall that the functional secret key takes
as input the token t (which is now given by the public key P ) and computes
K = PRF(S, t). It then uses the key K to derive the input garbled labels and
outputs a garbled circuit ˜Cf . FSKf also implements the “puncturing along the
way” trick of Garg et al. to obtain SP (which is the PRF key prefix punctured
at P ) which is used by the final circuit to derive the garbled input labels.

Proof Technique: “Tunneling.” We now briefly explain the main proof tech-
nique called as the “tunneling” technique which is adapted from Garg et al.’s
works [GPS15,GPSZ16]. Recall that the proof of our iO based construction relies
on the punctured programming approach of Sahai and Waters [SW14]. We also
follow a similar proof strategy. Let us explain how to “puncture” the master
public key on the token P . At a high level, if we have punctured the PRF key
at P then relying on the security guarantee of prefix punctured PRF to replace
PRF(S, P ) with a random string.

2 Notice that if we know the secret key corresponding to the public key P , then we
can recover PRF(S, P ) which can then be used to derive the input garbled labels.
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Recall that puncturing the PRF key S at a string P involves “removing” Sz

for every z such that z is a strict prefix of P from the “obfuscation.” To get
better intuition on how the puncturing works it would be helpful to view the
“obfuscation” in terms of the evaluation binary tree. As mentioned before, the
crucial observation that helps us to base security on polynomially hard FE is that
Sz where z is a prefix of P occurs only along the path from the root to the leaf
node P in this tree. Hence, it is sufficient to change the distribution of the FE
ciphertexts only along this path in such a manner that they don’t contain Sz. To
implement this change, we rely on the “Hidden trapdoor mechanism” (also called
as the Trojan method) of Ananth et al. in [ABSV15]. To give more details, every
functional secret key FSKi implements a function Fi that has two “threads” of
operation. In thread-1 or the normal mode of operation, it performs the bit-
extension on input x and the prefix puncturing on input Sx. In thread-2 or the
trapdoor mode, it does not perform any computation on the input (x, Sx) and
instead outputs some fixed value that is hardwired. We change the FE ciphertexts
in such a way that the trapdoor thread is invoked in every functional secret key
when the “obfuscation” is run on input P . Metaphorically, we create a “tunnel”
(i.e. a path from the root to a leaf where the trapdoor mode of operation is
invoked in every intermediate node) from the root to the leaf labeled P in the
complete binary tree corresponding to the obfuscation. Additionally, we change
the FE ciphertexts along the path from root to leaf P such that they do not
contain any prefix punctured keys. A consequence of our “tunneling” is that
along the way we would have removed Sz for every z which is a strict prefix of
P from the “obfuscation.”

3 Preliminaries

λ denotes the security parameter. A function μ(·) : N → R
+ is said to be

negligible if for all polynomials poly(·), μ(λ) < 1
poly(λ) for large enough λ. For a

probabilistic algorithm A, we denote A(x; r) to be the output of A on input x
with the content of the random tape being r. We will omit r when it is implicit
from the context. We denote y ← A(x) as the process of sampling y from the
output distribution of A(x) with a uniform random tape. For a finite set S,
we denote x ← S as the process of sampling x uniformly from the set S. We
model non-uniform adversaries A = {Aλ} as circuits such that for all λ, Aλ is
of size p(λ) where p(·) is a polynomial. We will drop the subscript λ from the
adversary’s description when it is clear from the context. We will also assume
that all algorithms are given the unary representation of security parameter 1λ

as input and will not mention this explicitly when it is clear from the context. We
will use PPT to denote Probabilistic Polynomial Time algorithm. We denote [λ]
to be the set {1, · · · , λ}. We will use negl(·) to denote an unspecified negligible
function and poly(·) to denote an unspecified polynomial. We assume without
loss of generality that all cryptographic randomized algorithms use λ-bits of
randomness. If the algorithm needs more than λ-bit of randomness it can extend
to arbitrary polynomial stretch using a pseudorandom generator (PRG).
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A binary string x ∈ {0, 1}λ is represented as x1 · · · xλ. x1 is the most sig-
nificant (or the highest order bit) and xλ is the least significant (or the lowest
order bit). The i-bit prefix x1 · · · xi of the binary string x is denoted by x[i]. We
use x‖y to denote concatenation of binary strings x and y. We say that a binary
string y is a prefix of x if and only if there exists a string z ∈ {0, 1}∗ such that
x = y‖z.

Puncturable Pseudorandom Function. We recall the notion of puncturable
pseudorandom function from [SW14]. The construction of pseudorandom func-
tion given in [GGM86] satisfies the following definition [BW13,KPTZ13,BGI14].

Definition 1. A puncturable pseudorandom function PRF is a tuple of PPT
algorithms (KeyGenPRF,PRF,Punc) with the following properties:

– Efficiently Computable: For all λ and for all S ← KeyGenPRF(1λ), PRFS :
{0, 1}poly(λ) → {0, 1}λ is polynomial time computable.

– Functionality is preserved under puncturing: For all λ, for all y ∈
{0, 1}λ and ∀x �= y,

Pr[PRFS{y}(x) = PRFS(x)] = 1

where S ← KeyGenPRF(1λ) and S{y} ← Punc(S, y).
– Pseudorandomness at punctured points: For all λ, for all y ∈ {0, 1}λ,

and for all poly sized adversaries A

|Pr[A(PRFS(y), S{y}) = 1] − Pr[A(Uλ, S{y}) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ), S{y} ← Punc(S, y) and Uλ denotes the uniform
distribution over {0, 1}λ.

Symmetric Key Encryption. A Symmetric-Key Encryption scheme SKE is a
tuple of algorithms (SK.KeyGen,SK.Enc,SK.Dec) with the following syntax:

– SK.KeyGen(1λ): Takes as input an unary encoding of the security parameter
λ and outputs a symmetric key SK.

– SK.EncSK(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion C of the message m under the symmetric key SK.

– SK.DecSK(C): Takes as input a ciphertext C and outputs a message m′.

We say that SKE is correct if for all λ and for all messages m ∈
{0, 1}∗, Pr[SK.DecSK(C) = m] = 1 where SK ← SK.KeyGen(1λ) and C ←
SK.EncSK(m).

Definition 2. For all λ and for all polysized adversaries A,
∣

∣Pr[Expt1λ,0,A = 1] − Pr[Expt1λ,1,A = 1]
∣

∣ ≤ negl(λ)
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where Expt1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0

and m1 such that |m0| = |m1| for all i ∈ [n].
– The challenger samples SK ← SK.KeyGen(1λ) and generates the challenge

ciphertext C where C ← SK.EncSK(mb). It then sends C to A.
– Output is b′ which is the output of A.

Remark 1. We will denote range of a secret key FSK (denoted by Rangen(SK))
to be {SK.Enc(SK, x)}x∈{0,1}n for a specific n. We will require that for
any two secret keys SK1, SK2 where SK1 �= SK2 we have Rangen(SK1) ∩
Rangen(SK2) = φ with overwhelming probability. We will also require that the
existence of an efficient procedure that checks if a given ciphertext c belongs to
Rangen(SK) for a particular secret key SK. We call such a scheme to be symmet-
ric key encryption with disjoint range. We note that symmetric key encryption
with disjoint ranges can be obtained from one-way functions [LP09].

Public Key Encryption. A public-key Encryption scheme PKE is a tuple of
algorithms (PK.KeyGen,PK.Enc,PK.Dec) with the following syntax:

– PK.KeyGen(1λ): Takes as input an unary encoding of the security parameter
λ and outputs a public key, secret key pair (pk, sk).

– PK.Encpk(m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryption
C of the message m under the public key pk.

– PK.Decsk(C): Takes as input a ciphertext C and outputs a message m′.

We say that PKE is correct if for all λ and for all messages m ∈ {0, 1}∗,
Pr[PK.Decsk(C) = m] = 1 where (pk, sk) ← PK.KeyGen(1λ) and C ←
PK.Encpk(m).

Definition 3. For all λ and for all polysized adversaries A and for all messages
m0,m1 ∈ {0, 1}∗ such that |m0| = |m1|,

|Pr[A(pk,PK.Encpk(m0)) = 1] − Pr[A(pk,PK.Encpk(m1)) = 1]| ≤ negl(λ)

where (pk, sk) ← PK.KeyGen(1λ).

Prefix Puncturable Pseudorandom Functions. We now define the notion of
prefix puncturable pseudorandom function PPRF. We note that the construction
of the pseudorandom function in [GGM86] is prefix puncturable according to the
following definition.

Definition 4. A prefix puncturable pseudorandom function PPRF is a tuple of
PPT algorithms (KeyGenPPRF,PrefixPunc) satisfying the following properties:

– Functionality is preserved under repeated puncturing: For all λ, for
all y ∈ ∪poly(λ)

k=0 {0, 1}k and for all x ∈ {0, 1}poly(λ) such that there exists a
z ∈ {0, 1}∗ s.t. x = y‖z,

Pr[PrefixPunc(PrefixPunc(S, y), z) = PrefixPunc(S, x)] = 1

where S ← KeyGenPPRF.
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– Pseudorandomness at punctured prefix: For all λ, for all x ∈
{0, 1}poly(λ), and for all poly sized adversaries A

|Pr[A(PrefixPunc(S, x),Keys) = 1] − Pr[A(Uλ,Keys) = 1]| ≤ negl(λ)

where S ← KeyGenPRF(1λ) andKeys = {PrefixPunc(S, x[i−1]‖(1−xi))}i∈[poly(λ)]

where x[0] denotes the empty string.

Remark 2. For brevity of notation, we will be denoting PrefixPunc(S, y) by Sy.

Garbled Circuits. We now define the circuit garbling scheme of Yao [Yao86]
and state the required properties.

Definition 5. A circuit garbling scheme is a tuple of PPT algorithms given by
(Garb.Circuit,Garb.Eval) with the following syntax:

– Garb.Circuit(C): This is a randomized algorithm that takes in the circuit to
be garbled and outputs garbled circuit and the set of garbled input labels:
˜C, {Inpi,bi

}i∈[λ],bi∈{0,1}.
– Garb.Eval(˜C, {Inpi,xi

}i∈[λ]): This is a deterministic algorithm that takes in
{Inpi,xi

}i∈[λ] and ˜C as input and outputs a string y.

Definition 6 (Correctness). We say a circuit garbling scheme is correct if for
all circuits C and for all inputs x:

Pr[Garb.Eval(˜C, {Inpi,xi
}i∈[λ]) = C(x)] = 1

where ˜C, {Inpi,bi
}i∈[λ],bi∈[λ] ← Garb.Circuit(K,C).

Definition 7 (Security). There exists a simulator Sim such that for all cir-
cuits C and input x:

{˜C, {Inpi,xi
}i∈[λ]} c≈ {Sim(1λ, C, C(x))}

Lemma 1 [Yao86,LP09]. Assuming the existence of one-way functions there
exists a circuit garbling scheme satisfying the security notion given in
Definition 7.

4 Functional Encryption: Security and Efficiency

We recall the syntax and security notions of functional encryption [BSW11,
O’N10].

A functional encryption FE with the message space {0, 1}∗ and function space
F is a tuple of PPT algorithms (FE.Setup,FE.Enc,FE.KeyGen,FE.Dec) having the
following syntax:

– FE.Setup(1λ): Takes as input the unary encoding of the security parameter λ
and outputs a public key PK and a master secret key MSK.
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– FE.Enc(PK,m): Takes as input a message m ∈ {0, 1}∗ and outputs an encryp-
tion c of m under the public key PK.

– FE.KeyGen(MSK, f): Takes as input the master secret key MSK and a function
f ∈ F (given as a circuit) as input and outputs the function key FSKf .

– FE.Dec(FSKf , c): Takes as input the function key FSKf and the ciphertext c
and outputs a string y.

Definition 8 (Correctness). The functional encryption scheme FE is correct
if for all λ and for all messages m ∈ {0, 1}∗ and for all f ∈ F ,

Pr

⎡

⎢

⎢

⎣

y = f(m)

∣

∣

∣

∣

∣

∣

∣

∣

(PK,MSK) ← FE.Setup(1λ)
c ← FE.Enc(PK,m)
FSKf ← FE.KeyGen(MSK, f)
y ← FE.Dec(FSKf , c)

⎤

⎥

⎥

⎦

= 1

Security. We now give the formal definitions of the security notions. We start
with the weakest notion of security namely weakly selective security.

Definition 9 (Weakly Selective Security). The functional encryption
scheme is said to be multi-key, weakly selective secure if for all λ and for all
poly sized adversaries A,

∣

∣Pr[ExptSel∗,1λ,0,A = 1] − Pr[ExptSel∗,1λ,1,A = 1]
∣

∣ ≤ negl(λ)

where ExptSel,1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two messages m0,
m1 such that |m0| = |m1| and a set of functions f1, · · · , fq ∈ F to the chal-
lenger. The parameter q is a priori unbounded.

– The challenger samples (PK,MSK) ← FE.Setup(1λ) and generates the chal-
lenge ciphertext c ← FE.Enc(PK,mb). The challenger also computes FSKfi

←
FE.KeyGen(MSK, fi) for all i ∈ [q]. It then sends (PK, c), {FSKfi

}i∈[q] to A.
– If A makes a query fj for some j ∈ [q] to such that for any, fj(m0) �= fj(m1),

output of the experiment is ⊥. Otherwise, the output is b′ which is the output
of A.

Remark 3. We say that the functional encryption scheme FE is single-key,
weakly selectively secure if the adversary A in ExptSel∗,1λ,b,A is allowed to
obtain the functional key for a single function f .

We now give the definition of selectively secure FE.

Definition 10 (Selective Security). The functional encryption scheme is
said to be multi-key, selectively secure FE if for all λ and for all poly sized adver-
saries A,

∣

∣Pr[ExptSel,1λ,0,A = 1] − Pr[ExptSel,1λ,1,A = 1]
∣

∣ ≤ negl(λ)
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where ExptSel,1λ,b,A is defined below:

– Challenge Message Queries: The adversary A outputs two message vectors
m0, m1 such that |m0| = |m1| to the challenger.

– The challenger samples (PK,MSK) ← FE.Setup(1λ) and generates the chal-
lenge ciphertext c ← FE.Enc(PK,mb). It then sends (PK, c) to A.

– Function Queries: A adaptively chooses a function f ∈ F and sends it to
the challenger. The challenger responds with FSKf ← FE.KeyGen(MSK, f).
The number of function queries made by the adversary is unbounded.

– If A makes a query f to functional key generation oracle such that, f(m0) �=
f(m1), output of the experiment is ⊥. Otherwise, the output is b′ which is the
output of A.

Remark 4. In the adaptive variant, the adversary is allowed to give challenge
messages after seeing the public parameters and functional secret key queries.

Efficiency. We now define the efficiency requirements of a FE scheme.

Definition 11 (Fully Compact). A functional encryption scheme FE is said
to be fully compact if for all λ ∈ N and for all m ∈ {0, 1}∗ the running time of
the encryption algorithm FE.Enc is poly(λ, |m|).
Definition 12 (Weakly Compact). A functional encryption scheme is said
to be weakly compact if the running time of the encryption algorithm FE.Enc is
|F|1−ε.poly(λ, |m|) for some ε > 0 where |F| = maxf∈F |Cf | where Cf is the
circuit implementing f .

A functional encryption scheme is said to have non-compact ciphertexts if
the running time of the encryption algorithm can depend arbitrarily on the
maximum circuit size of the function family.

5 Our Transformation

In this section we describe our transformation from single-key, weakly selective
secure functional encryption with fully compact ciphertexts to multi-key, selec-
tive secure functional encryption scheme. We later (in Sect. 6) show that it is
sufficient for the single-key scheme to have weakly compact ciphertexts. We state
the main theorem below.

Theorem 1. Assuming the existence of single-key, weakly selective secure FE
scheme with fully compact ciphertexts, there exists a multi-key, selective secure
FE scheme with fully compact ciphertexts.

The transformation from single-key, weakly selective secure FE scheme to
multi-key, selective secure FE scheme uses the following primitives that are
implied by single-key, weakly selective secure FE.
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– A single-key, weakly selective FE scheme (FE.Setup,FE.KeyGen,FE.Enc,
FE.Dec).

– A prefix puncturable PRF (PPRF,KeyGenPPRF,PrefixPunc).
– A Circuit garbling scheme (Garb.Circuit,Garb.Eval).
– A public key encryption scheme (PK.KeyGen,PK.Enc,PK.Dec).
– A symmetric key encryption scheme (SK.KeyGen,SK.Enc,SK.Dec) with dis-

joint range.

Notation. λ will denote our security parameter. Let the length of the secret
key output by SK.KeyGen be λ1, let length of the key output by KeyGenPPRF
be λ2. We will denote length of public key output by PK.KeyGen to be κ. The
message space is given by {0, 1}γ and the function space is the set of all poly
sized circuits taking γ-bit inputs.

The output of the transformation is a FE scheme (MKFE.Setup,MKFE.KeyGen,
MKFE.Enc,MKFE.Dec). The formal description our construction appears in Fig. 5.

5.1 Correctness and Security

We first show correctness of our construction

Correctness. Recall that we need to show that if we decrypt a FE cipher-
text encrypting m using a functional secret key for a function f then
we obtain f(m). We first argue that our FE ciphertext is distributed as
(pk, {PRF(Spk, i‖mi)}i∈[κ]). From the correctness of FE decryption, we note that
by iteratively decrypting CTφ under FSK1, · · · ,FSKκ+1 using the bits of pk we
obtain a public key encryption of Spk under public key pk. From the correctness
of public key decryption, we correctly recover Spk. Hence our FE ciphertext is
distributed as (pk, {PRF(Spk, i‖mi)}i∈[κ]).

We now look at the decryption procedure. We notice from the correct-
ness of FE decryption procedure that by iteratively decrypting CTf

φ under

FSKf
1 , · · ·FSKf

κ+1 using the bits of pk, we obtain ˜Cf , {ci,bi
}i∈[γ],bi∈{0,1} where

ci,bi
← SK.Enc(PRF(Spk, i‖mi), Inpi,bi

) for every i ∈ [γ] and bi ∈ {0, 1}. It
follows from the correctness of SK.Dec and the fact that the symmetric key
encryption we use has disjoint ranges, we correctly obtain {Inpi,mi

}i∈[κ]. The
correctness of our MKFE decryption now follows from the correctness of garbled
circuit evaluation.

We note that length of the ciphertexts (and the size of the encryption circuit)
in our MKFE scheme is independent of the circuit size of functions. Hence, the
MKFE scheme has fully compact ciphertexts. We now state the main lemma for
security.

Lemma 2. Assuming single-key, weakly selective security of FE, semantic secu-
rity of SKE, semantic security of PKE, and the security of prefix puncturable
pseudorandom function PPRF, the MKFE construction described in Fig. 5 is
multi-key, selectively secure.

Before we describe the proof of Lemma 2, we first set up some notation.
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Fig. 5. Transformation from single key to unbounded key secure
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Fig. 6. Auxiliary circuits

Notation. Let x ∈ {0, 1}κ. Let Prefixes(x) denote the set of all prefixes (κ in
number) of the string x. Formally,

Prefixes(x) := {x[i]}i∈[κ]

Let Siblings(x) denote the set of siblings of all prefixes of x. Formally,

Siblings(x) := {y[i−1]‖(1 − yi) : ∀y ∈ Prefixes(x), i ∈ [κ] where |y| = i}

Proof of Lemma 2. The proof proceeds via a hybrid argument.

– Hyb0: In this hybrid, the adversary is given the challenge ciphertext encrypt-
ing the message mb. To be more precise, the challenge ciphertext is given
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by (pk∗, {Li,(mb)i
}i∈[κ]) where (pk∗, sk∗) ← PK.KeyGen(1κ) and Li,(mb)i

←
PRF(Spk∗ , i‖(mb)i) for all i ∈ [κ]. All key generation queries are generated as
per the construction described in Fig. 5.

– Hyb1: In this hybrid, we are going to “tunnel” through the path from root
to the leaf node labeled pk∗ in the master public key. This step is realized
through a couple of intermediate hybrids.
Let P1 := Prefixes(pk∗) and Q1 = Siblings(pk∗)\P1. For every z ∈ P1 ∪Q1, let
CTz be the result of the iterated decryption procedure on the master public
key with z as input.3 Additionally, let Valpk∗ be the output of the decryption
of CTpk∗ under FSKκ+1. Let

stri = ‖z∈P1∪Q1∧|z|=i(z,CTz)

strλ+1 = (pk∗,Val1pk∗)

We set leni(λ) to be the maximum length of stri over all choices of pk∗. We
pad stri to this size.
• Hyb0,1: In this hybrid we are going to change how Ψi is generated. Instead of

encrypting the all zeroes string of length leni(κ), we encrypt stri. Indistin-
guishability follows from the semantic security of the symmetric key encryp-
tion since the key sk is not needed to simulate Hyb0 or Hyb0,1.

• Hyb0,2: In this hybrid we change how CTφ is generated. Instead of
generating CTφ to be FE.Enc(PK1, (φ, S,Kφ, 0λ1 , 0)), we generate it as
FE.Enc(PK1, (φ, 0λ2 , 0λ2 , sk, 1)). We now argue that Hyb0,2 is indistin-
guishable from Hyb0,1. Notice that output of BitExt1[Ψ1,PK2] is same on
(φ, S,Kφ, 0λ1 , 0) and (φ, 0λ2 , 0λ2 , sk, 1). Also, the choice of the two messages
and the functionality for which the secret key is obtained do not depend on
the public parameters. Hence, it follows from the weakly selective security
of FE scheme under PK1 that Hyb0,1 and Hyb0,2 are indistinguishable.

• Hyb0,3: In this hybrid we are going to tunnel through the path from the root
to the leaf labeled pk∗. To achieve this, we are going to change CTz that is
encrypted in Ψ1 for every z ∈ P1. We don’t change the encryption when z ∈
Q1. In particular, we change CTz = FE.Enc(PK|z|+1, (z, Sz,Kz, 0λ1 , 0);K ′

z)
to FE.Enc(PK|z|+1, (z, 0λ2 , 0λ2 , sk, 1); rz) where rz is chosen uniformly at
random. Notice that as a result Sz for every z that is a strict prefix of pk∗

does not appear in the public key of our MKFE scheme.

We first introduce an ordering of strings in P1. For every string x, y ∈
P1 x ≺ y if and only if |x| < |y|. This induces a partial ordering of
the strings in P1. We let Hyb0,2,x to denote the hybrid where for all
z ≺ x, CTz has been changed from FE.Enc(PK|z|+1, (z, Sz,Kz, 0λ1 , 0);K ′

z)
to FE.Enc(PK|z|+1, (z, 0λ2 , 0λ2 , sk, 1); rz). We prove for any two adjacent
strings x, x′ where x′ ≺ x in ordered P1 that Hyb0,2,x is indistinguishable
to Hyb0,2,x′ . Since |P1| ≤ κ, we get Hyb0,2 is indistinguishable to Hyb0,3

through a series a κ hybrids.
3 By iterated decryption procedure on input z we mean decrypting CTφ under
FSK1, · · · ,FSK|z| using the bits of z.
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∗ Hyb0,2,x′,1: In this hybrid we change CTx to FE.Enc(PK|x|+1, (x, Sx,Kx,

0λ1 , 0); rx) where rx is chosen uniformly at random. Notice that for
all strings y that are prefixes of x, CTy has already been changed to
FE.Enc(PK|y|+1, (y, 0λ2 , 0λ2 , sk, 1); ry) because y ≺ x by our ordering.
For every y that is a prefix of x, Ky is not needed to simulate Hyb0,2,x′

and Hyb0,2,x′,1. It follows from the pseudorandomness at prefix punctured
point property of PRF key Kφ we have Hyb0,2,x′ is indistinguishable to
Hyb0,2,x′,1. Illustration for this hybrid change is given in Fig. 7.

∗ Hyb0,2,x′,2: In this hybrid we change CTx to FE.Enc(PK|x|+1, (x, 0λ2 , 0λ2 ,

sk, 1); rx). Notice that decrypting FE.Enc(PK|x|+1, (x, 0λ2 , 0λ2 , sk, 1); rx))
and FE.Enc(PK|x|+1, (x, Sx,Kx, 0λ2 , 0)) under the secret key FSK|x|+1 has
the same output due to the choice of Ψ∗

|x|+1. Also, the choice of the two
messages and the functionality for which the secret key is obtained do not
depend on the public parameters. Hence, it follows from the weakly selec-
tive security of FE scheme under PK|x|+1 that Hyb0,2,x′,1 and Hyb0,2,x′,2
are indistinguishable.

Notice that Hyb0,2,x′,2 is distributed identically to Hyb0,2,x.
– Hyb2: In this hybrid we are going to change Valpk∗ encrypted in Ψ∗

1 . Notice
that in Hyb2, Valpk∗ is set to be an public key encryption of Spk∗ under the
public key pk∗ (using pseudorandomly generated coins). In this hybrid we are
going to change Valpk∗ to be an public key encryption of all zeroes string (0λ)
under pk∗.

• Hyb1,1: In this hybrid we generate the randomness used for encrypting
Spk∗ under the public key pk∗ uniformly instead of generating it pseudo-
randomly using the key Kpk∗ . Notice that Kz for every z that is a prefix
of pk∗ is not needed to simulate either Hyb1 or Hyb1,1. Therefore, from
the pseudorandomness at prefix punctured point property of PRF under
key Kφ, Hyb1 is indistinguishable from Hyb1,1.

• Hyb1,2: In this hybrid we change Valpk∗ to be an encryption of 0κ under
pk∗. Indistinguishability of Hyb1,1 and Hyb1,2 follows from the semantic
security of public key encryption.

– Hyb3: In this hybrid we are going to tunnel through the paths from the root to
the leaf pk∗ in each function secret key FSKf that is queried by the adversary.
We explain the details for a single function key FSKf and we can extend to all
function secret keys by a standard hybrid argument. The indistinguishability
argument for a single function secret key FSKf is similar to our argument to
show indistinguishability between Hyb0 and Hyb1.
Let P2 := Prefixes(pk∗) and Q2 = Siblings(pk∗). For every z ∈ P2 ∪Q2 let CTf

z

be the result of the iterated decryption procedure on the function secret key
FSKf with z as input. Additionally, let ˜Cf , {ci,bi

}i∈[γ],bi∈{0,1} be the output
of the decryption of CTpk∗ under FSKf

κ+1. Let

strfi = ‖z∈P2∪Q2∧|z|=i(z,CTz)

strfκ+1 = (pk∗, ˜Cf , {ci,bi
}i∈[γ],bi∈{0,1})
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We set lenf
i (κ) to be the maximum length of strfi over all choices of f . We pad

strfi to this size.
• Hyb2,1: In this hybrid we are going to change how Ψf

i is generated. Instead
of encrypting the all zeroes string of length len′

i(κ) we encrypt strfi . Indistin-
guishability follows from the semantic security of the symmetric key encryp-
tion since the key skf is not needed to simulate Hyb2 or Hyb2,1.

• Hyb2,2: In this hybrid we change how CTf
φ is generated. Instead of

generating CTf
φ to be FE.Enc(PKf

1 , (φ, S,Kf
φ , 0λ1 , 0)) we generate it as

FE.Enc(PKf
1 , (φ, 0λ2 , 0λ2 , skf , 1)). We now argue that Hyb2,2 is indistin-

guishable from Hyb2,1. Notice that output of BitExt1[Ψ∗
f ,PKf

2 ] is same on
(φ, S,Kf

φ , 0λ1 , 0) and (φ, 0λ2 , 0λ2 , skf , 1). Also, the choice of the two mes-
sages and the functionality for which the secret key is obtained do not
depend on the public parameters. Hence, it follows from the weakly selective
security of FE scheme under PKf

1 that Hyb2,1 and Hyb2,2 are indistinguish-
able.

• Hyb2,3: In this hybrid we are going to tunnel through the paths from
the root to the leaf labeled pk∗ in FSKf . To achieve this we are going
to change CTz that is encrypted in Ψf

i for every z ∈ P2. As before,
we don’t change the encryption when z ∈ Q2. In particular, we
change CTf

z = FE.Enc(PKf
|z|+1, (z, Sz,K

f
z , 0λ1 , 0);K ′f

z ) to FE.Enc(PKf
|z|+1,

(z, 0λ2 , 0λ2 , skf ; rz) where rz is chosen uniformly at random. The proof of
indistinguishability between Hyb2,2 and Hyb2,3 is exactly same as the one
between Hyb0,2 and Hyb0,3.

– Hyb4: In this hybrid we are going to change Spk∗ used to generate the challenge
ciphertext to an uniformly chosen random κ-bit string T ∗. We observe that
for z that is a prefix of pk∗, Sz is not needed to simulate either Hyb3 or Hyb4
because we have “tunneled” through from the root to leaf node pk∗ in the
master public key and in all the function secret keys FSKf . Hence from the
pseudorandomness at prefix punctured point property of the PRF under the
key S, Hyb4 is computationally indistinguishable to Hyb3. Notice that this also
implies (from the property of the pseudorandom function) that {Li,bi

} for every
i ∈ [γ] and for every bi ∈ {0, 1} can be changed to uniformly chosen random
strings. This change is made to challenge ciphertext as well as encryption keys
used for generating {ci,bi

}i∈[γ],bi∈{0,1} in Ψf
κ+1 in each functional secret key

FSKf .
– Hyb5: In this hybrid we are going to change to change the randomness used

for generating garbled circuit, the encryptions ci,bi
that are encrypted in Ψf

κ+1

and the randomness used for permuting ci,bi
in each of the function secret

keys FSKf to uniformly chosen random strings. Observe that since we have
“tunneled” through pk∗ in each of the function secret keys it follows from
pseudorandomness of prefix punctured point property of the PRF under the
key Kf

φ , Hyb5 is computationally indistinguishable to Hyb4.
– Hyb6: In this hybrid we are going to change ci,1−(mb)i

to encrypting all zeroes
string instead of encrypting Inpi,1−(mb)i

. This change is made in Ψf
κ+1 in each
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Fig. 7. Illustration for Hyb0,2,x′,1 where x′ = 1 and x = 10. The blackened nodes are
not needed for simulation.

of the function secret keys FSKf . Indistinguishablity of Hyb5 and Hyb6 follows
from the semantic security of secret key encryption under Li,1−(mb)i

.
– Hyb7: In this hybrid we are going to change {Inpi,(mb)i

}i∈[γ], ˜Cf to be output
of the simulator for the garbled circuit. This change is made in Ψf

κ+1 in each
of the function secret keys FSKf . More precisely, we set {Inpi,(mb)i

}i∈[γ], ˜Cf ←
Sim(1κ, Cf , f(m0)) (note that f(m0) = f(mb)). Indistinguishability of Hyb6
and Hyb7 follows from the security of garbled circuits.

In Hyb7, the view of the adversary is independent of the challenge bit b.
Hence the advantage that the adversary has in guessing the bit b is 0 in Hyb7.

6 Efficiency Analysis

In this section we relax the requirement of full compactness from our single-key
selectively secure FE scheme to weakly compact ciphertexts. Parts of this section
are taken verbatim from Bitansky and Vaikuntanathan [BV15].

Recall that a FE scheme with weakly compact ciphertexts has an encryption
circuit whose size grows sub-linearly with the circuit size of functions for which
function secret keys are given.

Let F1, F2, · · · , Fκ+1 be the functionalities implemented by the secret keys
FSKf

1 , · · · ,FSKf
κ+1.

4 Notice that for any i = {1, · · · , κ}, Fi implements the
encryption circuit Ei+1 for the functional encryption scheme under PKi+1, sym-
metric decryption circuit and a prefix puncturing circuit. The size of the func-
tional encryption circuit and the symmetric decryption circuit is bounded by
|Ei+1|.poly(κ) and the size of the prefix puncturing circuit is bounded by poly(κ).
Therefore,

|Fi| ≤ |Ei+1|.poly(κ)

4 We restrict our attention to the functional secret keys of our scheme. The analysis
of the master public key is exactly the same.
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From our assumption that the underlying FE scheme is weakly compact we get:

|Ei| ≤ |Fi|1−ε.poly(κ)

Notice that:
|Fκ+1| ≤ |Cf |.poly(κ)

Hence we get:

|Ei| ≤ |Fi|1−ε.poly(κ) ≤ |Ei+1|1−ε.(poly(κ))1−ε.poly(κ)

By recursively enumerating we get:

|Ei| ≤ |Cf |1−ε.poly(κ).
κ+2−i
∏

j=1

poly(κ)(1−ε)j

We observe that:

κ+2−i
∏

j=1

poly(κ)(1−ε)j ≤
∞
∏

j=0

poly(κ)(1−ε)j ≤ (poly(κ))
1
ε

Hence, for all i ∈ [κ + 1] we get:

|Ei| ≤ |Cf |1−ε.poly(κ)1+
1
ε

which implies efficiency of our underlying construction.
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