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Abstract. Homomorphic authenticators (HAs) enable a client to authenticate a large collection of data
elements m1, . . . ,mt and outsource them, along with the corresponding authenticators, to an untrusted
server. At any later point, the server can generate a short authenticator σf,yvouching for the correctness
of the output y of a function f computed on the outsourced data, i.e., y = f(m1, . . . ,mt). Recently
researchers have focused on HAs as a solution, with minimal communication and interaction, to the
problem of delegating computation on outsourced data. The notion of HAs studied so far, however,
only supports executions (and proofs of correctness) of computations over data authenticated by a
single user. Motivated by realistic scenarios (ubiquitous computing, sensor networks, etc.) in which
large datasets include data provided by multiple users, we study the concept of multi-key homomorphic
authenticators. In a nutshell, multi-key HAs are like HAs with the extra feature of allowing the holder
of public evaluation keys to compute on data authenticated under different secret keys. In this paper,
we introduce and formally define multi-key HAs. Secondly, we propose a construction of a multi-key
homomorphic signature based on standard lattices and supporting the evaluation of circuits of bounded
polynomial depth. Thirdly, we provide a construction of multi-key homomorphic MACs based only
on pseudorandom functions and supporting the evaluation of low-degree arithmetic circuits. Albeit
being less expressive and only secretly verifiable, the latter construction presents interesting efficiency
properties.

1 Introduction

The technological innovations offered by modern IT systems are changing the way digital data is
collected, stored, processed and consumed. As an example, think of an application where data is
collected by some organizations (e.g., hospitals), stored and processed on remote servers (e.g., the
Cloud) and finally consumed by other users (e.g., medical researchers) on other devices. On one
hand, this computing paradigm is very attractive, particularly as data can be shared and exchanged
by multiple users. On the other hand, it is evident that in such scenarios one may be concerned
about security: while the users that collect and consume the data may trust each other (up to some
extent), trusting the Cloud can be problematic for various reasons. More specifically, two main
security concerns to be addressed are those about the privacy and authenticity of the data stored
and processed in untrusted environments.

While it is widely known that privacy can be solved in such a setting using, e.g., homomor-
phic encryption [26], in this work we focus on the orthogonal problem of providing authenticity of
data during computation. Towards this goal, our contribution is on advancing the study of homo-
morphic authenticators (HAs), a cryptographic primitive that has been the subject of recent work
[31,9,25,29].

Homomorphic Authenticators. Using an homomorphic authenticator (HA) scheme a user
Alice can authenticate a collection of data items m1, . . . ,mt using her secret key, and send the
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authenticated data to an untrusted server. The server can execute a program P on the authenticated
data and use a public evaluation key to generate a value σP,y vouching for the correctness of
y = P(m1, . . . ,mt). Finally, a user Bob who is given the tuple (P, y, σP,y) and Alice’s verification
key can use the authenticator to verify the authenticity of y as output of the program P executed
on data authenticated by Alice. In other words, Bob can check that the server did not tamper
with the computation’s result. Alice’s verification key can be either secret or public. In the former
case, we refer to the primitive as homomorphic MACs [25,11], while in the latter we refer to it
as homomorphic signatures [9]. One of the attractive features of HAs is that the authenticator
σP,y is succinct, i.e., much shorter than P’s input size. This means that the server can execute a
program on a huge amount of data and convince Bob of its correctness by sending him only a short
piece of information. As discussed in previous work (e.g., [25,5,29]), homomorphic authenticators
provide a nice solution, with minimal communication and interaction, to the problem of delegating
computations on outsourced data, and thus can be preferable to verifiable computation (more
details on this comparison appear in Section 1.2).

Our Contribution: Multi-Key Homomorphic Authenticators. Up to now, the notion of
HAs has inherently been single-key, i.e., homomorphic computations are allowed only on data
authenticated using the same secret key. This characteristic is obviously a limitation and prevents
HA schemes from suiting scenarios where the data is provided (and authenticated) by multiple users.
Consider the previously mentioned example of healthcare institutions which need to compute on
data collected by several hospitals or even some remote-monitored patients. Similarly, it is often
required to compute statistics for time-series data collected from multiple users e.g., to monitor
usage data in smart metering, clinical research or to monitor the safety of buildings. Another
application scenario is in distributed networks of sensors. Imagine for instance a network of sensors
where each sensor is in charge of collecting data about air pollution in a certain area of a city, it
sends its data to a Cloud server, and then a central control unit asks the Cloud to compute on the
data collected by the sensors (e.g., to obtain the average value of air pollution in a large area).

A trivial solution to address the problem of computing on data authenticated by multiple
users is to use homomorphic authenticators in such a way that all data providers share the same
secret authentication key. The desired functionality is obviously achieved since data would be
authenticated using a single secret key. This approach however has several drawbacks. The first
one is that users need to coordinate in order to agree on such a key. The second one is that in such
a setting there would be no technical/legal way to differentiate between users (e.g., to make each
user accountable for his/her duties) as any user can impersonate all the other ones. The third and
more relevant reason is that sharing the same key exposes the overall system to way higher risks of
attacks and makes disaster recovery more diffult: if a single user is compromised the whole system
is compromised too, and everything has to be reinitialized from scratch.

In contrast, this paper provides an innovative solution through the notion of multi-key homo-
morphic authenticators (multi-key HAs). This primitive guarantees that the corruption of one user
affects the data of that user only, but does not endanger the authenticity of computations among
the other (un-corrupted) users of the system. Moreover, the proposed system is dynamic, in the
sense that compromised users can be assigned new keys and easily reintegrated.

1.1 An Overview of Our Results

Our contribution is mainly threefold. First of all, we elaborate a suitable definition of multi-key
homomorphic authenticators (multi-key HAs). Second, we propose the first construction of a multi-
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key homomorphic signature (i.e., with public verifiability) which is based on standard lattices and
supports the evaluation of circuits of bounded polynomial depth. Third, we present a multi-key
homomorphic MAC that is based only on pseudorandom functions and supports the evaluation of
low-degree arithmetic circuits. In spite of being less expressive and only secretly verifiable, this last
construction is way more efficient than the signature scheme. In what follows, we elaborate more
on our results.

Multi-Key Homomorphic Authenticators: What are they? At a high level, multi-key HAs
are like HAs with the additional property that one can execute a program P on data authenticated
using different secret keys. In multi-key HAs, Bob verifies using the verification keys of all users
that provided inputs to P. These features make multi-key HAs a perfect candidate for applications
where multiple users gather and outsource data. Referring to our previous examples, using multi-
key HAs each sensor can authenticate and outsource to the Cloud the data it collects; the Cloud
can compute statistics on the authenticated data and provide the central control unit with the
result along with a certificate vouching for its correctness.

An important aspect of our definition is a mechanism that allows the verifier to keep track of
the users that authenticated the inputs of P, i.e., to know which user contributed to each input wire
of P. To formalize this mechanism, we build on the model of labeled data and programs of Gennaro
and Wichs [25] (we refer the reader to Section 3 for details). In terms of security, multi-key HAs
allow the adversary to corrupt users (i.e., to learn their secret keys); yet this knowledge should
not help the adversary in tampering with the results of programs which involve inputs of honest
(i.e., uncorrupted) users only. Our model allows to handle compromised users in a similar way to
what occurs with classical digital signatures: a compromised user could be banned by means of a
certificate revocation, and could easily be re-integrated via a new key pair.3 Thinking of the sensor
network application, if a sensor in the field gets compromised, the data provided by other sensors
remains secure, and a new sensor can be easily introduced in the system with new credentials.

Finally, we require multi-key homomorphic authenticators to be succinct in the sense that the
size of authenticators is bounded by some fixed polynomial in (λ, n, log t), where λ is the security
parameter, n is the number of users contributing to the computation and t is the total number
of inputs of P. Although such dependence on n may look undesirable, we stress that it is still
meaningful in many application scenarios where n is much smaller than t. For instance, in the
application scenario of healthcare institutions a few hospitals can provide large amount of data
from patients.

A Multi-Key Homomorphic Signature for All Circuits. After setting the definition of
multi-key homomorphic authenticators, we proceed to construct multi-key HA schemes. Our first
contribution is a multi-key homomorphic signature that supports the evaluation of boolean circuits
of depth bounded by a fixed polynomial in the security parameter. The scheme is proven secure
based on the small integer solution (SIS) problem over standard lattices [35], and tolerates ad-
versaries that corrupt users non-adaptively.4 Our technique is inspired by the ones developed by
Gorbunov, Vaikuntanathan and Wichs [29] to construct a (single-key) homomorphic signature. Our
key contribution is on providing a new representation of the signatures that enables to homomorphi-
cally compute over them even if they were generated using different keys. Furthermore, our scheme

3 Here we mean that this process does not add more complications than the ones already existing for classical digital
signatures (e.g., relying on PKI mechanisms).

4 Precisely, our “core” scheme is secure against adversaries that make non-adaptive signing queries; this is upgraded
to adaptive security via general transformations.
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enjoys an additional property, not fully satisfied by [29]: every user can authenticate separately
every data item mi of a collection m1, . . .mt, and the correctness of computations is guaranteed
even when computing on not-yet-full datasets. Although it is possible to modify the scheme in [29]
for signing data items separately, the security would only work against adversaries that query the
whole dataset. In contrast, we prove our scheme to be secure under a stronger security definition
where the adversary can adaptively query the various data items, and it can try to cheat by pre-
tending to possess signatures on data items that it never queried (so-called Type 3 forgeries). We
highlight that the scheme in [29] is not secure under the stronger definition (with Type 3 forgeries)
used in this paper, and we had to introduce new techniques to deal with this scenario. This new
property is particularly interesting as it enables users to authenticate and outsource data items in
a streaming fashion, without ever having to store the whole dataset. This is useful in applications
where the dataset size can be very large or not fixed a priori.

A Multi-Key Homomorphic MAC for Low-Degree Circuits. Our second construction is
a multi-key homomorphic MAC that supports the evaluation of arithmetic circuits whose degree
d is at most polynomial in the security parameter, and whose inputs come from a small number
n of users. For results of such computations the corresponding authenticators have at most size
s =

(
n+d
d

)
.5 Notably, the authenticator’s size is completely independent of the total number of inputs

of the arithmetic circuit. Compared to our multi-key homomorphic signature, this construction is
only secretly verifiable (i.e., Bob has to know the secret verification keys of all users involved in
the computation) and supports a class of computations that is less expressive; also its succinctness
is asymptotically worse. In spite of these drawbacks, our multi-key homomorphic MAC achieves
interesting features. From the theoretical point of view, it is based on very simple cryptographic
tools: a family of pseudorandom functions. Thus, the security relies only on one-way functions. On
the practical side, it is particularly efficient: generating a MAC requires only one pseudorandom
function evaluation and a couple of field operations; homomorphic computations boil down to
additions and multiplications over a multi-variate polynomial ring Fp[X1, . . . , Xn].

1.2 Related Work

Homomorphic MACs and Signatures. Homomorphic authenticators have received a lot of
attention in previous work focusing either on homomorphic signatures (publicly verifiable) or on
homomorphic MACs (private verification with a secret key). The notion of homomorphic signatures
was originally proposed by Johnson et al. [31]. The first schemes that appeared in the literature
were homomorphic only for linear functions [8,14,15,22,13] and found important applications in
network coding and proofs of retrievability. Boneh and Freeman [9] were the first to construct
homomorphic signatures that can evaluate more than linear functions over signed data. Their
scheme could evaluate bounded-degree polynomials and its security was based on the hardness of
the (SIS) problem in ideal lattices in the random oracle model. A few years later, Catalano et
al. [16] proposed an alternative homomorphic signature scheme for bounded-degree polynomials.
Their solution is based on multi-linear maps and bypasses the need for random oracles. More
interestingly, the work by Catalano et al. [16] contains the first mechanism to verify signatures faster
than the running time of the verified function. Recently, Gorbunov et al. [29] have proposed the
first (leveled) fully homomorphic signature scheme that can evaluate arbitrary circuits of bounded

5 Note that s can be bounded by poly(n) for constant d, or by poly(d) for constant n.
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polynomial depth over signed data. Some important advances have been also achieved in the area of
homomorphic MACs. Gennaro and Wichs [25] have proposed a fully homomorphic MAC based on
fully homomorphic encryption. However, their scheme is not secure in the presence of verification
queries. More efficient schemes have been proposed later [11,5,12] that are secure in the presence of
verification queries and are more efficient at the price of supporting only restricted homomorphisms.
Finally, we note that Agrawal et al. [1] considered a notion of multi-key signatures for network
coding, and proposed a solution which works for linear functions only. Compared to this work,
our contribution shows a full-fledged framework for multi-key homomorphic authenticators, and
provides solutions that address a more expressive class of computations.

Verifiable Computation. Achieving correctness of outsourced computations is also the aim
of verifiable delegation of computation (VC) [28,24,18,6,36,20]. In this setting, a client wants to
delegate the computation of a function f on input x to an untrusted cloud-server. If the server
replies with y, the client’s goal is to verify the correctness of y = f(x) spending less resources
than those needed to execute f . As mentioned in previous work (e.g., [25,29]) a crucial difference
between verifiable computation and homomorphic authenticators is that in VC the verifier has to
know the input of the computation – which can be huge – whereas in HAs one can verify by only
knowing the function f and the result y. Moreover, although some results of verifiable computation
could be re-interpreted to solve scenarios similar to the ones addressed by HAs, results based on VC
would still present several limitations. For instance, using homomorphic authenticators the server
can prove correctness of y = f(x) with a single message, without needing any special encoding of
f from the delegator. Second, HAs come naturally with a composition property which means that
the outputs of some computations on authenticated data (which is already authenticated) can be
fed as input for follow-up computations. This feature is of particular interest to parallelize and
or distribute computations (e.g., MapReduce). Emulating this composition within VC systems is
possible by means of certain non-interactive proof systems [7] but leads to complex statements and
less natural realizations. A last advantage is that by using HAs clients can authenticate various
(small) pieces of data independently and without storing previously outsourced data. In contrast,
most VC systems require clients to encode the whole input in ‘one shot’, and often such encoding
can be used in a single computation only.

Multi-Client Verifiable Computation. Another line of work, closely related to ours is that
on multi-client verifiable computation [17,30]. This primitive, introduced by Choi et al. [17], aims
to extend VC to the setting where inputs are provided by multiple users, and one of these users
wants to verify the result’s correctness. Choi et al. [17] proposed a definition and a multi-client
VC scheme which generalizes that of Gennaro et al. [24]. The solution in [17], however, does not
consider malicious or colluding clients. This setting was addressed by Gordon et al. in [30], where
they provide a scheme with stronger security guarantees against a malicious server or an arbitrary
set of malicious colluding clients.

It is interesting to notice that in the definition of multi-client VC all the clients but the one
who verifies can encode inputs independently of the function to be later executed on them. One
may thus think that the special case in which the verifier provides no input yields a solution similar
to the one achieved by multi-key HAs. However, a closer look at the definitions and the existing
constructions of multi-client VC reveals three main differences. (1) In multi-client VC, in order
to prove the correctness of an execution of function f , the server has to wait a message from the
verifier which includes some encoding of f . This is not necessary in multi-key HAs where the server
can directly prove correctness of f on previously authenticated data with a single message and
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without any function’s encoding. (2) The communication between the server and the verifier is at
least linear in the total number of inputs of f : this can be prohibitive in the case of computations
on very large inputs (think of TBytes of data). In contrast, with multi-key HAs the communication
between the server and the verifier is proportional only to the number of users, and depends only
logarithmically on the total number of inputs. (3) In multi-client VC an encoding of one input can
be used in a single computation. Thus, if a user wants to first upload data on the server to later
execute many functions on it, then the user has to provide as many encodings as the number of
functions to be executed. In contrast, multi-key HAs allow one to encode (i.e., authenticate) every
input only once and to use it for proving correctness of computations an unbounded number of
times.

2 Preliminaries

We collect here the notation and basic definitions used throughout the paper.

Notation. The Greek letter λ is reserved for the security parameter of the schemes. A function
ε(λ) is said to be negligible in λ (denoted as ε(λ) = negl(λ)) if ε(λ) = O(λ−c) for every constant
c > 0. When a function can be expressed as a polynomial we often write it as poly(·). For any
n ∈ N, we refer to [n] as [n] := {1, . . . , n}. Moreover, given a set S, the notation s ←$ S stays for
the process of sampling s uniformly at random from S.

Definition 1 (Statistical Distance). Let X,Y denote two random variables with support X ,Y
respectively; the statistical distance between X and Y is defined as

SD(X,Y ) := 1
2

∑
u∈X∪Y

| Pr[X = u]− Pr[Y = u] |.

If SD(X,Y ) = negl(λ), we say that X and Y are statistically close and we write X
stat
≈ Y .

Definition 2 (Entropy [19]). The min-entropy of a random variable X is defined as

H∞(X) := −log
(

max
x

Pr[X = x]
)
.

The (average-) conditional min-entropy of a random variable X conditioned on a correlated variable
Y is defined as

H∞(X | Y ) := −log
(

E
y←Y

[
max
x

Pr[X = x | Y = y]
])
.

The optimal probability of an unbounded adversary guessing X when given a correlated value Y is
2−H∞(X|Y ).

Lemma 1 ([19]). Let X,Y be arbitrarily random variables where the support of Y lies in Y. Then
H∞(X | Y ) ≥ H∞(X)− log(| Y |).

3 Multi-Key Homomorphic Authenticators

In this section, we present our new notion of Multi-Key Homomorphic Authenticators (multi-key
HAs). Intuitively, multi-key HAs extend the existing notions of homomorphic signatures [9] and
homomorphic MACs [25] in such a way that one can homomorphically compute a program P over
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data authenticated using different secret keys. For the sake of verification, in multi-key HAs the
verifier needs to know the verification keys of all users that provided inputs to P. Our definitions
are meant to be general enough to be easily adapted to both the case in which verification keys
are public and the one where verification keys are secret. In the former case, we call the primitive
multi-key homomorphic signatures whereas in the latter case we call it multi-key homomorphic
MACs.

As already observed in previous work about HAs, it is important that an authenticator σP,y
does not authenticate a value y out of context, but only as the output of a program P executed on
previously authenticated data. To formalize this notion, we build on the model of labeled data and
programs of Gennaro and Wichs [25]. The idea of this model is that every data item is authenticated
under a unique label `. For example, in scenarios where the data is outsourced, such labels can be
thought of as a way to index/identify the remotely stored data. A labeled program P, on the other
hand, consists of a circuit f where every input wire i has label `i. Going back to the outsourcing
example, a labeled program is a way to specify on what portion of the outsourced data one should
execute a circuit f . More formally, the notion of labeled programs of [25] is recalled below.

Labeled Programs [25]. A labeled program P is a tuple (f, `1, . . . , `n), such that f :Mn →M
is a function of n variables (e.g., a circuit) and `i ∈ {0, 1}∗ is a label for the i-th input of f . Labeled
programs can be composed as follows: given P1, . . . ,Pt and a function g :Mt →M, the composed
program P∗ is the one obtained by evaluating g on the outputs of P1, . . . ,Pt, and it is denoted as
P∗ = g(P1, . . . ,Pt). The labeled inputs of P∗ are all the distinct labeled inputs of P1, . . .Pt (all
the inputs with the same label are grouped together and considered as a unique input of P∗). Let
fid : M → M be the identity function and ` ∈ {0, 1}∗ be any label. We refer to I` = (fid, `) as
the identity program with label `. Note that a program P = (f, `1, . . . , `n) can be expressed as the
composition of n identity programs P = f(I`1 , . . . , I`n).

Using labeled programs to identify users. In our notion of multi-key homomorphic authen-
ticators, one wishes to verify the outputs of computations executed on data authenticated under
different keys. A meaningful definition of multi-key HAs thus requires that the authenticators are
not out of context also with respect to the set of keys that contributed to the computation. To
address this issue, we assume that every user has an identity id in some identity space ID, and
that the user’s keys are associated to id by means of any suitable mechanism (e.g., PKI). Next, in
order to distinguish among data of different users and to identify to which input wires a certain
user contributed, we assume that the label space contains the set ID. Namely, in our model a data
item is assigned a label ` := (id, τ), where id is a user’s identity, and τ is a tag; this essentially
identifies uniquely a data item of user id with index τ . For compatibility with previous notions of
homomorphic authenticators, we assume that data items can be grouped in datasets, and one can
compute only on data within the same dataset. In our definitions, a dataset is identified by an
arbitrary string ∆.6

Definition 3 (Multi-Key Homomorphic Authenticator). A multi-key homomorphic authen-
ticator scheme MKHAut consists of a tuple of PPT algorithms (Setup, KeyGen, Auth, Eval, Ver)
satisfying the following properties: authentication correctness, evaluation correctness, succinctness
and security. The five algorithms work as follows:
6 Although considering the dataset notion complicates the definition, it also provides some benefits, as we illustrate

later in the constructions. For instance, when verifying for the same program P over different datasets, one can
perform some pre-computation that makes further verifications cheap.

7



Setup(1λ). The setup algorithm takes as input the security parameter λ and outputs some public
parameters pp. These parameters include (at least) descriptions of a tag space T , an identity
space ID, the message space M and a set of admissible functions F . Given T and ID, the
label space of the scheme is defined as their cartesian product L := ID × T . For a labeled
program P = (f, `1, . . . , `t) with labels `i := (idi, τi) ∈ L, we use id ∈ P as compact notation for
id ∈ {id1, . . . , idt}. The pp are input to all the following algorithms, even when not specified.

KeyGen(pp). The key generation algorithm takes as input the public parameters and outputs a triple
of keys (sk, ek, vk), where sk is a secret authentication key, ek is a public evaluation key and vk
is a verification key which could be either public or private.7

Auth(sk, ∆, `,m). The authentication algorithm takes as input an authentication key sk, a dataset
identifier ∆, a label ` = (id, τ) for the message m, and it outputs an authenticator σ.

Eval(f, {(σi,EKSi)}i∈[t]). The evaluation algorithm takes as input a t-input function f :Mt −→M,
and a set {(σi,EKSi)}i∈[t] where each σi is an authenticator and each EKSi is a set of evaluation
keys.8

Ver(P, ∆, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled program P = (f,
`1, . . . , `t), a dataset identifier ∆, the set of verification keys {vkid}id∈P corresponding to those
identities id involved in the program P, a message m and an authenticator σ. It outputs 0 (reject)
or 1 (accept).

Authentication Correctness. Intuitively, a Multi-Key Homomorphic Autenticator has au-
thentication correctness if the output of Auth(sk, ∆, `,m) verifies correctly for m as the output of
the identity program I` over the dataset ∆. More formally, a scheme MKHAut satisfies authentica-
tion correctness if for all public parameters pp←Setup(1λ), any key triple (sk, ek, vk)← KeyGen(pp),
any label ` = (id, τ) ∈ L and any authenticator σ ← Auth(sk, ∆, `,m), we have Ver(I`, ∆, vk,m, σ)
outputs 1 with all but negligible probability.

Evaluation Correctness. Intuitively, this property says that running the evaluation algorithm
on signatures (σ1, . . . , σt) such that each σi verifies for mi as the output of a labeled program Pi
over the dataset ∆, it produces a signature σ which verifies for f(m1, . . . ,mt) as the output of the
composed program f(P1, . . . ,Pt) over the dataset ∆. More formally, let us fix the public parameters
pp←Setup(1λ), a set of key triples {(skid, ekid, vkid)}id∈ ˜ID for some ˜ID ⊆ ID, a dataset ∆, a function
g : Mt → M, and any set of program/message/authentica-tor triples {(Pi,mi, σi)}i∈[t] such that
Ver(Pi, ∆, {vkid}id∈Pi ,mi, σi) = 1 for all i ∈ [t]. Let m∗ = g(m1, . . . ,mt), P∗ = g(P1, . . . ,Pt), and
σ∗ = Eval(g, {(σi,EKSi)}i∈[t]) where EKSi = {ekid}id∈Pi . Then, Ver(P∗, ∆, {vkid}id∈P∗ ,m∗, σ∗) = 1
holds with all but negligible probability.

Succinctness. A multi-key HA is said to be succinct if the size of every authenticator depends
only logarithmically on the size of a dataset. However, we allow authenticators to depend on the
number of keys involved in the computation. More formally, let pp←Setup(1λ), P = (f, `1, . . . , `t)
with `i = (idi, τi), {(skid, ekid, vkid)← KeyGen(pp)}id∈P , and σi ← Auth(skidi , ∆, `i,mi) for all i ∈ [t].
A multi-key HA is said to be succinct if there exists a fixed polynomial p such that |σ| = p(λ, n, log t)
where σ = Eval(g, {(σi, ekidi)}i∈[t]) and n = |{id ∈ P}|.
7 As mentioned earlier, the generated triple (sk, ek, vk) will be associated to an identity id ∈ ID. When this connection

becomes explicit, we will refer to (sk, ek, vk) as (skid, ekid, vkid).
8 The motivation behind the evaluation-keys set EKSi is that, if σi authenticates the output of a labeled program Pi,

then EKSi = {ekid}id∈Pi should be the set of evaluation keys corresponding to identities involved in the computation
of Pi.
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Remark 1. Succinctness is one of the crucial properties that make multi-key HAs an interesting
primitive. Without succinctness, a trivial multi-key HA construction is the one where Eval outputs
the concatenation of all the signatures (and messages) given in input, and the verifier simply checks
each message-signature pair and recomputes the function by himself. Our definition of succinctness,
where signatures can grow linearly with the number of keys but logarithmically in the total number
of inputs, is also non-trivial, especially when considering settings where there are many more inputs
than keys (in which case, the above trivial construction would not work). Another property that can
make homomorphic signatures an interesting primitive is privacy—context-hiding—as considered in
prior work. Intuitively, context-hiding guarantees that signatures do not reveal information on the
original inputs. While we leave the study of context-hiding for multi-key HAs for future work, we
note that a trivial construction that is context-hiding but not succinct can be easily obtained with
the additional help of non-interactive zero-knowledge proofs of knowledge: the idea is to extend
the trivial construction above by requiring the evaluator to generate a NIZK proof of knowledge
of valid input messages and signatures that yield the public output. In this sense, we believe that
succinctness is the most non-trivial property to achieve in homomorphic signatures, and this is
what we focus on in this work.

Security. Intuitively, our security model for multi-key HAs guarantees that an adversary, without
knowledge of the secret keys, can only produce authenticators that were either received from a
legitimate user, or verify correctly on the results of computations executed on the data authenticated
by legitimate users. Moreover, we also give to the adversary the possibility of corrupting users. In
this case, it must not be able to cheat on the outputs of programs that get inputs from uncorrupted
users only. In other words, our security definition guarantees that the corruption of one user affects
the data of that user only, but does not endanger the integrity of computations among the other
(un-corrupted) users of the system. We point out that preventing cheating on programs that involve
inputs of corrupted users is inherently impossible in multi-key HAs, at least if general functions are
considered. For instance, consider an adversary who picks the function (x1 + x2 mod p) where x1

is supposed to be provided by user Alice. If the adversary corrupts Alice, it can use her secret key
to inject any input authenticated on her behalf and thus bias the output of the function at its will.

The formalization of the intuitions illustrated above is more involved. For a scheme MKHAut we
define security via the following experiment between a challenger C and an adversaryA (HomUF-CMAA,MKHAut(λ)
):
Setup. C runs Setup(1λ) to obtain the public parameters pp that are sent to A.
Authentication Queries A can adaptively submit queries of the form (∆, `,m), where ∆ is a

dataset identifier, ` = (id, τ) is a label in ID × T and m ∈ M are messages of his choice. C
answers as follows:
– If (∆, `,m) is the first query for the dataset ∆, C initializes an empty list L∆ = ∅ and

proceeds as follows.
– If (∆, `,m) is the first query with identity id, C generates keys (skid, ekid, vkid)←$ KeyGen(pp)

(that are implicitly assigned to identity id), gives ekid to A and proceeds as follows.
– If (∆, `,m) is such that (`,m) /∈ L∆, C computes σ` ←$ Auth(skid, ∆, `,m) (note that C has

already generated keys for the identity id), returns σ` to A, and updates the list L∆ ←
L∆ ∪ (`,m).

– If (∆, `,m) is such that (`, ·) ∈ L∆ (which means that the adversary had already made a
query (∆, `,m′) for some message m′), then C ignores the query.

Verification Queries A is also given access to a verification oracle. Namely, the adversary can
submit a query (P, ∆,m, σ), and C replies with the output of Ver(P, ∆, {vkid}id∈P ,m, σ).

9



Corruption The adversary has access to a corruption oracle. At the beginning of the game, the
challenger initialises an empty list Lcorr = ∅ of corrupted identities; during the game, A can
adaptively query identities id ∈ ID. If id /∈ Lcorr, then C replies with the triple (skid, ekid, vkid)
(that is generated using KeyGen if not done before) and updates the list Lcorr ← Lcorr ∪ id. If
id ∈ Lcorr, then C replies with the triple (skid, ekid, vkid) assigned to id before.

Forgery In the end, A outputs a tuple (P∗, ∆∗,m∗, σ∗). The experiment outputs 1 if the tuple
returned by A is a forgery (defined below), and 0 otherwise.

Definition 4 (Forgery). Consider an execution of HomUF-CMAA,MKHAut(λ) where (P∗, ∆∗,m∗, σ∗)
is the tuple returned by the adversary in the end of the experiment, with P∗ = (f∗, `∗1, . . . , `

∗
t ). This

is a forgery if Ver(P∗, ∆∗, {vkid}id∈P∗ ,m∗, σ∗) = 1, for all id ∈ P∗ we have that id /∈ Lcorr (i.e., no
identity involved in P∗ is corrupted), and either one of the following properties is satisfied:

Type 1: L∆∗ has not been initialized during the game (i.e., the dataset ∆∗ was never queried).
Type 2: For all i ∈ [t], ∃(`∗i ,mi) ∈ L∆∗, but m∗ 6= f∗(m1, . . . ,mt) (i.e., m∗ is not the correct output

of P∗ when executed over previously authenticated messages).
Type 3: There exists a label `∗ such that (`∗, ·) /∈ L∆∗ (i.e., A never made a query with label `∗).

We say that a HA scheme MKHAut is secure if for every PPT adversaryA, its advantage AdvHomUF-CMA
MKHAut,A (λ) =

Pr[HomUF-CMAA,MKHAut(λ) = 1] is negligible.

Remark 2 (Comparison with previous security definitions). Our security notion can be seen as the
multi-key version of the one proposed by Gennaro and Wichs in [25] (in their model our Type 3
forgeries are called ‘Type 1’ as they do not consider multiple datasets). We point out that even in
the special case of a single key, our security definition is stronger than the ones used in previous
work [9,22,16,29] (with the only exception of [25]). The main difference lies in our definition of Type
3 forgeries. The intuitive idea of this kind of forgeries is that an adversary who did not receive an
authenticated input labeled by a certain `∗ cannot produce a valid authenticator for the output of
a computation which has `∗ among its inputs. In [9,29] these forgeries were not considered at all,
as the adversary is assumed to query the dataset always in full. Other works [22,11,16] consider a
weaker Type 3 notion, which deals with the concept of “well defined programs”, where the input
wire labeled by the missing label `∗ is required to “contribute” to the computation (i.e., it must
change its outcome). The issue with such a Type 3 definition is that it may not be efficient to test
if an input contributes to a function, especially if the admissible functions are general circuits. In
contrast our definition above is simpler and efficiently testable since it simply considers a Type 3
forgery one where the labeled program P∗ involves an un-queried input.

Multi-Key Homomorphic Signatures. As previously mentioned, our definitions are general
enough to be easily adapted to either case in which verification is secret or public. The only difference
is whether the adversary is allowed to see the verification keys in the security experiment. When
the verification is public, we call the primitive multi-key homomorphic signatures, formally:

Definition 5 (Multi-Key Homomorphic Signatures). A multi-key homomorphic signature is
a multi-key homomorphic authenticator in which verification keys are also given to the adversary
in the security experiment.

Note that making verification keys public also allows to slightly simplify the security experiment by
removing the verification oracle (the adversary can run verification by itself). In the sequel, when
referring to multi-key homomorphic signatures we adapt our notation to the typical one of digital
signatures, namely we denote Auth(sk, ∆, `,m) as Sign(sk, ∆, `,m), and call its outputs signatures.
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3.1 Non-Adaptive Corruption Queries

In our work, we consider a relaxation of the security definition in which the adversaries ask for
corruptions in a non-adaptive way. More precisely, we say that an adversary A makes non-adaptive
corruption queries if for every identity id asked to the corruption oracle, id was not queried earlier
in the game to the authentication oracle or the verification oracle. For this class of adversaries, it
is easy to see that corruption queries are essentially of no help as the adversary can generate keys
on its own. More precisely, we can prove the following proposition.

Proposition 1. MKHAut is secure against adversaries that do not make corruption queries if and
only if MKHAut is secure against adversaries that make non-adaptive corruption queries.

Proof. The proof is rather simple and we give here only a proof sketch. It is obvious to see that
if a scheme is secure in the presence of non-adaptive corruptions, then the same scheme is secure
when there is no corruption at all. For the opposite direction, we can show that for every adversary
ACorr that breaks the security of MKHAut by non-adaptive corruptions there is an adversary B that
breaks the security of MKHAut in a game without corruptions. In particular, the reduction is tight,
i.e., the success probability of B is the same as that of ACorr.

B simply runs the adversary ACorr and forwards all the queries of ACorr (except corruption
queries) to its challenger. For every corruption query id, B generates a tuple (skid, ekid, vkid) ←$
KeyGen(pp) and returns the tuple to ACorr. If ACorr comes up with a valid forgery, by definition
this forgery does not involve any corrupted identity. Hence, the same forgery will be valid also in
the game played by B. It is not hard to see that the simulation is perfect since ACorr only makes
corruption queries for identities that were never asked to the authentication or verification oracles
earlier in the game. Therefore, if ACorr had advantage ε in breaking the scheme in the game with
non-adaptive corruptions, then B has the same advantage to break the scheme without making
corruptions at all. ut

3.2 Weakly-Adaptive Secure multi-key HAs

In our work, we also consider a weaker notion of security for multi-key HAs in which the adversary
has to declare all the queried messages at the beginning of the experiment. More precisely, we
consider a notion in which the adversary declares only the messages and the respective tags that
will be queried, for every dataset and identity, without, however, needing to specify the names of
the datasets or of the identities. In a sense, the adversary A is adaptive on identities and dataset
names, but not on tags and messages. The definition is inspired by the one, for the single-key
setting, of Catalano et al. [16].

To define the notion of weakly-adaptive security for multi-key HAs, we introduce here a new
experiment Weak-HomUF-CMAA,MKHAut, which is a variation of experiment HomUF-CMAA,MKHAut

(Definition 3) as described below.

Definition 6 (Weakly-Secure Multi-Key Homomorphic Authenticators). In the security
experiment Weak-HomUF-CMAA,MKHAut, before the setup phase, the adversary A sends to the chal-
lenger C a collection of sets of tags Ti,k ⊆ T for i ∈ [Qid] and k ∈ [Q∆], where Qid and Q∆
are, respectively, the total numbers of distinct identities and datasets that will be queried during
the game. Associated to every set Ti,k, A also sends a set of messages {mτ}τ∈Ti,k . Basically the
adversary declares, prior to key generation, all the messages and tags that it will query later on;
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however A is not required to specify identity and dataset names. Next, the adversary receives the
public parameters from C and can start the query-phase. Verification queries are handled as in
HomUF-CMAA,MKHAut. For authentication queries, A can adaptively submit pairs (id, ∆) to C. The
challenger then replies with a set of authenticators {στ}τ∈Ti,k , where indices i, k are such that id is
the i-th queried identity, and ∆ is the k-th queried dataset.

An analogous security definition of weakly-secure multi-key homomorphic signatures is trivially
obtained by removing a verification oracle.

In the Appendix A we present two generic transformations that turn weakly secure multi-key
homomorphic authenticator schemes into adaptive secure ones. Our first transformation holds in
the standard model and works for schemes in which the tag space T has polynomial size, while the
second one avoids this limitation on the size of T but holds in the random oracle model.

4 Our Multi-Key Fully Homomorphic Signature

In this section, we present our construction of a multi-key homomorphic signature scheme that
supports the evaluation of arbitrary circuits of bounded polynomial depth. The scheme is based
on the SIS problem on standard lattices, a background of which is provided in the next section.
Precisely, in Section 4.2 we present a scheme that is weakly-secure and supports a single dataset.
Later, in Section 4.3 we discuss how to extend the scheme to handle multiple datasets, whereas
the support of adaptive security can be obtained via the applications of our transformations in
Appendix A.

4.1 Lattices and Small Integer Solution Problem

We recall here notation and some basic results about lattices that are useful to describe our homo-
morphic signature construction.

For any positive integer q we denote by Zq the ring of integers modulo q. Elements in Zq are
represented as integers in the range (− q

2 ,
q
2 ]. The absolute value of any x ∈ Zq (denoted with |x|) is

defined by taking the modulus q representative of x in (− q
2 ,

q
2 ], i.e., take y = x mod q and then set

|x| = |y| ∈ [0, q2 ]. Vectors and matrices are denoted in bold. For any vector u := (ui, . . . , un) ∈ Znq ,
its infinity norm is ‖u‖∞ := maxi∈[n] |ui|, and similarly for a matrix A := [ai,j ] ∈ Zn×mq we write
‖A‖∞ := maxi∈[n],j∈[m] |ai,j |.

The Small Integer Solution Problem (SIS). For integer parameters n,m, q and β, the
SIS(n,m, q, β) problem provides to an adversary A a uniformly random matrix A ∈ Zn×mq , and
requires A to find a vector u ∈ Znq such that u 6= 0, ‖u‖∞ ≤ β, and A · u = 0. More formally,

Definition 7 (SIS [35]). Let λ ∈ N be the security parameter. For values n = n(λ),m = m(λ), q =
q(λ), β = β(λ), defined as functions of λ, the SIS(n,m, q, β) hardness assumption holds if for any
PPT adversary A we have

Pr
[
A · u = 0 ∧ u 6= 0 ∧ ‖u‖∞ ≤ β : A←$ Zn×mq ,u← A(1λ,A)

]
≤ negl(λ).

For standard lattices, the SIS problem is known to be as hard as solving certain worst-case instances
of lattice problems [2,32,35,34], and is also implied by the hardness of learning with error (we refer
any interested reader to the cited papers for the technical details about the parameters).
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In our paper, we assume that for any β = 2poly(λ) there are some n = poly(λ), q = 2poly(λ),
with q > β, such that for all m = poly(λ) the SIS(n,m, q, β) hardness assumption holds. This
parameters choice assures that hardness of worst-case lattice problems holds with sub-exponential
approximation factors.

Trapdoors for Lattices. The SIS problem is hard to solve for a random matrix A. However,
there is a way to sample a random A together with a trapdoor such that SIS becomes easy to solve
for that A, given the trapdoor. Additionally, it has been shown that there exist “special” (non
random) matrices G for which SIS is easy to solve as well. The following lemma summarizes the
above known results (similar to a lemma in [10]):

Lemma 2 ([3,27,4,33]). There exist efficient algorithms TrapGen, SamPre, Sam such that the
following holds: given integers n ≥ 1, q ≥ 2, there exist some m∗ = m∗(n, q) = O(n log q), βsam =
βsam(n, q) = O(n

√
log q) such that for all m ≥ m∗ and all k (polynomial in n) we have:

1. Sam(1m, 1k, q)→ U samples a matrix U ∈ Zm×kq such that ‖U‖∞ ≤ βsam (with probability 1).

2. For (A, td) ← TrapGen(1n, 1m, q), A′ ←$ Zn×mq , U ← Sam(1m, 1k, q), V := AU, V′ ←$ Zn×kq ,
U′ ← SamPre(A,V′, td), we have the following statistical indistinguishability (negligible in n)

A
stat
≈ A′ and (A, td,U,V)

stat
≈ (A, td,U′,V′)

and U′ ← SamPre(A,V′, td) always satisfies AU′ = V′ and ‖U′‖∞ ≤ βsam.

3. Given n,m, q as above, there is an efficiently and deterministically computable matrix G ∈ Zn×mq

and a deterministic polynomial-time algorithm G−1 that on input V ∈ Zn×kq (for any integer

k) outputs R = G−1(V) such that R ∈ {0, 1}m×k and GR = V.

4.2 Our Multi-Key Homomorphic Signature for Single Dataset

In this section, we present our multi-key homomorphic signature that supports the evaluation of
boolean circuits of bounded polynomial depth. Our construction is inspired by the (single-key) one
of Gorbunov et al. [29], with the fundamental difference that in our case we enable computations
over data signed using different secret keys. Moreover, our scheme is secure against Type 3 forgeries.
We achieve this via a new technique which consists into adding to every signature a component
that specifically protects against this type of forgeries. We prove the scheme to be weakly-secure
under the SIS hardness assumption.

Parameters. Before describing the scheme, we discuss how to set the various parameters involved.
Let λ be the security parameter, and let d = d(λ) = poly(λ) be the bound on the depth of the
circuits supported by our scheme. We define the set of parameters used in our scheme Par =
{n,m, q, βSIS, βmax, βinit} in terms of λ, d and of the parameters required by the trapdoor algorithm
in Lemma 2: m∗, βsam, where m∗ = m∗(n, q) := O(n log q) and βsam := O(n

√
log q). More precisely,

we set: βmax := 2ω(log λ)d; βSIS := 2ω(log λ)βmax; n = poly(λ); q = O(2poly(λ)) > βSIS is a prime
(as small as possible) so that the SIS(n,m′, q, βSIS) assumption holds for all m′ = poly(λ); m =
max{m∗, n log q + ω(log(λ))} = poly(λ) and, finally, βinit := βsam = poly(λ).

Construction. The PPT algorithms (Setup,KeyGen,Sign,Eval,Ver) which define our construction
of Multi-key Homomorphic Signatures work as follows:
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Setup(1λ). The setup algorithm takes as input the security parameter λ and generates the pub-
lic parameters pp which include: the bound on the circuit depth d (which defines the class
F of functions supported by the scheme, i.e., boolean circuits of depth d), the set Par =
{n,m, q, βSIS, βmax, βinit}, the set U = {U ∈ Zm×mq : ‖U‖∞ ≤ βmax}, the set V = {V ∈ Zn×mq },
descriptions of the message space M = {0, 1}, the tag space T = [T], and the identity space
ID = [C], for integers T,C ∈ N. In this construction, the tag space is of polynomial size,
i.e., T = poly(λ) while the identity space is essentially unbounded, i.e., we set C = 2λ. Also
recall that T and ID immediately define the label space L = ID × T . The final output is
pp = {d,Par,U ,V,M, T , ID}. We assume that these public parameters pp are input of all sub-
sequent algorithms, and often omit them from the input explicitly.

KeyGen(pp). The key generation algorithm takes as input the public parameters pp and generates
a key-triple (sk, ek, vk) defined as follows. First, it samples T random matrices V1, . . . ,VT ←$ V.
Second, it runs (A, td) ← TrapGen(1n, 1m, q) to generate a matrix A ∈ Zn×mq along with its
trapdoor td. Then, it outputs sk = (td,A,V1, . . . ,VT), ek = A, vk = (A,V1, . . . ,VT). Note
that it is possible to associate the key-triple to an identity id ∈ ID, when we need to stress
this explicitly we write (skid, ekid, vkid). We also observe that the key generation process can
be seen as the combination of two independent sub-algorithms 9 KeyGen1 and KeyGen2, where
{V1, . . .VT} ← KeyGen1(pp) and (A, td)← KeyGen2(pp).

Sign(sk, `,m). The signing algorithm takes as input a secret key sk, a label ` = (id, τ) for the
message m and it outputs a signature σ := (m, z, I,Uid,Zid) where I = {id}, Uid is generated
as Uid ← SamPre(A,V` − mG, td) (using the algorithm SamPre from Lemma 2), z = m and
Zid = Uid. The two latter terms are responsible for protection against Type 3 forgeries. Although
they are redundant for fresh signatures, their value will become different from (m,Uid) during
homomorphic operations, as we clarify later on. More generally, in our construction signatures
are of the form σ := (m, z, I, {Uid}id∈I, {Zid}id∈I) with I ⊆ ID and Uid,Zid ∈ U ,∀ id ∈ I.

Eval
(
f, {(σi,EKSi)}i∈[t]

)
. The evaluation algorithm takes as input a t-input function f :Mt −→M,

and a set of pairs {(σi,EKSi)}i∈[t] where each σi is a signature and each EKSi is a set of evaluation
keys. In our description below we treat f as an arithmetic circuit over Zq consisting of addition
and multiplication gates.10 Therefore we only describe how to evaluate homomorphically a
fan-in-2 addition (resp. multiplication) gate as well as a unary multiplication-by-constant gate.

Let g be a fan-in-2 gate with left input σL := (mL, zL, IL,UL,ZL) and right input σR :=
(mR, zR, IR,UR,ZR). To generate the signature σ := (m, z, I,U,Z) on the gate’s output one
proceeds as follows. First set I = IL ∪ IR. Second, “expand” UL := {Uid

L }id∈IL as:

Ûid
L =

{
0 if id /∈ IL
Uid

L if id ∈ IL
, ∀ id ∈ I .

where 0 denotes an (m × m)-matrix with all zero entries. Basically, we extend the set to be
indexed over all identities in I = IL ∪ IR by inserting zero matrices for identities in I \ IL. The
analogous expansion process is applied to UR := {Uid

R}id∈IL , ZL := {ZL
id}id∈IR and ZR :=

{Zid
R}id∈IR , denoting the expanded sets {Ûid

R}id∈I, {Ẑid
L }id∈I and {Ẑid

R}id∈I respectively.

Next, depending on whether g is an addition or multiplication gate one proceeds as follows.

9 This splitting will be used to extend our multi-key homomorphic signature scheme from supporting a single dataset
to support multiple datasets. This extension holds in the standard model and is described in Section 4.3.

10 We point out that considering f as an arithmetic circuit over Zq is enough to describe any boolean circuits
consisting of NAND gates as NAND(m1,m2) = 1−m1 ·m2 holds for m1,m2 ∈ {0, 1}.
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Addition gate. If g is additive, compute m = mL + mR, z = zL + zR, U = {Uid}id∈I :=
{Ûid

L + Ûid
R}id∈I and Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I.

If we refer to βL and βR as ‖UL‖∞ := max{‖Uid
L ‖∞ : id ∈ IL} and ‖UR‖∞ := max{‖Uid

R‖∞ : id ∈
IR} respectively, then for any fan-in-2 addition gate it holds β := ‖U‖∞ = βL + βR. The same
noise growth applies to Z.

Multiplication gate. If g is multiplicative, compute m = mL · mR, z = zL + zR, define
VL =

∑
id∈ IL

AidUid + mLG, set

U = {Uid}id∈I := {mRÛid
L + Ûid

R ·G−1(VL)}id∈I
and Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I.

Letting βL and βR as defined before, then for any fan-in-2 multiplication gate it holds β :=
‖U‖∞ = |mR|βL +mβR, while the noise growth of Z is the same as in the addition gate.

Multiplication by constant gate. Let g be a unary gate representing a multiplication
by a constant a ∈ Zq, and let its single input signature be σR := (mR, zR, IR,UR,ZR). The
output σ := (m, z, I,U,Z) is obtained by setting m = a ·mR ∈ Zq, z = zR, I = IR, Z = ZR, and
U = {Uid}id∈I where, for all id ∈ I, Uid = a ·Uid

R or, alternatively, Uid = Uid
R ·G−1(a ·G). In the

first case, the noise parameter becomes β := ‖U‖∞ = |a|βL (thus a needs to be small), whereas
in the second case it holds β := ‖U‖∞ ≤ mβL, which is independent of a’s size.

Ver(P, {vkid}id∈P ,m, σ). The verification algorithm takes as input a labeled program P = (f, `1, . . . ,
`n), the set of the verification keys {vkid}id∈P of users involved in the program P, a message m
and a signature σ = (m, z, I,U,Z). It then performs three main checks and outputs 0 if at least
one check fails, otherwise it returns 1.
Firstly, it checks if the list of identities declared in σ corresponds to the ones in the labels of P:

I = {id : id ∈ P} (1)

Secondly, from the circuit f (again seen as an arithmetic circuit) and the values {V`1 , . . . ,V`t}
contained in the verification keys, it computes two values V∗ and V+ proceeding gate by gate
as follows. Given as left and right input matrices V∗L,V

∗
R (resp. V+

L ,V
+
R ), at every addition

gate one computes V∗ = V∗L + V∗R (resp. V+ = V+
L + V+

R ); at every multiplication gate one
computes V∗ = V∗RG−1V∗L (resp. V+ = V+

L + V+
R ). Every gate representing a multiplication

by a constant a ∈ Zq, on input V∗R (resp. V+
R ) outputs V∗ = a ·V∗R (resp. V+ = V+

R ). Note that
the computation of V+ is essentially the computation of a linear function V+ =

∑t
i=1 γi ·V`i ,

for some coefficients γi that depend on the structure of the circuit f .
Thirdly, the verification algorithm parses U = {Uid}id∈I and Z = {Zid}id∈I and checks:

‖U‖∞ ≤ βmax and ‖Z‖∞ ≤ βmax (2)∑
id∈I

AidUid + m ·G = V∗ (3)∑
id∈I

AidZid + z ·G = V+ (4)

Finally, it is worth noting that the computation of the matrices V∗ and V+ can be precomputed
(or performed offline), prior to seeing the actual signature σ. In the multiple dataset extension
of Section 4.3 this precomputation becomes particularly beneficial as the same V∗,V+ can be
re-used every time one wants to verify for the same labeled program P (i.e., one can verify
faster, in an amortized sense, than that of running f).
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In the following paragraphs we analyse the correctness, succinctness and the security of the proposed
construction.

Noise Growth and Succinctness. First we analyse the noise growth of the components U,Z
in the signatures of our MKHSig construction. In particular we need to show that when starting
from “fresh” signatures, in which the noise is bounded by βinit, and we apply an admissible circuit,
then one ends up with signatures in which the noise is within the allowable amount βmax.

An analysis similar to the one of Gorbunov et al.[29] is applicable also to our construction
whenever the admissible functions are boolean circuits of depth d composed only of NAND gates.

Let us first consider the case of the U component of the signatures. At every NAND gate, if
‖UL‖∞, ‖UR‖∞ ≤ β, the noise of the resulting U is at most (m + 1)β. Therefore, if the circuit
has depth d, the noise of the matrix U at the end of the evaluation is bounded by ‖U‖∞ ≤
βinit · (m+ 1)d ≤ 2O(log λ)d ≤ βmax. For what regards the computation performed over the matrices
Z, we observe that we perform only additions (or identity functions) over them. This means that
at every gate of any f , the noise in the Z component at most doubles. Given that we consider
depth-d circuits we have that ‖Z‖∞ ≤ βinit · 2d ≤ 2O(log λ)+d ≤ βmax. Finally, by inspection one
can see that the size of every signature σ on a computation’s output involving n users is at most
(1 + 2d + nλ+ 2nβmax) that is O(n · p(λ)) for some fixed polynomial p(·).

Authentication Correctness. Each fresh signature of a message m labeled by ` := (id, τ) is
of the form σ := (m, z = m, I = {id},U,Z = U). In this case, the labeled program used by Ver to
verify σ is the identity program on m with label ` = (id, τ). We need to show that for P = I`, and
m the signature σ passes the four verification checks (1), (2) , (3) and (4). It is trivial to check that
(1) holds, since I = {id} = {id ∈ I`}. Moreover, (2) trivially follows from the fact that βinit ≤ βmax.
For what concerns equation (3) we have:

∑
id∈I

AidUid + m ·G = AidUid + m ·G = V` = V∗

where the first equality holds because I = {id}, the second holds by the construction of Uid in the
Sign algorithm and the last one holds by construction of the Ver algorithm. Note that, since here
z = m and Uid = Z, then (4) is trivially satisfied.

Evaluation Correctness. We prove the correctness of the Eval algorithm for a generic fan-in-2
addition and multiplication gate g: by associativity this proves the correctness of the algorithm
on any circuit. Let mL (resp. mR) denote the left (resp. right) input wire of the considered gate
g, let σL := (mL, zL, IL,UL,ZL) (resp. σR) be a signature that verifies correctly for mL (resp. mR)
and program PL (resp. PR). Let σ = (m, z, I = IL ∪ IR,U,Z) be the signature obtained after a gate
evaluation.

It is immediate to see that the set I satisfies check (1). Moreover, from the noise growth analysis
given above, it results that equation (2) is satisfied by both U and Z.

g Additive Gate: According to the definition of Eval, we have σ = (m =: mL+mR, I = IL∪ IR,U =
{Uid}id∈I := {Ûid

L + Ûid
R}id∈I, z := zL + zR,Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I).

Below we focus on the proof for equation (3), and notice that the case of equation (4) is
analogous.
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∑
id∈I

AidUid + m ·G =
∑
id∈I

Aid(Ûid
L + Ûid

R ) + (mL + mR) ·G

= (
∑
id∈IL

AidU
id
L + mL ·G) + (

∑
id∈IR

AidU
id
R + mR ·G)

= VL + VR = V∗

where the second equation holds because Ûid
L = 0m×m for any id ∈ I \ IL (resp. Ûid

R = 0m×m for
any id ∈ I \ IR), while the last equation follows from the assumption on the valid verification of
σL (resp. σR) and from the definition of the Ver algorithm (w.r.t. the computation over the V`).

g Multiplicative Gate: According with the definition of Eval, we have σ = (m =: mL ·mR, I = IL∪
IR,U = {Uid}id∈I := {mRÛid

L + Ûid
R ·G−1(VL)}id∈I, z := zL + zR,Z = {Zid}id∈I := {Ẑid

L + Ẑid
R}id∈I),

where VL =
∑
id∈IL

AidUid + mLG. We focus on proving the case of equation (3); as the case of

equation (4) follows from the same analysis of the additive gate shown above.

∑
id∈I

AidUid + m ·G =
∑
id∈I

Aid(mRÛid
L + Ûid

R ·G−1(VL)) + (mL ·mR) ·G

= mR ·

(∑
id∈I

AidÛ
id
L + mLG

)
+

(∑
id∈I

Aid Ûid
R

)
G−1(VL)

= mRVL +

(∑
id∈I

Aid Ûid
R

)
G−1(VL)

= mRGG−1(VL) +

(∑
id∈I

Aid Ûid
R

)
G−1(VL)

=

∑
id∈IR

AidU
id
R

+ mRG

G−1(VL) = VRG−1(VL) = V∗.

In the first two equations we expand U and rearrange the terms grouping by G−1(VL) and mR

respectively. The third equation follows from the definition of VL, while in the fourth one, we
just rewrite VL as GG−1(VL): this allows to group by G−1(VL) in the fifth equation. The last
two equations respectively follow from the definition of VL and V∗.

Security. The following theorem states the security of the scheme MKHSig.

Theorem 1. If the SIS(n,m·Qid, q, βSIS) hardness assumption holds, MKHSig = (Setup,KeyGen,Sign,
Eval,Ver) is a multi-key homomorphic signature weakly-adaptive secure against adversaries that
make signing queries involving at most Qid different identities and that make non-adaptive corrup-
tion queries.

Proof. Note that we can deal with corruptions via our generic result of Proposition 1. Therefore
it is sufficient to prove the security against adversaries that make no corruptions. Moreover, since
this scheme works for a single dataset note that Type 1 forgeries cannot occur.
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For the proof let us recall how the weakly-adaptive security experiment (Definition 6) works
for our multi-key homomorphic signature scheme MKHSig. This is a game between an adversary A
and a challenger C that has four main phases:

(1) A declares an integer Q representing the number of different identities that it will ask in the
signing queries. Moreover, for every i ∈ [Q] A sends to C a set Ti ⊆ T := {τ1, . . . , τT} and a set
of pairs {(mτ , τ)}τ∈Ti .

(2) C runs Setup(1λ) to obtain the public parameters and sends them to A.
(3) A adaptively queries identities id1, . . . , idQ. When C receives the query idi it generates a key-

triple (skidi , ekidi , vkidi) by running KeyGen(pp), and for all labels ` = (idi, τ) such that τ ∈ Ti
it runs σiτ←Sign(skidi , `,mτ ). Then C sends to A: the public keys vkidi := (Aidi , {V`}τ∈T ) and
ekidi := (Aidi), and the signatures {σiτ}τ∈Ti .

(4) The adversary produces a forgery consisting of a labeled program P∗ = (f∗, `∗1, . . . , `
∗
t ) where

f∗ ∈ F , f∗ :Mt →M, a message m∗ and a signature σ∗.

A wins the non-adaptive security game if Ver(P∗, {vkid}id∈P∗ ,m∗, σ∗) = 1 and one of the follow-
ing conditions holds:

Type 2 Forgery: there exist messages m`∗1
, . . . ,m`∗t

s.t. m∗ 6= f∗(m`∗1
, . . . ,m`∗t

) (i.e., m∗ is not the
correct output of P∗ when executed over previously signed messages).

Type 3 Forgery: there exists at least one label `∗ = (id∗, τ∗) that was not queried by A.

Consider a variation of the above game obtained modifying phase (3) as follows:
(3′) C picks an instance A ∈ Zn×m′q of the SIS(n,m′, q, βSIS) problem for m′ = m ·Q = poly(λ), and

parse A := (Aid1 | . . . |AidQ) ∈ Zn×m′q as the concatenation of Q different blocks of n×m matrices.
Next, when C receives the i-th query idi from A, it does the following:

– it samples a matrix Uidi,τ ←$ U such that ‖Uidi,τ‖ ≤ βinit;
– for all ` := (idi, τ) with τ ∈ Ti, C computes V` = AidiUidi,τ + mτ ·G;
– for all ` := (idi, τ) with τ /∈ Ti, C computes V` = AidiUidi,τ + bi,τ ·G, where bi,τ ←$ {0, 1}.
– C sends to A the public keys vkidi := (Aidi , {V`}τ∈T ) and ekidi := (Aidi), along with signatures
{σiτ}τ∈Ti where σiτ := (mτ ,mτ , I := {idi},Uidi,τ ,Uidi,τ ).

Clearly, if A is a uniformly random matrix so is each block {Aidi}i∈[Q].
Due to point (2) of Lemma 2, since (AidiUidi,τ ) is statistically indistinguishable from a random
matrix, all the matrices V` generated in (3′) are statistically close to the ones generated in (3). Thus,
the two games are statistically indistinguishable. At this point we show that for every PPT adversary

A which produces a forgery in the modified game we can construct a PPT algorithm B that solves
the SIS(n,m · Q, q, βSIS) problem. B receives an SIS instance A := (Aid1 | . . . |AidQ) ∈ Zn×mQq and
simulates the modified game to A by acting exactly as the challenger C described above. Then,
once A outputs its forgery, according to the forgery’s type, B proceeds as described below.

Type 2 Forgeries. Let (P∗ := (f∗, `∗1, . . . , `
∗
t ),m

∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗)) be a Type 2 forgery
produced by A in the modified game. Moreover let σ = (m, z, I,U,Z) be the signature obtained
by honestly applying Eval to the signatures corresponding to labels `∗1, . . . , `

∗
t that were given to

A. Parse U := {Uid}id∈I and notice that by the correctness of the scheme we have that m =
f∗(m`∗1

, . . . ,m`∗t
), I = {id : id ∈ P∗}, and∑

id∈I
AidUid + m ·G = V∗.
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Moreover, by definition of Type 2 forgery recall that m∗ 6= f∗(m`∗1
, . . . ,m`∗t

) and that the tuple
satisfies verification. In particular, satisfaction of check (1) implies that I = I∗, while check (3)
means ∑

id∈I∗
AidU

∗
id + m∗ ·G = V∗

Combining the two equations above we obtain
∑

id∈I AidŨid = m̃ ·G, where m̃ = m−m∗ 6= 0 and,

for all id ∈ I, Ũid = U∗id −Uid ∈ U such that ‖Ũid‖∞ ≤ βmax. Notice that there must exist at least
one īd ∈ I for which Ũīd 6= 0.

Moreover, for all id ∈ {id1, . . . , idQ} \ I, define Ũid = 0 and set Ũ =

(
Ũid1

.

.

.

ŨidQ

)
∈

ZmQ×mq . Then, we have AŨ = m̃ ·G.

Next B samples r ←$ {0, 1}mQ, sets s = Ar ∈ Znq , and computes r′ = G−1(m̃−1 · s), so that

r′ ∈ {0, 1}m and m̃ ·Gr′ = s. Finally, B outputs u = Ũr′ − r ∈ ZmQq . We conclude the proof by
claiming that the vector u returned by B is a solution of the SIS problem for the matrix A. To see
this observe that

A(Ũr′ − r) = (AŨ)r′ −Ar = m̃ ·G ·G−1(m̃−1 · s)− s = 0 .

and ‖u‖∞ ≤ (2m+ 1)βmax ≤ βSIS.

It remains to show that u 6= 0. We show that this is the case (i.e., Ũr′ 6= r) with overwhelming
probability by using an entropy argument (the same argument used in [29]). In particular, this holds
for any (worst case) choice of A, Ũ, m̃, and only based on the random choice of r ←$ {0, 1}mQid .
The intuition is that, even if r′ = G−1(sm̂−1) depends on s = Ar, s is too small to reveal much
information about the random r. More precisely, we have that H∞(r | r′) ≥ H∞(r | Ar) because
r′ is chosen deterministically based on s = Ar. Due to the Lemma 1, we have that H∞(r |
Ar) ≥ H∞(r) − log(|S|), where S is the space of all possible s. Since s ∈ Znq , |S| = qn, and then

log(|S|) = log(qn) = log((2logq)n) = n log((2log q)) = n log q. Regarding H∞(r), since H∞(X) :=
−log

(
maxx Pr[X = x]

)
, we have H∞(r) = −log

(
2−mQ

)
= mQ ≥ m. Then,

H∞(r | r′) ≥ H∞(r)− log(S) ≥ m− n log q = ω(log λ).

Since we know that for random variables X,Y the optimal probability of an unbounded adversary
guessing X given the correlated value Y is 2−H∞(X|Y ), then Pr[r = Ũr′] ≤ 2−H∞(r|r′) ≤ 2−ω(log λ) =
negl(λ).

Type 3 Forgery. Let (P∗ := (f∗, `∗1, . . . , `
∗
t ),m

∗, σ∗ := (m∗, z∗, I∗,U∗,Z∗)) be a Type 3 forgery
produced by A in the modified game such that there exists (at least) one label `∗j = (id∗, τ∗) such

that id∗ = idi but τ∗ /∈ Ti.11 Actually, without loss of generality we can assume that there is
exactly one of such labels; if this is not the case, one could indeed redefine another adversary that
makes more queries until it misses only this one. Note that for such a tag τ∗ /∈ Ti, B simulated
Vidi,τ∗ = AUidi,τ∗ + bi,τ∗G for a randomly chosen bit bi,τ∗ ←$ {0, 1}, that is perfectly hidden from
A.

11 It is easy to see that the case in which id∗ is new would imply the generation of a new Aid∗ , which would make
the verification equations hold with negligible probability (over the random choice of Aid∗).
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By definition of Type 3 forgery, the tuple passes verification, and in particular check (4)

∑
id∈I∗

AidZ
∗
id + z∗ ·G = V+ =

t∑
i=1

γi ·V`∗i

where the right hand side of the equation holds by construction of the verification algorithm.
Moreover, let σ = (m, z, I,U,Z) be the signature obtained by honestly applying Eval to the

signatures corresponding to labels `∗1, . . . , `
∗
t ; in particular for the specific, missing, label `∗j B uses

the values Uidi,τ∗ , bi,τ∗ used to simulate Vidi,τ∗ . Parsing Z := {Zid}id∈I, notice that by correctness
it holds I = {id : id ∈ P∗} and ∑

id∈I
AidZid + z ·G = V+

where z =
∑t

i=1,i 6=j γimi + γjbi,τ∗ . Now, the observation is that every γi ≤ 2d < q, i.e., γi 6= 0
mod q. Since bi,τ∗ is random and perfectly hidden to A we have that with probability 1/2 it holds
z 6= z∗.

Thus, if z 6= z∗, B combines the equalities on V+ to come up with an equation∑
id∈I

AidZ̃id = z̃ ·G

where z̃ = z− z∗ 6= 0 mod q and, for all id ∈ I, Z̃id = Z∗id − Zid ∈ U such that ‖Z̃id‖∞ ≤ βmax.
Finally, using the same technique as in the case of Type 2 forgeries, B can compute a vector u

that is a solution of SIS with overwhelming probability, i.e., Au = 0.

Therefore, we have proven that if an adversary A can break the MKHSig scheme with non
negligible probability, then C can use such an A to break the SIS assumption for A with non
negligible probability as well.

A Variant with Unbounded Tag Space in the Random Oracle Model. In this section,
we show that the construction of multi-key homomorphic signatures of Section 4.2 can be easily
modified in order to have short public keys and to support an unbounded tag space T = {0, 1}∗.
Note that once arbitrary tags are allowed, the scheme also allows to handle multiple datasets for
free. In fact, one can always extend tags to include the dataset name, i.e., simply redefine each tag
τ as consisting of two substrings τ = (∆, τ ′) where ∆ is the dataset name and τ ′ the actual tag.

The idea of modifying the scheme to support an unbounded tag space is simple and was also
suggested in [29] for their construction. Instead of sampling matrices {Vid,1, . . .Vid,T} in KeyGen,

one can just choose a random string rid ←$ {0, 1}λ and define every Vid,τ := Ĥ(rid, τ) where Ĥ :
{0, 1}∗ → V is an hash function chosen in Setup (modeled as a random oracle in the proof). In all
the remaining algorithms, every time one needs Vid,τ , this is obtained using Ĥ.

For this modified scheme, we also provide an idea of how the security proof of Theorem 1 has
to be modified to account for these changes. The main change is the simulation of hash queries,
which is done as follows.

Before phase (1), where A declares its queries, B simply answers every query Ĥ(r, τ) with a
randomly chosen V←$ V. Afterwards, once A has declared all its queries, B chooses rid1 , . . . , ridQ ←$

{0, 1}λ and programs the random oracle so that, for all τ ∈ Ti, Ĥ(ridi , τ) = Vidi,τ where Vidi,τ is
the same matrix generated in the phase (3) of the modified game. On the other hand, for all τ /∈ Ti,
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Ĥ(ridi , τ) = Vidi,τ where Vidi,τ = AidUidi,τ + bi,τG for a randomly chosen Uidi,τ ←$ U . All other

queries Ĥ(r, τ) where r 6= ridi , ∀i ∈ [Q] are answered with random V ←$ V. With this simulation, it
is not hard to see that, from A’s forgery B can extract a solution for SIS (except for some negligible
probability that A guesses one of ridi before seeing it).

4.3 From a Single Dataset to Multiple Datasets

In this section we present a generic transformation to convert a single-dataset MKHSig scheme into
a scheme that supports multiple datasets. The intuition behind this transformation is similar to
the one employed in [29] and implicitly used in [16,13], except that here we have to use additional
techniques to deal with the multi-key setting. We combine a standard signature scheme NH.Sig
(non-homomorphic) with a single dataset multi-key homomorphic signature scheme MKHSig′. The
idea is that for every new dataset ∆, every user generates fresh keys of the multi-key homomorphic
scheme MKHSig′ and then uses the standard signature scheme NH.Sig to sign the dataset identifier
∆ together with the generated public key. More precisely, in our transformation we assume to
start with (single-dataset) multi-key homomorphic signature schemes in which the key generation
algorithm can be split in two independent algorithms: KeyGen1 that outputs some public parameters
related to the identity id, and KeyGen2 which outputs the actual keys. Differently than [29], in our
scheme the signer does not need to sign the whole dataset at once, nor has to fix a bound N on
the dataset size (unless such a bound is already contained in MKHSig′).

In more details, let NH.Sig = (NH.KeyGen,NH.Sign,NH.Ver) be a standard (non-homomorphic)
signature scheme, and let MKHSig′ = (Setup′,KeyGen′,Sign′,Eval′,Ver′) be a single-dataset multi-
key homomorphic signature scheme. We construct a multi-dataset multi-key homomorphic signature
scheme MKHSig = (Setup,KeyGen, Sign,Eval,Ver) as follows.

Setup(1λ). The setup algorithm samples parameters of the single-dataset multi-key homomorphic
signature scheme, pp′ ← Setup′(1λ), together with a description of a PRF F : K × {0, 1}∗ →
{0, 1}ρ, and outputs pp = (pp′, F ).

KeyGen(pp). The key generation algorithm runs NH.KeyGen to get (pkNHid , skNHid ), a pair of keys
for the standard signature scheme. In addition, it runs KeyGen1 to generate user-specific pub-
lic parameters ppid, and chooses a seed Kid for the PRF F . The final output is the vector
(skid, ekid, vkid): where skid = (skNHid ,Kid), ekid = (ppid) and vkid = (pkNHid , ppid).

Sign(skid, ∆, `,m). The signing algorithm proceeds as follows. First it samples the keys of the single-
dataset multi-key homomorphic signature scheme by feeding randomness FKid

(∆) to KeyGen2,
i.e., it runs KeyGen2(pp;FKid

(∆)) to obtain the keys (sk∆id , ek
∆
id , vk

∆
id).12 The algorithm then runs

σ′←Sign′(sk∆id , `,m), and uses the non-homomorphic scheme to sign the concatenation of the
public key vk∆id and the dataset identifier ∆, i.e., σ∆id ← NH.Sign(skNHid , vk∆id |∆), The output is
the tuple σ := (I = {id}, σ′, par∆) where par∆ = {(ek∆id , vk∆id , σ∆id )}. Note that the use of the PRF
allows every signer (having the same Kid) to generate the same keys of the scheme MKHSig′ on
the same dataset ∆.

Eval(f, {(σi,EKSi)}i∈[t]). For each i ∈ [t], the algorithm parses every signatures as σi := (Ii, σ
′
i, par∆,i)

with par∆,i = {ek∆id , vk∆id , σ∆id}id∈Ii , and sets EKS′i = {ek∆id}id∈Ii . It computes σ′ ← Eval′(f, {σ′i,EKS
′
i}i∈[t]),

defines I = ∪ti=1Ii and par∆ = ∪ti=1par∆,i. The final output is σ = (I, σ′, par∆).

12 Here we assume that a ρ-bits string is sufficient, otherwise it can always be stretched using a PRG.
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Ver(P, ∆, {vkid}id∈P ,m, σ). The verification algorithm begins by parsing the verification keys as
vkid := (pkNHid , ppid) for each id ∈ I, and also the signature as σ = (I, σ′, par∆) with par∆ =
{(ek∆id , vk∆id , σ∆id )}id∈I. Then, it proceeds with two main steps. First, for each id ∈ I, it verifies the
standard signature σ∆id on the public key of the single-dataset multi-key homomorphic scheme
and the given dataset, i.e., it checks whether NH.Ver(pkNHid , vk∆id |∆,σ∆id ) = 1,∀ id ∈ I. If at least
one of the previous equations is not satisfied, the algorithm returns 0, otherwise it proceeds to
the second check and returns the output of Ver′(P, {ppid, vk∆id}id∈P ,m, σ′).

Authentication Correctness. Correctness of the scheme substantially follows from the cor-
rectness of the regular signature scheme NH.Sig, the single-dataset multi-hey homomorphic scheme
MKHSig′ and the PRF F . More formally, a fresh signature σ on (sk∆id , ∆, `,m) is of the form
(I, σ′, par∆) where par∆ = {ek∆id , vk∆id , σ∆id}. By construction σ∆id ← NH.Sign(skNHid , vk∆id |∆), and thus
NH.Ver(pkNH

id , vk∆id |∆,σ∆id ) outputs 1 for the correctness of the NH.Sig. Similarly, being P the identity
program I`, it holds that Ver′(P, (ppid, vk∆id),m, σ′) = 1 by the correctness of the MKHSig scheme.

Evaluation Correctness. Evaluation correctness follows directly from the correctness of the
evaluation algorithm Eval′ of the single-dataset MKHSig scheme, the correctness of NH.Sig and of
the PRF.

Security. Intuitively, the security of the scheme follows from two main observations. First, no
adversary is able to fake the keys of the single-dataset multi-key homomorphic signature scheme,
due to the security of the standard signature scheme and the property of pseudo random functions.
Secondly, no adversary can tamper with the results of Eval for a specific dataset as this would
correspond to breaking the security of the single-dataset multi-key homomorphic signature scheme.

Theorem 2. If F is a secure pseudo-random function, NH.Sig is an unforgeable signature scheme
and MKHSig′ is a secure single-dataset multi-key homomorphic signature scheme, then the MKHSig
scheme for multiple datasets described in Section 4.3 is secure against adversaries that make static
corruptions of keys and produce forgeries as in Definition 4.

In order to prove Theorem 2 we define a sequence of hybrid games that we will use to bound
the probability of winning in the original security game described in Section 3. Let Game 0 be the
security game between the adversary A and the challenger C described in Section 3. Let us define
two more hybrid games:

Game 1 This is the same as Game 0 except that every PRF instance FKid
(·) is replaced with a

truly random function Rid : {0, 1}∗ → {0, 1}ρ. Basically, for every dataset identifier ∆ used in
the game, Game 1 generates keys (sk∆id , ek

∆
id , vk

∆
id) using KeyGen2 using truly random coins as

output by Rid(∆).
Game 2 This is the same as Game 1 except that the challenger rejects any adversary’s forgery

(P∗, ∆∗,m∗, σ∗) where ∆∗ had not been queried during the authentication query phase (i.e. L∆∗

was not initialised). Note that in Game 2 the adversary can no longer make Type 1 forgeries.

Let Gi(A) denote the event that Game i, executed with adversary A, outputs 1. The proof of
Theorem 2 is obtained by showing that any PPT adversary has negligible probability of distin-
guishing between Game 0 and Game 1 (Lemma 3), and between Game 1 and Game 2 (Lemma 4).
Finally, we show that A has negligible probability of winning in the final game (Lemma 5).
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Lemma 3. For every PPT A there is a PPT distinguisher D such that |Pr[G0(A)]−Pr[G1(A)]| ≤
Qid ·AdvPRFF,D (λ), where Qid is the number of distinct identities queried by A during authentication
queries.

The proof of Lemma 3 is rather simple and proceeds as follows. Given that the only difference
between Game 0 and Game 1 is in the random coins used in algorithm KeyGen2, the probability of
A winning in Game 1 is the same as in Game 0, a part from an additive factor that comes from
distinguishing the PRF instance FKid

(·) from a truly random function Rid(·). Since we assume A
performs at most Qid distinct PRF instances during the game, a fairly standard hybrid argument
assures that the difference between the two games is bound by a Qid ·AdvPRFF,D (λ) factor.

Lemma 4. For every PPT A there is a PPT forger F such that |Pr[G1(A)] − Pr[G2(A)]| ≤ Qid ·
AdvUF-CMA

NH.Sig,F (λ), where AdvUF-CMA
NH.Sig,F (λ) is the advantage of F breaking the existential unforgeability

of the standard (non-homomorphic) signature scheme and Qid is the number of distinct identities
queried by A.

For the proof of Lemma 4, we notice that the outputs of Game 1 and Game 2 coincide on every
forgery (P∗, ∆∗,m∗, σ∗) except when A produces a candidate Type 1 forgery, i.e., when ∆∗ has
never been queried during the game. Let Bad denote the event in which the adversary outputs a
valid Type 1 forgery, then |Pr[G1(A)] − Pr[G2(A)]| = Pr[G1(A) ∧ Bad]. In what follows we bound
this probability by showing that for every adversary A that wins in Game 1 by returning a Type
1 forgery there is a forger F that produces an existential forgery against the scheme NH.Sig.

Observe that the forgery (P∗, ∆∗,m∗, σ∗) passes verification Ver of the multi-dataset MKHSig
and that P∗ contains at least one identity. Fix any identity īd ∈ P∗ and let it be the k-th identity
that A queried in the game. The crucial observation is that since ∆∗ has never been queried, the
forgery contains a signature σ∆

∗

īd
which was not generated by the challenger and yet verifies correctly

under the public key pkNHīd . Therefore, for any such adversary A, we can build a PPT F which wins
in the unforgeability game of NH.Sig with non-negligible probability. The forger F works as follows.
First, F samples a random index k∗ ←$ [Qid] which represents its guess for the index of the identity
īd on which A will make the forgery (i.e., k∗ is a guess for the above k). Second, F simulates Game
1 to A by generating the keys of the NH.Sig scheme for all identities except the k∗-th one, for
which F invokes its own oracles for the simulation. The forger F also generates all the keys of the
multi-key homomorphic scheme necessary in the simulation.

Then, let (P∗, ∆∗,m∗, σ∗) be the Type 1 forgery returned by A, where σ∗ = (I∗, σ′, par∆∗)
and par∆∗ = {(ek∆∗id , vk

∆∗
id , σ

∆∗
id )}id∈I∗ . If the k∗-th identity īd is in P∗ then σ∆

∗

īd
is such that

NH.Ver(pkNH
īd , (vk∆īd |∆), σ∆

∗

īd
) = 1, i.e., the signature σ∆

∗

īd
verifies correctly on the message (vk∆

∗

īd |∆
∗).

Since no message (·|∆∗) was queried by F to its oracle, the pair ((vk∆īd |∆), σ∆
∗

īd
) is an existential

forgery for NH.Sig. In case the k∗-th identity īd is not in P∗, the forger F aborts the simulation.
In conclusion if Pr[G1(A)∧Bad] > ε, then F has advantage > ε/Qid in breaking the security of

NH.Sig, where the factor 1/Qid is the probability that F guesses correctly the index k∗, i.e., Pr[k =
k∗]. Since by assumption NH.Sig is an unforgeable signature scheme, we derive that |Pr[G1(A)] −
Pr[G2(A)]| = Pr[G1(A) ∧ Bad] ≤ Qid ·AdvUF-CMA

NH.Sig,F (λ), which concludes the proof.

Lemma 5. For every PPT adversary A there is a PPT algorithm B such that Pr[G2(A)] ≤ Q∆ ·
AdvHomUF-CMA

MKHSig′,B (λ), where Q∆ is the number of distinct datasets queried by A.

The intuition of the proof of Lemma 5 is the following: since Game 2 rules out all Type 1 forgeries,
the only way in which A can win Game 2 is to produce a forgery on a single, previously queried
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dataset. In this case we will reduce the security of Game 2 to the standard security game of the
single-dataset multi-key homomorphic signature.

We have already noticed that G2(A) happens if and only if A produces a Type 2 or Type 3
forgery against the multi-dataset multi-client homomorphic signature scheme, where the pseudo
random function F is replaced by a random function R. The latter change assures that for every
new queried dataset the fresh generated keys for the MKHSig′ scheme (obtained from KeyGen2)
have the same distribution as the keys generated in the standard security game of MKHSig′.

In what follows we show that every Type 2 or Type 3 forgery produced by A in Game 2 can
be used by an adversary B to win the security game for the single dataset scheme MKHSig′ with a
forgery of the same type for one of the Q∆ instances of the single-dataset MKHSig′ scheme that were
generated during Game 2. Fix a dataset ∆̄∗ and let it be the k-th dataset queried by A in Game 2.
The adversary B proceeds as follows. It samples a random index k∗ ←$ [Q∆] (which represents its
guess for k), and then simulates Game 2 to A by choosing the keys of the MKHSig′ on its own for
all datasets k 6= k∗, whereas for the k∗-th dataset B does the simulation forwarding the queries to
its challenger.

Let (P∗, ∆∗,m∗, σ∗) be a valid Type 2 (resp. Type 3) forgery returned by A where σ∗ =
(I∗, σ′, par∆∗). If ∆∗ is not the k∗-th queried dataset, B aborts. Otherwise, ∆∗ is the k∗-th queried
dataset, i.e. ∆∗ = ∆̄∗, and the second entry of σ∗ = (I∗, σ′, par∆̄∗) satisfies Ver′(P∗, ∆̄∗,m∗, σ′) = 1.
The last equations implies that (P∗, ∆̄∗,m∗, σ′) is a valid Type 2 (resp. Type 3) forgery against the
MKHSig′ scheme.

To conclude, we notice that if Pr[G2(A)] > ε, then B has at least ε/Q∆ advantage in breaking
the security of MKHSig′, where the factor 1/Q∆ = Pr[k = k∗] is the probability of B guessing
correctly the index k∗ of the database ∆∗ used in by A in the forgery.

Combining the results of the three lemmas above, we obtain the following bound:

Pr[G(A)] ≤ Qid ·AdvPRFF,D (λ) +Qid ·AdvUF-CMA
NH.Sig,F (λ) +Q∆ ·AdvHomUF-CMA

MKHSig′,B (λ)

which proves the statement of Theorem 2, since all the addends are negligible by assumption.

5 Our Multi-Key Homomorphic MAC from OWFs

In this section, we describe our construction of a multi-key homomorphic authenticator with private
verification keys and supporting the evaluation of low-degree arithmetic circuits. More precisely, for
a computation represented by an arithmetic circuit of degree d and involving inputs from n distinct
identities, the final authenticator has size

(
n+d
d

)
, that is bounded by poly(n) (for constant d) or by

poly(d) (for constant n). Essentially, the authenticators of our scheme grow with the degree of the
circuit and the number of distinct users involved in the computation, whereas their size remains
independent of the total number of inputs / users. This property is particularly desirable in contexts
that involve a small set of users each of which contributes with several inputs.

Although our multi-key homomorphic MAC supports less expressive computations than our
homomorphic signatures of Section 4, the scheme comes with two main benefits. First, it is based
on a simple, general assumption: it relies on pseudo-random functions and thus is secure only
assuming existence of one-way functions (OWF). Second, the scheme is very intuitive and efficient:
fresh MACs essentially consist only of two Fp field elements (where p is a prime of λ bits) and

an identity identifier; after evaluation, the authenticators consist of
(
n+d
d

)
elements in Fp, and
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homomorphic operations are simply additions and multiplications in the multi-variate polynomial
ring Fp[X1, . . . , Xn].

We describe the five algorithms of our scheme MKHMac below. We note that our solution is
presented for single data set only. However, since it admits labels that are arbitrarily long strings it
is straight-forward to extend the scheme for handling multiple data sets: simply redefine each tag
τ as consisting of two substrings τ = (∆, τ ′) where ∆ is the dataset name and τ ′ the actual tag.

Setup(1λ). The setup algorithm generates a λ-bit prime p and let the message space be M := Fp.
The set of identities is ID = [C] for some integer bound C ∈ N, while the tag space consists of
arbitrary binary strings, i.e., T = {0, 1}∗. The set F of admissible functions is made up of all
arithmetic circuits whose degree d is bounded by some polynomial in the security parameter. The
setup algorithm outputs the public parameters pp which include the descriptions ofM, ID, T ,F
as in Section 3, as well as the description of a PRF family F : K×{0, 1}∗ → Fp with seed space
K. The public parameters define also the authenticator space. Each authenticator σ consists
of a pair (I, y) where I ⊆ ID and y is in the C-variate polynomial ring Fp[X1, . . . , XC]. More
precisely, if C is set up as a very large number (e.g., C = 2λ) the polynomials y can still live in
some smaller sub-rings of Fp[X1, . . . , XC].

KeyGen(pp). The key generation algorithm picks a random x ←$ F∗p, a PRF seed K ←$ K, and
outputs (sk, ek, vk) where sk = vk = (x,K) and ek is void.

Auth(sk, `,m). In order to authenticate the message m with label ` = (id, τ) ∈ ID × T , the au-
thentication algorithm produces an authenticator σ = (I, y) where I ⊆ ID and y ∈ Fp[Xid] ⊂
Fp[X1, . . . , XC]. The set I is simply {id}. The polynomial y is a degree-1 polynomial in the
variable Xid such that y(0) = m and y(xid) = F (Kid, `). Note that the coefficients of y(Xid) =
y0 + yidXid ∈ Fp[Xid] can be efficiently computed with the knowledge of xid by setting y0 = m

and yid = F (Kid,`)−m
xid

. Moreover, y can be compactly represented by only giving the coefficients
y0, yid ∈ Fp.

Eval(f, {σk}k∈[t]). Given a t-input arithmetic circuit f : Ftp → Fp, and the t authenticators {σk :=
(Ik, yk)}k, the evaluation algorithm outputs σ = (I, y) obtained in the following way. First, it
determines all the identities involved in the computation by setting I = ∪tk=1Ik. Then every
polynomial yk is “expanded” into a polynomial ŷk, defined on the variables Xid corresponding
to all the identities in I. This is done using the canonical embedding Fp[Xid : id ∈ Ik] ↪→ Fp[Xid :
id ∈ I]. It is worth noticing that the terms of ŷk that depend on variables in Ir Ik have coefficient
0. Next, let f̂ : Fp[Xid : id ∈ I]t → Fp[Xid : id ∈ I] be the arithmetic circuit corresponding to

the given f , i.e., f̂ is the same as f except that additions (resp. multiplications) in Fp are
replaced by additions (resp. multiplications) over the polynomial ring Fp[Xid : id ∈ I]. Finally, y

is obtained as y = f̂(ŷ1, . . . , ŷt).

Ver(P, {vkid}id∈P ,m, σ). Let P = (f, `1, . . . , `t) be a labeled program where f is a degree-d arith-
metic circuit and every label is of the form `k = (idk, τk). Let σ = (I, y) where I = {īd1, . . . , īdn}
with īdi 6= īdj for i 6= j. The verification algorithm outputs 1 (accept) if and only if the authen-
ticator satisfies the following three checks. Otherwise it outputs 0 (reject).

{īd1, . . . , īdn} = {id : id ∈ P}, (5)

y(0, . . . , 0) = m , (6)

y(xīd1 , . . . , xīdn) = f(F (Kid1 , `1), . . . , F (Kidt , `t)) . (7)
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In the following sections we discuss the efficiency and succinctness of our MKHMac (Section 5.1)
and prove the correctness of our scheme (Section 5.2). Section 5 is devoted to the security analysis
of the proposed MKHMac scheme.

5.1 Efficiency and Succinctness

Below we discuss the efficiency and the succinctness of our multi-key HA scheme. We focus first
on succinctness and later we discuss the cost of running Eval on our authenticators (the cost of the
other algorithms can be easily extracted from their description).

Succinctness. Let us consider the case of an authenticator σ which was obtained after running
Eval on a circuit of degree d and taking inputs from n distinct identities. Note that every σ consists
of two elements: a set I ⊆ [C] and a polynomial y ∈ Fp[Xīd : īd ∈ I].

For the set I, it is easy to see that |I| = n and I can be represented with n logC bits. The other part
of the authenticator, y, is instead an n-variate polynomial in Fp[Xīd1 , . . . , Xīdn ] of degree d. Since

the circuit degree is d, the maximum number of coefficients of y is
(
n+d
d

)
. More precisely, the total

size of y depends on the particular representation of the multi-variate polynomial y which is chosen
for implementation. In the Appendix B we discuss some possible representations (further details
can also be found in [38]). For example, when employing the sparse representation of polynomials,
the size of y is bounded by O(nt log d) where t is the number of non-zero coefficients in y (note that
in the worst case, a polynomial y ∈ Fp[Xīd1 , . . . , Xīdn ] of degree d has at most t =

(
n+d
d

)
non-zero

coefficients). Thus, setting logC ≈ log p ≈ λ, we have that the size in bits of the authenticator σ is
|σ| ≤ λn+λ

(
n+d
d

)
. Ignoring the security parameter, we have that |σ| = poly(n) when d is constant,

or |σ| = poly(d) when n is constant.

Efficiency of Eval. In what follows, we discuss the cost of computing additions and multi-
plications over authenticators in our MKHMac scheme. Let σ(i) = (I(i), y(i)), for i = 1, 2 be two
authenticators and consider the operation σ = Eval(g, σ(1), σ(2)) where g is a fan-in-2 addition
or multiplication gate. In both cases the set I of identities of σ = (I, y) is obtained as the union
I = I(1) ∪ I(2) that can be computed in time O(n), where n = |I|, assuming the sets I(1), I(2) are
ordered. Regarding the computation of y from y(1) and y(2), one has to first embed each yi into the
ring Fp[Xīd : īd ∈ I], and then evaluate addition (resp. multiplication) over Fp[Xīd : īd ∈ I]. Again,
the costs of these operations depend on the adopted representation [38,23].

Using the sparse representation of polynomials, expanding a y having t non-zero coefficients
into an n-variate polynomial ŷ requires time at most O(tn). To give an idea, such expansion indeed
consists simply into inserting zeros in the correct positions of the exponent vectors of every non-zero
monomial term of y. On the other hand, the complexity of operations (additions and multiplications)
on polynomials using the sparse representation is usually estimated in terms of the number of
monomial comparisons. The cost of such comparisons depends on the specific monomial ordering
chosen, but is usually O(n log d), where n is the total number of variables and d is the maximum
degree. Given two polynomials in sparse representation having t1 and t2 non-zero terms respectively,
addition costs about O(t1t2) monomial comparisons (if the monomial terms are stored in sorted
order the cost of addition drops to O(t1 + t2) ), while multiplication requires to add (merge)
t2 intermediate products of t1 terms each, and can be performed with O(t1t2 log t2) monomial
comparisons [23].
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5.2 Correctness

In what follows we discuss the correctness of the proposed MKHMac.
By construction, each fresh authenticator σ = (I, y) of a message m labeled by ` := (id, τ) is of the

form I = {id} and y(Xid) := y0 + yidXid = m + F (Kid,`)−m
xid

Xid. Thus the set I satisfies equation (5)
since {id : id ∈ I`} = {id}. The two last verification checks (6) and (7) are automatically granted

for the identity program I` because y(0) = y0 = m and y(xid) = m + F (Kid,`)−m
xid

xid = F (Kid, `).

Evaluation Correctness. The correctness of the Eval algorithm essentially comes from the
structure of the multi-variate polynomial ring. Nevertheless, we will prove the evaluation correct-
ness property for generic fan-in-2 addition and multiplication gates (by associativity, this is the
inductive step to prove evaluation correctness for any circuit f).

For i = 1, 2, let (Pi,mi, σ
(i)) be a triple such that Ver(Pi, {vkid}id∈Pi ,mi, σ

(i)) = 1, where Pi =

(fi, `
(i)
1 , . . . , `

(i)
ti

). We need to show that for every fan-in-2 gate g we have Ver(P, {vkid}id∈P ,m, σ) = 1

where P = g(P1,P2), m = g(m1,m2) and σ = Eval(g, σ(1), σ(2)).

To see this, let us further expand on the meaning of assuming that Ver(Pi, {vkid}id∈Pi ,mi,

σ(i)) = 1. For every i = 1, 2 let I(i) = {īd(i)
1 , . . . , īd

(i)
ni } where all identities are distinct. Then

verification means that the following equations hold:

{īd(i)
1 , . . . , īd

(i)
ni } = {id : id ∈ Pi} (8)

y(i)(0, . . . , 0) = mi (9)

y(i)(īd
(i)
1 , . . . , īd

(i)
ni ) = fi(F (K

id
(i)
1

, `
(i)
1 ), . . . , F (K

id
(i)
ti

, `
(i)
ti

)) (10)

Let I = I(1) ∪ I(2), it is trivial to check that equation (5) of the verification holds for I and P =
g(P1,P2) since

I = I(1) ∪ I(2) = {id : id ∈ P1} ∪ {id : id ∈ P1} = {id : id ∈ P} ,

where the second equality derives from (8).

Let I = {īd1, . . . , īdn}, denote by ŷ(i) the n-variate polynomial obtained from y(i) after the
expansion process described in Eval. We need to prove that if equations (6) and (7) hold true for
y(i) they also for its expansion ŷ(i) (with respect to the same labeled program Pi). Equation (9) and
the fact that the expansion process does not affect the constant term of the polynomial trivially

imply that ŷ(i)(0) = mi; whereas ŷ(i)(x
īd

(i)
1

, . . . , x
īd

(i)
ni

) = y(x
īd

(i) , id ∈ I(i)) = fi(F (K
id

(i)
1

, `
(i)
1 ), . . . ,

F (K
id

(i)
ti

, `
(i)
ti

)) holds because the polynomial expansion in Eval sets to 0 the coefficients of all terms

that depend on the new variables.

Consider the n-variate polynomial y = g(ŷ(1), ŷ(2)), where g is a generic gate. It is left to show
that that y verifies (6) and (7). In what follows we prove correctness for a fan-in-2 addition gate;
the case of a fan-in-2 multiplication gate is analogous to this one. Check (6) is straightforward since
y(0, . . . , 0) = ŷ(1)(0, . . . , 0) + ŷ(2)(0, . . . , 0) = m1 + m2 = m holds because of equation (9) and the
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property of addition over the polynomial ring Fp[Xid : id ∈ I]. For check (7) we have:

y(xīd1 , . . . , xīdn) = ŷ(1)(x
īd

(1)
1

, . . . , x
īd

(1)
n1

) + ŷ(2)(x
īd

(2)
1

, . . . , x
īd

(2)
n2

)

= y(1)(x
(1)

īd
(1)
1

, . . . , x
(1)

īd
(1)
n1

) + y(2)(x
(2)

īd
(2)
1

, . . . , x
(2)

īd
(2)
n2

)

= f1(F (K
id

(1)
1

, `
(1)
1 ), . . . , F (K

id
(1)
t1

, `
(1)
t1

)) + f2(F (K
id

(2)
1

, `
(2)
1 ), . . . , F (K

id
(2)
t2

, `
(2)
t2

))

= f(F (Kid1 , `1), . . . , F (Kidt , `t))

where the first equality follows by construction of y and by the property of addition over Fp[Xid :
id ∈ ID]. The second equality is derived by the definition of polynomial expansion. The third equality
follows immediately from equation (10), while the last one holds by the composition property of
labeled programs, i.e., P = g(P1,P2).

Security. In what follows we prove the security of our scheme against adversaries that make
static corruptions, and produce forgeries according to the following restrictions.

Definition 8 (Weak Forgery). Consider an execution of the experiment described in Section
3, HomUF-CMAA,MKHAut(λ) where (P∗, ∆∗,m∗, σ∗) is the tuple returned by the adversary at the
end of the experiment, with P∗ = (f∗, `∗1, . . . , `

∗
t ), ∆

∗ a dataset identifier, m∗ ∈ M and σ∗ an
authenticator. First, we say that the labeled program P∗ is well-defined on a list L if either one of
the following two cases occurs:

1. There exists i ∈ [t] such that (`∗i , ·) /∈ L (i.e., A never made a query with label `∗i ), and
f∗({mj}(`j ,mj)∈L ∪ {m̃j}(`j ,·)/∈L) outputs the same value for all possible choices of m̃j ∈M;

2. L contains the tuples (`∗1,m1), . . . , (`∗t ,mt), for some messages m1, . . . ,mt.

Then we say that (P∗, ∆∗,m∗, σ∗) is a weak forgery if Ver(P∗, ∆∗, {vkid}id∈P∗ ,m∗, σ∗) = 1 and
either one of the following conditions is satisfied:

Type 1: L∆∗ was not initialized during the game (i.e., ∆∗ was never queried).
Type 2: P∗ is well-defined on L∆∗ but m∗ 6= f∗({mj}(`j ,mj)∈L∆∗ ∪ {0}`j /∈L∆∗ ) (i.e., m∗ is not the

correct output of P∗ when executed over previously authenticated messages).
Type 3: P∗ is not well-defined on L∆∗.

Although Definition 8 is weaker than our Definition 4, we stress that the above definition still
protects the verifier from adversaries that try to cheat on the output of a computation. In more
details, the difference between Definition 8 and Definition 4 is the following: if f∗ has an input wire
that has never been authenticated during the game (a Type 3 forgery in Definition 4), but f∗ is
constant with respect to such input wire, then the above definition does not consider it a forgery.
The intuitive reason why such a relaxed definition still makes sense is that “irrelevant” inputs
would not help in any case the adversary to cheat on the output of f∗. Definition 8 is essentially
the multi-key version of the forgery definition used in previous (single-key) homomorphic MAC
works, e.g., [11]. As discussed in [22] testing whether a program is well-defined may not be doable
in polynomial time in the most general case (i.e., every class of functions). However, in [12] it is
shown how this can be done efficiently via a probabilistic test in the case of arithmetic circuits of
degree d over a finite field of order p such that d/p < 1/2. Finally, we notice that for our MKHMac
Type 1 forgeries cannot occur as the scheme described here supports only one dataset.13

13 As noted at the beginning of the section the extension to multiple datasets is straightforward given that tags are
arbitrary strings. When such extension is applied it is easy to see that Type 1 forgeries are Type 3 ones in the
underlying scheme.
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Theorem 3. If F is a pseudo-random function then the multi-key homomorphic MAC described
in Section 5 is secure against adversaries that make static corruptions of keys and produce forgeries
as in Definition 8.

Note that we can deal with corruptions via our generic result of Proposition 1. Therefore it is
sufficient to prove the security against adversaries that make no corruptions. The proof is done
via a chain of games following this (intuitive) path. First, we rule out adversaries that make Type
3 forgeries. Intuitively, this can be done as the adversary has never seen one of the inputs of the
computation, and in particular an input which can change the result. Second, we replace every
PRF instance with a truly random function. Note that at this point the security of the scheme is
information theoretic. Third, we change the way to answer verification queries that are candidate
to be Type 2 forgeries. Finally, we observe that in this last game the adversary gains no information
on the secret keys xi and thus has negligible probability of making a Type 2 forgery. A more formal
description follows.

Let Game 0 be the security game between the adversary A and the challenger C described in
Section 3, where forgeries follow the Definition 8 given above, and there are no corruptions. We
define the following chain of hybrid games:

Game 1 This game proceeds as Game 0 except that the challenger answers with 0 (reject) all
those verification queries (P,m, y) that constitute a Type 3 forgery, i.e., such that they verify
correctly and P is not well-defined on the list L.

Game 2 This is the same as Game 1 except that every PRF instance F (Kid, ·) is replaced with a
truly random function Rid : {0, 1}∗ → Fp. Basically, for every label ` = (id, τ) used in the game,
while in Game 0 and Game 1 one generates the value r` as r` = F (Kid, `), in Game 2 the value
r` is taken uniformly at random in Fp.

Game 3 This is the same as Game 2 except that the challenger proceeds differently when an-
swering those verification queries (P,m, σ) such that P = (f, `1, . . . , `t) is well-defined on L. If
one equation between (5) and (6) of the verification algorithm is not satisfied the challenger
immediately answers with 0 (reject), without executing the check of equation (7). Otherwise,
if both equations (5) and (6) are satisfied, C proceeds as follows. For every j ∈ [t] such that
(`j , ·) /∈ L, C generates a “dummy” polynomial yj ∈ Fp[Xid : id ∈ `j ] (e.g., taking its two coef-
ficients randomly), whereas for all i ∈ [t] such that (`i,mi) ∈ L, C fetches the authenticators yi
generated previously during the authentication queries phase of the game. The challenger then
computes Eval(f, σ1, . . . , σt) to obtain the output σ̂ = (̂I, ŷ), and answers the verification query
as follows:
– If y = ŷ (over Fp[Xīd : īd ∈ I = Î]), output 1 (accept);
– If y 6= ŷ, compute the polynomial z = y − ŷ ∈ Fp[Xīd : īd ∈ I] and output 1 (accept) if
z(xīd1 , . . . , xīdn) = 0 mod p, and 0 (reject) otherwise.

Note that rejecting immediately queries that do not satisfy equations (5) or (6) does not change
the outcome of the verification queries, and thus does not affect the distribution of the game.
This change is introduced only to ease the security analysis of the game. Intuitively, this kind
of queries can be immediately rejected without using any secret; in other words, the outcome of
these queries reveals zero information about the secret keys. Also the second change does not
affect the distribution of Game 3 compared to Game 2. This is slightly trickier to observe and
is addressed in Lemma 8.

Let Gi(A) denote the event that Game i, executed with adversary A, outputs 1. The proof of The-
orem 3 is obtained by showing that any PPT adversary has negligible probability of distinguishing
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between every consecutive pair of games, as well as it has negligible probability of winning in Game
3. This is proven in the following lemmas:

Lemma 6. For every PPT A there is a PPT B such that |Pr[G0(A)]−Pr[G1(A)]| ≤ QVer(Pr[G1(B)]+
d/p) where QVer is the number of verification queries made by A.

Proof. The only case in which Game 0 and Game 1 differ is when the adversary A makes a verifi-
cation query that is a valid Type 3 forgery. Let us call this event Bad, and note that |Pr[G0(A)]−
Pr[G1(A)]| = Pr[G0(A)∧Bad]. In what follows we bound this probability by showing that for every
adversary A that wins in Game 0 by returning a Type 3 forgery there is an adversary B that,
in the same game, produces a Type 2 forgery with all but negligible probability. The proof is an
adaptation to the multi-key setting of Proposition 2 in [12]. For completeness we give the proof.

For every A we construct B as follows. First of all, B chooses randomly an index j∗ ←$ [QVer]
as a guess that A will make a Type 3 forgery in the j∗-th verification query. Next, B runs A and
answers its queries as follows: B forwards to its challenger all the authentication queries of A, and
all verification queries (P,m, σ) such that P is well-defined on the list L. The j-th verification query
where P is not well-defined is answered with 0 (reject) if j 6= j∗. Otherwise, if j = j∗ B does the
following. Parse P = (f, `1, . . . , `t); for all i ∈ [t] such that (`i,mi) ∈ L, B fetches the message mi

from the list and set m̃i = mi, and for all i ∈ [t] such that (`i, ·) /∈ L, B chooses random messages
m̃i ←$ Fp. Then B computes m̃ = f(m̃1, . . . , m̃t) and tests if m̃ = m. If this is the case then B aborts.
Otherwise, for all i ∈ [t] such that (`i, ·) /∈ L, B queries (`i, m̃i) to its challenger, and finally returns
(P,m, σ) as its forgery.

To complete the proof, we first observe that Pr[m̃ = m] = d/p over the random choices of
m̃i ←$ Fp by the Schwartz-Zippel lemma [37,39], since f is not well defined and assuming that
d is a bound on f ’s degree. Then since p is taken > 2λ and d = poly(λ) it holds that d/p is
negligible. Finally, if B does not abort, A returns a Type 3 forgery and the guess on j∗ is correct,
it is easy to see that the forgery returned by B is of Type 2, i.e, B would win in Game 1. Therefore
Pr[G1(B)] > Pr[G0(A) ∧ Bad]/QVer − d/p, which concludes the proof. ut

Lemma 7. For every PPT A there is a PPT D such that |Pr[G1(A)] − Pr[G2(A)]| ≤ Qid ·
AdvPRFF,D (λ), where Qid is the number of distinct identities queried by A through both authenti-
cation and verification queries.

The proof is rather simple and we only give an intuition on how it works. Given that the difference
between Game 1 and Game 2 is solely in the generation of the values r`; the probability of A winning
is the same in the two games, a part from an additive factor that comes from distinguishing the PRF
instance F (Kid, ·) from a truly random function. Since there are at most Qid distinct PRF instances
that are used in the game, by a fairly standard hybrid argument we have that the difference between
the two games is bound by Qid ·AdvPRFF,D (λ) factor.

Lemma 8. For every PPT A we have Pr[G2(A)] = Pr[G3(A)].

Proof. To prove the lemma we show that the outcome of every verification query made by A is
the same in both Game 2 and Game 3. Let us consider only those queries for which the change
mentioned in Game 3 applies, i.e., those in which P is well-defined on L.

As already pointed out in the description of Game 3, rejecting immediately queries that do not
satisfy equations (5) or (6) does not introduce any change to the outcome of the game.
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As before, let I = {īd1, . . . , īdn} and Î = {îd1, . . . , îdn̂}. Consider queries that satisfy equations
(5) and (6). By correctness of the scheme, the authenticating polynomial ŷ computed by C verifies
correctly for P. This in particular means that the following equation holds ŷ(xîd1 , . . . , xîdn̂) =
f(F (Kid1 , `1), . . . , F (Kidt , `t)) . Since checking equation (7) for y means checking y(xīd1 , . . . , xīdn) =

f(F (Kid1 , `1), . . . , F (Kidt , `t)) and by hypothesis y satisfies (5), i.e. Î = I, it is easy to see that
z(xīd1 , . . . , xīdn) = 0 is an equivalent check as z = y − ŷ.

Lemma 9. For every PPT A we have Pr[G3(A)] ≤ QVer · dp , where QVer is the number of verification
queries made by A and d the (maximal) degree of the arithmetic circuits queried by A in verification.

Proof. In order to prove Lemma 9 we define a sequence of hybrid games departing from Game 3,
that we call Game (3, 0), . . . , Game (3, QVer), where QVer denotes the total number of verification
queries performed by the adversary. For i = 0 to QVer, define Game (3, i) as Game 3 except
that the first i verification queries that are candidate to be Type 2 forgeries (i.e., they satisfy all
Type 2 requirements except that verification accepts) are answered with 0, whereas the remaining
(QVer − i) queries are answered as stated in Game 3. Clearly, Game (3, 0) is identical to Game 3,
i.e., Pr[G3(A)] = Pr[G(3,0)(A)], while

Pr[G(3,QVer)(A)] = 0 (11)

since in Game (3, QVer) the challenger replies 0 to any verification query.
To proceed with the proof we analyze the difference between each consecutive pair of games. For
every i ∈ [QVer], the only case in which Game (3, i) may differ from Game (3, i − 1) is in the i-th
verification query. Let Bad be the event in which the i-th verification query submitted by A is a
valid Type 2 forgery; then |Pr[G(3,i−1)(A)] − Pr[G(3,i)(A)]| ≤ Pr[Bad]. In what follows we bound
the probability that Bad happens.

Notice that Bad occurs in those verification queries (P,m, σ) with σ = (I, y) that satisfy the
Type 2 requirements, pass the verification equations (5) and (6), and for which (a) y 6= ŷ and (b)
z(xīd1 , . . . , xīdn) = y(xīd1 , . . . , xīdn) − ŷ(xīd1 , . . . , xīdn) = 0 mod p, where I = Î = {īd1, . . . , īdn}. It
is easy to see that condition (a) is immediately implied by the fact that the query is a Type 2
candidate. Indeed, if y = ŷ then the query would be accepted and could not be a Type 2 forgery.
To see this, let m̂ = f({mj}(`j ,mj)∈L∆ ∪ {0}`j /∈L∆∗ ). By definition of Type 2 forgery m 6= m̂ and by
correctness of the scheme ŷ0 = m̂. Hence, combining the previous two equations with (6) we get
y0 = m 6= m̂ = ŷ0 which implies y 6= ŷ.

Now, we claim that in an execution of Game (3, i), Pr[Bad] = Pr[z(xīd1 , . . . , xīdn) = 0] ≤ d
p .

If the values xid were randomly selected in Fp at the moment of Bad, the bound follows imme-
diately from the Schwartz-Zippel Lemma [37,39], using that z is a non-zero polynomial of degree
at most d. It remains to show that the xidj ’s can indeed be selected at the moment of Bad, and
to do this we show that prior to the happening of event Bad the adversary has no information
about xid, id ∈ I. First, we observe that every authentication query (` = (id, τ),m) does not reveal
information about xid: the only value of the authenticator σ which depends on xid is the degree-1
coefficient of the authenticator y given in reply to the query; however this coefficient is uniformly
distributed in Fp due to randomness of r`. Second, all the previous i − 1 verification queries in
Game (3, i) are answered without the use of any secret xid, id ∈ [C]: they are either answered
without checking condition (b), or are directly rejected (without evaluating (b)) as per definition of
Game (3, i). This means that prior to submitting the i-th Type 2 verification query, the adversary
has gained no information about the xid, id ∈ [C], and thus about the secret xid, id ∈ I. Hence,
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Pr[Bad] = d
p , which implies that for every i ∈ [QVer] it holds that |Pr[G3,i−1(A)]−Pr[G3,i(A)]| ≤ d

p .
By summing up for all the QVer hybrids we get

|Pr[G3(A)]− Pr[G(3,QVer)(A)]| ≤ QVer ·
d

p
.

By also considering equation (11) the above formula gives the bound stated in Lemma 9.

Combining the results of the lemmas we obtain that for every PPT A,

AdvHomUF-CMA
MKHAut,A (λ) ≤ (QVer + 1) ·Qid ·AdvPRFF,D (λ) +

(Q2
Ver + 2 ·QVer) · d

p

which proves Theorem 3.

6 Conclusions

In this paper, we introduced the concept of multi-key homomorphic authenticators, a cryptographic
primitive that enables an untrusted third party to execute a function f on data authenticated using
different secret keys in order to obtain a value certifying the correctness of f ’s result, which can
be checked with knowledge of corresponding verification keys. In addition to providing suitable
definitions, we also propose two constructions: one which is publicly verifiable and supports general
boolean circuits, and a second one that is secretly verifiable and supports low-degree arithmetic
circuits.

Although our work does not address directly the problem of privacy, we note that extensions
of our results along this direction are possible, and we leave the details to future investigation. A
first extension is defining a notion of context-hiding for multi-key HAs. Similarly to the single key
setting, this property should guarantee that authenticators do not reveal non-trivial information
about the computation’s inputs. The second extension has to do with preventing the Cloud from
learning the data over which it computes. In this case, we note that multi-key HAs can be executed
on top of homomorphic encryption following an approach similar to that suggested in [21]. Finally,
an interesting problem left open by our work is to find multi-key HA schemes where authenticators
have size independent of the number of users involved in the computation.
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A Generic Transformations from Weak to Adaptive Security

In this section we present two generic transformations that turn weakly secure multi-key HA schemes
into adaptive secure ones.

Our first transformation holds in the standard model and works for schemes in which the size
of the tag space T is at most polynomial in the security parameter. The second transformation
avoids the limitation on the size of the tag space (i.e., it works for schemes that can handle tags
that are binary strings of virtually arbitrary length), but holds in the random oracle model. Both
transformations rely on the notion of homomorphic trapdoor functions (HTDFs) introduced in [29].

In what follows, we first recall the notion of HTDFs and subsequently describe our transfor-
mations. Moreover it is straightforward to see that both transformations extend to the case of
multi-key homomorphic signatures.

Homomorphic Trapdoor Functions [29]. The concept of homomorphic trapdoor functions
was recently introduced by Gorbunov et al. in [29]. Intuitively, an homomorphic trapdoor function
f is defined by a public key pk which allows to compute v = fpk,x(u) on input u and index x. The
homomorphic property enables anyone with knowledge of triples {ui, xi, vi = fpk,xi(ui)}i∈[t] and a
t-input function g to generate values u∗, v∗ such that v∗ = fpk,g(x1,...,xt)(u

∗). More formally:
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Definition 9 (Homomorphic Trapdoor Functions [29]). An homomorphic trapdoor function
(HTDF) is a tuple of five PPT algorithms HTDF = (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout)
which are defined as follows:

HTDF.KeyGen(1λ). The key generation algorithm takes as input a security parameter λ and outputs
a key-pair (pk, sk). The public key implicitly defines the index space X , the input space U , the
output space V and some efficiently samplable input distribution DU over U . Testing membership
in the sets U ,V,X and sampling uniformly at random in V are required to be efficiently doable.

fpk,x(u). This is a deterministic function, indexed by pk and x ∈ X . It takes as input an element
u ∈ U and outputs an element v ∈ V. Note that the function f is not required to be injective.

Invsk,x(v). This is a probabilistic algorithm which is indexed by sk and x ∈ X . It takes as input an
element v ∈ V and outputs an element u ∈ U .

HTDF.Evalinpk(g, (x1, u1), . . . , (xt, ut)). The input evaluation algorithm takes as input a function g :
X t → X along with a collection of pairs {(xi, ui)}ti=1 ∈ X × U and outputs a value u∗ ∈ U .

HTDF.Evaloutpk (g, v1, . . . , vt). The output evaluation algorithm takes as input a function g : X t → X
and elements {vi}ti=1 ∈ V, and outputs a value v∗ ∈ V.

Additionally, an HTDF is required to satisfy the properties of correctness, distributional equivalence
of inversion and security, as described below.

Correctness of Evaluation Procedure. Let (pk, sk) ← HTDF.KeyGen(1λ), x1, . . . , xt ∈ X ,
g : X t → X and y = g(x1, . . . , xt). For all i ∈ [t], let ui ∈ U and vi ∈ V such that vi = fpk,xi(ui). If
u∗ := HTDF.Evalinpk(g, (x1, u1), . . . , (xt, ut)) and v∗ := HTDF.Evaloutpk (g, v1, . . . , vt)), then it must be
u∗ ∈ U and fpk,y(u

∗) = v∗.

Distributional Equivalence of Inversion. Let (pk, sk) ← HTDF.KeyGen(1λ), x ∈ X , u ←$
DU , v = fpk,x(u), v′ ←$ V and u′ ← Invsk,x(v′). Then, we require that

(pk, sk, x, u, v)
stat
≈ (pk, sk, x, u′, v′)

HTDF Security. For security, HTDFs are required to satisfy a property similar to claw-freeness.
Intuitively, it should be difficult for any adversary to come up with u, u′ ∈ U and x, x′ such that
x 6= x′ and fpk,x(u) = fpk,x′(u

′). More formally, for any PPT adversary A it holds

Pr

[
fpk,x(u) = fpk,x′(u

′)
u, u′ ∈ U , x, x′ ∈ X , x 6= x′

∣∣∣∣ (pk, sk)← HTDF.KeyGen(1λ)
(u, u′, x, x′)← A(1λ, pk)

]
≤ negl(λ).

Our Transformation for Polynomially-Large Tag Spaces. Before showing the trans-
formation in details, we provide a general intuition of the approach. First, we assume to start
with a weakly-secure multi-key HA scheme MKHAut′ and an homomorphic trapdoor function
HTDF. The idea of the transformation is that HTDFs are essentially homomorphic chameleon
hash functions. Hence, one can follow the standard hash-and-sign approach based on chameleon
hashes, which is known to provide a weak-to-adaptive security transformation for digital signa-
tures. To authenticate a message m with the new adaptive secure scheme MKHAut one chooses
u ←$ DU from the input distribution DU of F, computes v ← fpk,m(u) and finally authenticates
v using MKHAut′ thus obtaining an authenticator σ̄. The final authenticator is σ = (v, u, σ̄).
To homomorphically evaluate a function g : Mt → M over such authenticators one first com-
putes u∗ ← HTDF.Evalinpk(g, (m1, u1), . . . , (mt, ut)) and v∗ ← HTDF.Evaloutpk (g, v1, . . . , vt). Next, the
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idea is to use MKHAut′ to vouch for the correctness of v∗ as the output of a function g′(· · · ) =
HTDF.Evaloutpk (g, · · · ). Namely, one executes the homomorphic evaluation algorithm of MKHAut′

over {σ̄i}i∈t with function g′. In terms of security, the intuition is that in order to break the secu-
rity of the new scheme one has to either find a claw in the HTDF, or break the security of MKHAut′

to cheat on a false v′ 6= v∗. It is also worth observing that, due to the property of HTDFs, MKHAut′

is essentially used to authenticate data – v – that is random and independent of the real message
m.

We describe our transformation more formally below.

Our first transformation. Let F = (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout) be
an HTDF with index space X , input space U (with distribution DU ), and output space V. Let
MKHAut′ = (Setup′,KeyGen′,Auth′,Eval′,Ver′) be a (weakly-secure) multi-key homomorphic au-
thentication scheme. Without loss of generality, we will assume the message space of MKHAut′

to be V. We also assume that the tag space T of MKHAut′ is of polynomial size, i.e., T :=
|T | = poly(λ). Using these tools we construct an adaptive secure homomorphic authenticator
MKHAut = (Setup,KeyGen,Auth,Eval,Ver) with message space M = X . The scheme works as
follows:

Setup(1λ). Generate pp′ ← Setup′(1λ) and (pkh, skh) ← HTDF.KeyGen(1λ), and output pp =
(pp′, pkh).

KeyGen(pp). Generate (sk′, ek′, vk′)← KeyGen′(pp′), and output sk = sk′, ek = ek′, and vk = vk′.
Auth(sk, ∆, `,m). Sample u←$ DU , compute v = fpkh,m(u), and finally compute σ̄ ← Auth′(sk′, ∆, `, v)

and output σ := (v, u,m, σ̄).
Eval(g, {σi,EKSi}i∈[t]). Given the function g : Mt → M, we define a corresponding function

g′ : Vt → V as g′(v1, . . . , vt) = HTDF.Evaloutpkh
(g, v1, . . . , vt). For all i ∈ [t], parse every authen-

ticator σi = (vi, ui,mi, σ̄i). Then, the evaluation algorithm computes m = g(m1, . . . ,mt), v ←
HTDF.Evaloutpkh

(g, v1, . . . , vt), u← HTDF.Evalinpkh(g, (m1, u1), . . . , (mt, ut)) and σ̄←Eval′(g′, {σ̄i,EKSi)}ti=1).
Finally it outputs σ = (v, u,m, σ̄).

Ver(P := (g, `1, . . . , `t), ∆, {vkid}id∈P ′ ,m, σ). Parse σ := (v, u,m, σ̄), and output 1 if both fpkh,m(u) =
v and Ver′(P ′ := (g′, `1, . . . , `t), ∆, {vkid}id∈P , v, σ̄) = 1 hold. Otherwise output 0.

It is easy to see that the correctness of MKHAut follows from the correctness of both MKHAut′

and the HTDFF.

Theorem 4. If F is a secure HTDF, MKHAut′ is a weakly secure multi-key homomorphic authen-
ticator whose tag space T is such that |T | = poly(λ), then the scheme MKHAut defined above is an
adaptively secure multi-key homomorphic authenticator.

The proof proceeds by contradiction. Namely, assuming the existence of an adversary A which
breaks the adaptive security of MKHAut we show that one can break either the security of the
HTDF or the weak security of MKHAut′. To see this, let A be an adversary that wins in the adaptive
security game described in Definition 3, and let (P∗ := (g∗, `∗1, . . . , `

∗
t ), ∆

∗,m∗, σ∗ := (v∗, u∗,m∗, σ̄∗))
be its forgery. We observe that σ∗ can be of either one of the following types:

Type 1. As per Definition 3, the list L∆∗ has never been initialized during the game.
Type 2. ∀i ∈ [t] we have (`∗i ,mi) ∈ L∆∗ , but m∗ 6= g∗(m1, . . . ,mt). If we let {σi ← Auth(sk, ∆∗,

`∗i ,mi)}i∈[t] be the authenticators given to A during the game, and let σ̂ := (v̂, û, m̂, ˆ̄σ) ←
Eval(g∗, {σi,EKSi}i∈[t]), m := g∗(m1, . . . ,mt). There are two sub-cases which can occur: either
(a) v∗ 6= v̂, or (b) v∗ = v̂.
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Type 3. As per Definition 3, there exists a label `∗ such that (`∗, ·) /∈ L∆∗ .

We show that for every A producing forgeries of Type 1, 2.(a) or 3 there exists an adversary
that breaks the weak security of MKHAut′, whereas for every A producing a forgery of type 2.(b)
it is possible to break the security of F. More precisely, we provide a detailed reduction B which
exploits any Type 1 or Type 2.(a) forgery made by A to break the security of the MKHAut′ scheme.
We then notice that a similar reduction B′ holds for Type 3 forgeries. Theorem 4 is proven by
combining the results of Lemmas 10, 11 and 12 given below.

In the following, we set Q = poly(λ) to be the total number of queries made by A, similarly
Qid, QT , Q∆ will be respectively the number of distinct identities, tags and datasets queried by A
during the authentication-query phase (note that Qid, QT , Q∆ ≤ Q).

Lemma 10. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 1 (respectively Type 2.(a)) forgery, then it is possible to build an
adversary B that has advantage ε against the weak security of MKHAut′ by producing a Type 1
(respectively Type 2) forgery.

Proof. We want here to build a reduction B, which uses a Type 1 or 2.(a) forgery by A to break
the security of MKHAut′. Let T := {τ1, . . . , τT} where T = poly(λ).

At the beginning B samples Qid ·T ·Q∆ elements {vij,k}i∈[Qid],j∈[T],k∈[Q∆] ←$ V and chooses a pair

of keys (pkh, skh) for F. Following the weak-security definition, B sends {(vij,k, τj)}(i,j,k)∈[Qid]×[T]×[Q∆]

to its challenger C and gets back the public parameters pp′ of MKHAut′. Next, B sets pp = (pp′, pkh),
and gives pp to A. Afterwards, A starts making authentication queries (∆, ` := (id, τ),m). For all
such queries, let ∆1, . . . ,∆Q∆ be all the distinct dataset names queried, in order, by A. Similarly,
let id1, . . . , idQid

be the distinct identities queried, in order, by A in the whole game.
To every authentication query (∆, ` := (id, τ),m) such that ∆ = ∆k (i.e., ∆ is the k-th queried

dataset), id = idi (i.e., id is the i-th queried identity) and τ = τj ∈ T , B answers as follows. First it
queries C with the pair (id, ∆) and obtains the authenticators {σ̄i1,k, . . . , σ̄iT,k} corresponding to the

values {vi1,k, . . . , viT,k}. If (id, ∆) were already queried to C, then B uses the values obtained earlier.

Second, B uses the inversion property of HTDFs in order to compute uij,k ← Invskh,m(vij,k), and

finally sends to A the authenticator σ := (vij,k, u
i
j,k,m, σ̄

i
j,k). By the distributional equivalence of

inversion property of HTDFs this simulation is statistically close to the real game. For what regards
verification queries, any of them from A is sent to the challenger and the answer is then sent back
to A itself. When A produces a forgery (P∗ := (g∗, `∗1, . . . , `

∗
t ), ∆

∗,m∗, σ∗ := (v∗, u∗,m∗, σ̄∗)) B
proceeds as follows:

Type 1. If this is the case, it is easy to see that (P ′ := ((g∗)′, `∗1, . . . , `
∗
t ), ∆

∗, v∗, σ̄∗) is a Type 1
forgery for MKHAut′.

Type 2.(a). Since in this case it holds v∗ 6= v̂, the tuple (P ′ := ((g∗)′, `∗1, . . . , `
∗
t ), ∆

∗, v∗, σ̄∗) is a
Type 2 forgery for MKHAut′.

Therefore, if A has non-negligible probability ε of coming up with a Type 1 or Type 2.(a) forgery,
then B has probability ε of coming up with a Type 1 or Type 2.(a) forgery against MKHAut′. ut

Lemma 11. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 3 forgery, then it is possible to build an adversary B′ that has non-
negligible advantage ε/(Qid · T · Q∆) against the weak security of MKHAut′ by producing a Type 3
forgery.
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Proof. The reduction B′ works similarly to the one in Lemma 10. The game starts with B′ sampling
Qid ·T ·Q∆ elements {{vij,k}i∈[Qid],j∈[T],k∈[Q∆]} ←$ V. Next B′ chooses a triple (̄i, j̄, k̄)←$ [Qid]× [T]×
[Q∆], and generates keys (pkh, skh) for the HTDF function F.

Next, B′ sends to its challenger C the values {(vij,k, τj)}(i,j,k)∈{[Qid]×[T]×[Q∆]}\(̄i,j̄,k̄). Basically, this
is the same as in the proof of Lemma 10 except that B′ does not send any value related to the
triple (̄i, j̄, k̄). Intuitively, this can be interpreted as B′ betting on the dataset ∆k̄ and the label
` = (idī, τj̄) over which the adversary A will make the Type 3 forgery.
B′ answers the queries of A exactly as in Lemma 10 except if A makes a query (∆, ` := (id, τ),m)

such that ∆ = ∆k̄, id = idī and τ = τj̄ . If this case occurs B′ aborts.
Let (P∗ := (g∗, `∗1, . . . , `

∗
t ), ∆

∗,m∗, σ∗ := (v∗, u∗,m∗, σ̄∗)) be A’s forgery, and following our
assumption let it be of Type 3. Namely there exists a label `∗ = (id∗, τ∗) ∈ {`∗1, . . . , `∗t } such
that (`∗, ·) /∈ L∆∗ . If ∆∗ 6= ∆k̄, or id∗ 6= idī or τ∗ 6= τj̄ then B′ aborts. Otherwise, it returns
(P ′ := ((g∗)′, `∗1, . . . , `

∗
t ), ∆

∗, v∗, σ̄∗) as a forgery for MKHAut′.
Let bad be the event that B′ aborts in the simulation. If bad does not happen B′ has the same

advantage as A in producing a Type 3 forgery.
Therefore, what is left to show is an estimation of Pr[¬bad]. However, it is not hard to see

that, before bad occurs, the random choice of (̄i, j̄, k̄)←$ [Qid]× [T]× [Q∆] is perfectly hidden to A.
Hence, we have that Pr[¬bad] = 1

Qid·T·Q∆ and thus B′ has advantage ε
Qid·T·Q∆ , that is non-negligible

as (Qid · T ·Q∆) = poly(λ). ut

Lemma 12. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 2.(b) forgery, then it is possible to build an adversary B′′ which
breaks the security of the HTDF F with non-negligible probability ε.

Proof. The algorithm B′′ takes as input a public key pkh of the homomorphic trapdoor function F,
and then starts simulating the adaptive security game to A by sampling all the secrets on its own
– i.e., B′′ runs Setup and KeyGen – and giving pp = (pp′, pkh) to A. It is easy to see that since B′′
has all the secret keys, it can perfectly simulate all queries to A.

Let (P∗ := (g∗, `∗1, . . . , `
∗
t ), ∆

∗,m∗, σ∗ := (v∗, u∗,m∗, σ̄∗)) be A’s forgery that, by the assump-
tion in this lemma, is of Type 2.(b). Namely, if we let {σi ← Auth(sk, ∆∗, `∗i ,mi)}i∈[t] be the
authenticators given to A in the experiment for dataset ∆∗ and labels `∗1, . . . , `

∗
t , and parse each

σi := (vi, ui,mi, σ̄i), it is the case that m∗ 6= m̂ and v∗ = v̂, where v̂ =← HTDF.Evaloutpkh
(g, v1, . . . , vt)

and m̂ = g(m1, . . . ,mt). Let û ← HTDF.Evalinpkh(g, (m1, u1), . . . , (mt, ut)) and note that by correct-
ness of the HTDF F we have that fpkh,m̂(û) = v̂ where m̂ = g(m1, . . . ,mt). Moreover, since the
forgery verifies correctly we also have fpkh,m∗(u

∗) = v∗.
One can see that B′′ has values û, u∗ ∈ U , m, m̂ ∈ X such that m 6= m̂ and fpkh,m∗(u

∗) =
fpkh,m̂(û), i.e., a tuple that breaks the security of the HTDF.

Therefore, if A has non-negligible advantage ε in producing a forgery of Type 2.(b), then B′′
has non-negligible probability ε of breaking the security of the HTDF. ut

Our Transformation for Arbitrary Tag Spaces. Here we present our second transformation
for converting a multi-key homomorphic signature from weak to adaptive security, now without
limitations on the size of the tag space. We present first the intuition behind this transformation,
the formal detailed description will follow. The transformation is quite similar to the previous one;
we assume again to start with a weakly-secure multi-key HA scheme MKHAut′ and an homomorphic
trapdoor function HTDF. In addition, however, we also use two hash functions H : {0, 1}∗ → {0, 1}n

38



and H′ : {0, 1}∗ → {0, 1}n′ that in the proof are modeled as random oracles. The first hash function
is used to hash the dataset identifiers, i.e., to compute H(∆) = ∆̂, whereas the second one is used to
obtain tags τ̂ = H′(∆̂, id, τ). This way the scheme MKHAut′ is required to support dataset identifiers
that are n-bits strings and tags that are n′-bits strings. Intuitively, modeling these hash functions
as random oracles “breaks” the adaptivity of the adversary on the choice of these values.

Our Transformation. Let F = (HTDF.KeyGen, f, Inv,HTDF.Evalin,HTDF.Evalout) be an HTDF
with index space X , input space U (with distribution DU ), and output space V. Let H : {0, 1}∗ →
{0, 1}n, H′ : {0, 1}∗ → {0, 1}n′ be two efficiently computable hash functions. Let MKHAut′ =
(Setup′,KeyGen′,Auth′,Eval′,Ver′) be a weakly-secure multi-key HA whose message space, without
loss of generality, is V. Moreover, MKHAut′ has tag space T ′ = {0, 1}n′ and it supports dataset
identifiers represented as binary strings of n bits. Using these tools we construct an adaptive
secure homomorphic authenticator MKHAut = (Setup,KeyGen,Auth,Eval,Ver) with message space
M = X , and tag space T = {0, 1}∗. The scheme works as follows:

Setup(1λ). Generate pp′ ← Setup′(1λ) and (pkh, skh) ← HTDF.KeyGen(1λ), choose two hash func-
tions H : {0, 1}∗ → {0, 1}n, H′ : {0, 1}∗ → {0, 1}n′ , and output pp = (pp′, pkh,H,H

′).

KeyGen(pp). Generate (sk′, ek′, vk′)← KeyGen′(pp′), and output sk = sk′, ek = ek′ and vk = vk′.

Auth(sk, ∆, `,m). Evaluate ∆̂ ← H(∆) and τ̂ ← H′(∆̂, (id, τ)) and set ˆ̀ = (id, τ̂). Sample u ←$ DU ,
compute v ← fpkh,m(u) and finally compute σ̄ ← Sign′(sk′, ∆̂, ˆ̀, v) and output σ := (v, u, σ̄).

Eval(g, {σi,Ki}i∈[t]). This algorithm is identical to the one of the previous transformation.

Ver(P := (g, `1, . . . , `t), ∆, {vkid}∈P ,m, σ). Evaluate ∆̂ = H(∆) and, for all i ∈ [t] compute τ̂i =
H′(∆̂, `i) and set ˆ̀

i = (idi, τ̂i). Parse σ = (v, u, σ̄) and output 1 if both fpkh,m(u) = v and

Ver′(P̂ := (g′, ˆ̀
1, . . . , ˆ̀

t), ∆̂, {vk′id}id∈P̂ , v, σ) = 1. Else output 0.

As for the previous transformation, the correctness of the scheme immediately follows from
correctness of MKHAut′, F, and the hash functions.

Theorem 5. If F is a secure HTDF, MKHAut′ is a weakly secure multi-key homomorphic authen-
ticator and the hash functions H and H′ are modeled as random oracles then the homomorphic
authenticator MKHAut defined above is adaptively secure in the random oracle model.

Proof. The analysis of the different kinds of forgeries is exactly the same as the one presented at the
beginning of the proof of Theorem 4. However, in the case of an arbitrary tag space the reduction
needs to be adapted since it is not possible to make a query for every element of the tag space
during the authentication-query phase (since the space now is exponentially large), contrarily to
what it did in the proof of Theorem 4. We bypass this problem moving to the random oracle model.

As we did for the polynomially bounded case, we show here that for every A producing forgeries
of type 1, 2.(a) or 3 there exists an adversary that breaks the weak security of MKHAut′, whereas
for every A producing a forgery of type 2.(b) it is possible to break the security of F. As before,
for what regards MKHAut′, we show how to build a reduction B which uses any Type 1 or Type
2.(a) forgeries made by A to break MKHAut′ and that a similar reduction B′ can do the same with
Type 3 forgeries.

In the following proofs, we again set Q = poly(λ) to be the total number of queries made by A
and Qid, QT , Q∆ to be respectively the number of distinct identities, tags and datasets which are
queried by A during the authentication-query phase.
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Lemma 13. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 1 (respectively Type 2.(a)) forgery, then it is possible to build an
adversary B that has advantage ε − Q/2n against the weak security of MKHAut′ by producing a
Type 1 (respectively Type 2) forgery.

Proof. We want to build a reduction B which uses a Type 1 or Type 2(a) forgery by A against
MKHAut to break the security of MKHAut′. We recall that Qid, Q∆, QT respectively are the number
of different identities, dataset and labels which are queried by A during the signing-query phase. For
any (i, k) ∈ [Qid] × [Q∆], B chooses random strings {τ̂ ij,k}j∈[QT ] ←$ {0, 1}n

′
and sets Ti,k := {τ̂ ij,k :

j ∈ [QT ]}; then, B samples Qid ·QT ·Q∆ elements {{vij,k}(i,j,k)∈[Qid]×[QT ]×[Q∆]} ←$ V. Moreover, the
reduction chooses a pair of keys (pkh, skh) for F.

Following the definition of weak-security, B sends {(vij,k, τ̂ ij,k)}(i,j,k)∈[Qid]×[QT ]×[Q∆] to the chal-
lenger C and gets back the public parameters pp′ of MKHAut. Next, B sets pp = (pp′, pkh,H,H

′),
sends pp to A and initialises a counter cnt = 0. When A starts making its queries, B answers as
described below.

First of all, let ∆1, . . . ,∆Q∆ be all the distinct dataset identifiers queried, in order, by A in
authentication queries; similarly, let id1, . . . , idQid

be the distinct identities queried, in order, by A
in authentication queries too.

For hash queries to H or H′, B prepares random strings ∆̂1, . . . , ∆̂Q∆ ←$ {0, 1}n and answer
queries as follows.

H(∆): If ∆ = ∆k, i.e., ∆ is the k-th distinct dataset identitifier queried in authentication, then B
answers with ∆̂k. Otherwise, B samples a random ∆̂←$ {0, 1}n and replies with ∆̂.

H′(∆̂, id, τ): If ∆̂ = ∆̂k (i.e., ∆̂ is the k-th one of theQ∆ random strings initially chosen) and id = idi
(i.e., id is the i-th distinct identity queried in authentication), then B increments cnt←cnt + 1
and replies with τ̂ icnt,k. Otherwise, if ∆̂ /∈ {∆̂1, . . . , ∆̂Q∆} or id /∈ {id1, . . . , idQid

}, then B replies

with a randomly chosen τ̂ ←$ {0, 1}n′ .

We define bad′ be the event for which A makes a hash query H′(∆̂, id, τ) such that ∆̂ = ∆̂k,
for some k, but ∆k was never returned earlier as output of H. It is straightforward to see that
Pr[bad′] ≤ Q/2n is negligible.

When A makes an authentication query of the form (∆, ` := (id, τ),m), B answers as follows.
First, makes the corresponding hash queries ∆̂ = H(∆) and τ̂ = H′(∆̂, (id, τ)), if not already done.
Then, notices that it must be ∆̂ = ∆̂k for some k ∈ [Q∆] and τ̂ = τ̂ ij,k, for some proper , i, j. Then

B can proceed as in the proof of Lemma 10 to compute uij,k and finally return σ̄ij,k. The remaining
part of the simulation proceeds the same as in Lemma 10. ut

Lemma 14. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 3 forgery, then it is possible to build an adversary B′ that has non-
negligible advantage ε/(Qid ·QT ·Q∆) −Q/2n against the weak security of MKHAut′ by producing
a Type 3 forgery.

Proof. The reduction B′ works similarly to the one in Lemma 11 except that B′ also simulates hash
queries as in Lemma 13.

The game starts with B′ sampling Qid · QT · Q∆ elements vij,k ←$ V and strings τ̂ ij,k ←$ {0, 1}n
′

uniformly at random for all i ∈ [Qid], j ∈ [QT ], k ∈ [Q∆]. Next B′ chooses a triple (̄i, j̄, k̄) ←$
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[Qid]× [QT ]× [Q∆], generates keys (pkh, skh) for the homomorphic trapdoor function F, and sends
to its challenger C the values {(vij,k, τ̂j)}(i,j,k)∈{[Qid]×[QT ]×[Q∆]}\(̄i,j̄,k̄). Basically, this is the same as

in the proof of Lemma 13 except that B′ does not send any value related to the triple (̄i, j̄, k̄).
Intuitively, this can be interpreted as B′ betting on the dataset ∆k̄ and the label ` = (idī, τj̄) over
which the adversary A will make the Type 3 forgery.
B′ answers the queries of A exactly as in Lemma 13 except if A makes a query (∆, ` := (id, τ),m)

such that H(∆) = ∆̂k̄, id = idī and H′(∆̂k, (id, τ)) = τ̂ ī
j̄,k̄

. If this case occurs B′ aborts.

The remaining part of the simulation is basically the same as that of Lemma 11. Namely, as long
as the guess of B′ is correct (which is the case with probability 1/(Qid ·QT ·Q∆)) and there is no
other bad event in the simulation of hash queries (which is the case with non-negligible probability
Q/2n as in Lemma 13), B′ can use A’s Type 3 forgery to output a Type 3 forgery for the weakly-
secure scheme. ut

Lemma 15. If A is an adversary that has non-negligible advantage ε against the security of
MKHAut by producing a Type 2.(b) forgery, then it is possible to build an adversary B′′ which
breaks the security of the HTDF F with non-negligible probability ε.

It is not hard to see that this case of the proof is basically identical to that in Lemma 12, and thus
we omit the proof.

B Polynomials Representations

In the sequel we adopt the multi-index notation for multivariate polynomials. We consider an
element f ∈ Fp[X1, . . . , Xn] as a finite sum of terms of the form c · Xe where c ∈ Fp r {0} is
a non-zero coefficient, e = (e1, . . . , en) ∈ Nn is an exponent vector and Xe is a shorthand for
Xe1

1 · · ·Xen
n .

Here we recall two main methods to represent multivariate polynomials: the completely dense
representation and the sparse representation. Both representations require an ordering on the set
of unknowns.

In the completely dense representation, a polynomial f ∈ Fp[X] = Fp[X1, . . . , Xn] is stored as a
(
∏n
i=1 di)-dimensional array with entries in Fp, such that the entry at index e = (e1, . . . , en) is the

coefficient of the term Xe in f . The completely dense representation allows constant-time access
to any coefficient of f , and using Kronecker substitution it is possible to easily apply all “fast”
methods known for dense univariate arithmetic.

The sparse representation (which corresponds to the default representation of polynomials in
most computer algebra systems) of a multivariate polynomial f ∈ Fp[X1, . . . , Xn] is a list of t
coefficient-exponent couples

(
(c1, e1), . . . , (ct, et)

)
∈ (Fp × Nn)t, where t denotes the total number

of distinct terms (monomials) in f . Setting d > maxdeg(f), the size of the sparse representation is
O(nt log d). The sparse representation is the most compact polynomial representation, however, its
small size entails higher operation costs. We recall the costs relevant to our scheme in Section 5.
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