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Abstract. Lindell, Nissim, and Orlandi (ASIACRYPT 2013) studied
feasibility and infeasibility of general two-party protocols that hide not
only the contents of the inputs of parties, but also some sizes of the inputs
and/or the output. In this paper, we extend their results to n-party
protocols for n ≥ 2, and prove that it is infeasible to securely compute
every function while hiding two or more (input or output) sizes. Then,
to circumvent the infeasibility, we naturally extend the communication
model in a way that any adversary can learn neither the contents of
the messages nor the numbers of bits exchanged among honest parties.
We note that such “size-hiding”computation is never a trivial problem
even by using our “size-hiding”channel, since size-hiding computation of
some function remains infeasible as we show in the text. Then, as our
main result, we give a necessary and sufficient condition for feasibility
of size-hiding computation of an arbitrary function, in terms of which of
the input and output sizes must be hidden from which of the n parties.
In particular, it is now possible to let each input/output size be hidden
from some parties, while the previous model only allows the size of at
most one input to be hidden. Our results are based on a security model
slightly stronger than the honest-but-curious model.

Keywords: Secure multiparty computation · Size-hiding

1 Introduction

Secure multiparty computation (MPC) protocols enable parties to compute a
function while hiding the contents of the inputs from each other. Goldreich,
Micali, and Wigderson [GMW87] first constructed a general MPC protocol in the
presence of semi-honest and malicious adversaries. Here, we say that a protocol
is general when it can securely compute every efficient function.

Most of the previous MPC protocols (implicitly) assume that the input sizes
of parties may be revealed. However, the input sizes may be confidential in some
settings. Let us consider the following situation: A police department has a list of
suspected terrorists and each company has its customers’ list. The police wants
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to know the intersection of the lists without revealing any information. However,
if we straightforwardly utilize the standard MPC, there is no guarantee that the
number of terrorists (i.e., input size) will be protected against companies, and
this might cause a serious problem since the number of terrorists is often sensitive
information. We may also consider the case where the police wants to hide the
number of terrorists in customers’ lists (i.e., output size) from companies. For
resolving these issues, we require MPC that hides input and output sizes. This
type of MPC is called size-hiding computation.

Currently, several size-hiding protocols have been proposed [MRK03,IP07,
ACT11,CV12], but these protocols can compute only specific functionalities such
as set intersection, homomorphic evaluation for branching programs, and data-
base commitments. In 2013, Lindell, Nissim, and Orlandi [LNO13] exhaustively
investigated feasibility and infeasibility of general size-hiding two-party proto-
cols. They showed that, when the output size is not hidden, every efficient func-
tion can be securely computed while hiding one size (i.e., the input size of one
party). Furthermore, they also proved that there is an efficient function that can-
not be securely computed while hiding two sizes (i.e., either the input sizes of
both parties, or the input size of one party and the output size). Recently, Chase,
Ostrovsky, and Visconti [COV15] further strengthened the feasibility result of
Lindell et al. by constructing a general size-hiding two-party protocol in the
presence of malicious adversaries while hiding the input size of one party. How-
ever, these existing works investigated only the two-party setting, and therefore,
feasibility and infeasibility of size-hiding n-party computation for n > 2 are still
not clear.

1.1 Our Results

In this paper, we study general size-hiding n(≥ 2)-party protocols in the presence
of static and semi-honest adversaries corrupting up to n−1 of the n parties. For
a technical reason, our semi-honest model is slightly stronger than the standard
honest-but-curious model. (See the last paragraph in this Section and Appendix.)
To clarify our results, we classify size-hiding computations as size-hiding classes
according to which of the input sizes and the output size must be hidden from
which of the n parties. We note that, as in the previous work on two-party
cases, we assume that every party wants to compute a common function. To
study generalized settings is a future research plan.

Our results in the secure channel model. We extend the two-party
results [LNO13] into multiparty settings in the secure channel model, in which
an adversary cannot learn the contents of messages exchanged among honest
parties, but may learn the number of bits of the messages. In the multiparty set-
ting, the inputs and the output sizes can be hidden from a subset1 of parties. See
Table 1 (part corresponding to secure channel) for a summary. As the feasibility
1 An input or the output size cannot be hidden from all parties because an input size

is known to the holding party and we assume that at least one party obtains the
output value.
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results, when at most one input size is hidden from some parties, every efficient
function can be securely computed (Lemma 3). The computation is also possible
when the output size is hidden from some parties but then the input sizes are
not hidden. On the other hand, when two or more sizes are hidden from some
parties, there exists a function that cannot be securely computed (Lemmas 4
and 5).

Table 1. Our results (Sects. 4 and 5)

◦ Secure channel model
# of hidden input sizes Output size Feasible?

Lemma 3 ≤ 1 known yes
Lemma 4 ≥ 2 known no
(Trivial) 0 hidden yes
Lemma 5 ≥ 1 hidden no
◦ Strong secure channel model

Condition for hidden sizes Output size Feasible?

Lemma 6 (A) known yes
Lemma 7 (A) known no
Lemma 8 (B) hidden yes
Lemma 9 (B) hidden no
(A) When all parties may learn the output size; for every pair
of parties Pi and Pj , there is a party Pk (possibly Pk = Pi or
Pk = Pj) who may learn both input sizes of Pi and Pj . (B)
When some parties must not learn the output size; for every
party Pi who must not learn the output size, Pi may learn all
the input sizes, and some other party may learn the input size
of Pi and the output size.

For example, if two of n parties must hide their input sizes from each other,
then a general size-hiding protocol is infeasible even when the other n−2 parties
can support the computation. Our result assumes the existence of threshold fully
homomorphic encryption (threshold FHE), which is, for example, derived by
combining MPC with ordinary FHE; see Appendix A of [LNO13]. The above
result shows that almost all sizes of inputs and the output must be revealed in
the standard setting of MPC.

Our results in the strong secure channel model. In order to circumvent the
aforementioned infeasibility, we introduce a new communication model, a strong
secure channel model such that an adversary cannot learn even the number
of bits exchanged among honest parties. We note that this model is justified
from steganographic techniques [Cachin04,HAL09], i.e., if communications are
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hidden from other parties using steganography, an adversary cannot learn the
number of communication bits between uncorrupted parties. Moreover, secure
steganography is implied by one-way functions, thus, our new model requires
no additional assumption inherently. (However, it should also be noted that
straightforward implementation of steganography requires large computational
and communication cost.)

We show that the feasibility of size-hiding computations is dramatically
improved in the strong secure channel model. See Table 1 (part corresponding
to strong secure channel) for a summary of our main result. We prove that, in
the strong secure channel model, a general size-hiding protocol exists if either
the condition (A) holds when the output size is known to all parties (Lemma 6)
or the condition (B) holds when the output size is hidden from some parties
(Lemma 8). (Unlike our results in the secure channel model, these conditions
depend on what sizes a party may learn.) We also prove the reverse direction,
i.e., there is a function that cannot be securely computed if a given size-hiding
class does not satisfy the conditions above (Lemmas 7 and 9). Therefore, it is a
necessary and sufficient condition for a general size-hiding protocol.

Surprisingly, in contrast to the standard secure channel model, we show that
each input/output size can be hidden from some parties, while the previous
model only allows the size of at most one input to be hidden. For example, let us
consider the case of three parties where P1 hides |x1| from P2 (but not P3), P2

hides |x2| from P3 (but not P1), and P3 hides |x3| from P1 (but not P2), where
|xi| denotes the size of the input of Pi. Now the number of hidden sizes (three)
is beyond the limitation in the previous model mentioned above, but our new
model allows computation of a general function even in this case. By generalizing
this observation, we see that there are concrete cases where it is possible to hide
all input and output sizes for any n > 2.

The honest-but-randomness-controlling model. In the two-party setting,
[LNO13] classified size-hiding classes in terms of feasibility in the honest-but-
curious (HBC) model. Recently, [LNO13] (uploaded on IACR ePrint Archive
on 01-Apr-2016) revisited that some of their infeasibility results in fact
holds in the honest-but-deterministic (HBD) model, proposed by Hubácek and
Wichs [HW15], rather than the HBC model. In light of the revision, we have
also to modify the model since some of our results are based on the results
in [LNO13]. However, there is an issue that the HBD model is likely to be
incomparable with the HBC model. Alternatively, we introduce a new model,
the honest-but-randomness-controlling (HBRC) model, where an adversary can
use any string as its random tape. We believe that the HBRC model would be
a reasonable security model by the following reasons. First, the HBRC model is
stronger than the HBC model, i.e., the security in the HBRC model implies the
security in the HBC model (see Appendix). Moreover, almost all of the previous
standard protocols in the HBC model are also secure in the HBRC model. In
particular, all (in)feasibility results in the two-party setting [LNO13] still hold in
the HBRC model by an easy observation. We left it as an open problem to give
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a complete feasibility characterization of both two-party and multiparty settings
in the HBC model.

1.2 Our New Techniques

In this section, we clarify the most technical part of size-hiding multiparty com-
putations, and introduce the basic idea for our main results (Sect. 5).

First, we recall the general two-party computation [LNO13]. In their proto-
cols, at least one of the parties always learns all sizes (i.e., the input size of the
other party and the output size). This party can correctly compute any function
of input x1 and x2 by using FHE. However, in the multiparty setting, we cannot
assume the existence of such a party who may learn all sizes, and otherwise,
almost all sizes of inputs cannot be protected.

For circumventing the above problem, we develop new techniques which guar-
antee the computation of the correct output even under the situation where no
party knows all of sizes. Our techniques are based on a novel way to use a thresh-
old FHE, and we consider this is the main non-trivial part of this work. More
specifically, we propose two independent techniques which handle the following
two different cases: (1) all parties may learn the output size, and (2) some par-
ties must not learn the output sizes. In the rest of this subsection, we explain
them more in detail.

(1) The case of public output size. Suppose that parties wish to compute
a function while hiding some input sizes, but do not need to hide the output
size. In addition, we assume that for every pair of parties Pi and Pj , at least one
of n parties (including Pi and Pj) may learn both input sizes of Pi and Pj . In
this setting, we call the party who has a longest input a server, and the other
parties clients. In the protocol, all parties perform in the same way as the server
since nobody (even the server itself) knows who is the server. We overview the
protocol and show the idea behind it as follows.

First, all parties invoke a threshold key generation protocol of FHE. Next,
each pair of parties Pi and Pj exchange ciphertexts of their inputs with the sup-
port from Pk who may learn both |xi| and |xj | as follows. Without loss of general-
ity, we can assume |xi| ≥ |xj |. First, Pi and Pj send ciphertexts ci = Encpk(1||xi)
and cj = Encpk(1||xj) to the party Pk, respectively. Then, Pk computes a cipher-
text c(j,i) = Encpk(0|xi|−|xj |)||cj and a ciphertext of zeroes c(i,j) = Encpk(0|xj |+1),
and sends c(j,i) to Pi and c(i,j) to Pj , respectively. We call the former cipher-
text a valid ciphertext, and the latter all-zero ciphertext a dummy ciphertext.
Note that nobody except Pk knows whether a ciphertext is the valid one or
the dummy one, due to the security of FHE. Next, parties attempt to obtain
the output value using homomorphic computation. However, each party cannot
estimate the output size since he/she does not know all of input sizes. Thus, a
circuit which computes the output value cannot be constructed (the number of
output wires is unknown). To avoid the problem, parties first obtain the output
size and then compute the desired function as follows. Each party Pi constructs
a circuit that takes x′

1, · · · , x′
n (x′

j is either 0|xi|−|xj |||1||xj or 0|xi|+1) as inputs,
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and if one of inputs is all-zero, then outputs all-zero string, otherwise, outputs
a representation of the size of the function value |f(�x)| of appropriate length.
(For example, (log κ)2 bits, where κ is security parameter, can be used since it
must hold |f(�x)| < 2(log κ)2 for sufficiently large κ. See also the discussion at
the end of Sect. 4.2.) Each party Pi computes ciphertext csizei by homomorphic
evaluation of the circuit from the ciphertexts cin(1,i), · · · , cin(n,i). Then, each party
Pi sends csizei to all parties. Each party computes csize by homomorphic evalua-
tion of a max function from csize1 , · · · , csizen . The underlying message of csize is the
output size since one of the party (specifically, the server) correctly computed
the encrypted output size. All parties invoke threshold decryption protocol for
the ciphertext csize and obtain the output size. Now we have the output size and
thus can construct the circuit that computes the function. In the similar way,
all parties can compute cout from which the output value is decrypted. The full
description appears in Protocol 2 (Sect. 5.3).

(2) The case of private output size. Suppose that parties wish to compute
a function while hiding some input sizes, and some parties must not learn the
output size. In this setting, we call parties who must not learn the output size
servers, and the other parties clients. In addition, we assume that every server
may learn all input sizes of parties, and each server may tell its input size to
some client (we call such a client a partner). We overview the protocol and show
the idea behind it as follows.

First, all clients execute a threshold key generation protocol of FHE. The
reason why servers are not involved in the threshold key generation is that
the clients need to be able to decrypt an output ciphertext (whose plaintext
length is related to the output size) without servers. Then, every party computes
secret shares of its own input (the number of shares is the number of servers),
and sends a ciphertext of a share to each server. All servers securely compute
ciphertexts csize, whose message is the output size, and cout, whose message is
the output, over the FHE. Here, the plaintext for the ciphertext cout is padded
zeroes up to L bits, where L is an upper bound of the output size. Note that
for every polynomial-time computable function f , there exists a polynomial p(·)
such that |f(x′

1, · · · , x′
n)| < p(max(|x′

1|, · · · , |x′
n|)) for all x′

i ∈ {0, 1}∗. Thus,
a server can compute the bound L = p(max(|x1|, · · · , |xn|)), since every server
knows all input sizes. Next, one server attempts to send csize and cout to all clients,
but the length of cout is related to p(max(|x1|, · · · , |xn|)) and it may reveal the
maximum input size (possibly private size) to clients. To avoid this, for each
client, the server sends the ciphertext whose length only depends on sizes which
the client may learn. Let σi be the maximum size which Pi may learn. The
server sends the truncated ciphertext cout of length p(σi) to Pi. If a server has
the longest input, then the partner learn the maximum input size. Otherwise, it
is trivial that there is a client who learns the maximum input size. In any case,
at least one of the clients has the ciphertext cout which is not truncated. Then,
all clients collaboratively decrypt csize and obtain the output size �. Finally, all
clients decrypt �-bit ciphertexts of cout and obtain the output value. The full
description appears in Protocol 3 (Sect. 5.5).
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1.3 Related Works

As earlier results relevant to size-hiding computation, Micali, Rabin, and Kil-
ian [MRK03] provided a zero-knowledge set, which is a commitment to a set S
that hides also the cardinality of S, where the committer can prove x ∈ S or
x �∈ S for any string x. Ishai and Paskin [IP07] constructed a public key encryp-
tion scheme that can evaluate any branching program in such a way that the
size of the program is hidden. These works concentrated on efficient realization
of specific functionalities, while our work aims at clarifying the (in)feasibility of
general size-hiding computation depending on a given size-hiding class. On the
other hand, Chase and Visconti [CV12] showed the first size-hiding protocol in
the presence of malicious adversaries for a specific task, secure database com-
mitments. Chase, Ostrovsky and Visconti [COV15] strengthened the feasibility
results of [CV12,LNO13] by constructing a general size-hiding two-party proto-
col in the presence of malicious adversaries while hiding input size of one party.
In contrast, we only consider the honest-but-randomness-controlling adversaries
in this paper. We leave constructions of size-hiding MPC protocols against mali-
cious adversaries as future work.

2 Preliminaries

We review the basic notations and the definition of threshold FHE.

2.1 Basic Notations

Throughout this paper, we use the following notations: “N” denotes the set
of natural numbers, i.e., N = {1, 2, 3, · · · }. “log x” denotes the logarithm of
x with the base two, i.e., log2 x. “x||y” denotes the concatenation of x and
y. “|x|” denotes the bit length of x. “∅” denotes an empty set. If S is a
finite set, then “x

U← S” denotes that x is chosen uniformly at random
from S. If �v is a vector, “�v[i]” denotes the i-th element of the vector. If
m = m1m2 · · · m� ∈ {0, 1}� is a plaintext and Encpk is an encryption algo-
rithm for 1-bit message, “c = Encpk(m)” denotes a vector of � ciphertexts
(c1, c2, · · · , c�), where ci is a ciphertext ci = Encpk(mi). If I = {i1, · · · , it} is
a subset of N, “xI” denotes the set xI = {xi1 , · · · , xit}. If I = (i1, · · · , it) is an
element of N

t, “xI” denotes the vector xI = (xi1 , · · · , xit). If Φ = {Φ(x, κ)}x,κ

and Ψ = {Ψ(x, κ)}x,κ are probability distributions indexed by κ ∈ N and
x ∈ Xκ where Xκ is an auxiliary parameter set indexed by κ, then we say
that Φ and Ψ are computationally indistinguishable, denoted by “Φ

c≡ Ψ”, if for
every non-uniform probabilistic polynomial-time (PPT) algorithm D and every
(positive) polynomial p, there exists a number κ0 ∈ N with the property that
∣
∣Pr[D(Φ(x, κ)) = 1] − Pr[D(Ψ(x, κ)) = 1]

∣
∣ < 1/p(κ) for any κ ∈ N with κ > κ0

and any x ∈ Xκ.
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2.2 Threshold Fully Homomorphic Encryption

We present a definition of threshold FHE. Asharov et al. [AJL+12] constructed
an efficient threshold FHE scheme from the learning with error assumption,
whose threshold key generation and threshold decryption protocols have only
one round. In general, the threshold version of FHE is implied from an ordinary
FHE scheme [LNO13].

Definition 1 (Threshold FHE). We say that a tuple of protocols and algo-
rithms (ThrGen,Enc,Eval,ThrDec) is a threshold FHE scheme if (Gen,Enc,Dec)
is a public-key encryption with message space {0, 1}, that is secure under chosen-
plaintext attacks, and the protocols ThrGen and ThrDec with parties P1, · · · , Pn

realize the following functionalities and the following conditions:

Threshold Key Generation: The functionality of ThrGen takes security para-
meter 1κ from P1, · · · , Pn, computes (pk, sk) ← Gen(1κ) and chooses uni-
formly random values sk1, · · · , skn−1 ∈ {0, 1}|sk|. Then, the functionality
outputs (pk, ski) to each Pi (i = 1, · · · , n), where skn = sk1⊕· · ·⊕skn−1⊕sk.

Threshold Decryption: For a subset I ⊂ {1, · · · , n}, the functionality of
ThrDecI takes security parameter 1κ, a ciphertext c and shares of secret key
sk1, · · · , skn from P1, · · · , Pn, computes m = Decsk1⊕···⊕skn

(c), and outputs
m to each Pi (i ∈ I). If it holds I = {1, · · · , n}, we omit the index I.

Correctness: For every polynomial-size circuit C that takes n inputs, and every
inputs of the circuit m1, · · · ,mn ∈ {0, 1}:

Pr
[

Decsk(Evalpk(C,Encpk(m1), · · · ,Encpk(mn))) = C(m1, · · · ,mn)
]

= 1,

where the probability is taken over the random coins of all the algorithms
(Gen,Enc,Eval,Dec).

Security of the Threshold Key Generation: There exists a PPT SThrGen

such that for every I � {1, · · · , n}, the view in a real execution of ThrGen
with security parameter κ is computationally indistinguishable from the output
of SThrGen with inputs I, 1κ and keys obtained by Pi (i ∈ I).

Security of the Threshold Decryption: There exists a PPT SThrDec such
that for every I � {1, · · · , n}, the view in a real execution of ThrDec with
security parameter κ is computationally indistinguishable from the output of
SThrDec with inputs a subset I, keys, the ciphertext and the decrypted value.

3 Size-Hiding Computation

In this section, first, we give a definition of size-hiding classes and provide their
graphical representations in Sect. 3.1. Second, as an extension of [LNO13] to n-
party settings, we give definitions of polynomial-time protocols and the security
of size-hiding protocols in Sect. 3.2. Next, for later references, we review the pre-
vious two-party results [LNO13] using our graphical representation in Sect. 3.3.
Finally, we introduce tools for proving lemmas in the later section, protocol com-
pilers, that can derive a size-hiding protocol from another protocol in Sect. 3.4.
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3.1 Classes of Size-Hiding

We provide a definition of a class of size-hiding that specifies what sizes a party
may learn in an execution of a protocol. A size-hiding class can be represented
by (G,�v), where G is a directed graph which specifies how input sizes are hidden
(more precisely, which input size may be known to which party), and �v is a vector
which specifies how the output size may be known to each party. A directed graph
G with n vertices is called an input size graph with n vertices, a vector �v with
n elements is called an output size vector with n elements, and a tuple (G,�v) is
called a size-hiding class with n parties.

An input size graph with n vertices has a set of vertices V (G) = {1, 2, · · · , n}
and a set of edges E(G). Each vertex i ∈ V (G) corresponds to the party Pi. If
there is an edge (j, i) ∈ E(G) directed from j to i, the party Pi may learn
|xj |, which is the input size xj of Pj in a protocol execution. If there is no edge
(j, i), the party Pi must not learn any partial information of |xj | except trivial
information which can be computed from other information that Pi obtained
legally. From now on, we assume that any input size graph with n vertices has
edges (1, 1), (2, 2), · · · , (n, n) since Pi always knows its own input size |xi|.

An output size vector with n elements is a member of {⊥, |f|, f}n, where ⊥, |f|
and f are symbols that represent how to receive the output information. The i-th
element �v[i] specifies how Pi receives the output information. If �v[i] = ⊥, the
party Pi must not receive any partial information of the output f(�x) (except
trivial information which can be computed efficiently). If �v[i] = |f|, the party
Pi may learn the output size |f(�x)| but must not receive f(�x) beyond the size
information |f(�x)| (except trivial information). If �v[i] = f, the party Pi must
learn f(�x). From now on, we assume that any output size vector �v contains at
least one f since if there is no f in �v, nobody obtains the output f(�v) even though
the protocol aims at computing the function f .

1

forbidden party P1

2

size-only party P2

3

full-output party P3

Fig. 1. Graphical representation of parties

We provide a graphical representation of a size-hiding class (G,�v). We use a
circle to denote a vertex of G, and an arrow i → j to denote an edge (i, j) ∈
E(G). For simplicity, we omit arrows 1 → 1, 2 → 2, · · · , n → n since the edges
(1, 1), (2, 2), · · · , (n, n) ∈ E(G) always exist. We also use three types of circles to
denote the output size vector �v as follows. For a vertex i, we use a double circle
to denote �v[i] = f, a normal circle to denote �v[i] = |f|, and a forbidden circle to
denote �v[i] = ⊥; see Fig. 1.

Figure 2 is an example of a size-hiding class (G,�v) as follows: The input
size graph with 3 vertices G has a set of vertices V (G) = {1, 2, 3} and a set
of edges E(G) = {(1, 2), (2, 3), (1, 3), (1, 1), (2, 2), (3, 3)}. The output size vector
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1

23

Fig. 2. Example of a size-hiding class

with 3 elements is a vector �v = (f, |f|,⊥). The size-hiding class (G,�v) means the
following: The party P1 may learn |x1|, must learn f(�x), and must not learn |x2|
nor |x3|. The party P2 may learn |x1|, |x2| and |f(�x)|, and must not learn |x3|
nor f(�x). The party P3 may learn |x1|, |x2|, and must not learn |f(�x)|.

Throughout this paper, we use the following terminology.

Public size is a size which all parties may learn. Formally, we say that an input
size |xi| is public if there are edges (i, 1), (i, 2), · · · , (i, n) ∈ E(G), and the
output size is public if the output size vector �v is an element of {|f|, f}n.

Private size is a size which some parties must not learn. Formally, we say
that an input size |xi| is private if there is a vertex j ∈ V (G) such that
(i, j) �∈ E(G), and the output size is private if there is an index i such that
�v[i] = ⊥.

Forbidden party is a party who must not learn the output size. “I⊥” denotes
all indices of the forbidden parties, i.e., I⊥ = {I |�v[i] = ⊥} ⊂ {1, · · · , n}.

Size-only party is a party who may learn the output size but must not learn
the exact output value. “I|f|” denotes all indices of size-only parties, i.e.,
I|f| = {I |�v[i] = |f|} ⊂ {1, · · · , n}.

Full-output party is a party who must learn the output. “If” denotes all indices
of full-output parties, i.e., If = {I |�v[i] = f} ⊂ {1, · · · , n}.

Permitted party is a party who may learn the output size. “Ip” denotes all
indices of permitted parties, i.e., Ip = I|f|∪If . It holds I⊥∪Ip = I⊥∪I|f|∪If =
{1, · · · , n}.

3.2 Basic Notions for Size-Hiding Multiparty Protocols

Our definitions of notions for size-hiding n-party protocols follow the two-party
version of [LNO13]. Let (G,�v) be a size-hiding class with n parties, and let
f be an n-ary polynomial-time computable function f : ({0, 1}∗)n → {0, 1}∗.
Let π be an n-party protocol with parties P1, · · · , Pn, and let κ ∈ N be a
security parameter of π. Each party Pi has an input xi ∈ {0, 1}∗, which may
be polynomially unbounded. We denote by TIMEπ

Pi
(�x, κ) the running time of

Pi in π for the inputs �x = (x1, · · · , xn). We denote by OUTPUT(G,�v,f)
i (�x)

the Pi’s output specified by (G,�v), e.g., for the example of Fig. 2, we have
that OUTPUT(G,�v,f)

1 (�x) = (f(�x)), OUTPUT(G,�v,f)
2 (�x) = (1|f(�x)|, 1|x1|) and

OUTPUT(G,�v,f)
3 (�x) = (1|x1|, 1|x2|). Now we are ready to define a polynomial-

time protocol for (G,�v, f).
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Definition 2 (Polynomial-time protocol). Let (G,�v) be a size-hiding class
with n parties, let f be an n-ary function, and let π be an n-party protocol. We
say that π is a polynomial-time protocol for (G,�v, f) if there exists a polynomial
p(·) such that for every κ ∈ N, every �x ∈ ({0, 1}∗)n and every i ∈ {1, · · · , n},

TIMEπ
Pi

(�x, κ) ≤ p(|xi| + |OUTPUT(G,�v,f)
i (�x)| + κ)

Next, we define the security of protocols against honest-but-randomness-
controlling (HBRC) adversaries in the secure channel model (See Sect. 1.1 and
Appendix for details of the HBRC model). In the HBRC model, a simulator
must simulate a transcript on given random tapes which is produced by a
randomness producer. It is a PPT algorithm that chooses corrupted parties’
random tapes. Formally, we say that a PPT R is a randomness producer if
R(1κ, I) outputs a vector of strings �rI = (ri1 , · · · , rit) ∈ ({0, 1}∗)|I| for all
I = {i1, · · · , it} � {1, · · · , n}.

We denote by MSIZEπ(�x) the numbers of all bits exchanged among
P1, · · · , Pn in an execution of π with inputs �x, expressed by unary expression
such as 1|m|. The view of the party Pi during an execution of π with inputs �x is
defined as viewπ

i (�x) = (xi, ri,mi1 , · · · ,mit), where ri is his internal coin tosses
and mij is the j-th message that was received by Pi in the protocol execution.
We also use viewπ

i (�x)|ri
= (xi,mi1 , · · · ,mit) to denote viewπ

i (�x) on given ran-
domness ri. Here, if the length of ri is shorter than the length of its internal
randomness, its internal randomness is ri||0k for appropriate k ∈ N.

Definition 3 (Security in the secure channel model). Let (G,�v) be a size-
hiding class with n parties, let f be an n-ary function, and let π be a polynomial-
time protocol for (G,�v, f). We say that π correctly computes (G,�v, f) if for every
κ ∈ N, and every �x ∈ ({0, 1}∗)n, all full-output parties output f(�x) at the end
of the execution of π with the input �x and security parameter κ. We say that π
realizes (G,�v, f) in the secure channel model if π correctly computes (G,�v, f)
and for every randomness producer R, there exists a PPT S such that for every
I � {1, · · · , n}, every polynomials q1, q2, · · · , qn,

{S(1κ, I, �xI ,OUTPUT
(G,�v,f)
I (�x), �rI ← R(1κ, I))

}
κ,�x

c≡ {(viewπ
I (�x)|�rI ,MSIZEπ(�x)

)}
κ,�x

where x1 ∈ {0, 1}q1(κ), · · · , xn ∈ {0, 1}qn(κ).

In this paper, we focus on which size-hiding class has a general protocol. For
a size-hiding class (G,�v), we say that (G,�v) is feasible if for every polynomial-
time computable function f , there exists a protocol π that realizes (G,�v, f) in
the secure channel model. On the other hand, we say that (G,�v) is infeasible if
it is not feasible.

3.3 Overview of the Two-Party Results

We overview the results in the two-party setting shown by Lindell, Nissim and
Orlandi [LNO13] using our graphical representation. Later, we use them in order
to prove infeasibility results in multiparty settings. We note that their original
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paper shows their feasibility and infeasibility against honest-but-curious adver-
saries. However, very recently, they (implicitly) revised the infeasibility of class
1.d is in fact holds against honest-but-randomness-controlling (HBRC) adver-
saries2 rather than honest-but-curious adversaries. Since all of their protocol
can be easily modified to the HBRC setting, the following results are based on
the HBRC model.

They defined three classes of size-hiding: (class 0) the input sizes of both
parties are revealed, (class 1) the input size of one party is revealed and the
other is hidden, (class 2) the input sizes of both parties are hidden. In addition,
they define five subclasses of class 1, and three subclasses of class 2.

1

2
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1

2

1.a

1

2

1.b

1

2

1.c

1

2

1.d

1

2

1.e
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2

2.a

1

2

2.b

1

2

2.c

Fig. 3. Graphical representations of subclasses in the two-party setting

Let (G0, �v0), (G1.a, �v1.a), · · · , (G2.c, �v2.c) be size-hiding classes 0, 1.a, · · · , 2.c
in Fig. 3, respectively. They (implicitly) showed that size-hiding classes (G0, �v0),
(G1.a, �v1.a), (G1.c, �v1.c) and (G1.e, �v1.e) are feasible while the other classes are
infeasible in the HBRC model. Later in this paper, we use the following results.

– There is a two-ary function f such that the functionality (G1.b, �v1.b, f) cannot
be realized. An example of the f is the oblivious transfer; see Sect. 4.3.

– There is a two-ary function f such that the functionality (G1.d, �v1.d, f) cannot
be realized. An example of the f is an oblivious multi-input pseudorandom
function evaluation omprf introduced in [LNO13].

– There is a two-ary function f with constant output length such that the func-
tionality (G2.a, �v2.a, f) cannot be realized. An example of the f is the binary
inner product {0, 1}∗ × {0, 1}∗ → {0, 1}; see [LNO13].

3.4 Tools for Infeasibility – Protocol Compilers

Here we introduce auxiliary algorithms used in the proofs of our infeasibility
results, which we call protocol compilers. Namely, to give a proof by contra-
diction, we start with an n-party protocol for a given size-hiding class whose
existence is assumed, and convert it by the protocol compilers into a two-party
size-hiding protocol for some size-hiding class, where the existence of the latter
protocol has been denied by the result of [LNO13]. Below we give two kinds of
protocol compilers, which we call a reduction compiler and a wrapping compiler.
2 Their original revision states that it holds against HBD adversaries. But it also holds

in the HBRC model.
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Reduction Compiler. A reduction compiler takes as inputs an MPC protocol
with P1, · · · , Pn and two subsets I1, I2 that is a partition of {1, · · · , n}, and
outputs a two-party protocol with P ′

1 and P ′
2, where P ′

i (i ∈ {1, 2}) behaves
in the same way as {Pj}j∈Ii . More concretely, if Pi computes/sends/receives
messages in π, then P ′

j (i ∈ Ij) behaves in the same way as Pi. At the end of the
compiled protocol, if Pi outputs f(�x) in π, then P ′

j (i ∈ Ij) outputs f(�x) in π′.
The reason why we call it a “reduction” compiler is that it reduces the number
of parties, and we use it in a reduction to prove infeasibility results.

Lemma 1. Let f ′ be a two-ary function, let f be an n-ary function such that
f(x1, x2, · · · , xn) = f ′(x1, x2), let (G,�v, f) be a functionality for n parties, and
let π be a protocol that realizes (G,�v, f). Let I1 and I2 be non-empty subsets of
{1, · · · , n} such that 1 ∈ I1, 2 ∈ I2, I1∩I2 = ∅ and I1∪I2 = {1, 2, · · · , n}. There
exists a protocol π′ that realizes a functionality (G′, �v′, f ′) as follows:

– The party P ′
1 has the same input x1 of P1, and the party P ′

2 has the same
input x2 of P2.

– The input size graph with two parties G′ has a set of edges E(G′) as follows.
The edge (1, 2) exists in E(G′) if and only if an edge (1, i) exists in E(G) such
that i ∈ I2. Similarly, the edge (2, 1) exists in E(G′) if and only if an edge
(2, i) exists in E(G) such that i ∈ I1.

– �v′ is an output size vector with two elements such that �v′[i] = maxj∈Ii(�v[j]),
for an order ⊥ < |f| < f.

Proof. Based on a simulator S of the protocol π, we construct a simulator S ′ of
the protocol π′. By the symmetry, it suffices to show the simulator when P ′

1 is
corrupted. Given 1κ, I ′ = {1}, the input x1, the output f(x1, x2) if there is an
full-output party Pi (i ∈ I1), and a random tape r1 produced by a randomness
producer, S ′ invokes S on the same inputs except I1 instead of I ′. Since the
simulator S ′ works correctly, the protocol π′ securely computes (G′, �v′, f ′) . ��

Wrapping Compiler. For a subset I ⊂ {1, · · · , n}, we say that a protocol
π is I-independent3 if there exists a polynomial p such that for every κ ∈ N

and every �x ∈ ({0, 1}∗)n, the output size and the number of bits, exchanged
among all parties in an execution of π with κ and �x, are upper bounded by
p(κ, |xj1 |, · · · , |xjt |) except negligible probability, where {j1, · · · , jt} ∩ I = ∅.
A wrapping compiler takes an I-independent protocol π (it is not necessary for
π to be secure) that computes f(�x), and outputs a size-hiding protocol π′ that
computes f(�x) while hiding the inputs |xi| (i ∈ I) from all parties. It is used in
the proof of Lemma 4. The following lemma is the security of a protocol that is
compiled by the wrapping compiler.

Lemma 2. Let I be a non-empty subset of {1, · · · , n}, and let π be an I-
independent protocol computing f(�x) with P1, · · · , Pn. Assume that threshold
FHE exists. There exists a protocol π′ that realizes a functionality (G′, �v′, f) as
follows:
3 It is an generalization of size independent protocol ; see Sect. 4.3 in [LNO13].
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– The party P ′
i (i ∈ {1, · · · , n}) has the same input xi of Pi.

– G′ is an input size graph with n parties, where {|xi|}i∈I are private sizes and
the others are public sizes.

– �v′ is any element of {|f|, f}n.

Proof. Given an I-independent protocol π that computes f(�x), the compiled
protocol π′ with P ′

1, · · · , P ′
n proceeds as follows. First, parties execute a threshold

key generation protocol of threshold FHE, and each party encrypts own input
under the public key. Second, every party P ′

j (j �∈ I) sends |xj | to all parties.
On receiving |xj1 |, · · · , |xjt | (they are not independent sizes), parties compute
the upper bound B = p(|xj1 |, · · · , |xjt |). Since the communication complexity
is bounded by B, each party Pi can construct a circuit that can produce the
next messages of Pi. More concretely, for each k round (k is also bounded by
B), the circuit takes as inputs previous messages that are received by Pi at
1, 2, · · · , k − 1 rounds and Pi’s input xi, and outputs the next messages for each
party. Using these circuits, all parties homomorphically evaluate the protocol
π. Finally, parties obtain an output ciphertext (whose message is of length B),
invoke a threshold decryption protocol, and obtain the output value. (It is easy
to obtain a protocol for any �v′ ∈ {|f|, f}n by specifying parties who can obtain
the output appropriately.)

Now we show the above protocol π′ realizes (G′, �v′, f) in the secure chan-
nel model. In order to prove the security of π′, we construct a simulator S
that can generate views of corrupted parties. Given 1κ, I � {1, · · · , n}, the
inputs �xI , the output f(�x) (or the output size |f(�x)|), all input sizes which
are not independent sizes {1|xj1 |, · · · , 1|xjt |}, and random tapes �rI produced
by a randomness producer, the simulator S first computes the upper bound
B = p(κ, |xj1 |, · · · , |xjt |). Second, S simulates a threshold key generation proto-
col, and computes ciphertexts of xi for all i ∈ I. Next, S simulates messages sent
by Pi to Pj (i ∈ {1, · · · , n} and j ∈ I) as follows. If Pi is corrupted, S does the
same as Pi. Otherwise, S computes a ciphertext for zero string of appropriate
length. At the end of the protocol π′, S simulates a threshold decryption proto-
col. Finally, S computes message sizes, and outputs views of corrupted parties
and message sizes generated as above. The views generated by S are indistin-
guishable from the views in a real execution of the protocol due to the IND-CPA
security of FHE and the security of the threshold protocols. Thus, the protocol
π′ securely computes (G′, �v′, f) in the secure channel model. ��

4 Results in the Secure Channel Model

In this section, we show that every function can be realized while hiding one
(input or output) size in the secure channel model. On the other hand, we also
prove that there exists a function that cannot be realized while hiding two or
more (input or output) sizes in the secure channel model. Our result shows that,
in the secure channel model, a general size-hiding protocol exists only in the case
where parties wish to hide at most one of n + 1 (n inputs and the output) sizes.
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In Sect. 4.1, we give a formal statement of our result in Theorem 1, and show
examples of (feasible or infeasible) classes. Then, we show the feasibility part of
the theorem in Sect. 4.2, and the infeasibility part of the theorem in Sect. 4.3.

4.1 Our Result

Our result in the secure channel model is as follows.

Theorem 1. Let (G,�v) be a size-hiding class with n parties. Assume that thresh-
old FHE exists. The class (G,�v) is feasible in the secure channel model if and
only if the number of private sizes of (G,�v) is at most 1.

Examples. Examples of feasible size-hiding classes are shown in Fig. 4. The
number of private sizes of them is just one. On the other hand, classes shown
in Fig. 5 are infeasible. The number of private sizes of the left and the center
graphs is two, and of the right graph is three.
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Fig. 4. Examples of feasible classes
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Fig. 5. Examples of infeasible classes

4.2 Protocol Hiding One Size

We construct a general size-hiding MPC protocol that can hide one (input or
output) size, in order to show the feasibility part of Theorem 1. The case where
only the output size is private is an easy application of ordinary MPC. Indeed,
since now the input sizes are public, the output size also has a public and efficient
upper bound derived from the complexity of the function f , therefore the output
size can be hidden from the forbidden parties by a naive padding technique.

From now on, we consider the case where the output size is public. Let
“server” denote the unique party who wants to hide its own input size, and
let “clients” denote the other parties. The outline of the protocol construction,
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which is a natural extension of the two-party results for classes 1.a, 1.c, and 1.e
in [LNO13], is explained as follows. Each client sends an FHE ciphertext of its
own input to the server, which can be freely performed since their input sizes
are public. Given these ciphertexts, the server seems to be able to compute the
encrypted output of the function using homomorphic evaluation, which is then
decrypted for the full-output parties by the threshold decryption. However, the
ciphertext of the output value may have a length longer than the actual output
size since the precise inputs are not known at the homomorphic evaluation, and
the difference from the actual output size may reveal some non-trivial informa-
tion on the server’s input size. To avoid the problem, the server first homomor-
phically computes the ciphertext of the actual output length �, and the parties
know � via the threshold decryption. Then the server generates the ciphertext
of the output value where the length is exactly set to �, which prevents the leak
of the server’s input size mentioned above.

The full description of the protocol appears in Protocol 1. In the following
argument, we assume by symmetry that P1 is the server.
Protocol 1. Suppose that parties P1, P2, · · · , Pn have inputs x1, x2, · · · , xn, respec-
tively, and all sizes are public except the input size |x1| of the party P1. The protocol
proceeds as follows.

1. All parties invoke a ThrGen protocol with inputs 1κ, and each party Pi obtains
a public key pk and a share of the secret key ski.

2. Each party Pi computes cini = Encpk(xi), and sends cini to P1.
3. P1 constructs a circuit Csize, which takes �x as inputs and outputs |f(�x)| padded

with zeroes up to (log κ)2 bits. Then, P1 computes csize ← Evalpk(Csize, c
in
1 , · · · , cinn)

and sends csize to all parties.
4. All parties invoke a ThrDec protocol with the ciphertext csize, and obtain the

decrypted value �.
5. P1 computes cout ← Evalpk(Cout, c

in
1 , · · · , cinn), where the circuit Cout computes

f(x1, · · · , xn) of length �, and sends cout to all parties.
6. All parties invoke a ThrDecIf protocol with the ciphertext cout as only full-output

parties obtain the decrypted value z ∈ {0, 1}�. Then, all full-output parties output
z, and the other parties output nothing. The protocol terminates.

Lemma 3 (Security of Protocol 1). Let (G,�v, f) be a functionality with n
parties, where |x1| is private and the other sizes are public. Assume that threshold
FHE exists. Then, Protocol 1 realizes the functionality (G,�v, f) in the secure
channel model.

Proof. In order to prove the security, we construct a simulator S that, given
inputs, outputs, and random tapes of corrupted parties, generates their view in
the protocol. We note that it suffices to only consider the most difficult case that
|x1| is hidden from all other parties. Given 1κ, I = {i1, · · · , it}, the inputs �xI ,
public sizes (1|x2|, · · · , 1|xn|, 1|f(�x)|), the output f(�x) if I ∩ If �= ∅, and random
tapes �RI = (ri1 , · · · , rit) produced by a randomness producer, the simulator S
works as follows. (In the following probabilistic computation, S uses a string
ri||000 · · · as Pi’s random tape.) First, S computes (pk, sk) ← Gen(1κ), chooses
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ski
U← {0, 1}|sk| for all i ∈ I, and simulates a threshold key generation pro-

tocol under the keys. If P1 is corrupted, S computes cini = Encpk(xi) (i ∈ I),
cini = Encpk(0|xi|) (i �∈ I), and evaluates csize and cout from these ciphertexts.
Otherwise, S computes csize = Encpk(0(log κ)2) and cout = Encpk(0|f(�x)|). Next,
S simulates threshold decryption protocols for csize and cout. Then, S computes
message sizes MSIZEπ(�x). (S can compute them since all sizes of messages are
only dependent on the public sizes |x2|, · · · , |xn| and |f(�x)|.) Finally, S outputs
views of corrupted parties and message sizes generated as above.

Let us observe the difference between the view generated in a real execution
and the view generated by S. The views of threshold key generation and thresh-
old decryption protocols generated by S are indistinguishable from them in a
real execution due to the security of these protocols. The ciphertexts generated
by S are indistinguishable from them in a real execution due to the IND-CPA
security of the underlying FHE scheme. Therefore, the above protocol realizes
the functionality in the secure channel model. ��
Fully avoiding upper bounding of input sizes. In the same way as the
protocols in [LNO13], Protocol 1 above assumes that all input sizes are bounded
by 2(log κ)2 = κlog κ. From the viewpoint of security, this restriction causes no
problems, since now the input sizes are polynomially bounded and thus the
bound above indeed holds asymptotically. However, it may cause a problem
from the viewpoint of correctness, since now the polynomial bounds for input
sizes do not exist and the correctness should be satisfied at every parameter
κ rather than just asymptotically. To resolve the issue, we show the assump-
tion |xi| < 2(log κ)2 can be avoided by using a flag technique. A flag function
flag� : {0, 1}� → {0, 1}� takes x = x� · · · x2x1 ∈ {0, 1}� as an input, and out-
puts z = 0�−i||1i, where i is an index such that i = max(j − 1 s.t. xj = 1).
For example, a flag function flag10 with an input x = 0010000001 outputs
z = 0001111111. Next we explain how to use the flag function in Protocol 1. Let p
be a polynomial such that |f(x′

1, · · · , x′
n)| < p(|x′

1|, · · · , |x′
n|) for all x′

i ∈ {0, 1}∗.
In step 3, the party P1 first computes B = log2 p(|x1|, · · · , |xn|), and then
constructs a circuit Csize, which takes �x as inputs and outputs |f(�x)| padded
with zeroes up to B = log2 p(|x1|, · · · , |xn|), and a circuit Cflag, which takes
x ∈ {0, 1}B as an input and outputs a string flagB(x). Then, P1 computes
csize ← Evalpk(Csize, c

in
1 , · · · , cinn ) and cflag ← Evalpk(Cflag, c

size). For i = 1, 2, 3, · · · ,
P1 sends cflag[i] to all parties, and parties decrypt it. If the decrypted value
equals zero, then P1 sends (csize[j])1≤j≤i to all parties, otherwise, continue the
loop. Now (csize[j])1≤j≤i indeed involves the whole information of |f(�x)| by the
definition of the flag function, and thus we can avoid the upper bound of input
sizes. The flag technique can also be applied to all of our protocols and previous
two-party protocols [LNO13].

4.3 Infeasibility for Hiding Two Sizes

Unfortunately, in the secure channel model, there is no general size-hiding MPC
protocol that can hide two or more (input or output) sizes. The rest of this
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subsection is devoted to proving the infeasibility part of Theorem 1. In particular,
we prove the infeasibility when two input sizes are hidden (Lemma 4), and the
infeasibility when one input and the output sizes are hidden (Lemma 5).

We first prove the infeasibility when two input sizes are hidden. In this case,
the infeasibility of n-party protocol can be reduced to the infeasibility of two-
party protocol when both input sizes are hidden (class 2). First, assume by
contradiction, there exists a protocol π that realizes an n-ary function. Then,
using a reduction compiler and a wrapping compiler, we compile the protocol
π into a two-party protocol π′ that realizes an impossible functionality. By the
contradiction, we conclude that there exists a function while hiding two input
sizes. The formal statement and the proof are as follows.

Lemma 4 (Hiding two input sizes). Let (G,�v) be a size-hiding class for n
parties, such that two input sizes are private, and the others are public. Assuming
the existence of threshold FHE, there exists a function f such that the function-
ality (G,�v, f) cannot be realized in the secure channel model.

Proof. Without loss of generality, we can assume the private input sizes are |x1|
and |x2|. Let f ′ be a two-ary function such that its range is a constant size,
and (G2a, �v2a, f ′) cannot be realized in the secure channel model. (The existence
of such a function is shown by [LNO13].) Let f be an n-ary function such that
f(x1, · · · , xn) = f ′(x1, x2). Assume by contradiction that there exists an n-party
protocol π with P1, · · · , Pn that realizes (G,�v, f) in the secure channel model.

Let T (κ, �x) be a random variable representing the number of bits exchanged
among all parties when running π with inputs �x and security parameter κ. In
this case, by the argument similar to [LNO13], there exists a polynomial p such
that T (κ, �x) < p(κ) for all large enough κ. Let us consider the simulator S
for the protocol π corrupting P2, · · · , Pn. For a fixed output value α, let x∗

2 be
the smallest string for which there exists x1 such that f ′(x1, x

∗
2) = α. At this

time, there exists a polynomial pα such that the running time of the simulator
S is bounded by pα(|x∗

2|, |α|, κ), and there exists a polynomial p′
α such that

p′
α(κ) = pα(|x∗

2|, |α|, κ) since |x∗
2| and |α| are constant sizes. We claim that, for

every (x1, x2) such that f ′(x1, x2) = α, the length of the transcript with input
(x1, x2) is upper bounded by p′

α(κ) except negligible probability. Otherwise, it
contradicts the security of π. (For example, the simulator S, corrupting P3 only,
cannot compute the message size since S does not know P2’s input is x∗

2 or not.)
Since the number of possible output value is constant, there exists a polynomial
p such that T (κ, �x) < p(κ) for every �x except negligible probability. Therefore,
the protocol π is I-independent for any I (especially, I = {1, 2}).

Now we are ready to derive the contradiction. We first construct a two-party
π′ with P ′

1 = {P1} and P ′
2 = {P2, · · · , Pn} that is compiled by a reduction

compiler from the protocol π. Note that the protocol π′ is also I-independent
(I = {1, 2}) since the communication complexity and the computation complex-
ity are the same as π. Then, we construct a protocol π′′ that is compiled by a
wrapping compiler from the protocol π′. From Lemma 2, the protocol π′′ realizes
(G2.a, �v2.a, f ′), in contradiction to the infeasibility of f ′. Now we have that the
functionality (G,�v, f) cannot be realized in the secure channel model. ��
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Next, we prove the infeasibility when one input and the output sizes are
hidden. In order to prove this, we introduce a new function, a truncated obliv-
ious multi-input pseudorandom function tomprf defined as follows. Let F be
a pseudorandom function F : {0, 1}κ × {0, 1}κ → {0, 1}κ. A truncated oblivi-
ous multi-input pseudorandom function tomprfn is an n-party functionality (but
ignoring inputs x4, · · · , xn) that takes as inputs a vector of arbitrary length
x1 = (a1, · · · , am) ∈ ({0, 1}κ)m from P1, a κ-bit string x2 ∈ {0, 1}κ from P2,
and a key for the pseudorandom function x3 ∈ {0, 1}κ from P3. The functionality
outputs to P1 (Fx3(a1), · · · , Fx3(a�)), where � = min(x2,m). Now we are ready
to prove the following lemma.

Lemma 5 (Hiding an input and the output sizes). Let (G,�v) be a size-
hiding class for n parties, such that an input and the output sizes are private,
and the others are public. Assume that one-way functions exist. There exists a
function f such that (G,�v, f) cannot be realized in the secure channel model.

Proof. Without loss of generality, we can assume the private input size is |x1|.
Essentially, there are three settings regarding who must not learn |x1| and |f(�x)|:
1. The party P2 must not learn both of |x1| and |f(�x)|.
2. The party P2 must not learn |x1|, and the party P1 must not learn |f(�x)|.
3. The party P2 must not learn |x1|, and the party P3 must not learn |f(�x)|.

First, let us consider the case where P2 must not learn both of |x1| and |f(�x)|.
Let f be an n-ary function ignoring x3, · · · , xn such that f(�x) = f ′(x1, x2),
where the functionality (G1.d, �v1.d, f

′) cannot be realized in the secure channel
model. Assume by contradiction that there exists an n-party protocol π with
P1, · · · , Pn that securely computes (G,�v, f) in the secure channel model. We can
construct a two-party protocol π′ with P ′

1 = {P2} and P ′
2 = {P1, P3, · · · , Pn}

that is compiled by a reduction compiler from π. From Lemma 1, the protocol
π′ realizes (G1.d, �v1.d, f

′), in contradiction to the infeasibility of f ′. Now in this
case we obtain a function f such that (G,�v, f) cannot be realized in the secure
channel model.

Second, let us consider the case where P2 must not learn |x1|, and P1 must
not learn |f(�x)|. An oblivious transfer OT is a two-party function that takes
x1 = (s0, s1) from P1, where s0 and s1 are strings of arbitrary length, and
x2 ∈ {0, 1} from P2 as inputs, and outputs a string sx2 to only the party P2.
Let f be an n-ary function such that f(x1, · · · , xn) = OT(x1, x2). Now we show
that the function f cannot be realized in the secure channel model by the tech-
nique similar to [LNO13]. Assume by contradiction that there exists an n-party
protocol π with P1, · · · , Pn that realizes (G,�v, f) in the secure channel model.
We denote the inputs �x by �x = ((s0, s1), x2) since inputs x3, · · · , xn are ignored.
Let T (κ, �x) be a random variable representing the number of bits exchanged
among P1, · · · , Pn when running π with inputs �x and security parameter κ. For
inputs �x∗ = ((0, 0), 0), there exists a polynomial p such that T (κ, �x∗) < p(κ) for
all large enough κ since π is a polynomial-time protocol. Let s′ be a random
string whose length is ω(p(κ)), and let �x′

0 = ((0, s′), 0) and �x′
1 = ((0, s′), 1). It
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must hold that T (κ, �x′
0) < p(κ), otherwise P2 can distinguish the other input of

P1 is 0 or s′. And it must hold T (κ, �x′
1) < p(κ), otherwise P1 can distinguish that

P2 obtains 0 or s′. However, in the case of �x′
1 = ((0, s′), 1), the party P2 must

compute s′, the random string of length ω(p(κ)), from a transcript of length less
than p(κ). This contradicts to the incompressibility of a random string. Thus,
in this case, there is a function f such that (G,�v, f) cannot be realized in the
secure channel model.

Finally, let us consider the case where P2 must not learn |x1|, and P3 must not
learn |f(�x)|. Let f be a truncated oblivious multi-input pseudorandom function
tomprfn with a pseudorandom function F : {0, 1}κ × {0, 1}κ → {0, 1}κ. Assume
by contradiction that there exists an n-party protocol π with P1, · · · , Pn that
realizes (G,�v, f) in the secure channel model. Let T (κ, �x) be a random variable
representing the number of bits exchanged among P1, · · · , Pn when running π
with inputs �x and security parameter κ. There exists a polynomial p such that
T (κ, (∅, 0, x3)) < p(κ) for all large enough κ since π is a polynomial-time proto-
col. For any x∗

1 of the cardinality ω(p(κ)), it must hold T (κ, (x∗
1, 0, x3)) < p(κ)

for all large enough κ, otherwise P2 can distinguish that P1 has ∅ or x∗
1, although

P2 must not learn |x1|. (Note that since tomprfn(x∗
1, 0, x3) = ∅, the party P2, who

may learn the output, must not learn any partial information of the size of P1.)
It must also hold T (κ, (x∗

1, 2
κ − 1, x3)) < p(κ) for all large enough κ, otherwise

P3 can distinguish that the output size is 0 or ω(p(κ)). Now we construct an
algorithm D that distinguishes between outputs of the pseudorandom function
Fx3(a1), · · · , Fx3(am) ∈ {0, 1}κ, and truly random values r1, · · · , rm ∈ {0, 1}κ,
using a simulator S for a randomness producer R(1κ) = 0. The distinguisher
D invokes S with inputs (1κ, xi, �z, 0) where xi is the input of Pi, �z is either
(Fx3(a1), · · · , Fx3(am)) or (r1, · · · , rm) (here, we omit a set of indices I and the
input sizes). If �z is the pseudorandom values, the simulator S outputs a tran-
script of length less than p(κ), otherwise S cannot output consistent transcript
due to the incompressibility of a random string. The distinguisher D should out-
put 1 if S outputs consistent transcript. D distinguishes pseudorandom values
and random values4, in contradiction to the pseudorandomness of F . Thus, in
this case, assuming the existence of one-way functions, there is a function f such
that (G,�v, f) cannot be realized in the secure channel model. ��

Theorem 1 is proven by Lemmas 3, 4 and 5.

5 Results in the Strong Secure Channel Model

In previous section, we show that, in the secure channel model, a general size-
hiding protocol cannot hide two or more (input or output) size information. In
order to circumvent the infeasibility, we introduce a new communication model,
a strong secure channel model such that an adversary cannot learn the number of

4 The above strategy works even for any randomness producer whose output size is
bounded. However, in the HBC model, the proof does not work since a simulator
can generate a transcript with a long random tape.
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bits exchanged among honest parties. We show that, in the strong secure channel
model, a general size-hiding protocol exists even hiding all sizes of inputs and
output from some parties, while the secure channel model only allows the size of
at most one input to be hidden. Furthermore, we also prove that some functions
still remain infeasible even in the strong secure channel model. More specifically,
we give a sufficient and necessary condition under which a general size-hiding
protocol can exist. Because the condition depends on whether the output size
is public or private, our result is stated in Theorem 2 (when the output size is
public) and Theorem3 (when the output size is private).

In Sect. 5.1, we introduce the strong secure channel model. In Sect. 5.2, we
give our main results, Theorem 2 and Theorem 3, and some examples of (feasible
or infeasible) classes. We show the feasibility part of Theorem 2 in Sect. 5.3, and
the infeasibility part of the theorem in Sect. 5.4. We show the feasibility part of
Theorem 3 in Sect. 5.5, and the infeasibility part of the theorem in Sect. 5.6.

5.1 Strong Secure Channel Model

One of the standard communication model is the secure channel model, which
is an abstraction of secure communication. In the secure channel model, an
adversary cannot learn messages exchanged among honest parties, but can learn
the number of bits of them. The model is very powerful and used in various
works, however, in the context of size-hiding computations, there are strong
infeasibility results. In order to circumvent the infeasibility, we introduce a new
communication model, a strong secure channel model such that an adversary
can learn neither messages nor the number of bits exchanged among honest
parties, At first glance, the existence of such a communication channel seems to
be suspicious, but we emphasize that the strong secure channel model can be
instantiated by using steganographic techniques.

We provide a security definition of the strong secure channel model. The
only difference from the secure channel model is that a simulator does not have
to create message sizes in the strong secure channel model. Thus, the security
in the secure channel model implies the security in the strong secure channel
model. The security of protocols in the model is formally defined as follows.

Definition 4 (Security in the strong secure channel model). Let
(G,�v, f) be a functionality for n parties and let π be a protocol that correctly
computes (G,�v, f). We say that π realizes (G,�v, f) in the strong secure channel
model if for every randomness producer R, there exists a PPT S such that for
every I � {1, · · · , n}, every polynomials q1, · · · , qn,

{S(1κ, I, �xI ,OUTPUT(G,�v,f)
I (�x), �rI ← R(1κ, I))

}

κ,�x

c≡ {

viewπ
I (�x)�rI

}

κ,�x

where x1 ∈ {0, 1}q1(κ), · · · , xn ∈ {0, 1}qn(κ).

5.2 Our Main Results

In the strong secure channel model, it is possible to realize any functionality
while hiding two or more sizes. The condition under which any functionality can
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exist is different depending on the case where the output size is public and the
case where the output size is private.

The main theorem for the case where the output size is public is as follows.

Theorem 2 (Public output size). Let (G,�v) be a size-hiding class with
n parties, where the output size is public. Assume that threshold FHE exists.
A class of size-hiding (G,�v) is feasible in the strong secure channel model if and
only if for every two distinct vertices i, j ∈ V (G), there exists a vertex k such
that (i, k) ∈ E(G) and (j, k) ∈ E(G).

Examples. Suppose parties P1, · · · , P5 wish to compute a function while hiding
their input sizes, but each party thinks it is permitted to leak its own size
information to the neighboring parties; see the right most graph in Fig. 6. In this
case, the parties can securely compute every function, since every two distinct
parties have a party who may learn both input sizes of them. (For example, a
pair of parties P1 and P4 has the party P5 who may learn input sizes of P1 and
P4.) Thus, in such a pentagon case, a general size-hiding protocol exists in the
strong secure channel model. Similarly, the triangle and the square cases also
have a general size-hiding protocol. On the other hand, there is no general size-
hiding protocol in the hexagon case; see the right most graph in Fig. 7. This is
due to the fact that the pair of parties P1 and P4 do not have a party who may
learn both input sizes of them. Other feasible and infeasible classes are shown
in Figs. 6 and 7.
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Fig. 6. Feasible classes with public output size

The main theorem for that case where the output size is private is as follows.

Theorem 3 (Private output size). Let (G,�v) be a size-hiding class with n
parties, where the output size is private. Assume that threshold FHE exists. A
class of size-hiding (G,�v) is feasible in the strong secure channel model if and
only if any vertex i ∈ V (G) such that �v[i] = ⊥ satisfies the both conditions:

1. For all vertices j ∈ V (G), there exists an edge (j, i) ∈ E(G).
2. There exists an edge (i, j) ∈ E(G) such that �v[j] �= ⊥.

Examples. See the center graph in Fig. 8. Suppose two clients (P3 and P4) wish
to compute a function while hiding their input sizes, with the help of servers (P1

and P2, they also have input data). Furthermore, suppose clients want to hide
the output size from servers. In this case, if servers may learn all input sizes of
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Fig. 7. Ineasible classes with public output size

clients and each server has a client who may learn the server’s input size, every
function can be realized while meeting the demand. Every feasible class with
private output size is interpreted as such a client-server situation. On the other
hand, there is no general size-hiding protocol in classes of Fig. 9.
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Fig. 8. Feasible classes with private output size
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Fig. 9. Infeasible classes with private output size

5.3 Protocol with Public Output Size

We show that, in the strong secure channel model, the feasibility of size-hiding
computations is dramatically improved compared to the secure channel model.
In this subsection, we construct a size-hiding protocol where all parties may
learn the output size. (The case of private output size is described in Sect. 5.5.)
In particular, we construct a general size-hiding protocol if every pair of parties
has a party who may learn input sizes of them. The condition includes the case
where each input size is hidden from some parties, i.e., the number of hidden
sizes is the number of parties. The protocol idea is explained in Introduction;
see Sect. 1.2. The full description of the protocol appears in Protocol 2.
Building blocks – circuits for homomorphic evaluation. Let f be a func-
tion f : ({0, 1}∗)n → {0, 1}∗ and let � be an integer. We can construct the
following circuit, denoted by CSac

f,� . On receiving a string x′
1, x

′
2, · · · , x′

n ∈ {0, 1}∗
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as inputs, if there is an all-zero string in inputs, then it outputs 0�, otherwise,
parse as x′

i = 00 · · · 0||1||xi (i = 1, · · · , n), and outputs f(x1, · · · , xn) padded
with zeroes up to �.
Protocol 2. Suppose that parties P1, P2, · · · , Pn have inputs x1, x2, · · · , xn, respec-
tively, and each party is either a full-output party or a size-inly party. The protocol
proceeds as follows.

1. All parties invoke a ThrGen protocol with inputs 1κ, and each party Pi obtains
a public key pk and a share of the secret key ski.

2. For all edges (i, j) ∈ E(G), Pi sends the size information |xi| to Pj .
3. For all two vertices i, j ∈ V (G), the party Pi sends ciphertexts cin(i,j) to Pj as

follows. Let Pk be a party who may learn both of |xi| and |xj |. The party Pi

computes ci = Encpk(1||xi), and sends to Pk. (If Pi and Pk are the same party,
then Pi computes only.) If it holds |xj | ≥ |xi|, then Pk computes a ciphertext
cin(i,j) = Encpk(0|xj |−|xi|)||ci, and sends it to Pj . Otherwise, Pk computes a cipher-

text of zeroes cin(i,j) = Encpk(0|xj |+1), and sends it to Pj .

4. Each party Pi constructs the circuit C
|f |
(log κ)2

(described as above), where |f | =

|f(x1, · · · , xn)|, computes csizei ← Evalpk(C
|f |
(log κ)2

, cin(1,i), · · · , cin(n,i)), and sends csizei

to the party P1 (or other designated party).
5. The party P1 computes csize by homomorphic evaluation of a max function from

csize1 , · · · , csizen , and sends it to all parties. Then, all parties invoke a ThrDec protocol
with the ciphertext csize, and obtain the decrypted value �.

6. Each party Pi computes couti ← Evalpk(Cf
� , cin(1,i), · · · , cin(n,i)), where Cf

� is a circuit
described as above for the function f and the integer �, and then sends couti to
the party P1.

7. The party P1 computes cout by homomorphic evaluation of a max function from
cout1 , · · · , coutn , and sends it to all parties. Then, all parties invoke a ThrDecIf

protocol with the ciphertext cout, and all full-output parties obtain the decrypted
value z. All full-output parties output z, and the other parties output nothing.
The protocol terminates.

Lemma 6 (Security of Protocol 2). Let (G,�v) be a size-hiding class with n
parties, which holds the conditions stated in Theorem 2. Let f(x1, · · · , xn) be any
n-ary polynomial-time computable function. Assuming the existence of threshold
FHE, Protocol 2 realizes (G,�v, f) in the strong secure channel model.

Proof. Given 1κ, I, inputs �xI , input sizes {1|xj |∣∣(j, i) ∈ E(G)}i∈I , the out-
put f(�x) if I ∩ If �= ∅, and random tapes �RI produced by a randomness pro-
ducer, the simulator S works as follows. First, S computes (pk, sk) ← Gen(1κ),
chooses ski

U← {0, 1}|sk| for every i ∈ I, and simulates ThrGen protocol with
keys (pk, ski)i∈I . Next, for every i ∈ {1, · · · , n} and every j ∈ I, S com-
putes cin(i,j) = Encpk(0|xj |−|xi|||1||xi) if it holds i ∈ I and |xj | ≥ |xi|, otherwise,
cin(i,j) = Encpk(0|xj |+1). Then, S computes csizei and couti for every i ∈ I, and
evaluates csize and cout. S simulates threshold decryption protocols for csize and
cout. Finally, S outputs views of corrupted parties generated as above. The views
generated by S are indistinguishable from the views in a real execution of the
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protocol due to the IND-CPA security of threshold FHE and the security of
threshold key generation and decryption protocols. ��

5.4 Infeasibility Result with Public Output Size

We show that, when all parties may learn the output size, the condition “every
pair has a party who may learn input sizes of the pair” is a necessary and
sufficient condition under which a general size-hiding protocol can exist. In this
subsection, in order to prove this, we show that the condition is not satisfied, a
general size-hiding protocol does not exist.

Lemma 7. Let (G,�v) be a size-hiding class with n parties, where the output size
is public. The size-hiding class (G,�v) is infeasible in the strong secure channel
model if there exists two distinct vertices i∗, j∗ ∈ V (G) such that there is no
vertex k ∈ V (G) such that (i∗, k) ∈ E(G) and (j∗, k) ∈ E(G).

Proof. Let (G,�v) be a size-hiding class that satisfies the conditions as above.
Without loss of generality, we can assume i∗ = 1 and j∗ = 2. Let P ′

1 = {Pi|(2, i) �∈
E(G)} and let P ′

2 = {P1, · · · , Pn} \ P ′
1. The parties P ′

1 must not learn |x2| from
the definition, and the parties P ′

2 must not learn |x1|, otherwise, it contradicts
to the condition. (Note that P1 ∈ P ′

1 and P2 ∈ P ′
2.) Let f ′ be a two-ary func-

tion such that (G2.a, �v2.a, f ′) cannot be realized in the (strong) secure channel
model5, and let f be a function such that f(x1, x2, · · · , xn) = f ′(x1, x2). Assume
by contradiction that there exists an n-party protocol π that realizes (G,�v, f)
in the strong secure channel model. We can construct a two-party protocol π′

with P ′
1 and P ′

2, that is compiled by a reduction compiler from the protocol π.
From Lemma 1, the protocol π′ realizes the functionality (G2.a, �v2.a, f ′), in con-
tradiction to the assumption. Therefore, the size-hiding class (G,�v) is infeasible
in the strong secure channel model. ��

Theorem 2 is proven by Lemmas 6 and 7.

5.5 Protocol with Private Output Size

In this subsection, we construct a size-hiding protocol where some parties must
not learn the output size; see Protocol 3. (The case of public output size is
described in Sect. 5.3.) Note that it is not superior to Protocol 2 since these size-
hiding conditions are different. Interestingly, the underlying idea of the protocol
is completely different from Protocol 2; see Sect. 1.2.
Building block – GMW protocol. Goldreich et al. [GMW87] constructed
a general MPC protocol that is secure in the presence of HBRC adversaries6

5 Note that, in the two-party setting, the strong secure channel model and the secure
channel model are essentially the same.

6 It is well known that the protocol is secure against HBC adversaries. However, it is
also secure against HBRC adversaries since the simulation algorithm does not have
to choose random tapes by itself.
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corrupting up to n − 1 of n parties, and showed that it can be compiled to a
protocol that is secure in the presence of malicious adversaries. Our protocol uses
the HBRC protocol in order to compute the desired function by all servers. For
simplicity, we use GMW protocol to denote a protocol that realizes the following
functionality.

– Input: Each party is given a secret share of xj for all j = 1, · · · , n.
– Output: All parties output f(x1, · · · , xn).

Protocol 3. Suppose that parties P1, P2, · · · , Pn have inputs x1, x2, · · · , xn, respec-
tively, and there are some forbidden parties. The function f to be computed has a
polynomial p s.t. |f(x′

1, · · · , x′
n)| < p(|x′

1|, · · · , |x′
n|) for all x′

i ∈ {0, 1}∗. Let p′ be a
polynomial such that p′(x) = p(x, x, · · · , x). For a ciphertext c = (c1, · · · , c�) (each ci

is a ciphertext of 1-bit message), [cout]�′ (�′ ≤ �) denotes c′ = (c1, · · · , c�′). Without
loss of generality, we can assume 1 ∈ I⊥ and 2 ∈ Ip. The protocol proceeds as follows.

1. All permitted parties invoke a ThrGen protocol with inputs 1κ, and then each
permitted party Pi obtains the public key pk and a share of the secret key ski.
Then, P2 sends the public key pk to all forbidden parties.

2. Each party Pi computes shares of additive secret sharing {ri,j}j∈I⊥ , where
{Ri,j ∈ {0, 1}|xi|, whose secret is xi, i.e., ri1,j ⊕ ri2,j ⊕ · · · ⊕ rit,j = xi

({i1, · · · , it} = I⊥). Then, Pi computes cin(i,j) = Encpk(ri,j), and sends cin(i,j) to all
forbidden parties.

3. The forbidden parties homomorphically evaluate a GMW protocol computing
f(�x) of length L = p′(max(|x1|, · · · , |xn|)) using FHE, i.e., all messages in the
execution are encrypted by FHE and all computations are done by homomorphic
evaluation. As the output of the protocol, they obtain a ciphertext cout.

4. The party P1 constructs a circuit Csize that takes x ∈ {0, 1}L as an input, and

outputs |x| ∈ {0, 1}(log κ)2 . Then, P1 computes csize ← Evalpk(Csize, c
out), and

sends csize to all permitted parties.
5. Let σi = max{|xj |

∣
∣(j, i) ∈ E(G)}, and let Li = p′(σi). (It must hold Li ≤ L for

all i by the definition.) For every i ∈ Ip, the party P1 homomorphically evaluates
a max function for [cout]Li and Encpk(0Li), and obtains a ciphertext couti . Then,
P1 sends couti to Pi for every i ∈ Ip.

6. All permitted parties invoke a ThrDec protocol with inputs 1κ and csize, and
obtain the decrypted value �.

7. Each permitted party Pi sends [couti ]� to the party P2. (If the length of the cipher-
text is less than �, then the party uses a padding with zero ciphertexts up to �.)
The party P2 computes cout by homomorphic evaluation of a max function from
[cout1 ]�, · · · , [coutn ]�, and sends it to all permitted parties.

8. All permitted parties invoke a ThrDecIf protocol with inputs 1κ and cout, and all
full-output parties obtain the decrypted value z ∈ {0, 1}�. All full-output parties
output z, and the other parties output nothing. The protocol terminates.

Lemma 8 (Security of Protocol 3). Let (G,�v) be a size-hiding class with
n parties, which satisfies the conditions stated in Theorem 3. Let f(x1, · · · , xn)
be any n-ary polynomial-time computable function. Assuming the existence of
threshold FHE, Protocol 3 realizes (G,�v, f) in the strong secure channel model.



Size-Hiding Computation for Multiple Parties 963

Proof. Given 1κ, I, inputs �xI , input sizes {1|xj |∣∣(j, i) ∈ E(G)}i∈I , the out-
put f(�x) if I ∩ If �= ∅, and random tapes �RI produced by a randomness pro-
ducer, the simulator S works as follows. First, S computes (pk, sk) ← Gen(1κ),
chooses ski

U← {0, 1}|sk| for every i ∈ I, and simulates ThrGen protocol with
keys (pk, ski)i∈I . Next, for every i ∈ {1, · · · , n} and every j ∈ I, S com-
putes cin(i,j) = Encpk(0|xj |−|xi|||1||xi) if it holds i ∈ I and |xj | ≥ |xi|, otherwise,
cin(i,j) = Encpk(0|xj |+1). Then, S computes csizei and couti for every i ∈ I, and
evaluates csize and cout. S simulates threshold decryption protocols for csize and
cout. Finally, S outputs views of corrupted parties generated as above. The views
generated by S are indistinguishable from the views in a real execution of the
protocol due to the IND-CPA security of threshold FHE and the security of
threshold key generation and decryption protocols. ��
Proof. Let I1 and I2 be a partition of I = I1 ∪ I2 such that I1 ⊂ I⊥ and I2 ⊂ Ip.
We consider the following cases: (1) I1 � I⊥ and I2 = Ip, (2) I1 = ∅ and I2 = Ip,
(3) I1 = I⊥ and I2 � Ip, (4) I1 � I⊥ and I2 � Ip, (5) I1 = ∅ and I2 � Ip, (6)
I1 = I⊥ and I2 = ∅, and (7) I1 � I⊥ and I2 = ∅. We show the simulator in the
cases of (1) and (3). It is easy to adapt the proof to the other cases.

We construct the simulator S in the case of (1), where all clients and some
servers are corrupted. Given 1κ, I, inputs �xI , all input sizes {1|x1|, · · · , 1|xn|},
the output f(�x), and random tapes �rI produced by a randomness producer,
the simulator S works as follows. First, S invokes a threshold key generation
protocol, and obtains a public key pk and all shares of the secret key. Second, S
computes secret shares of xi for i ∈ I and 0|xi| for i �∈ I, and encrypts them by
threshold FHE. Next, S computes cout = Encpk(f(�x)) padded with zeroes up to
appropriate length and simulates an encrypted GMW protocol on the input
ciphertexts and cout. Then, S invokes threshold decryption protocols. Finally, S
outputs views of corrupted parties generated as above. The view generated by
S and the view in a real execution are indistinguishable due to the security of
the GMW protocol.

Next we construct the simulator S in the case of (3), where all servers
and some clients are corrupted. Given 1κ, I = I1 ∪ I2, inputs �xI , all input
sizes {1|x1|, · · · , 1|xn|}, the output f(�x), and random tapes �rI produced by
a randomness producer, the simulator S works as follows. First, S computes
(pk, sk) ← Gen(1κ), chooses ski

U← {0, 1}|sk| for all i ∈ I2, and simulates a thresh-
old key generation protocol with the keys. Second, S computes secret shares of
xi for i ∈ I and 0|xi| for i �∈ I, and encrypts them by threshold FHE. Next, S
homomorphically executes GMW protocol, and obtains the output ciphertext
cout. Then, S computes csize honestly, and simulates threshold decryption proto-
cols. Finally, S outputs views of corrupted parties generated as above. The view
generated by S and the view in a real execution are indistinguishable due to the
IND-CPA security of FHE and the security of threshold protocols. ��
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5.6 Infeasibility Result with Private Output Size

We show that, when some parties must not learn the output size, the condition
stated in Theorem 3 is a necessary and sufficient condition under which a general
size-hiding protocol can exist. In this subsection, in order to prove this, we show
that if the condition is not satisfied, a general size-hiding protocol does not exist.

Lemma 9. Let (G,�v) be a size-hiding class with n parties, where the output size
is private. The size-hiding class (G,�v) is infeasible in the strong secure channel
model if there exists a vertex i∗ ∈ V (G) such that �v[i∗] = ⊥, which satisfies one
of the following conditions:

1. There exists a vertex j∗ ∈ V (G) such that (j∗, i∗) �∈ E(G).
2. There is no edge (i∗, j) ∈ E(G) such that �v[j] �= ⊥.

Proof. Let (G,�v) be a size-hiding class that satisfies the former condition. With-
out loss of generality, we can assume i∗ = 1 and j∗ = 2, i.e., �v[1] = ⊥
and (2, 1) �∈ E(G). Let f ′ be a two-ary function such that the functionality
(G1.d, �v1.d, f

′) cannot be realized in the (strong) secure channel model, and let f
be an n-ary function such that f(x1, x2, · · · , xn) = f ′(x1, x2). Assume by contra-
diction that there exists n-party protocol π that realizes (G,�v, f) in the strong
secure channel model. Now we construct a two-party protocol π′ with P ′

1 = {P1}
and P ′

2 = {P2, · · · , Pn} that is compiled by a reduction compiler from the pro-
tocol π. Since P ′

1 must not know both the output size and the input size |x2|,
the protocol π′ realizes (G1.d, �v1.d, f

′) in the (strong) secure channel model, in
contradiction to the infeasibility of f ′. Therefore, the size-hiding class (G,�v) is
infeasible in the strong secure channel model.

Let (G,�v) be a size-hiding class that satisfies the latter condition. Let P ′
1 be

a subset of parties P ′
1 = {Pi|�v[i] = ⊥}, and let P ′

2 = {P1, · · · , Pn} \ P ′
1. Without

loss of generality, we can assume i∗ = 1 and P2 ∈ P ′
2. Let f ′ be a two-ary function

such that (G1.b, �v1.b, f
′) cannot be realized in the (strong) secure channel model,

and let f be an n-ary function such that f(x1, x2, · · · , xn) = f ′(x1, x2). Assume
by contradiction that there exists n-party protocol π that realizes (G,�v, f) in
the strong secure channel model. Now we construct a two-party protocol π′ with
P ′
1 and P ′

2, that is compiled by a reduction compiler from the protocol π. Since
P ′
1 must not learn the output size, and P ′

2 must not learn the input size |x1|,
the protocol π′ realizes (G1.b, �v1.b, f

′) in the (strong) secure channel model, in
contradiction to the infeasibility of f ′. Therefore, the size-hiding class (G,�v) is
infeasible in the strong secure channel model. ��

Theorem 3 is proven by Lemmas 8 and 9.
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Appendix

Honest-But-Randomness-Controlling Model

In this section, we show that the honest-but-randomness-controlling (HBRC)
model is truly stronger than the honest-but-curious (HBC) model. We also
explain the relation between the HBRC model and the honest-but-deterministic
(HBD) model proposed by [HW15]7. To clarify the difference among them, we
describe them in a standard setting (not size-hiding settings).

The view of the party Pi during an execution of π with inputs �x is defined
as viewπ

i (�x) = (xi, ri,mi1 , · · · ,mit), where ri is its internal coin tosses and mij

is the j-th message that was received by Pi in the protocol execution. We also
use viewπ

i (�x)|ri
= (xi,mi1 , · · · ,mit) to denote viewπ

i (�x) on given randomness ri.
Here, if the length of ri is shorter than the length of its internal randomness, its
internal randomness is ri||0k for appropriate k ∈ N.

Definition 5 (HBC). Let f be a polynomial-time computable n-ary func-
tion. We say that π securely computes f in the HBC model if there exists a
PPT S such that for every I � {1, · · · , n}, every polynomials q1, q2, · · · , qn,
{S(1κ, I, �xI , �yI)

}

κ,�x

c≡ {

viewπ
I (�x)

}

κ,�x
, where x1 ∈ {0, 1}q1(κ), · · · , xn ∈

{0, 1}qn(κ).

Definition 6 (HBRC Model). Let f be a polynomial-time computable n-
ary function. We say that a PPT R is a randomness producer if R(1κ, I)
outputs a vector of strings �rI = (ri1 , · · · , rit) ∈ ({0, 1}∗)|I| for all I =
{i1, · · · , it} � {1, · · · , n}. We say that π securely computes f in the HBRC
model if for every randomness producer R there exists a PPT S such that
for every I � {1, · · · , n}, every polynomials q1, · · · , qn,

{S(1κ, I, �xI , �yI , �rI ←
R(1κ, I))

}

κ,�x

c≡ {

viewπ
I (�x)|�rI

}

κ,�x
, where x1 ∈ {0, 1}q1(κ), · · · , xn ∈ {0, 1}qn(κ).

Definition 7 (HBD Model). Let f be a polynomial-time computable n-ary
function. We say that π securely computes f in the HBD model if there exists a
PPT S such that for every I � {1, · · · , n}, every polynomials q1, q2, · · · , qn,
{S(1κ, I, �xI , �yI)

}

κ,�x

c≡ {

viewπ
I (�x)|0

}

κ,�x
, where x1 ∈ {0, 1}q1(κ), · · · , xn ∈

{0, 1}qn(κ).

It is trivial that the security in the HBRC model implies the security in
the HBD model. Moreover, the HBRC model implies the HBC model by the
following Theorem.

Theorem 4. Let f be a polynomial-time computable n-ary function. If a proto-
col π securely computes f in the HBRC model then it also securely computes f
in the HBC model.

7 In original definition in [HW15], the model captures precomputation settings. Our
formalization does not include a precomputation for simplicity.
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Proof. For simplicity, we consider the case of n = 2 and that one party is cor-
rupted. We note that the general case n > 2 can be proven in the same way.

Assume that a protocol π is secure in the HBRC model. We construct a PPT
S ′ that produces viewπ(�x) given an input (1κ, x, y). S ′ computes T = p(κ, |x|, |y|)
and generates an uniformly random string r ∈ {0, 1}T . Then, S ′ invokes S on
inputs (1κ, x, y, r) and outputs the same output as S. Therefore, if a protocol is
secure in the HBRC model then it is also secure in the HBC model. ��
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