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Abstract. Entity resolution, which seeks to identify records that repre-
sent the same entity, is an important step in many data integration and
data cleaning applications. However, entity resolution is challenging both
in terms of scalability (all-against-all comparisons are computationally
impractical) and result quality (syntactic evidence on record equivalence
is often equivocal). As a result, end-to-end entity resolution proposals
involve several stages, including blocking to efficiently identify candidate
duplicates, detailed comparison to refine the conclusions from blocking,
and clustering to identify the sets of records that may represent the
same entity. However, the quality of the result is often crucially depen-
dent on configuration parameters in all of these stages, for which it may
be difficult for a human expert to provide suitable values. This paper
describes an approach in which a complete entity resolution process is
optimized, on the basis of feedback (such as might be obtained from
crowds) on candidate duplicates. Given such feedback, an evolutionary
search of the space of configuration parameters is carried out, with a view
to maximizing the fitness of the resulting clusters. The approach is pay-
as-you-go in that more feedback can be expected to give rise to better
outcomes. An empirical evaluation shows that the co-optimization of the
different stages in entity resolution can yield significant improvements
over default parameters, even with small amounts of feedback.

1 Introduction

Entity resolution is the task of identifying different records that represent the
same entity, and is an important step in many data integration and data cleaning
applications [11, 21]. A single entity may come to be represented using different
records for many reasons; for example, data may be integrated from indepen-
dently developed sources that have overlapping collections (e.g., different retail-
ers may have overlapping product lines), or a single organization may capture
the same data repeatedly (e.g., a police force may encounter the same individual
or address many times, in situations where it may be difficult to be confident of
the quality of the data). As a result, diverse applications encounter situations
in which it is important to ascertain which records refer to the same entity, to
allow effective data analysis, cleaning or integration.
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In practice, given large collections, it is impractical to perform a detailed
all-against-all comparison, which is O(n2) on the number of records. As a result,
entity resolution tends to involve three principal phases: (i) blocking, whereby
pairs of records that are candidate duplicates are identified using inexpensive,
approximate comparison schemes; (ii) detailed comparison in which a distance
function compares properties of the candidate duplicates from blocking; and (iii)
clustering, whereby the records that have been identified as candidate duplicates
through blocking are grouped into clusters on the basis of the results of the
distance function. There is lots of work on each of these phases; for example,
Christen [4] provides a survey of indexing techniques that support blocking, and
Hassanzadeh et al. [14] compare clustering algorithms that take as input the
results of blocking1.

In an ideal world, off-the-shelf entity resolution techniques would be applied,
with minimal manual intervention, to generate dependable results. However, in
practice, the quality of the result of entity-resolution techniques is often crucially
dependent on configuration parameters in all of blocking, detailed comparison and
clustering. Setting these parameters directly is not straightforward for human
experts; the impact of changes to parameters such as thresholds may be wide-
ranging and difficult to predict, and there may be subtle inter-dependencies
between parameters.

The importance of configuration of entity resolution has been widely recog-
nised, and there are several results on different aspects of the problem. For ex-
ample, blocking algorithms may use a subset of the fields in a record as the basis
for comparison with other records, and apply a function that, given a record,
generates one or several blocking keys, each of which gives rise to an index entry;
such functions depend on the data to which the algorithm is to be applied, and
manual tuning is often both laborious and difficult [4]. Indeed, several results
have been reported that seek to automate (often by learning from training data)
suitable parameter values for blocking schemes [3, 12, 26]. It is a similar story
for clustering, where algorithms generally make use of thresholds, which also
depend on the data that is being clustered. Although there has been some work
on the tuning of comparison functions for pairwise matching (e.g. [13, 16]), we
know of no previous work that seeks to co-optimize the complete lifecycle, from
blocking to clustering. The most closely related proposal is probably Corleone
[13], which also seeks to optimize the complete entity resolution process, but
which differs in optimizing different aspects of an entity resolution pipeline in
sequence rather than together, in emphasizing comparison functions rather than
wider configuration parameters, and in focusing on pairwise comparison rather
than clustering.

In this paper we investigate a pay-as-you-go approach to configuration of a
complete entity resolution process. Given feedback on candidate duplicates, the

1 Some entity resolution proposals carry out blocking and pairwise comparison, but
stop short of clustering; this is fine up to a point, but clustering proposals are more
comprehensive, in that they make the additional decisions as to which groups of
candidate duplicates belong together.
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approach explores the space of configuration parameters with a view to max-
imising the quality of the resulting clusters. Thus the entity resolution process is
configured automatically in the light of feedback. The approach is pay-as-you-go,
in that users can provide as little or as much feedback as they like, reviewing
the results in the light of the feedback provided to date, and supplying addi-
tional feedback until they are satisfied. An empirical evaluation investigates the
trade-off between the amount of feedback provided and the quality of the result.

In this paper, we use feedback that confirms or rejects candidate duplicates
to configure the complete entity resolution process. Assume we have an entity
resolution system E(D,P ), which given a collection of records (represented as
tuples in this paper) in a data set D and a set of configuration parameters
P (such as similarity thresholds), returns a set of clusters C, such that each
cluster Ci ∈ C is a subset of D. Given feedback on record pairs from D that
indicates whether or not the records in the pair are actually duplicates, the
problem is to identify parameters P that maximize the quality of the clusters
C. Our approach is to use an evolutionary search [24] for parameter values that
maximize cluster quality with respect to user feedback, for an existing, state-of-
the-art, entity resolution proposal [5] that combines blocking and clustering. As
such, this paper is an application of closed-loop evolutionary optimization [19]
to entity resolution.

The contributions of the paper are as follows:

1. A generic approach to configuration of parameters for entity resolution that
uses feedback on the correctness (or otherwise) of candidate duplicates.
These parameters tune the blocking and clustering algorithms, and configure
the distance function that is used to compare pairs of records.

2. A description of the application of that approach to produce a self-optimizing
pay-as-you-go entity resolution system that uses an evolutionary search over
the space of parameter values in which the fitness of alternative sets of
parameters is assessed against feedback received on candidate duplicates
from blocking.

3. An evaluation of the resulting platform with real world data sets, which
shows substantial improvements in cluster quality, even with small amounts
of feedback.

4. As the proposal can be considered to be computationally expensive, we de-
scribe and evaluate an approach that seeks to retain the results from (3)
while also scaling to large data sets.

The paper is structured as follows: Section 2 provides the technical context
for the remainder of the paper, introducing the terminology and prior results
on which later sections build. Section 3 describes our approach to pay-as-you-go
entity resolution, which is then evaluated in Section 4. An approach to addressing
the computational overheads of the approach is presented in Section 5. Related
work is discussed in Section 6, and conclusions follow in Section 7.
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2 Technical Context

As discussed in the introduction, entity resolution proposals commonly involve
two phases, blocking and clustering.

Blocking, given a data set D of type T , associates each element di ∈ D
with a set of other elements Mi ⊂ D such that each element in Mi is a candidate
duplicate for di. In practice, as surveyed by Christen [4], blocking typically yields
an index I : T → {T}, where the index may be based on a subset of the attributes
of T or some form of string pattern such as n-grams. Requirements of blocking
are that it should be efficient, and that Mi should contain most of (preferably all)
the actual duplicates of di (and preferably not vast numbers of non-duplicates).

Clustering, given a data set D and an index I from blocking, returns a set of
clusters C, such that each cluster Ci ∈ C is a subset of D.

In this paper we do not exhaustively re-review related work on blocking [4]
or clustering [14]; the contribution of this paper is on pay-as-you-go configura-
tion of entity resolution, and not on entity resolution techniques per se. As such,
we do not develop a new entity-resolution proposal, but rather demonstrate our
approach on an existing state-of-the-art proposal [5] that is described in this sec-
tion. We have chosen this proposal because: (i) the blocking phase, in employing
a q-gram based hashing scheme, is using an approach that has been shown to
be effective in a recent comparison [4]; (ii) the clustering algorithm meets all the
generic requirements from [14], in that it is unconstrained (the number of clusters
is not known in advance), unsupervised (clusters can be produced without train-
ing data) and disjoint (there is no overlap in the membership of clusters); (iii)
the clustering algorithm is incremental, enabling new data to be incorporated
as it becomes available; (iv) the full entity resolution process, from blocking,
through pairwise comparison to clustering is included within a single proposal;
and (v) the approach has been shown to be scalable in empirical studies [5].
Although we present our pay-as-you-go configuration approach in the context of
this particular proposal, the overall approach is not specific to this technique,
and could be applied to configure other approaches.

2.1 Blocking

Blocking, given a data set D of type T , creates an index I : T → {T} that, given
a tuple di ∈ D, can retrieve a set of elements Mi ⊂ D such that each element
in Mi is a candidate duplicate for di. A candidate duplicate in this context is a
record for which there is some evidence for its equivalence, but where the quality
of the comparison may have been traded off for speed. The central questions for
blocking are: what type of index to use and how to construct index keys. In the
algorithm of Costa et al. [5], hash indexes are used, that associate each tuple di
with all other tuples that have identical keys, where the keys use an encoding
scheme that captures syntactic similarities between the tuples.

Specifically, each tuple may be associated with several keys, each generated
using different hash functions, following Algorithm 1. Given a tuple t and config-
uration parameters P , Hash returns a collection of keys for t. The configuration
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Algorithm 1: Hash(Tuple t, Parameters P)

1 for i← 1 to P.numKeys do
2 r ← {hk|ak ∈ t, hk ←min{H1

i (g)|
3 g ←q-gram(ak, P.q)}}
4 keyi = ””
5 for j ← 1 to P.keyComponents do
6 keyi ← keyi++min{H2

j (h)|h ∈ r}

7 return < key1, ..., keyP.numKeys >

parameters provide: the number of hash keys to be generated (P.numKeys), the
number of components in each hash key (P.keyComponents) and the size (P.q)
of q-grams to use for approximate matching. Costa et al. assume the presence
of two collections of hash functions, H1

i and H2
j , that carry out first and sec-

ond level hashing (i.e. second level hashing is applied to the result of first level
hashing, as described below). These collections of hash functions can be used to
generate several keys for each tuple within blocking. Hash proceeds as follows:

– For each of the keys to be generated (line 1) a representation r is created
that contains, for each attribute ak of t, the minimum value obtained when
H1

i is applied to the q-grams of ak (lines 2, 3). Thus a single hash code is
generated to represent each attribute in t, in such a way that the probability
that two values will be assigned the same hash value increases with the
overlap between their q-grams.

– The key generated for each tuple is obtained by concatenating (using ++)
together P.keyComponents elements from the representation r (line 5). The
specific component that contributes to the jth position in the key is the
minimum value obtained when H2

j is applied to each of the elements in r
(line 6).

– The result of the function is a collection of P.numKeys keys (line 7).

To take an example, assume we have two tuples representing person data,
each with attributes for forename, surname, street and city: t1 = ¡David, Cameron,
10 Downing Street, London¿ and t2 = ¡Dave, Cameron, Downing Street, Lon-
don¿. Assume that the representation r produced in (line 2) for each of the
tuples is as follows rt1 = < h1, h2, h3, h4 >, and rt2 = < k1, k2, k3, k4 >,
where each hi and kj is a hash code. As the surname and city attributes have
identical values, h2 = k2 and h4 = k4. As the forename and street attributes are
similar, and thus have several q-grams in common, there is a good likelihood but
no guarantee that h1 = k1 and that h3 = k3. Assume that the number of key
components is 2, and that the key constructed for t1 is H2

1 (h1)++H2
2 (h2). There

is then a reasonable likelihood that the first component of the key for t2 will be
the same as for t1 and a very strong likelihood that the second component of the
key will be the same, although it is possible that either or both will be different
and thus that the index keys of the tuples will not match.
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Algorithm 2: PopulateClusters(Clusters C, Index I, Set<Tuple>
NewTuples, Parameters P)

1 for t ∈ NewTuples do
2 N ←kNearestNeighbors(t, I, P )
3 c←MostLikelyCluster(N,C, t, P )
4 if c == null then
5 newCluster ←new Cluster(t);
6 C ← C ∪ newCluster

7 else
8 c← c ∪ t

9 Return C

In constructing the index there is a trade-off: the more index entries there are
for a tuple (i.e. the higher is P.numKeys), the more the recall of blocking (the
fraction of the correct tuples that are returned) will rise while its precision (the
fraction of the returned tuples that are correct) will fall. By contrast, increasing
the number of key components increases the precision of blocking but reduces
recall. An empirical evaluation of these features is provided in the original paper
on the technique [5].

2.2 Clustering

Given an optional set of existing clusters C, an index from blocking I, a set of
tuples NewTuples and some configuration parameters P , PopulateClusters
updates the clusters C to take into account the presence of the NewTuples.
As a result, this algorithm can be used to cluster an entire data set in one go,
or incrementally to cluster data as it becomes available. The top level of the
algorithm is given in Algorithm 2, which proceeds as follows:

– For each new tuple t (line 1), its k nearest neighbors are retrieved as N . The
function kNearestNeighbors (line 2) returns up to P.k entries from the
index I that are the closest to t according to a Distance function (described
below), and also above a similarityThreshold from P .

– The most likely cluster for t is identified by MostLikelyCluster (line 3),
which returns a cluster from the clusters of the tuples in N , following a vot-
ing procedure involving the neighbors in N . In essence, each neighbor of t,
nt ∈ N , adds a contribution 1

Distance(t,nt)
to the score of its cluster, and the

new tuple t is considered to be a candidate to be returned by MostLike-
lyCluster whenever its score from voting exceeds a membershipThreshold
from P .

– Where a cluster is identified by MostLikelyCluster, t is added to this
cluster (line 8), otherwise a new cluster is created with t as its only member
(lines 5 and 6).
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Algorithm 3: EntityResolution(Set<Tuple> Data, Parameters P)

1 I ← new Index();
2 for d ∈ Data do
3 Keys =Hash(d, P )
4 for k ∈ Keys do
5 I.Insert(k, d)

6 C ← new Clusters();
7 PopulateClusters(C, I,Data, P )
8 return C

The Distance function, given two tuples s and t, computes a weighted sum
of the n-gram distance (denoted dist) of the attributes, so for two tuples s =<
as,1, ..., as,n > and t =< at,1, ..., at,n >, their distance is w1 × dist(as,1, at,1) +
... + wn × dist(as,n, at,n), where the weights are from P .

Algorithm 3 provides the top-level pseudo-code of EntityResolution that,
given some Data to be clustered and control parameters P, shows how Hash and
PopulateClusters can be used together to create a new data clustering.

2.3 Configuration Parameters

The algorithms described above make a range of different decisions during both
blocking and clustering, where these decisions can be tuned using configuration
parameters; the parameters are summarized in Table 1. The hypothesis that
this paper sets out to test is that these parameters can be optimized in the light
of feedback to improve the quality of clustering for records for which no feedback
has yet been obtained. Although several of these parameters are strategy-specific,
blocking and clustering strategies tend to make similar types of decision, so we
suggest that these provide a representative collection of tuning parameters for a
study on parameter tuning.

3 Pay-as-you-go Clustering

3.1 Overview

Automatic entity resolution is challenging because duplicate records typically
manifest representational heterogeneities and data level inconsistencies that it
is difficult for computer systems to unravel. As discussed in general terms in
Section 1, and as detailed for a specific entity resolution strategy in Section 2.3,
entity resolution techniques make decisions that are often guided by configura-
tion parameters, the most effective settings for which may be data specific, and
which may be challenging to set manually. This section details our approach to
optimizing parameter setting, in the light of feedback, where the incremental
collection of feedback allows a pay-as-you-go approach.
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Parameter Description Type Optimization
Range

numKeys Number of keys Integer 1 ≤ numKeys ≤ 9
per tuple in Hash

keyComponents Number of values contributing Integer N/A – keyComponents = 1
to a key in Hash

q Size of q-gram in Hash Integer N/A – q = 3
H1

i Index into collection Integer 1 ≤ H1
i ≤ 100

of first level hash functions
H2

i Index into collection Integer 1 ≤ H1
i ≤ 100

of second level hash functions
k Nearest neighbors returned Integer 1 ≤ k ≤ 20

by kNearestNeighbors
similarityThreshold Maximum distance between Float 0 ≤ similarityThreshold ≤ 1.0

in kNearestNeighbors
candidate duplicates

membershipThreshold Voting threshold in Float 0 ≤ membershipThreshold ≤ 1.0
MostLikelyCluster

wi Attribute weights in Distance, Float 0 ≤ wi ≤ 1.0
such that there is
one weight per attribute

Table 1. Entity resolution algorithm parameters.

We cast the search for effective parameters as an optimization problem. Given
an objective function of the form Fitness(Clusters C, Feedback F) that indi-
cates the quality of the set of clusters C in the light of the feedback F , the
problem is to search for configuration parameters that yield clusters that maxi-
mize Fitness. Rather than using a model of the problem to estimate the quality
of a candidate solution (as, for example, is standard practice for query optimiza-
tion), the search takes place over the space of possible parameter settings, and
the Fitness is computed using clusters produced by running EntityResolu-
tion with candidate parameters over real data and feedback. Such an approach
is followed because there is no known model for predicting the quality of the
result of the entity resolution process given its parameters.

For entity resolution, we assume that feedback takes the form of annotations
on pairs of records that are candidate duplicates, that confirm or refute that a
pair of records are truly duplicates; such feedback is also obtained in [31, 33]. We
then require a fitness measure for the outcome of the entity resolution process,
the clusters, that builds on this feedback. Our fitness function uses the fraction
of the feedback that has been correctly clustered as an estimate of the fitness
that results from the use of a set of configuration parameters. In deriving this
fraction, we use the notation FC to denote counts derived from the feedback
and the clustering, where F and C can each take the values M or U. The first
character, F, represents the status of a pair of records in the Feedback: an M
indicates that a pair of records match (i.e. they are duplicates); and a U indicates
that a pair of records is unmatched (i.e. they are not duplicates). The second
character, C represents the status of a pair of records in the clusters: an M
indicates that a pair of records match (i.e. are duplicates); and a U indicates
that a pair of records is unmatched (i.e. are not duplicates). Thus the notation:
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– MM denotes the number of records that are matched in the feedback that
are also matched in the clusters.

– UU denotes the number of records that are unmatched in the feedback that
are also unmatched in the clusters.

– MU denotes the number of records that are matched in the feedback that
are unmatched in the clusters.

– UM denotes the number of records that are unmatched in the feedback that
are matched in the clusters.

The Fitness of a clustering in the context of some feedback is then defined as:

MM+UU
MM+MU+UU+UM

Intuitively, this is the fraction of the feedback which is correctly represented
in the clusters. We note that this notion differs from existing fitness measures
for clusters, but that existing measures tend either: (i) to assume access to the
ground truth (e.g. [14]), of which we have access to only a portion via feedback;
or (ii) to relate to general properties of clusters such as inter- and intra-cluster
distance (e.g. [23, 27]) that may not be good indicators of how appropriately
values have been assigned to clusters.

3.2 Evolutionary Search

This section describes how an evolutionary search, in particular a genetic al-
gorithm, can be used to optimize the configuration parameters of the entity
resolution technique from Section 2. We chose to employ a genetic algorithm
because: (i) the search space is large, precluding the use of an exhaustive search;
(ii) the search acts over a heterogeneous collection of configuration parameters,
which are nevertheless easily accommodated in genetic algorithms; (iii) a genetic
algorithm often takes less time to complete a task than other search methods
[25], which is important in our context because of the high cost of clustering
which is used to support fitness evaluation; and (iv) fitness evaluation can be
easily parallelized in an evolutionary search.

We continue with some terminology [24]. An evolutionary search maintains
an evolving population of interim solutions (individuals), which is subject to
changes inspired by genetics. In our case, each member of the population con-
sists of a collection of values for configuration parameters that control how entity
resolution is carried out (see Table 1); the overall approach should be able to
be applied to other entity resolution strategies using a population that captures
their configuration parameters in place of those in Table 1). A parent is a mem-
ber of a population that has been chosen to participate in the production of
the next population (or generation) by way of mutation and crossover opera-
tors. A mutation introduces a random change to an individual member of the
population, whereas a crossover combines features from two parents to produce
a new member of the next population. A fitness function models requirements
of the search problem, and informs the selection of parents, although to ensure
diversity in the population not only the fittest solutions act as parents.
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Algorithm 4: GeneticSearch(Set<Tuple>Data, Feedback F)

1 population← initial collection of new random individuals
2 fitness← initial assignment of 0 for each individual
3 bestIndividual← null
4 bestF itness← 0.0
5 n← number of elite individuals to be retained
6 t← tournament size
7 c← crossover rate
8 m← mutation rate
9 counter ← 0

10 while counter < generation size do
11 for i← 1 to populationsize do
12 Clusters← CLUSTER(Data, population[i])
13 fitness[i]← FITNESS(Clusters, F )
14 if bestF itness < fitness[i] then
15 bestIndividual← population[i]
16 bestF itness← fitness[i]

17 nextPopulation←the n fittest individuals in population
18 count← 0
19 while count < populationsize/2 do
20 parenta ← TournamentSelection(population, t)
21 parentb ← TournamentSelection(population, t)
22 children← Crossover(parenta, parentb, c)
23 nextPopulation = nextPopulation ∪Mutate(children,m)
24 count = count + 1

25 population = nextPopulation
26 counter = counter + 1

27 Return bestIndividual

An evolutionary search starts from a set of random solutions that consti-
tutes the initial population. The following steps are then repeated, as detailed
in Algorithm 4, until a termination condition (e.g., the number of generations)
is satisfied:

– Fitness evaluation assigns a fitness to each element in the population (lines
13-16). In our case, the fitness of an individual (i.e. a collection of values for
configuration parameters) is obtained by generating a collection of clusters
C using those configuration parameters, and then by using the definition of
Fitness from Section 3.1 to assess these clusters in the light of the user
feedback F.

– Elite capture maintains a set of the best solutions found to date (line 17);
the elites then have a role in the construction of future generations, and have
the effect of focusing the search on promising solutions. This focusing can
reduce diversity in the population, but is used here because the high cost of
fitness evaluation means that we cannot afford too many generations.
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– Parent selection chooses from the current generation those that should
be used as parents for the next generation (lines 20-21). We apply tourna-
ment selection, in which the likelihood of an individual being a parent is
proportional to its fitness.

– Crossover is a binary variation operator on two parents that brings together
properties of different individuals (line 22). We use one-point crossover,
which splits both parents at a randomly selected element and exchanges
their tails. The crossover is applied with a probability c, called the crossover
rate.

– Mutation is a unary variation operator that manipulates a single parent,
and is used to maintain diversity in a population (line 23). Each of the values
in our population is numeric, and we use gaussian convolution to mutate
these values in such a way that the values in the children are likely to be
similar to those of their parents, but periodically are substantially different
[24]. The mutation is applied with a probability m, called the mutation rate.

4 Evaluation of pay-as-you-go clustering

This section describes the experiments carried out to evaluate the effectiveness
of the parameter optimization strategy described in Section 3, given different
amounts of user feedback. The purpose of the evaluation is to investigate the
extent to which the strategy can improve on default configurations, and the
amount of feedback required to obtain such improvements.

4.1 Experimental Setup

Datasets We use three real datasets made available by University of Leipzig,
for which the ground truth is provided with the dataset, that have been widely
used in other studies of the performance of entity resolution techniques (e.g. [21,
22, 30, 31]):

– DBLP-ACM2 is a data set containing bibliographic records from 2 data sets.
There are a total of 12,051,595 pairs of records, of which 1083 represent
the same entity. An example record is: <672969, “An Effective Deductive
Object-Oriented Database Through Language Integration”,“Maria L. Barja,
Norman W. Paton, Alvaro A. A. Fernandes, M. Howard Williams, Andrew
Dinn”,“Very Large Data Bases”,1994>.

– Abt-Buy3 is a data set containing 2173 product records from 2 data sets.
There are a total of 2,359,878 pairs of records, of which 1097 represent the
same entity. An example record is: <6493, “Denon Stereo Tuner - TU1500RD”,
“Denon Stereo Tuner - TU1500RD/ RDS Radio Data System/ AM-FM 40
Station Random Memory/ Rotary Tuning Knob/ Dot Matrix FL Display/
Optional Remote”, $375.00>.

2 dbs.uni-leipzig.de/file/DBLP-ACM.zip
3 dbs.uni-leipzig.de/file/Abt-Buy.zip
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– Amazon-Google4 is a data set containing 4598 product records from 2 data
sets. There are a total of 10,527,166 pairs of records, of which 1,300 represent
the same entity. An example record is: <http://www. google.com/base/feeds
/snippets/12244614697089679523, “production prem cs3 mac upgrad,adobe
cs3 production premium mac upgrade from production studio premium or
standard,adobe software”,805.99>.

Techniques We evaluate several different approaches to entity resolution, all
of which generate clusters using the strategy described in Section 2. These ap-
proaches differ along three principal dimensions: (i) whether or not optimization
takes place, as described in Section 3; (ii) when optimization does take place,
whether only weights, or both weights and parameters participate in the search
space; and (iii) whether or not the feedback is applied directly to tuple pairs in
a way that overrides the score from the distance function used during clustering.
In (iii), where a tuple pair is known from feedback to represent the same entity
it can be given the minimum distance of 0, and where a pair is known from
feedback to represent different entities it can be given the maximum distance of
1.

Approach Optimization Parameters Score
Optimized Change

Baseline No Not Applicable No
NOSC No Not Applicable Yes
WOO Yes wi in Table 1 No
WAPO Yes All of Table 1 No
POSC Yes All of Table 1 Yes

Table 2. Approaches compared.

The approaches evaluated are as follows, where their key features are sum-
marized in Table 2:

– Baseline: this method makes no use of feedback, and simply applies the entity
resolution strategy from Section 2 directly. As such, the baseline has been
subject to manual configuration. The weights wi used by the Distance func-
tion in Table 1 are problem-specific, and were set to values that give higher
values to properties that seem likely to be of greater significance for match-
ing, specifically: DBLP-ACM – (title: 0.8, authors: 0.4, venue: 0.6, year: 0.7);
AbtBuy – (product name: 0.6, description: 0.8, price: 0.2); and Amazon-
Google – (product name: 0.8, description: 0.4, manufacturer: 0.6, price: 0.2).
The other parameter values in Table 1 were set as follows: numKeys = 9,
keyComponents = 1, q = 3, H1 and H2 are chosen at random, K = 10,

4 dbs.uni-leipzig.de/file/Amazon-GoogleProducts.zip
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similarityThreshold = 0.25, membershipThreshold = 0.5. Where specific
values have been given, these were always based on positive experiences with
those values in practice, so the baseline should be representative of what can
realistically be achieved based on general experience.

– No-optimization score change (NOSC): this method applies the entity resolu-
tion strategy from Section 2 without parameter optimization, but with scores
changed to reflect feedback that confirms or refutes that tuple pairs repre-
sent the same entity. This is to allow us to understand the effectiveness of
a strategy in which the feedback is used to change scores but not to inform
the configuration of the entity resolution process.

– Weights-only optimization (WOO): this method uses the optimization method
from Section 3, but only searches over the weights used in the distance func-
tion (wi in Table 1). This is to allow us to understand the relative impacts
of optimization of the distance function and the optimization of the control
parameters.

– Weights-and-parameters optimization (WAPO): this method uses the opti-
mization method from Section 3, and searches over not only the weights but
also the control parameters in Table 1.

– Post-optimization score change (POSC): this method uses the optimization
method from Section 3, and searches over all the parameters in Table 1,
but after the optimization scores are changed to reflect feedback that con-
firms or refutes that tuple pairs represent the same entity, and the dataset
is reclustered with the parameters from the optimization and the changed
scores5. This it to allow us to understand if optimization of the weights and
parameters is sufficient to bring about appropriate clustering of the records
on which feedback has been obtained.

We are unable to carry out a direct head-to-head comparison with related
work, such as that discussed in Section 6, as there is no other proposal that covers
parameter setting and distance function tuning, from blocking to clustering.

Scope of optimization Note that where the optimization is referred to as
acting on the control parameters in Table 1, in fact for three of these parameters
(q, keyComponents and numKeys), a sensitivity analysis identified that specific
values (3, 9 and 1 respectively) always yielded the best results for our data sets,
and thus these do not participate in the optimization.

5 Note that in principle, it is also possible to have some form of pre-optimization score
change strategy, which changes scores to reflect feedback that confirms or refutes
that tuple pairs represent the same entity before optimization takes place. However,
in practice, such an approach was found to be ineffective for optimizing configuration
parameters because the score changes in themselves tend to be sufficient to ensure
appropriate clustering of the feedback. Thus changes to configuration parameters
tend to have little impact on fitness, and are not necessarily helpful for informing
the clustering the records for which feedback has not been obtained.
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Evolutionary search The optimization was implemented using the ECJ evo-
lutionary computing system6. Following experimentation with different values,
it was ascertained that using a population size of 50 and a generation size of
70 yielded results that were both stable and close in quality to those obtained
with more searching; as time consuming entity resolution takes place during op-
timization, it is important that the search can converge on appropriate answers
after a modest number of generations.

Feedback generation The experiments use feedback that is generated algo-
rithmically from the ground truth. In essence, the feedback is a subset of the
ground truth, which assigns an annotation match or unmatch to pairs of can-
didate duplicates. The approach makes few specific assumptions about how the
feedback is obtained, although we do need both match and unmatch feedback; it
is possible that targeted selection of feedback of the form discussed in Section 6
could produce improved results, but for now we use a straightforward approach
to sample from the ground truth.

To generate match feedback, matching pairs are selected at random from the
ground truth. Generating plausible unmatch feedback requires more care. In any
data set, there are likely to be many more unmatched pairs than matched pairs,
and in practice it makes little sense to ask users if a randomly selected pair
of records match, as generally they will not match and there will be no reason
to believe that they do. So, to generate unmatch feedback, the following steps
take place: (i) generate the collection of blocked pairs by running the blocking
algorithm described in Section 2 – blocked pairs should contain only pairs for
which there is some evidence of syntactic similarity; and (ii) select pairs at
random from the blocked pairs that have the annotation unmatch in the ground
truth. In the experiments, we have identical amounts of match and unmatch
feedback.

There is no fully accepted way of selecting data for feedback for entity resolu-
tion; indeed identifying the most appropriate data on which to obtain feedback
is a research topic in its own right. The approach to feedback generation used
in the experiment shares features with other work in the literature. For exam-
ple, in investigating interaction with crowds for entity resolution, CrowdER [31]
uses machine-based techniques to identify candidates, on which feedback is then
obtained. This is analogous to our use of the blocking algorithm to identify
candidates for unmatch feedback.

Evaluating Clusters The following formula is used to compute the fitness of
clustering results with respect to the ground truth:

( MGM
MGM+MGU + UGU

UGU+UGM )× 1
2

where:

6 cs.gmu.edu/ẽclab/projects/ecj/
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Fig. 1. Experiment 1: cluster quality for different levels of feedback for all 4 methods.
The results for no feedback are the baseline for the experiment.

– MGM denotes the number of records that are matched in the ground truth
that are also matched in the clusters.

– UGU denotes the number of records that are unmatched in the ground truth
that are also unmatched in the clusters.

– MGU denotes the number of records that are matched in the ground truth
that are unmatched in the clusters.

– UGM denotes the number of records that are unmatched in the ground truth
that are matched in the clusters.

This calculates the fraction of correctly clustered record pairs over all record
pairs, giving equal importance to the correct clustering of the matching and
unmatching portions of the result. This approach is adopted in a context where
there are generally many more unmatched pairs than matched pairs, to ensure
that the counts of unmatched pairs do not swamp those for matched pairs. The
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formula used for evaluating the clusters in the experiments is similar to that used
for estimating the fitness of clusters in Section 3.1. The main difference is that
for evaluating clusters we have access to the ground truth, whereas the fitness
function used when creating the clusters in Section 3.1 only has access to the
feedback, which is an approximation of the ground truth. The overall approach
of computing fractions of correctly clustered data in the evaluation is standard
(e.g. [14]).

4.2 Results

Experiment 1

Comparison of different approaches, for three different levels of feedback. The
aim of this experiment is to understand the relative performance of the different
methods from Table 2, so that subsequent experiments can investigate the most
promising approaches in more detail. The experiment involves all three datasets
(DBLP-ACM, AbtBuy and AmazonGoogle), and three different levels of feed-
back. Each item of feedback represents the annotation of a single candidate pair
as match or unmatch. As the data sets have different sizes, as detailed in Section
4.1, the amounts of feedback experimented with range from annotations involv-
ing less than 1% of the records in each data set, up to individual annotations on
around 6% of the records in DBLP-ACM and AmazonGoogle, and 14% of the
records in AbtBuy.

The results are in Figure 1(a) for DBLP-ACM, in Figure 1(b) for AbtBuy
and in Figure 1(c) for AmazonGoogle. Where there is no feedback, this corre-
sponds to the Baseline method described in Section 4.1. The following can be
observed: (i) For NOSC, the feedback yields limited improvements in all cases
– the local edits to scores are applied in the context of the default weights and
parameter settings, and result in only small scale improvements to clusters. (ii)
For WAPO and POSC, for all data sets, even a small amount of feedback yields a
substantial improvement in performance. (iii) For the optimization based strate-
gies, WOO, WAPO and POSC, the performance has leveled off by the time there
are 150 items of feedback; other feedback amounts are considered in Experiment
2. (iv) The performance of WAPO is much better than for WOO in Abt-Buy and
Amazon-Google, showing that there is benefit to be derived from including con-
trol parameters as well as weights in the optimization; several proposals from
the literature focus on the optimization of comparison functions without also
considering control parameters (e.g. [13, 15]). (v) The performance of POSC is
very similar to that of WAPO, showing that WAPO generally clusters the data
items for which there is feedback correctly, without the additional evidence that
comes from changed scores.

Experiment 2

Comparison of selected approaches for different amounts of feedback. The aim
of this experiment is to understand the rate at which the quality of a clustering
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Fig. 2. Experiment 2: cluster quality for fine grained levels of feedback for NOSC and
WAPO. The results for no feedback are the baseline for the experiment.

can be expected to improve as the amount of feedback collected grows. Thus this
experiment is critical in terms of the cost-effectiveness of the pay-as-you-go ap-
proach. The experiment involves all three datasets (DBLP-ACM, AbtBuy, Ama-
zonGoogle) and varying levels of feedback. The experiment focuses on NOSC and
WAPO: NOSC as it represents a baseline in which the feedback is used but there
is no optimization, and WAPO because it emerged as a strong proposal from
Experiment 1.

The results are in Figure 2(a) for DBLP-ACM, in Figure 2(b) for AbtBuy and
in Figure 2(c) for AmazonGoogle. The following can be observed: (i) In WAPO,
small amounts of feedback yield results that are close to the results obtained
with much larger amounts of feedback; this is a positive result, as it suggests
that the approach is cost-effective in terms of feedback collection. For AbtBuy,
5 items of feedback involves around 0.2% of the records, and for DBLP-ACM
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and AmazonGoogle, 5 items of feedback involves around 0.1% of the records. (ii)
The highest quality measure obtained is always quite high, but varies between
data sets. This is because in some data sets the syntactic evidence on similarity
is stronger than in others; for example there are rarely inconsistencies in titles
between the same paper in DBLP-ACM, but product descriptions for the same
product are often significantly different in AbtBuy and AmazonGoogle. (iii) In
AbtBuy and AmazonGoogle, for WAPO the result quality is slightly less good
for 25 and 75 items of feedback than for 5 items of feedback. This is not especially
surprising: (i) in all cases the feedback represents a small fraction of the ground
truth, which means that the estimated fitness is subject to fluctuations based
on the specific data for which feedback has been obtained; and (ii) the search
for solutions is not exhaustive, and thus the search itself gives rise to variations
in result quality.

5 Scaling the approach

An issue with the approach in Section 3 is the high cost of evaluating the fitness
function for the evolutionary search, which involves repeatedly applying the
entity resolution technique from Section 2 on the data set for each candidate
solution. Where there is a population size of p and g generations, this leads
to p × g runs of the clustering algorithm. Although the search can readily be
parallelized using platforms such as map/reduce [8] or Condor [29] so that the
fitness of every element in the population at a generation is computed in parallel
(indeed, our implementation runs using Condor on a campus grid), this can still
be both resource intensive and lead to substantial elapsed times of broadly g×c,
were c is the cost of clustering. This section makes a proposal for reducing the
cost of exploring the space of candidate solutions, and evaluates its effectiveness
both in terms of runtime and cluster quality.

5.1 Clustering on Pruned Data Sets

With a view to reducing response times and resource usage, here we describe
an approach to reducing c by clustering only the portion of the dataset on
which feedback has been obtained. Recall from Section 3.1 that the fitness of
a clustering is estimated from the fitness of the feedback (which represents the
available subset of the ground truth). Thus although changes to the weights and
parameters of the clustering apply to every item in the data set, the estimated
fitness depends only on the clustering of the pairs for which we have feedback.
Thus, with a view to reducing the computational cost that results from clustering
records about which we have no feedback, clustering is run over a pruned dataset
that consists of the records on which we have feedback, which is defined as
follows:

prunedDataset = {r|r ∈ dataset, hasFeedback(r)}
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Fig. 3. Experiment 3: cluster quality for different levels of feedback using pruned and
non-pruned data sets for WAPO.

where dataset is the collection of records to be clustered, and hasFeedback is true
for a record if there is any feedback on that record.

Thus when pruning is used, during optimization the fitness of a candidate
configuration is an estimate in two senses: (i) the fitness is based only on the
feedback, and not on the ground truth, which is not available in practice; and (ii)
the fitness is calculated over clusters that involve only a subset of the complete
dataset, in contrast with Section 4.2. In reporting the results of the experiments,
cluster quality is reported in terms of the ground truth for a clustering of the
complete dataset, where that clustering was obtained using the configuration
parameters obtained when optimizing using the pruned dataset.

Table 3 indicates the number of records in the pruned data sets for differ-
ent amounts of feedback. Where the feedback amounts are small, the number of
records is typically twice the number of items of feedback, as each item of feed-
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Table 3. Pruned data set size for different feedback amounts.

Dataset Total Number Feedback Amount
of Records 5 25 75 150 300

DBLP-ACM 4910 10 50 150 292 572
AbtBuy 2173 10 50 146 278 535
Amazon Google 4589 10 50 149 295 578

back involves the relationship between two records. As the amount of feedback
grows, there is a growing likelihood that a new item of feedback will involve at
least one record for which there is already some feedback, and hence the number
of records becomes less than twice the amount of feedback.

5.2 Evaluation of Pruning

This section empirically evaluates the effectiveness of the pruning approach in
terms of runtime performance and the quality of the clusters produced. The
purpose of the evaluation is to investigate the extent to which pruning can
improve on the runtime required for a complete clustering, and the extent to
which this reduced runtime is accompanied by reduced cluster quality.

Although the fitness function is applied only to records for which there is
feedback, the pruning of records for which there is no feedback can be expected
to impact on the clustering of the records for which there is feedback, for exam-
ple because such records now have different neighbors. As such, it is important
to evaluate the results of the pay-as-you-go entity resolution strategy to ascer-
tain: (i) the extent to which effective weights and parameters are obtained when
optimization takes place over the pruned data sets; and (ii) the performance
improvement in terms of clustering times.

Experiment 3

Comparison of cluster quality for optimization using pruned data sets. The aim of
this experiment is to understand the extent to which the quality of clusters pro-
duced for a given level of feedback is affected by optimization over pruned data
sets. Thus this experiment is important in terms of the scalability of approach.
The experiment involves all three datasets (DBLP-ACM, AbtBuy and Amazon-
Google) with varying levels of feedback. The experiment focuses on WAPO as
it has been shown to perform well, and because it depends for its performance
on the effectiveness of the optimization.

The results are reported in Figure 3. The following can be observed: (i) In all
cases, where there are 75 or more items of feedback, representing a single item
of feedback on 2% to 4% of the records, the results obtained using pruned data
sets significantly improve on the default parameters, for which the results were
reported in Experiment 1. (ii) In all cases, there is a gap between the results
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Table 4. Average runtimes (seconds) and speedup obtained using pruned data set
with 300 items of feedback.

Dataset Runtime: Full Runtime: Pruned Speedup

DBLP-ACM 300 5 60
AbtBuy 378 14 27
Amazon Google 9360 300 31

with and without pruning, which narrows as more feedback is obtained. The gap
would be expected to narrow, as increased amounts of feedback leads to larger
and more representative data sets being used in the assessment of the fitness of
candidate solutions. (iii) For the smaller amounts of feedback, specifically 5 and
25 items, the gap between the pruned and non-pruned cases can be large, and
the results using pruning are worse than the default parameters in DBLP-ACM.
This is explained by the clustering taking place on tiny data sets, which are
unrepresentative.

This experiment illustrates that there is an interesting trade-off between the
two kinds of payment in pay-as-you-go entity resolution. Payment in the form
of user feedback provides a more rapid return on investment when fitness is
evaluated by clustering the complete data set. However, clustering the complete
data set within the search is computationally expensive. By contrast, with the
pruned data sets the cost of clustering can be significantly reduced, but good
results can only be obtained where there is more feedback.

Experiment 4

Comparison of clustering times between original and pruned data sets. The aim
of this experiment is to understand the impact of pruning on the runtime of
clustering. The experiment uses all three data sets, and focuses on WAPO as it
has been shown to be an effective strategy.

In practice, clustering times on complete data sets can vary quite signifi-
cantly between runs (up to about a factor of 3), as different configurations lead
to different collections of neighbors, etc. As such, to give a summary of the im-
provements that can be expected, Table 4 reports the average speedup obtained,
averaged over 5 runs, using the pruned data set in place of the complete data
set.

The results show that clustering with the pruned data set is several orders of
magnitude faster than with the complete data set; even more impressive results
can be obtained for more intensive pruning. This shows that pruning can be
used with large data sets to very substantially reduce the cost of fitness function
evaluation.
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6 Related Work

This section discusses some of the most relevant related work, focusing on learn-
ing/optimization for entity resolution and crowdsourcing for entity resolution,
both of which seek to improve the results of the entity resolution process on
the basis of feedback or training data. In discussing these areas, although there
are proposals that follow a pay-as-you-go approach, there is no other proposal
that covers parameter setting and distance function tuning, from blocking to
clustering.

We do not review the wider literature on entity resolution, where there are
existing surveys on the topic as a whole [11, 20], on blocking [4] and on clustering
[14].

In relation to learning/optimization for entity resolution, there has been work
to inform both blocking strategies and more detailed comparison rules. Although
not specifically following a pay-as-you-go approach, several relevant proposals
have been made that learn or tune blocking schemes, for example using training
data to inform the selection of properties that participate in blocking functions
(such as [3, 26]), or by tuning similarity thresholds (e.g. [2]). More detailed rules
for comparing values have also been learned using genetic programming [6], for
example for identifying links between linked open data resources [15]. In addition,
as entity resolution potentially acts over huge data sets, research has been carried
out into the use of active learning for obtaining the most suitable training data
[1, 16]. Such research complements the work in this paper; in this paper the focus
is on co-optimizing blocking, comparison and clustering, and insights from work
on each of these individual stages can help to identify opportunities for their
combined optimization.

In our work, in order to evaluate the fitness of a candidate set of parameters,
the full entity resolution process needs to be re-run for each candidate. Such
an approach, known as closed-loop optimization, has been widely used in other
domains to automatically set configuration parameters for physical systems; for
example, Knowles [19] describes the use of evolutionary search techniques for
tasks as diverse as optimizing instrument setup in analytical biochemistry, and
improving chocolate production. This practice of searching for suitable parame-
ters by running the actual system has also been employed for computing systems.
For example, in iTuned [10], experiments are generated that investigate the effect
of different system parameters on overall performance, in a context, like ours,
where the development of an analytical cost model is not obviously a practical
proposition. Furthermore, in reinforcement learning [18], learning is intrinsically
closely associated with an ongoing process, with the normal behaviour of a sys-
tem interleaved with learning steps that follow a trial-and-error approach. For
entity resolution, de Freitas et al. [7] combine active learning with reinforce-
ment learning, where the latter is used to evaluate the confidence of different
committee members that are making detailed comparison decisions.

In relation to crowdsourcing for entity resolution, there is work on identifying
the most suitable data on which to crowdsource feedback and on applying the
feedback to inform entity resolution decisions.
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For identifying the most suitable data on which to crowdsource feedback:
CrowdER [31], focuses on the grouping of candidate entity pairs into tasks with
a view to obtaining the required information while minimizing the number of
crowd tasks, and thus the expense; and several proposals have investigated the
identification of the pairs of records that are likely to be most valuable for refin-
ing decisions relating to entity resolution (e.g. [16, 30, 32, 33]). For example, in
Isele et al., [16], feedback is sought using active learning on the record pairs on
which candidate detailed comparison rules disagree the most.

Such research complements the work in this paper, which could be used
alongside techniques for efficient collection of feedback to improve overall return
on investment.

For applying the feedback to inform entity resolution decisions, several pro-
posals consult the crowd for specific purposes. ZenCrowd [9] identifies pairs of
instances in linked data using two levels of blocking to identify candidate pairs
for confirmation by the crowd. A probabilistic factor graph accumulates evidence
from different sources, from which a probability is derived that a candidate pair is
correct. The Silk Link Discovery Workbench [16] uses the crowd to judge whether
candidate pairs are duplicates, and refines the collection of detailed comparison
rules on the basis of this feedback. Perhaps the work that is closest to ours in
terms of ethos is Corleone [13], which seeks to provide hands-off crowdsourcing
for entity resolution, whereby the whole entity resolution process is automated,
obtaining input from the crowd as needed. To do this, Corleone uses crowdsourc-
ing to learn blocking and refinement rules in turn, and also addresses issues such
as when to terminate a crowdsourcing activity. Our work is similar, in including
several entity resolution phases, but is somewhat broader in scope in that it also
optimizes related system parameters and considers clustering as well as pair-
wise matching. In addition, the approaches are significantly different; Corleone
tackles blocking and matching in sequence, whereas in this paper, blocking, the
distance function and other system thresholds and parameters are optimized at
the same time. The price paid to support this co-optimization is the need to run
blocking and clustering repeatedly within the evolutionary search, although we
have shown that the costs associated with this can be reduced using pruning. In
addition, by co-optimizing system parameters, our methodology reduces the risk
that important but non-obvious interactions between parameters are overlooked
during the application of the pay-as-you-go methodology.

Note that the term pay-as-you-go has been applied with different meanings in
relation to entity resolution. In this paper, as in the above literature on crowd-
sourcing, the payment takes the form of feedback on the results of an entity
resolution process, whereas in [34] the payment is in the form of computational
resource usage.

7 Conclusions

We now revisit the claimed contributions of the paper from the introduction:
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1. A generic approach to configuration of parameters for entity resolution that
uses feedback on the correctness (or otherwise) of candidate duplicates. We
have described an approach that uses closed loop optimization to evalu-
ate the effectiveness of alternative configuration parameters, simultaneously
optimizing all stages of the entity resolution process; this is a potentially im-
portant feature of the approach, as there may be subtle relationships between
parameters across the process.

2. A description of the application of that approach to produce a pay-as-you-go
self-optimizing entity resolution system that uses an evolutionary search over
the space of parameter values. We have applied the approach from (1) to au-
tomate the optimization of the parameters for the state-of-the-art approach
described in Costa et al. [5]; the optimized parameters include weights within
the distance function, indexing parameters and similarity thresholds.

3. An evaluation of the resulting platform with real world data sets, which shows
substantial improvements in cluster quality. The evaluation shows not only
that the technique can be effective, providing significantly improved clus-
tering compared with default parameters, but also that effective results can
be obtained with surprisingly modest amounts of feedback (a single item of
feedback on less than 1% of the records in each of the experimental data
sets). The experiments also showed that optimizing the control parameters
and distance function together was more effective than optimizing only the
distance function, a heretofore popular strategy.

4. As the proposal can be considered to be computationally expensive, we de-
scribe and evaluate an approach that seeks to retain the results from (3) while
also scaling to large data sets. A modification of the approach is described
in which the entity resolution process, rather than testing the fitness of can-
didate configurations over the complete data set, instead evaluates fitness
over the (typically much smaller) portion of the data set for which feedback
has been obtained. The experimental evaluation shows that more feedback
is required to obtain stable and effective results than when fitness is evalu-
ated over the complete dataset during the search. However, even when using
the pruned data set, significant improvements over the default parameters
have been obtained with feedback on a small percentage of the data (a single
item of feedback on less than 4% of the records in each of the experimental
data sets). Pruning on such amounts of feedback can reduce runtime costs
of clustering by several orders of magnitude.

There are several possible areas for future work. Although positive results
have been demonstrated with small amounts of feedback, it would be interesting
to ascertain if active learning [28] could focus feedback collection on values that
are still more effective, in particular in the case of the pruning strategy. In the
application of the approach, the distance function is fairly straightforward; it
would be interesting to investigate the co-optimization of richer distance func-
tions (e.g. as in [6]) with other configuration parameters. Although the overall
closed-loop optimization approach is, in principle, applicable for configuration
of different entity-resolution algorithms, it would be interesting to demonstrate
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this in practice, and to ascertain the extent to which different parameters in
different settings can be tuned effectively in this way. Furthermore, it would be
interesting to investigate the use of optimization techniques that are specifically
targeted at problems with expensive black-box fitness functions [17].
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knowledge.
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deduplication with reduced effort. In SSDBM, page 18, 2013.

3. M. Bilenko, B. Kamath, and R. Mooney. Adaptive blocking: Learning to scale up
record linkage. In Data Mining, 2006. ICDM ’06. Sixth International Conference
on, pages 87–96, 2006.

4. P. Christen. A survey of indexing techniques for scalable record linkage and dedu-
plication. Knowledge and Data Engineering, IEEE Transactions on, 24(9):1537–
1555, 2012.

5. G. Costa, G. Manco, and R. Ortale. An incremental clustering scheme for data
de-duplication. Data Mining and Knowledge Discovery, 20(1):152–187, 2010.

6. M. de Carvalho, A. Laender, M. Goncalves, and A. Da Silva. A genetic program-
ming approach to record deduplication. Knowledge and Data Engineering, IEEE
Transactions on, 24(3):399–412, 2012.

7. J. de Freitas, G. L. Pappa, A. S. da Silva, M. A. Gonçalves, E. S. de Moura,
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