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Abstract

In security games, the solution concept commonly used is that of a
Stackelberg equilibrium where the defender gets to commit to a mixed
strategy. The motivation for this is that the attacker can repeatedly ob-
serve the defender’s actions and learn her distribution over actions, before
acting himself. If the actions were not observable, Nash (or perhaps cor-
related) equilibrium would arguably be a more natural solution concept.
But what if some, but not all, aspects of the defender’s actions are observ-
able? In this paper, we introduce solution concepts corresponding to this
case, both with and without correlation. We study their basic properties,
whether these solutions can be efficiently computed, and the impact of
additional observability on the utility obtained.

1 Introduction

Algorithms for computing game-theoretic solutions have long been of interest,
but were for a long time not deployed in real-world applications (at least if
we do not count, e.g., computer poker programs—for an overview of those,
see Sandholm [2010]—as real-world applications). This changed in 2007 with
a series of deployed applications coming out of Milind Tambe’s TEAMCORE
research group at the University of Southern California. The games in question
are what are now called security games, where a defender has to allocate lim-
ited resources to defend certain targets or patrol a certain area, and an attacker
chooses a target to attack. The deployed applications include airport protec-
tion [Pita et al., 2008], assigning Federal Air Marshals to flights [Tsai et al.,
2009], patrolling in ports [An et al., 2012b], fare inspection in transit systems [Yin et al.,
2012], and patrolling to prevent wildlife poaching [Fang et al., 2016].

While most of the literature on computing game-theoretic solutions has fo-
cused on the computation of Nash equilibria—including the breakthrough result
that even computing a single Nash equilibrium is PPAD-complete [Daskalakis et al.,
2009; Chen et al., 2009]—in the security games applications the focus is instead
on computing an optimal mixed strategy to commit to [Conitzer and Sandholm,
2006]. In this model, one player (in security games, the defender) chooses

∗I dedicate this paper to my sister Jessica, her fiancé Jeremy, and their upcoming full
commitment. I wish them a lifetime of happiness.
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a mixed strategy, and the other (the attacker) observes this mixed strategy
and best-responds to it. This sometimes helps, and never hurts, the former
player [von Stengel and Zamir, 2010]. Intriguingly, in two-player normal-form
games, such a strategy can be computed in polynomial time via linear program-
ming [Conitzer and Sandholm, 2006; von Stengel and Zamir, 2010]. Another
benefit of this model is that it sidesteps issues of equilibrium selection that the
approach of computing (say) a Nash equilibrium might face.

Such technical conveniences aside, the standard motivation for assuming
that the defender in security games can commit to a mixed strategy is as fol-
lows. The defender has to choose a course of action every day. The attacker,
on the other hand, does not, and can observe the defender’s actions over a
period of time. Thus, the defender can establish a reputation for playing any
particular mixed strategy. This can be beneficial for the defender: whereas in a
simultaneous-move model (say, using Nash equilibrium as the solution concept),
she can play only best responses to the attacker’s strategy, in the commitment
model she can commit to play something that is not a best response, which may
incentivize the attacker to play something that is better for the defender. Of
course, for this argument to work, it is crucial that the attacker observes over
time which actions the defender takes before taking any action himself. Previ-
ous work has questioned this and considered models where there is uncertainty
about whether the attacker observes the defender’s actions at all [Korzhyk et al.,
2011b,a], as well as models where the attacker only gets a limited number of
observations [Pita et al., 2010; An et al., 2012a].

In this paper, we consider a different setting where some defender actions are
(externally) indistinguishable from each other. This captures, for example, the
case where there are both observable and unobservable security measures, as is
often the case. Here, two courses of action are indistinguishable if and only if
they differ only in the unobservable component. It also captures the case where a
guard can be assigned to a visible location (1), or to one of two invisible locations
(2 or 3). In this case, the first action is distinguishable from the latter two, but
the latter two are indistinguishable from each other. Indistinguishability is
an equivalence relation that partitions the player’s strategy space; we call one
element of this partition a SIS (subset of indistinguishable strategies). Thus, the
defender can establish a reputation for playing a particular distribution over the
SISes. However, she cannot establish any reputation for how she plays within
each SIS, because this is not externally observable. Thus, intuitively, when the
defender plays from a particular SIS, she needs to play a strategy that, within
that SIS, is a best response; however, if there is another strategy in a different
SIS that is a better response, that is not a problem, because deviating to that
strategy would be observable.

The specific contributions of this paper are as follows. We formalize solution
concepts for these settings that generalize both Nash and correlated equilibrium,
as well as the basic Stackelberg model with (full) commitment to mixed strate-
gies. Further contributions include illustrative examples of these solutions, basic
properties of the concepts, analysis of their computational complexity, and anal-
ysis of how the row player (defender)’s utility varies as a function of the amount

2



of commitment power (as measured by observability).

2 Definitions and Basic Properties

We are now ready to define some basic concepts. Throughout, the row player
(player 1) is the player with (some) commitment power, in the sense of being
able to build a reputation. R denotes the set of rows, C the set of columns, and
σ1 and σ2 denote mixed strategies over these, respectively.

Definition 1 A subset of indistinguishable strategies (SIS) S is a maximal sub-
set of R such that for any two rows r1, r2 ∈ S, the column player’s observation
is identical for r1 and r2. Let S denote the set of all SISes, constituting a
partition of R. Given a mixed strategy σ1 for the row player and a SIS S, let
σ1(S) =

∑
r∈S σ1(r) (where σ1(r) is the probability σ1 puts on r).

Since our focus is on games in which one player can build up a reputation and
the other cannot, we do not consider SISes for the column player. Equivalently,
we consider all the column player’s strategies to be in the same SIS.

Definition 2 Two mixed strategies σ1, σ
′

1 are indistinguishable to the column
player if for all S ∈ S, σ1(S) = σ′

1(S).

Example. Consider the following game:

A B
a 7,0 2,1
b 6,1 0,0
c 5,0 0,1
d 4,1 1,0

If the players move simultaneously, then a is a strictly dominant strategy and we
obtain (a,B) as the iterated strict dominance solution (and hence the unique
Nash equilibrium), with a utility of 2 for the row player. If the row player
gets to commit to a mixed strategy, then she could commit to play a and b
with probability 1/2 each, inducing the column player to play A,1 resulting in a
utility of 6.5 for the row player. (Even committing to a pure strategy—namely,
b—would result in a utility of 6.) Now suppose S = {{a, b}, {c, d}}, i.e., a and
b are indistinguishable and so are c and d. In this case, playing a and b with
probability 1/2 each (or playing b with probability 1) is indistinguishable from
playing a with probability 1. Hence, it is not credible that the row player would
ever play b, given that a is a strictly dominant strategy. But can the row player
still do better than always playing a (and thereby inducing the column player
to play B)?

We will return to this example shortly, but first we need to formalize the
idea of a deviation that cannot be detected by the column player.

1As is commonly assumed in this model, ties for the column player are broken in the row
player’s favor; if not, the row player can simply commit to 1/2− ǫ on a and 1/2 + ǫ on b.
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Definition 3 A profile (σ1, σ2) has no undetectable beneficial deviations if (1)
for all σ′

2, u2(σ1, σ
′

2) ≤ u2(σ1, σ2), and (2) for all σ′

1 indistinguishable from σ1,
u1(σ

′

1, σ2) ≤ u1(σ1, σ2).

The following simple proposition points out that this is equivalent to the
column player only putting probability on best responses, and the row player
only putting probability on rows that within their SIS are best responses.

Proposition 1 A profile (σ1, σ2) has no undetectable beneficial deviations if
and only if (1) for all c, c′ ∈ C with σ2(c) > 0, u2(σ1, c

′) ≤ u2(σ1, c), and (2)
for all S ∈ S, for all r, r′ ∈ S with σ1(r) > 0, u1(r

′, σ2) ≤ u1(r, σ2).

Example continued. In the game above, consider the profile

(((1/2)c, (1/2)d), ((1/2)A, (1/2)B))

This profile has no undetectable deviations: (1) the column player is best-
responding, and (2) the only undetectable deviations for the row player do not
put any probability on {a, b}, and c and d are both equally good responses.

Note that a profile that has no undetectable beneficial deviations may still
not be stable, in the sense that player 1 may prefer to deviate to a mixed strategy
that is in fact distinguishable from σ1, and build up a reputation for playing
that strategy instead. But in a sense, these profiles are feasible solutions for
the row player: given that the row player decides to build up a reputation for
the distribution over SISes resulting from σ1, the profile (σ1, σ2) is stable. This
is similar to the sense in which in the regular Stackelberg model, any profile
consisting of a mixed strategy for the row player and a best response for the
column player is feasible: the row player may not have had good reason to
commit to that particular mixed strategy, but given that she did, the profile is
stable. In fact, this just corresponds to the special case of our model where all
rows are distinguishable.

Proposition 2 If |S| = 1 (all rows are indistinguishable), then a profile has no
undetectable beneficial deviations if and only if it is a Nash equilibrium of the
game. If |S| = |R| (all rows are distinguishable), then a profile has no unde-
tectable beneficial deviations if and only if the column player is best-responding.

We can now define an optimal solution.

Definition 4 A profile with no undetectable beneficial deviations is a Stack-
elberg equilibrium with limited observation (SELO) if among such profiles it
maximizes the row player’s utility.

Example continued. In the game above, consider the profile

(((1/2)a, (1/2)d), ((1/2)A, (1/2)B))
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This profile has no undetectable deviations: A and B are both best responses
for the column player, and the row player strictly prefers a to b and is indifferent
between c and d. It gives the row player utility 3.5. We now argue that it is in
fact a SELO. First, note that a SELO must put at least probability 1/2 on d:
for, if it did not, then, because the row player would never play b, the column
player would strictly prefer B, which would result in lower utility for the row
player. Second, the column player must play B at least half the time, because
otherwise, the row player would strictly prefer c to d—but if the row player
only plays a and c, the column player would strictly prefer B. Under these two
constraints, the row player would be best off having as much as possible of the
remaining probabilities on a and A, and this results in the profile above.

Proposition 3 If |S| = 1 (all rows are indistinguishable), then a profile is a
SELO if and only if it is a Nash equilibrium that maximizes the row player’s
utility among Nash equilibria. If |S| = |R| (all rows are distinguishable), then a
profile is a SELO if and only if it is a Stackelberg equilibrium (with full obser-
vation).

3 Computational Results

We now consider the complexity of computing a SELO. We immediately obtain:

Corollary 1 When |S| = 1, computing a SELO is NP-hard (and the maximum
utility for the row player in a profile with no undetectable beneficial deviations
is inapproximable unless P=NP).

Proof: By Propositions 2 and 3, these problems are equivalent to maximizing
the row player’s utility in a Nash equilibrium, which is known to be NP-hard and
inapproximable [Gilboa and Zemel, 1989; Conitzer and Sandholm, 2008]. �

This still leaves open the question of whether the problem becomes easier if
the individual SISes have small size. Unfortunately, the next result shows that
the problem remains NP-hard and inapproximable in this case. This motivates
extending the model to one that allows correlation, as we will do in Section 4.

Theorem 1 Computing a SELO remains NP-hard even when |S| = 2 for all
S ∈ S (and in fact it is NP-hard to check whether there exists a profile with no
undetectable beneficial deviations that gives the row player positive utility, even
when all payoffs are nonnegative).

Proof: We reduce from the EXACT-COVER-BY-3-SETS problem, in which
we are given a set of elements T (|T | = m, with m divisible by 3) and subsets
Tj ⊆ T that each satisfy |Tj| = 3, and are asked whether there exist m/3 of
these subsets that together cover all of T . For an arbitrary instance of this
problem, we construct the following game. For each Tj , we add a SIS consisting
of two rows, {T+

j , T−

j }, as well as a column Tj . For each element t ∈ T , we add
a column t. The utility functions are as follows.

5



• u1(T
+

j , Tj) = m/3 for any j

• u1(T
+

j , Tj′) = 0 for any j, j′ with j 6= j′

• u1(T
−

j , Tj′) = 1 for any j, j′

• u1(r, t) = 0 for any row r and element t

• u2(r, Tj) = m/3− 1 for any row r and any j

• u2(T
+

j , t) = 0 for any j and t ∈ Tj

• u2(r, t) = m/3 for any element t and row r that is not some T+

j with
t ∈ Tj

First suppose the EXACT-COVER-BY-3-SETS instance has a solution. Let
the row player play uniformly over the m/3 corresponding rows T+

j , and the
column player uniformly over the m/3 corresponding columns Tj . The row
player’s expected utility for any of the rows in her support is 1; deviating to
the corresponding T−

j would still only give her 1. The column player’s expected
utility is m/3 − 1 for any Tj; because the row player plays an exact cover,
deviating to any t gives him expected utility (m/3)(m/3−1)/(m/3) = m/3−1.
So this profile has no undetectable beneficial deviations (in fact it is a Nash
equilibrium) and gives the row player an expected utility of 1.

Now suppose that the game has a SELO in which the row player gets positive
utility, which implies that the column player puts total probability p > 0 on his
Tj columns. It follows that for every t ∈ T , the total probability that the row
player puts on rows T+

j with t ∈ Tj is at least 3/m, or otherwise the column
player would strictly prefer playing t to playing any Tj. However, note that the
row player can only put positive probability on rows T+

j where the corresponding
column Tj receives probability at least 3p/m (thereby resulting in expected
utility at least p for the row player for playing T+

j ), because otherwise the

corresponding row T−

j (which is indistinguishable) would be strictly preferable
(resulting in expected utility p). But of course there can be at most m/3 such
columns Tj , and these Tj must cover all the elements t by what we said before.
Hence the EXACT-COVER-BY-3-SETS instance has a solution. �

4 Adding Signaling

The notion of correlated equilibrium [Aumann, 1974] results from augmenting a
game with a trusted mediator that sends correlated signals to the agents. As is
well known, without loss of generality, we can assume the signal that an agent
receives is simply the action she is to take. This is for the following reason. If
a correlated equilibrium relies on an agent randomizing among multiple actions
conditional on receiving a particular signal, then we may as well have the medi-
ator do this randomization on behalf of the agent before sending out the signal.
It is well known that correlated equilibria can outperform Nash equilibria from
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all agents’ perspectives. For example, consider Shapley’s game, which is a ver-
sion of rock-paper-scissors where choosing the same action as the other counts
as a loss.

A B C
a 0,0 1,0 0,1
b 0,1 0,0 1,0
c 1,0 0,1 0,0

Whereas the only Nash equilibrium of this game is for both players to ran-
domize uniformly (resulting in 0, 0 payoffs 1/3 of the time), there is a correlated
equilibrium that only results in the 1, 0 and 0, 1 outcomes, each 1/6 of the time.
That is, if the mediator is set up to draw one of these six entries uniformly
at random, and then tell each agent what she is supposed to play (but not
what the other is supposed to play), then each agent has an incentive to follow
the recommendation: doing so will result in a win half the time, and it is not
possible to do better given what the agent knows.

Correlated equilibria are easier to compute than Nash equilibria: given a
game in normal form, there is a linear program formulation for computing even
optimal correlated equilibria (say, ones that maximize the row player’s utility).
The linear program presented later in Figure 1 is closely related.

Similar signaling has received attention in the Stackelberg model. One may
assume a more powerful leader in this model that can commit not only to
taking actions in a particular way, but also to sending signals in a way that is
correlated with how she takes actions. (Again, the motivation for using this in
real applications might be that over time the leader develops a reputation for
sending out signals according to a particular distribution, and playing particular
distributions over actions conditional on those signals.) Because the leader can
commit to sending signals in a particular way, there is no need to introduce an
independent mediator entity in this context. As it turns out, in a two-player
normal-form game this additional power does not buy the leader anything, but
with more players it does [Conitzer and Korzhyk, 2011]. Such signaling can also
help in Bayesian games [Xu et al., 2016] and stochastic games [Letchford et al.,
2012], both from the perspective of increasing the leader’s utility and from the
perspective of making the computation easier.

It is straightforward to see that signaling can be useful in our limited commit-
ment model as well. For example, if we just take Shapley’s game with |S| = 1,
then by Proposition 3 without signaling we are stuck with the Nash equilibrium,
but it seems we should be able to obtain the improved correlated equilibrium
outcome with some form of signaling. But what is the right model of signaling
here? We start with a very powerful model of signaling, and then discuss less
powerful models in Section 6.

Definition 5 In the trusted mediator model, the row player can design an in-
dependent trusted mediator that sends signals privately to each player according
to a pre-specified joint distribution. After the round of play has completed, the
mediator publicly reveals the signal sent to the row player.

7



The after-the-fact public revelation of the signal sent to the row player allows
the row player to commit to (i.e., in the long run develop a reputation for)
responding to each signal with a particular distribution of play. Specifically,
after each completed round, the column player learns the signal sent to, and the
SIS played by, the row player.2 Thus, if the row player according to the signal
that she received was supposed to play an action from a particular SIS, then
the column player can verify that she did. However, the row player may have
an incentive to deviate within a SIS, because this is undetectable.

In the appendix, we show that under the trusted mediator model, with-
out loss of generality a signal consists of just an action to play. With this in
mind, we now define formally what it means for a correlated profile to have no
undetectable beneficial deviations.

Definition 6 A correlated profile σ has no undetectable beneficial deviations
if (1) for all c, c′ ∈ C with

∑
r∈R σ(r, c) > 0, we have

∑
r∈R σ(r, c)(u2(r, c) −

u2(r, c
′)) ≥ 0, and (2) for all S ∈ S, for all r, r′ ∈ S with

∑
c∈C σ(r, c) > 0, we

have
∑

c∈C σ(r, c)(u1(r, c)− u1(r
′, c)) ≥ 0.

Note that, as is well known in the formulation of correlated equilibrium,
in the first inequality, we can use σ(r, c) rather than the more cumbersome
σ(r, c)/

∑
r′′∈R σ(r′′, c), which would be the conditional probability of seeing

r given a signal of c, because the denominator is a constant (similar for the
second inequality). As a result, the condition that

∑
r∈R σ(r, c) > 0 is in fact

not necessary because the inequality is vacuously true otherwise. This is what
allows the standard linear program formulation of correlated equilibrium, as
well as the linear program we present below in Figure 1.

Definition 7 A correlated profile with no undetectable beneficial deviations is
a Stackelberg equilibrium with signaling and limited observation (SESLO) if
among such profiles it maximizes the row player’s utility.

Example. Consider the following game:

A B C D
a 0,0 12,0 0,1 0,0
b 0,1 0,0 12,0 0,0
c 12,0 0,1 0,0 0,0
d 5,0 5,0 5,0 0,1
e 7,0 7,0 7,0 1,1

2It is easy to get confused here—does the column player not learn more in a round purely
by virtue of his own payoff from that round? It is important to remember that we are not
considering repeated play by the column player. The idea is that the column player can
observe over time the signals and how the row player acts before the column player ever acts.
For discussion of security contexts in which certain types of players can receive messages that
are inaccessible to other types, see Xu et al. [2016].
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Suppose S = {{a, b, c, d}, {e}}. Then the following correlated profile (in which
the signal an agent receives is which action to take) is a SESLO:

((1/9)(a,B), (1/9)(a, C), (1/9)(b, A), (1/9)(b, C), (1/9)(c, A), (1/9)(c, B),

(1/9)(e, A), (1/9)(e,B), (1/9)(e, C))

With this profile, for any signal the column player can receive, following the
signal will give him utility 1/3, and so will any deviation. For any signal the
row player receives in SIS {a, b, c, d}, following the signal will give her 6; devi-
ating to a, b, or c will give either 0 or 6, and deviating to d will give 5. The
row player obtains utility 19/3 from this profile.3 In contrast, without any com-
mitment (if |S| had been 1), the outcome (e,D) would have been a SESLO,
giving the row player utility only 1. Also, without signaling (but still with
S = {{a, b, c, d}, {e}}), the outcome (e,D) would have been a SELO. For con-
sider a mixed-strategy profile without any undetectable beneficial deviations,
and suppose it puts positive probability on at least one of A, B, and C. Then
at least one of a, b, and c must get positive probability as well, for otherwise
the column player would be better off playing D. Because a, b, and c are all
in the same SIS and perform equally well against D, and because A, B, and C
all perform equally well against d and e, if we condition on the players playing
from a,b,c and A,B,C, the result must be a Nash equilibrium of that 3×3 game,
which means that all of A, B, and C get the same probability. But in that case,
d (which is in the same SIS) is a better response for the row player, and we have
a contradiction. Hence any SELO involves the column player always playing D
and the most the row player can obtain is 1.

We next have the following simple proposition that the ability to signal never
hurts the row player.

Proposition 4 The row player’s utility from a SESLO is always at least that
of a SELO.

Proof: We show that an uncorrelated profile (σ1, σ2) that has no undetectable
deviations (in the sense of Definition 3) also has no undetectable deviations
(in the sense of Definition 6) when interpreted as a correlated profile σ (with
σ(r, c) = σ1(r)σ2(c)); the result follows. First, for all c, c

′ ∈ C with
∑

r∈R σ(r, c) >
0 (which is equivalent to σ2(c) > 0), we have

∑
r∈R σ(r, c)(u2(r, c)−u2(r, c

′)) =
σ2(c)

∑
r∈R σ1(r)(u2(r, c) − u2(r, c

′)) = σ2(c)(u2(σ1, c) − u2(σ1, c
′)) ≥ 0 by

the best-response condition of Definition 3. Similarly, for all S ∈ S, for all
r, r′ ∈ S with

∑
c∈C σ(r, c) > 0 (which is equivalent to σ1(r) > 0), we have∑

c∈C σ(r, c)(u1(r, c)−u1(r
′, c)) = σ1(r)

∑
c∈C σ2(c)(u1(r, c)−u1(r

′, c)) = σ1(r)(u1(r, σ2)−
u1(r

′, σ2)) ≥ 0 by the best-response-within-a-SIS condition of Definition 3. �

Proposition 5 If |S| = 1 (all rows are indistinguishable), then a profile is
a SESLO if and only if it is a correlated equilibrium that maximizes the row

3This was verified to be optimal using the linear program in Figure 1; same for the next
case.
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maximize
∑

r∈R,c∈C u1(r, c)p(r, c)

(∀ S ∈ S) (∀ r, r′ ∈ S)
∑

c∈C(u1(r
′, c)− u1(r, c))p(r, c) ≤ 0

(∀ c, c′ ∈ C)
∑

r∈R(u2(r, c
′)− u2(r, c))p(r, c) ≤ 0∑

r∈R,c∈C p(r, c) = 1

(∀ r ∈ R, c ∈ C) p(r, c) ≥ 0

Figure 1: Linear program for computing a SESLO.

player’s utility. If |S| = |R| (all rows are distinguishable), then a profile is a
SESLO if and only if it is a Stackelberg equilibrium with signaling (which can
do no better than a Stackelberg equilibrium without signaling).

5 Computational Results

It turns out that with signaling, we do not face hardness. The linear program
in Figure 1 can be used to compute a SESLO. It is a simple modification of the
standard linear program for correlated equilibrium, the differences being that
(1) for the row player, only deviations within a SIS are considered, and (2) there
is an objective of maximizing the row player’s utility. The special case where
|S| = |R| has no constraints for the row player, and that special case of the
linear program has previously been described by Conitzer and Korzhyk [2011].

Theorem 2 A SESLO can be computed in polynomial time.

6 Weaker Signaling Models

Another model of signaling would be to have the row player absorb the role
of the mediator as well. That is, instead of adding an independent entity, the
row player would simply generate and send the signal to the column player.
This is how the signaling model with full commitment [Conitzer and Korzhyk,
2011] is typically presented, and in the context of full commitment it makes
no difference whether it is the row player or another independent entity that
sends the signals. However, with partial commitment, there is a significant
difference. Namely, if the row player knows which signal the column player will
receive, she could base her own choice of action on this. Now, if she does so in a
way that changes the distribution over SISes conditional on that column player
signal, this would over time be detected. Hence, if every SIS consists of a single
row—the full commitment case—then the row player cannot take advantage of
knowing the signal to the column player without being detected. However, she
can base her choice within a SIS on the signal to the column player without ever
being detected. In the most recent example above, this plays out as follows if
we investigate whether the same correlated profile is still an equilibrium. By
knowing the signal (A, B, or C) to the column player, the row player could, at
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first glance, deviate and always obtain utility 12. However, if she does not play
e one third of the time, this would be detectable. Still, if she continues to play e
one third of the time conditional on each of the signals A, B, and C, but with the
remaining 2/3 plays whichever action gives her 12, this would be undetectable
and give her an expected utility of (1/3) · 7 + (2/3) · 12 = 31/3, greater than
the 19/3 for not deviating. Hence this is no longer an equilibrium—the column
player will realize that it is not in his best interest to follow the signals—and the
row player cannot get as high of a utility anymore in equilibrium. That is, she
benefits from being able to keep herself from knowing the signal to the column
player. One may wonder whether restricted signaling from the row player to
the column player (where the signal is perhaps not even a specific column) can
still be helpful. But in fact, as the next proposition shows, it cannot. (This
was previously established in the full commitment case [Conitzer and Korzhyk,
2011].)

Proposition 6 If the row player necessarily knows the signal sent to the column
player, then the row player can do no better than playing a SELO.

Proof: The signal sent to the column player is common knowledge between
the players. Hence, in equilibrium, conditional on each signal, they must play
an uncorrelated profile with no undetectable beneficial deviations. But then
the (correlated) profile as a whole is a convex combination of such uncorrelated
profiles, and hence the row player’s utility for it cannot exceed her utility for
the best one among them. �

Hence, to gain any benefit from signaling at all, the row player must restrict
herself from knowing the signal to the column player.

Next, we investigate a more subtle change to the signaling model, namely
the variant where we still have a trusted mediator but the signal to the row
player is not publicly revealed afterwards. It is perhaps not immediately clear
that this variant is significantly different, because the column player can still
observe the distribution over the SISes conditional on each signal that he gets.
Hence, it may be the case that the row player cannot usefully deviate from one
SIS to another without this being detectable, leaving the row player only with
the option of deviating within a SIS, which was already present in the original
trusted mediator model. However, this is not true: the following example shows
that deviations across SISes can be significant when the signal to the row player
is not publicly revealed afterwards.
Example. Consider the following game:

A B C D
a 1,0 4,0 1,1 1,1
b 1,1 1,0 4,0 1,1
c 4,0 1,1 1,0 1,1
d 1,1 0,1 0,0 0,0
e 0,0 1,1 0,1 0,0
f 0,1 0,0 1,1 0,0

11



Suppose S = {{a, b, c}, {d, e, f}}. It can be shown4 that a SESLO is

((1/9)(a,B), (1/9)(a, C), (1/9)(b, A), (1/9)(b, C), (1/9)(c, A), (1/9)(c, B),

(1/9)(d,A), (1/9)(e,B), (1/9)(f, C))

resulting in an expected utility of 2 for the row player. (A rough intuition is that
the upper left corner of the game is Shapley’s game, and the row player would
like to be able to play the profile corresponding to the correlated equilibrium
in Shapley’s game. However, playing this by itself is not feasible because the
column player would then deviate to D. But this is fixed by mixing in some
of the lower left corner.) However, now consider the following deviation for
the row player. When recommended to play d, e, or f , instead play c, a,
or b, respectively, resulting in a payoff of 4 instead of 1; this happens 1/3
of the time overall. When recommended to play a, b, or c, instead do the
following: with probability 1/2 play as suggested but with probability 1/2 play
e, f , or d, respectively, resulting in an expected payoff of 0.5 instead of 2.5; this
(being recommended a, b, or c, and with probability 1/2 playing differently)
happens 1/3 of the time. So overall, the expected gain from this deviation is
(1/3) · 3 + (1/3) · (−2) = 1/3. Moreover, conditional on the recommendation
being any one of A, B, and C, the column player still observes the SIS {a, b, c}
two thirds of the time and the SIS {d, e, f} one third of the time. Hence the
deviation is undetectable, unless it is revealed after the fact what the row player’s
signal was.

7 The Value of More Commitment Power

More strategies being distinguishable corresponds to more commitment power
for the row player. As commitment power (in this particular sense) increases,
does the utility the row player can obtain always increase gradually? (Note that
it can never decrease the row player’s utility, because all it will do is remove
constraints in the optimization.) If she has close to full commitment power,
does this guarantee her most of the benefit of full commitment power? Is some
nontrivial minimal amount of commitment power necessary to obtain much
benefit from it? The next two results demonstrate that the answer to all these
questions is “no”: there can be big jumps in the utility that the row player can
obtain, both on the side close to full commitment power (Proposition 7) and on
the side close to no commitment power (Proposition 8). (For an earlier study
comparing the value of being able to commit completely to that of not being
able to commit at all, see Letchford et al. [2014]; for one assessing the value of
correlation without commitment, see Ashlagi et al. [2008].)

Proposition 7 For any ǫ > 0 and any n > 1, there exists an n× (n+1) game
with all payoffs in [0, 1] such that if |S| = |R| = n, the row player can obtain
utility 1− ǫ (even without signaling), but for any S with |S| < |R| = n, the row
player can obtain utility at most ǫ (even with signaling).

4Again, this was verified using the linear program from Figure 1.
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Proof: Let R = {1, . . . , n} and C = {1, . . . , n + 1}. Let u1(i, j) = iǫ/n for
j ≤ n, and let u1(i, n+ 1) = 1− (n− i)ǫ/n. Let u2(i, j) = (1 + 1/n)/2 for i 6= j
and j ≤ n, let u2(i, i) = 0 (for i ≤ n), and let u2(i, n+ 1) = 1/2 for all i.

Suppose |S| = |R| = n. Then, by Proposition 3, we are in the regular
Stackelberg model, and the row player can commit to a uniform strategy, putting
probability 1/n on each i. As a result the expected utility for the column player
for playing some j ≤ n is ((n − 1)/n)(1 + 1/n)/2 = (n − 1)(n + 1)/(2n2) =
(n2 − 1)/(2n2) < 1/2, so to best-respond he needs to play n+ 1, resulting in a
utility for the row player that is greater than 1− (n− 1)ǫ/n > 1− ǫ.

On the other hand, suppose that |S| < |R| = n. Hence there exists some
S ∈ S with i, i′ ∈ S, i < i′. Note that i′ strictly dominates i, so the row player
will never play i in a SELO or even a SESLO. But then, the column player can
obtain (1+1/n)/2 > 1/2 by playing i, and hence will not play n+1. As a result
the row player obtains at most nǫ/n = ǫ. �

Proposition 8 For any ǫ > 0 and any n > 1, there exists an n× (n+1) game
with all payoffs in [0, 1] such that for any S with |S| > 1, the row player can
obtain utility 1 − ǫ (even without signaling), but if |S| = 1, the row player can
only obtain utility 0 (even with signaling).

Proof: Let R = {1, . . . , n} and C = {1, . . . , n + 1}. Let u1(i, j) = 1 − ǫ for
i 6= j and j ≤ n, let u1(i, i) = 1 (for i ≤ n), and let u1(i, n + 1) = 0 for all
i. Let u2(i, j) = 1 for i 6= j and j ≤ n, let u2(i, i) = 0 (for i ≤ n), and let
u2(i, n+ 1) = (n− 1/2)/n for all i.

Suppose |S| > 1. Then, the row player can commit to put 0 probability on
some S ∈ S, and therefore, 0 probability on some i. Hence, this i is a best
response for the column player, and the row player obtains 1 − ǫ. (The row
player may be able to do better yet, but this is a feasible solution.)

On the other hand, suppose |S| = 1. By Proposition 3, the row player
can only obtain the utility of the best Nash equilibrium of the game for her
(or, in the case with signaling, the utility of the best correlated equilibrium, by
Proposition 5). We now show that in every Nash equilibrium (or even correlated
equilibrium) of the game, the column player puts all his probability on n +
1, from which the result follows immediately. For suppose the column player
sometimes plays some j ≤ n. Then, for the row player to best-respond, she has
to maximize the probability of choosing the same j (conditional on the column
player playing some j ≤ n). (Or, more precisely in the case of correlated
equilibrium, conditional on receiving any signal that leaves open the possibility
that the column player plays some j ≤ n, the row player has to maximize the
probability of picking the same j.) She can always make this probability at least
1/n by choosing uniformly at random. Hence, the column player’s expected
utility (conditional on playing j ≤ n) is at most (n− 1)/n. But then n+ 1 is a
strictly better response, so we do not have a Nash (or correlated) equilibrium.
�

Of course, the above two results are extreme cases. Can we say anything
about what happens “typically”? To illustrate this, we present the results for
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randomly generated games in Figure 2. For each data point, 1000 games of
size m× n were generated by choosing utilities uniformly at random. The rows
were then evenly (round-robin) spread over a given number of SISes, and the
game was solved using the GNU Linear Programming Kit (GLPK) with the
linear program from Figure 1. The leftmost points (1 SIS) correspond to no
commitment power (best correlated equilibrium), and the rightmost points (at
least when the number of SISes is at least m) correspond to full commitment
power (best Stackelberg mixed strategy). From this experiment, we can observe
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Figure 2: Utility obtained by the row player as a function of commitment power
(number of SISes), for various sizes of m× n games.

that most of the value of commitment is already obtained when moving from
one SIS to two.

8 Conclusion

The model of the defender being able to commit to a mixed strategy has been
popular in security games, motivated by the idea that the attacker can learn
the distribution over time. This model has previously been questioned, and
limited observability has previously been studied in various senses, including
the attacker obtaining only a limited number of observations [Pita et al., 2010;
An et al., 2012a] as well as the attacker observing (perfectly) only with some
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probability [Korzhyk et al., 2011b,a]. Here, we considered a different type of
limited observability, where certain courses of action are distinguishable from
each other, but others are not. As a result, the row player’s pure strategies
partition into SISes, and she can commit to a distribution over SISes but not
to how she plays within each SIS. We showed that it is NP-hard to compute a
Stackelberg equilibrium with limited observation in this context, even when the
SISes are small (Theorem 1). We then introduced a modified model with signal-
ing and showed that in it, Stackelberg equilibria can be computed in polynomial
time (Theorem 2). We also showed that weaker signaling models are technically
problematic or without power (Section 6). Finally, we showed that the cost of
introducing a bit of additional unobservability can be large both when close to
full observability (Proposition 7) and close to no observability (Proposition 8);
however, in simulations, introducing a little bit of observability already gives
most of the value of full observability.

Future research may be devoted to the following questions. Are there algo-
rithms for computing a SELO that are efficient for special cases of the problem
or that run fast on “typical” games? Another direction for future work con-
cerns learning in games, which is a topic that has been thoroughly studied in
the simultaneous-move case (see, e.g., Fudenberg and Levine [1998]), but also
already to some extent in the mixed-strategy commitment case [Letchford et al.,
2009; Balcan et al., 2015]. A model of learning in games with partial commit-
ment needs to generalize models for both of these cases. Finally, can we mathe-
matically prove what is suggested by the experiment in Figure 2, namely that in
random games most of the value of commitment is already obtained with only
two SISes?
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A Signals Are Actions without Loss of General-

ity

In this appendix, we prove that it is without loss of generality to assume that
signals are actions under the trusted mediator model (Definition 5).

Proposition 9 Under the trusted mediator model, without loss of generality
each signal to a player is an action that that player is incentivized to follow.

Proof: The proof strategy is the same as in the usual correlated equilibrium
case: if for some mediator signal, a player is supposed to randomize over actions,
then the mediator can simply do this randomization on behalf of the player.
Specifically, suppose more generally that there is a set of signals Mi for each
player i, and conditional on receiving mi player i is, in equilibrium, supposed
to play a distribution σi(·|mi) over her actions. Then, instead of sending mi,
the mediator may as well draw from σi(·|mi) and send the resulting action ai.
Such a direct signal in general conveys less information to agent i about what
signals the other agents received, because the randomization from σi(·|mi) is not
correlated with the other signals and so provides no information, and in fact
multiple original signals mi can be consistent with the new signal ai, possibly
resulting in a strict loss of information. Nevertheless, even with this reduced
information, player i can obtain the same expected utility as before by simply
taking the recommended action. There is a new twist in the partial commitment
model, which is that we also need to show that the new signaling mechanism
does not increase the set of undetectable deviations for the row player. But it
does not: again, the row player has less (or the same) information about what
the others are playing, and moreover now the only undetectable deviation for the
row player is to always play within the same SIS as the recommended action
ai, because the recommendation ai will be revealed after the fact. Any such
deviation she could also have simulated under the original signaling mechanism,
by first drawing ai from σi(·|mi) and then changing to another action in the
same SIS accordingly, which still would be an undetectable deviation under the
original signaling mechanism. But we know by assumption that that deviation
was not beneficial under the original mechanism, because by assumption playing
the distribution σi(·|mi) was in equilibrium. Hence, any deviation under the new
signaling mechanism is also not beneficial. �
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