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Abstract
We study the truthful facility assignment problem, where a set of agents with private
most-preferred points on a metric space have to be assigned to facilities that lie on
the metric space, under capacity constraints on the facilities. The goal is to produce
such an assignment that minimizes the social cost, i.e., the total distance between the
most-preferred points of the agents and their corresponding facilities in the assign-
ment, under the constraint of truthfulness, which ensures that agents do not misreport
their most-preferred points. We propose a resource augmentation framework, where
a truthful mechanism is evaluated by its worst-case performance on an instance with
enhanced facility capacities against the optimal mechanism on the same instance with
the original capacities. We study a well-known mechanism, Serial Dictatorship, and
provide an exact analysis of its performance. Among other results, we prove that Serial
Dictatorship has approximation ratio g/(g − 2) when the capacities are multiplied by
any integer g ≥ 3.Our results suggest thatwith a limited augmentation of the resources
we can achieve exponential improvements on the performance of the mechanism and
in particular, the approximation ratio goes to 1 as the augmentation factor becomes
large. We complement our results with bounds on the approximation ratio of Random
Serial Dictatorship, the randomized version of Serial Dictatorship, when there is no
resource augmentation.
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1 Introduction

We study the facility assignment problem, in which there is a set of agents and a set of
facilities with finite capacities; facilities are located on a metric space at points Fi and
each agent has a most-preferred point Ai , which is her private information. The goal
is to produce an assignment of agents to facilities, such that no capacity is exceeded
and the sum of distances between agents and their assigned facilities, the social cost,
is minimized. Amechanism is a function that elicits the points Ai from the agents and
outputs an assignment. We will be interested in truthfulmechanisms, i.e., mechanisms
that do not incentivize agents to misreport their most-preferred locations and we will
be aiming to find mechanisms that achieve a social cost that is as close as possible to
that of the optimal assignment when applied to the true points Ai of the agents.

Our setting has various applications such as assigning patients to personal GPs,
vehicles to parking spots, children to schools and pretty much any matching environ-
ment where there is some notion of distance involved. Crucially, wemake the standard
assumption that the agents have metric preferences, i.e., preferences that are induced
by their distances to the facilities. Concretely, the cost of an agent i for a facility Fj is
her distance from the facility in the metric space; clearly these distances satisfy the tri-
angle inequality. The metric preference setting has been studied extensively in classic
social choice theory (e.g., see [25, 44]) and in computational social choice (e.g., see
[4, 7–10, 48] and references therein). The metric space domain restriction is in fact
crucial for meaningful approximations to the optimal social cost to be possible; it is
not hard to see that in completely unrestricted preference spaces, truthful mechanisms
are bound to perform poorly.

Ourwork falls under the umbrella ofapproximatemechanismdesignwithoutmoney,
a term coined by [48] to describe problemswhere some objective function is optimized
under the hard constraints imposed by the requirement of truthfulness. The standard
measure of performance for truthful mechanisms is the approximation ratio, which for
our objective, is the worst-case ratio between the social cost of the truthful mechanism
in question over the minimum social cost, calculated over all input instances of the
problem.

However, it is arguably unfair to compare the performance of a mechanism that is
severely limited by the requirement of truthfulness to that of an omnipotentmechanism
that operates under no restrictions andhas access to the real inputs of the agents,without
giving the truthful mechanism any additional capabilities. This is even more evident
in general settings, where strong impossibility results restrict the performance of all
truthful mechanisms to be rather poor. The need for a departure from the worst-case
approach has been often advocated in the literature, but the suggestions mainly involve
some average case analysis or experimental evaluations.

Instead, we will adopt a different approach, that has been made popular in the field
of online algorithms and competitive analysis [37, 52]; the approach suggests enhanc-
ing the capabilities of the mechanism operating under some very limiting requirement
(such as truthfulness or lack of information) before comparing to an optimal solution.
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Ourmain conceptual contribution is the adoption of a resource augmentation approach
to approximate mechanism design. In the resource augmentation framework, we eval-
uate the performance of a truthful mechanism on an input with additional resources,
when compared to an optimal solution for the set of original resources. For our prob-
lem, we consider the social cost achievable by a truthful mechanism on some input
with augmented facility capacities against the optimal assignment under the original
capacities given as input.

More precisely, let I be an input instance to the facility assignment problem and
let Ig be the same instance where each capacity has been multiplied by some integer
constant g, that we call the augmentation factor. Then, the approximation ratio with
augmentation g of a truthful mechanism M is the worst-case ratio of the social cost
achievable by M on Ig over the social cost of the optimal assignment on I , over all
possible inputs of the problem. The idea is that if the ratio achievable by a mechanism
with small augmentation is much better when compared to the standard approximation
ratio, it might make sense to invest in additional resources. At the same time, such a
result would imply that the set of “bad” instances in the worst-case analysis is rather
pathological and not very likely to appear in practice. To the best of our knowledge,
this is the first time that such a resource augmentation framework has been explicitly
proposed in algorithmic mechanism design.

From a technical perspective, our contribution in this paper is centered around two
well-known truthful mechanisms for matching and assignment problems, Serial Dic-
tatorship (SD) and Random Serial Dictatorship (RSD). Both of these mechanisms
have been extensively studied in the context of social choice theory (e.g., see [18,
29, 41, 53]) and serve as excellent starting points for investigating the capabilities of
truthful mechanisms in the facility assignment problem. In particular, in a nutshell
we show how to apply the resource augmentation approach to SD, in order to obtain
much improved approximation ratio bounds, and we compare those bounds to what
is achievable by RSD without any resource augmentation. Exploring truthful mecha-
nisms for facility assignment more generally is left for future work, although we do
provide some preliminary results and potentially useful observations on that front in
Sect. 6.

1.1 Our results

Here we highlight our results in more detail. For SD, we provide an exact analysis,
obtaining tight bounds on the approximation ratio of the mechanism for all possible
augmentation factors g. Specifically, we prove that when n is the number of agents,
the approximation ratio with augmentation factor g = 2 is exactly log(n+1) whereas
for g ≥ 3, the approximation ratio is g/(g − 2), i.e., a small constant. This is in
contrast to the case where there is no augmentation, for which it was known that
the approximation ratio of SD is 2n − 1. In particular, our results imply that as the
augmentation factor becomes large, the approximation ratio of SD with augmentation
goes to 1 and the convergence is rather fast. Our results for SD improve and extend
some results in the field of online algorithms [36].
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To prove the approximation ratios for all augmentation factors, we use an interesting
technique based on linear programming. Specifically, we first provide a directed graph
interpretation of the assignment produced by SD and the optimal assignment, and then
prove that the worst-case instances appear on g-trees, i.e., trees where (practically)
every vertex has exactly g successors. Then, we formulate the problem of calculating
the worst ratio on such trees as a linear program and bound the ratio by obtaining
feasible solutions to its dual. Such a solution can be seen as a “path covering” of the
assignment graph andwe obtain the bounds by constructing appropriate path coverings
of low cost.

We also consider randomizedmechanisms and the very well-known Random Serial
Dictatorship mechanism. We prove that for augmentation factor 1 (i.e., no resource
augmentation), the approximation ratio of the mechanism is between n0.29 and n; the
result suggests that even a small augmentation (g = 2) is a more powerful tool than
randomization.

1.2 Related work

Assignment problems are central in the literature of economics and computer science.
The literature on one-sided matchings dates back to the seminal paper by [33] and
includes many very influential papers, e.g. [18, 53] in economics as well as a rich
recent literature in computer science [3, 29, 32, 41]. Serial Dictatorships (or their
randomized counterparts) have been in the focus of much of this literature, mainly
due to their simplicity and the fragile nature of truthfulness, which makes it quite
hard to construct more involved truthful mechanisms. In a celebrated result, [53]
characterized a large class of truthful mechanisms by serial dictatorships. Random
Serial Dictatorship has also been extensively studied [1, 41] and in fact it was proven
[29] that is asymptotically the best truthful mechanism for one-sided matchings under
the general (normalized) cardinal preference domain.

The facility assignment problem can be interpreted as a matching problem; some-
what surprisingly, matching problems in metric spaces have only fairly recently been
considered in the mechanism design literature. Emek et al. [24] study a setting very
closely related to ours, where the goal is to find matchings on metric spaces, but they
are interested in how well a mechanism that produces a stable matching can approx-
imate the cost of the optimal matching. In a conceptually similar work, [5] study the
performance of ordinal matching mechanisms on metric spaces, when the limitation
is the lack of information. The fundamental difference between those works and ours
is that we consider truthful mechanisms and bound their performance due to the truth-
fulness requirement. In a paper that was published independently and at the same time
as the conference version of the present paper, [6] studied matching and clustering
mechanisms in metric spaces, under the constraints of both limited information and
truthfulness. Crucially however, their model involves weights and their objectives are
solutions (e.g. matchings) ofmaximumweight, rather thanmin-costmatchings likewe
do here, which makes the problem substantially different. Another difference between
our work and the aforementioned papers is that they do not consider resource augmen-

123



Truthful facility assignment... 905

tation and only bound the performance of mechanisms on the same set of resources.1

However, given the generality of the augmentation framework, the same idea could
be applied to their settings. In that sense, our paper proposes a resource augmentation
approach to algorithmic mechanism design that could be adopted in most resource
allocation and assignment settings.

ResourceAugmentation:Aswementioned earlier, the idea of resource augmentation
was popularized by thefield of online algorithms and competitive analysis and is tightly
related to the literature on weak adversaries where an online competitive algorithm
is compared to the adversary that uses a smaller number of resources. The idea for
this approach originated in the seminal paper by [52] and has been adopted by others
ever since [39, 54]; the term “resource augmentation” was explicitly introduced in this
context by [37].

As [37, p. 618-619] explain, a high competitive ratio is typically interpreted as a
definitive inability of the algorithm to perform well against the omnipotent optimal
(“the power of clairvoyance”), but in reality, often a small increase in processing
power can actually have notable effects on how well the online algorithm fares against
the adversary. A very similar argument can be made for our setting where instead of
“online algorithm” we have a ”truthful mechanism” and the “clairvoyant adversary”
is one that knows the real preferences of the agents, rather than the future.

An additional interpretation of the bounds obtained for augmented resources is with
regard to theworst-case instances: a resource augmentation analysis allows “to exclude
those abnormal instances where the value of objective function changes drastically in
response to a small change in processor speed” [37], or, in our setting, a small change
in the capacity of the facilities. Indeed, upon inspection of the worst-case instance for
Serial Dictatorship (without resource augmentation), one can see that the very high
approximation ratio is due to a “mistake” in the assignment of the first agent to the first
facility, which triggers a chain of inefficient assignments, leading to a high social cost
in the end. It can be easily seen that by increasing the capacity of the first facility on
the chain by 1, we obtain an optimal social cost; this demonstrates that the worst-case
bound is given by a pathological instance. For additional discussion of the resource
augmentation approach in the context of “beyond worst-case analysis”, we refer the
reader to the note by [51].

Most closely related to our problem is the online metric matching problem [35, 40,
45], also known as the online transportation problem [36]. In this problem, there is a
set of points F that lie on a metric space and a set of points A that arrive in an online
fashion, i.e., at unknown times in the future. At each time that a point in A arrives, it
has to be matched to a point in F . The performance of an online algorithm is measured
by its competitive ratio, i.e., the worst-case ratio over all inputs of the total cost of the
algorithm over the total cost of the optimal matching, that knows the exact sequence
of arriving points in advance. In relation to our setting, results about the greedy algo-
rithm in the online metric matching problem imply bounds for the facility assignment
problem and vice versa. However, contrary to the resource augmentation results in
[36], our analysis is exact, i.e., our results involve no asymptotics. Additionally, we
remark that our analysis is substantially different due to the use of linear programming;

1 With the exception of the bi-criteria result in [5].
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our primal-dual technique could be applicable for greedy assignment mechanisms on
other resource augmentation settings, beyond the problem studied here. We discuss
the relation between the two settings as well as the implications of our results to the
online setting in more detail in Sect. 6.1.

Finally, there is some resemblance between our problem and the facility location
problem [48] that has been studied extensively in the literature of approximate mech-
anism design, in the sense that in both settings, agents specify their most preferred
positions on a metric space. Note that the settings are fundamentally different how-
ever, since in the facility location problem, the task is to identify the appropriate point
to locate a facility whereas in our setting, facilities are already in place and we are
looking for an assignment of agents to them.

2 Preliminaries

In the facility assignment problem, there is a set N = {1, . . . , n} of agents and a set
M = {1, . . . ,m} of facilities, where agents and facilities are located on ametric space,
equipped with a distance function d. Each facility has a capacity ci ∈ N+, which is
the number of agents that the facility can accommodate. We assume that

∑m
i=1 ci ≥ n,

i.e., all agents can be accommodated by some facility. Each agent has a most preferred
position Ai on the space and his cost di ( j) from facility j is the distance d(Ai , Fj )

between Ai and the position Fj of the facility. Let A = (A1, . . . , An) be a vector
of preferred positions and call it a location profile. Let F = (F1, . . . , Fm) be the
corresponding set of points of the facilities. A pair of agents’ most preferred points
and facility points (A, F) is called an instance of the facility assignment problem and
is denoted by I .

The locations of the facilities are known but the location profiles are not known;
agents are asked to report them to a central planner, who then decides on an assignment
S, i.e., a pairing of agents and facilities such that each agent is assigned to exactly one
facility and no facility capacity is exceeded. Let Si be the restriction of the assignment
to the i’th coordinate, i.e., the facility to which agent i is assigned in S and let S be
the set of all assignments. The social cost of an assignment S on input I is the sum of
the agents’ costs from their facilities assigned by S i.e.,

∑n
i=1 di (Si ). A deterministic

mechanism maps instances to assignments whereas a randomized mechanism maps
instances to probability distributions over assignments.

Definition 1 (Truthfulness) A mechanism M is truthful if no agent has an incentive
to misreport his most preferred location. Formally, this is guaranteed when for every
location profile A, any report A′

i , and any reports A−i of all agents besides agent i , it
holds that

di (Si ) ≤ di (S
′
i ), where S = M(I ) and S′ = M(I ′)

with I = (A, F) and I ′ = ((A′
i , A−i ), F).

For randomized mechanisms, the corresponding notion is truthfulness-in-expectation,
where an agent cannot decrease her expected distance from the assigned facilities by
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deviating, i.e., it holds that ES∼D[di (Si )] ≤ ES∼D′ [di (Si )], where D and D′ are the
probability distributions output by the mechanism on inputs I and I ′ respectively.
A stronger notion of truthfulness for randomized mechanisms is that of universal
truthfulness, which guarantees that for every realization of randomness, there will not
be any agent with an incentive to deviate. Alternatively, one can view a universally
truthful mechanism as a mechanism that runs a deterministic truthful mechanism at
random, according to some distribution.

Resource Augmentation: As our main conceptual contribution, we will consider a
resource augmentation framework where the minimum social cost of any assignment
will be compared with the social cost achievable by a mechanism on a location profile
with augmented facility capacities. Given an instance I , we will use the term g-
augmented instance to refer to an instance of the problem where the input is I and the
capacity of each facility has been multiplied by g. We will denote that instance by Ig
and we will call g the augmentation factor of I . For example, when g = 2, we will
compare the minimum social cost with the social cost of a mechanism on the same
inputs but with double capacities.

For the facility assignment problem, the optimal mechanism computes a mini-
mum cost matching (which can be computed using an algorithm for maximum weight
bipartite matching) and it can be easily shown that it is not truthful; in order to achieve
truthfulness, we have to output suboptimal solutions. As performance measure, we
define the approximation ratio with augmentation of a mechanism M as

ratiog(M) = sup
I

SCM (Ig)

SCOPT (I )

where SCM (Ig) = ∑n
i=1 di (M(Ig)i ) is the social cost of the assignment produced by

mechanism M on input instance I with augmentation factor g and SCOPT (I ) is the
minimum social cost of any assignment on I i.e., SCOPT (I ) = minS∈S

∑n
i=1 di (Si ).

More generally, we will use SCX (I ) = ∑n
i=1 di (Xi ) to denote the social cost of

assignment X on I . For randomized mechanisms, the definitions involve the expected
social cost and are very similar. Obviously, if we set g = 1, we obtain the standard
notion of the approximation ratio for truthful mechanisms [48]. For consistency with
the literature, we will denote ratio1(M) by ratio(M).

SD and RSD: We will be interested in two natural truthful mechanisms that assign
agents to facilities in a greedy nature. A serial dictatorship (SD) is a mechanism that
first fixes an ordering of the agents and then assigns each agent to his most preferred
facility, from the set of facilities with non-zero residual capacities. The fact that the
mechanism is truthful is straightforward; an agent does not affect the ordering inwhich
it is chosen and once chosen, the agent will “select” the best possible facility, according
to its preference. The randomized counterpart of SD, Random Serial Dictatorship
(RSD), is the mechanism that first fixes the ordering of agents uniformly at random
and then assigns them to their favorite facilities that still have capacities left. In other
words, RSD runs one of the n! possible serial dictatorships uniformly at random and
hence it is universally truthful.
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We conclude the section with a simple example showing that the optimal assignment
is not truthful.

Example 1 (The optimal assignment is not truthful) Consider an instance with two
agents and two facilitieswith capacities c1 = c2 = 1, such that A1 = A2,d(A1, F1) =
2 and d(A1, F2) = 1.Assumewithout loss of generality that in the optimal assignment
S1 = 1 and S2 = 2, i.e., agent i ∈ {1, 2} is assigned to facility i . Now, assume that
agent 1 reports A′

1 = F2 instead, i.e., d(A′
1, F2) = 0 and d(A′

1, F2) = 3. Then, the
optimal assignment would be such that S1 = 2 and S2 = 1. The real cost of agent
1 has therefore reduced from 2 to 1, and the agent has successfully manipulated the
mechanism that outputs the optimal assignment.

3 Approximation guarantees for serial dictatorship

In this section we provide our main results, the upper bounds on the approximation
ratio with augmentation of Serial Dictatorship, for all possible augmentation factors.
In Sect. 5, we state the theorem that ensures that the bounds proven here are tight.

Theorem 1 The approximation ratio of SD with augmentation factor g in facility
assignment instances with n agents is

1. ratio(SD) ≤ 2n − 1,
2. ratio2(SD) ≤ log(n + 1),
3. ratiog(SD) ≤ g

g−2 when g ≥ 3.

In order to prove the theorem,2 we first need to introduce a different interpretation of
the assignment produced by SD and the optimal assignment, in terms of a directed
graph. We begin with a roadmap of the proof of Theorem 1.

1. We show how to represent an instance of facility assignment together with an
optimal solution and a solution computed by the SD mechanism as a directed
graph and argue that the instances in which the SD mechanism has the worst
approximation ratio are specifically structured as directed trees (see Lemma 1).

2. We then observe that the cost of the SD mechanism in these instances is upper-
bounded by the objective value of a maximization linear program defined over the
corresponding directed trees.

3. We use duality to upper-bound the objective value of this LP by the value of a
feasible solution for the dual LP. This reveals a direct relation of the approximation
ratio of the SD mechanism to a graph-theoretic quantity defined on a directed tree,
which we call the cost of a path covering (see Definition 2 and Lemma 2).

4. Our last step is to prove bounds on this quantity; these might be of independent
interest and could find applications in other contexts (see Lemmas 3, 4, and 5).

Consider an instance I of facility assignment. Recall the interpretation of the prob-
lem as ametric bipartite matching and note that without loss of generality, each facility

2 We point out here that statement 1 and a weaker version of statement 2 in Theorem 1 can be obtained as
corollaries of results in the literature for the online metric matching problem (see [35, 36]). However, we
will prove the three statements of Theorem 1 as part of our more general framework.
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Fig. 1 An illustration of a g-tree. Nodes correspond to facilities and edges correspond to agents. An edge
between two nodes means that the corresponding agent was assigned to the facility corresponding to the
source at the optimal assignment, and to the facility corresponding to the target in the assignment of the SD
mechanism

can be assumed to have capacity 1, andm ≥ n. Unless otherwise specified, agents and
facilities are identified by the integers in [n] and [m], respectively.

Now, let O be any assignment on input I , and let S be an assignment returned by
the SD mechanism when applied on the instance Ig (where each facility has capacity
g). We use a directed graph to represent the triplet I , O , and S as follows. The graph
has a node for each facility. Each directed edge corresponds to an agent. A directed
edge from a node corresponding to facility j1 to a node corresponding to facility j2
indicates that the agent corresponding to the edge is assigned to facility j1 in O and to
facility j2 in S. Observe that there is at most one edge outgoing from each node; this
edge corresponds to the agent that is assigned to the facility corresponding to the node
in solution O . Furthermore, a node may have up to g incoming edges, corresponding
to agents assigned to the facility by the SD mechanism.

Representations as directed g-trees are of particular importance. A directed g-tree
T (or simply g-tree), is an acyclic directed graph that has a root node r of in-degree
1 and out-degree 0, leaves with in-degree 0 and out-degree 1, and intermediate nodes
with in-degree g and out-degree 1 (see Fig. 1 for an illustration). We now show that it
suffices to restrict our attention to directed g-trees as graph representations of instances
in which the SD mechanism achieves its worst performance.

Lemma 1 Givenan integer g ≥ 1, an instance I with n agents,with anoptimal solution
O anda solution S consistentwith the SDmechanismwhenapplied to instance Ig, there
is another instance I ′, with an optimal solution O ′ and a solution S′ consistent with
the application of the SD mechanism on the instance I ′

g such that the representation
graph of the triplet (I ′, O ′, S′) is a directed g-tree and such that

SCS(Ig)

SCO(I )
≤ SCS′(I ′

g)

SCO ′(I ′)
.
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In addition, if g ∈ {1, 2}, the number of agents in I ′ is at most n.
Proof Let oi and si denote the facility to which agent i is connected in assignments
O and S, respectively. Starting from (I , O, S), we construct a new triplet (I ′, O ′, S′)
satisfying the conditions of the lemma as follows:

Step 1 First, we transform the representation graph so that it consists of just a single
weakly-connected component. The transformation does not increase the number of
agents and is done as follows. Assume that the current representation graph has k ≥ 2
weakly-connected components. For j = 1, ..., k,wedefine the triplet (I ( j), S( j), O( j))

as follows. The instance I ( j) consists of the agents and facilities that correspond to the
edges and nodes of the j-th weakly-connected component of the representation graph,
respectively. The assignment S( j) is an assignment returned by the SD mechanism
when applied on the instance I ( j)

g (where each facility has capacity g), assuming
that the order in which SD decides the assignment for each agent in I ( j) is the same
with the order in which SD decides their assignment in instance I . Also, O( j) is
the restriction of assignment O to the agents of instance I ( j). Now, among the triplets

(I ( j), O( j), S( j)), we keep only the one that maximizes the ratio
SCS( j) (I

( j)
g )

SCO( j) (I ( j))
. This ratio

is not smaller than SCS(Ig)
SCO (I ) . To see why, observe that SCS(Ig) = ∑k

j=1 SCS( j) (I
( j)
g )

and SCO(I ) = ∑k
j=1 SCO( j) (I ( j)).

Step 2 Next, we eliminate cycles from the graph representation. We do so by intro-
ducing new facilities but without increasing the number of agents. Let i0, i1, ..., ik−1
be the k ≥ 2 agents corresponding to the edges in such a cycle, with si j = oi j+1 mod k

such that agent ik−1 is the last agent in the cycle who is assigned to a facility by SD.We
introduce a new facility f , set d(Ai0 , Ff ) = d(Ai0 , Foi0 ) and change the assignment
of agent i0 in O to f . Agent i0 is still assigned to facility si0 in S; this is consistent to
SD due to the definition of distance d(Ai0 , Ff ). After repeating this for all cycles, the
representation graph is an acyclic directed graph, that has a root node r of in-degree at
most g and out-degree 0, leaves with in-degree 0 and out-degree 1, and intermediate
nodes with in-degree at most g and out-degree 1. The quantity SCS(Ig)/SCO(I ) has
not changed.

To make sure that SD will not assign any agent to the new facility f , we update
the distances between agents and facilities they do not use in O and S to the shortest
path distance in the graph representation as follows. Let i be an agent and j a facility.
Let j ′ be the facility that is closest to j in the graph representation, among the two
facilities that agent i uses in O and S. Let P be the set of agents that correspond
to the edges in the path from node j to node j ′. We set the distance d(Ai , Fj ) to
d(Ai , Fj ′) + ∑

t∈P (d(At , Fot ) + d(At , Fst )). Notice that this transformation does
not change the distance between an agent and a facility the agent uses in S or in O .
Furthermore, the shortest path distance can only increase the distance of the agent to
a facility she uses neither in S nor in O . Hence, the transformation does not affect the
behavior of SD, nor the social cost of the solutions S and O . We maintain this shortest
path distance property in the following steps.

Step 3We perform a similar transformation with step 1 to get a graph representation
inwhich the root nodehas in-degree1.Assume that the current representationgraphhas
a root node of in-degree k ≥ 2. For j = 1, ..., k, we define the triplet (I ( j), S( j), O( j))
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as follows. The instance I ( j) consists of the agents and facilities that correspond to the
edges and nodes of the j-th subtree of the root, including a copy of the root facility.
The assignment S( j) is an assignment returned by the SDmechanism when applied on
the instance I ( j)

g (where each facility has capacity g), assuming that the order in which
SD decides the assignment for each agent in I ( j) is the same with the order in which
SD decides their assignment in instance I . Also, O( j) is the restriction of assignment
O to the agents of instance I ( j). Like above, among the triplets (I ( j), O( j), S( j)),

we keep only the one that maximizes the ratio
SCS( j) (I

( j)
g )

SCO( j) (I ( j))
. Again, this ratio will

not be smaller than SCS(Ig)
SCO (I ) , since SCS(Ig) = ∑k

j=1 SCS( j) (I
( j)
g ) and SCO(I ) =

∑k
j=1 SCO( j) (I ( j)).
Step 4a Notice that if g = 1, the current representation graph will be a single

directed path, i.e., a 1-tree. Also, recall that no new agents were introduced so far. So,
the proof of the lemma is complete for g = 1.

For g ≥ 2, the only difference the current graph representation may have with a
g-tree is that intermediate nodes may have in-degree smaller than g. We take care of
this in the last step, distinguishing between the case g = 2 and g ≥ 3.

Step 4b If g = 2, the current graph representation may have “lacking” paths, which
originate from nodes of in-degree either 0 or 2 and are destined either for the root
node or for nodes of in-degree 2, so that all their intermediate nodes have in-degree
1. Consider such a lacking path and assume that it consists of edges corresponding to
the k ≥ 2 agents i1, i2, ..., ik . Hence, the lacking path originates from node oi1 and
is destined for node sik . Consider two triplets (I (1), O(1), S(1)) and (I (2), O(2), S(2))

defined as follows. Instance I (1) consists of agent ik , all agents whose path to the root
node does not contain the edge corresponding to agent ik , and the facilities all these
agents use in assignments O and S. The assignments O(1) and S(1) are the restrictions
of the assignments O and S to the agents and facilities of instance I (1). We remark
that the assignment of agent ik to facility sik (as opposed to oik ) in S(1) is consistent
to SD. This is due to the fact that agent ik is assigned to facility sik by SD in S,
even though facility oik is used by only one agent (recall that node oik has degree 1)
and, hence, d(Aik , Fsik ) ≤ d(Aik , Foik ). Instance I (2) consists of agent i1, the agents
corresponding to edges in the subtrees of node oi1 and the facilities all these agents
use in assignments O and S. The assignments O(2) and S(2) are the restrictions of the
assignments O and S to the agents and facilities of instance I (2).

Notice that the graph representationof both triplets (I (1), O(1), S(1)) and (I (2), O(2),

S(2)) have one lacking path fewer than triplet (I , O, S). Notice that, if there are agents
that are not included in I (1) and I (2) (i.e., if k > 2), their contribution to SCS(Ig) is not
greater than their contribution to SCO(I ), i.e.,

∑k−1
i=2 d(Ai , Fsi ) ≤ ∑k−1

i=2 d(Ai , Foi ).
This is due to the fact that when SD decided the assignment for such an agent
i ∈ {2, ..., k − 1}, facility oi had less than g agents assigned to it. Since agent i is
assigned to facility si �= oi by SD, it must be that d(Ai , Fsi ) ≤ d(Ai , Foi ). Using this

observation, we can furthermore see that one of the ratios
SCS(1) (I

(1)
g )

SCO(1) (I (1))
and

SCS(2) (I
(2)
g )

SCO(2) (I (2))

is not smaller than
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912 I. Caragiannis et al.

SCS(Ig) − ∑k−1
i=2 d(Ai , Fsi )

SCO(I ) − ∑k−1
i=2 d(Ai , Foi )

≥ SCS(Ig)

SCO(I )
.

After repeating this transformation for all lacking paths in the graph representation, we
will have the desired 2-tree. Again, observe that no new agents have been introduced.
So, the proof of the lemma for the case g = 2 is complete.

Step 4c If g ≥ 3, consider any non-root, non-leaf node f of the representation graph
with in-degree k < g. We increase the in-degree of node f to g by introducing g − k
new facilities f1, f2, ..., fg−k , g−k new agents i1, ..., ig−k , and setting d(Ai j , Ff j ) =
d(Ai j , Ff ) = 0 for j = 1, ..., g − k. The assignments S and O are updated so that
si j = f j and oi j = f for j = 1, ..., g − k. Distances of the old agents to the new
facilities and of the new agents to the old facilities follow the shortest path distance
metric; this guarantees that the updated assignment S is consistent to SD. Notice that
an old agent i is not assigned to a new facility f j by SD. Indeed, the shortest path
distance from agent i to facility f j is at least as high as the distance from agent i to
facility f in the original instance. Hence, as agent i is assigned to facility si instead of
f by SD in S, she must be assigned to si in the updated assignment S as well. After
repeating this transformation for all intermediate nodes in the graph representation,
we will have the desired g-tree. As the distance of the new agents from their assigned
facility in S and O is 0, the ratio SCS(Ig)

SCO (I ) remains unchanged. This completes the proof
of the lemma for the case g ≥ 3 as well. �	
So, in the following,wewill focus on triplets (I , O, S) of a facility assignment instance
I , with an optimal solution O , and with an SD solution S for instance Ig that have
a directed g-tree T as graph representation. Below, we use P to denote the set of all
paths that originate from leaves. Given an edge e of a g-tree, we use Pe (respectively,
P̃e) to denote the set of all paths that originate from a leaf and cross (respectively,
terminate with) edge e. We always use er to denote the edge incident to the root of a
g-tree.

Our next observation is that SCS(Ig) is upper-bounded by the objective value of
the following linear program.

maximize
∑

e∈T
ze

subject to: ze −
∑

a∈p\{e}
za ≤

∑

a∈p

d(Aa, Foa ), e ∈ T , p ∈ P̃e

ze ≥ 0, e ∈ T

To see why, interpret variable ze as the distance of the agent corresponding to edge e
of T to the facility it is connected to under assignment S. Then, clearly, the objective∑

e∈T ze represents SCS(Ig). Now, how high can SCS(Ig) be? The LP essentially
answers this question (partially, because it does not use all constraints of the SD
mechanism, but sufficiently for our purposes). In particular, the LP takes into account
the fact that the distance of agent e to the facility to which it is connected in S is not
higher than the distance of the agent to any leaf facility in its subtree; this follows
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by the definition of the SD mechanism since leaf facilities are by definition available
throughout the execution of the SD mechanism. Indeed, consider agent e and a path
p ∈ P̃e. Since agent e is connected to facility se under SD and not to the facility
corresponding to the leaf from which path p originates from, this means that the
distance d(Ae, Fse ) is not higher than the distance of Ae from the location of the
facility corresponding to that leaf. Since d is a metric, this distance is at most

d(Ae, Foe ) +
∑

a∈p\{e}
d(Fsa , Foa ) ≤ d(Ae, Foe ) +

∑

a∈p\{e}
(d(Aa, Fsa ) + d(Aa, Foa )).

So, the constraint associated with path p ∈ P̃e in the LP captures the inequality

d(Ae, Fse ) ≤ d(Ae, Foe ) +
∑

a∈p\{e}
d(Fsa , Foa )

≤ d(Ae, Foe ) +
∑

a∈p\{e}
(d(Aa, Fsa ) + d(Aa, Foa )),

by replacing d(Ae, Fse ) with ze and d(Aa, Fsa ) with za and rearranging the terms.
By duality, the cost SCS(Ig) of solution S is upper-bounded by the objective value

of the dual linear program, defined as follows:

minimize
∑

p∈P
xp

∑

e∈p

d(Ae, Foe )

subject to:
∑

p∈Per

x p ≥ 1

∑

p∈P̃e

x p −
∑

p∈Pe\P̃e

x p ≥ 1, e ∈ T , e �= er

xp ≥ 0, p ∈ P

Actually, for any feasible solution x of the dual LP, SCS(Ig) is upper bounded by the
quantity

∑
p∈P xp

∑
e∈p d(Ae, Foe ). We will refer to any assignment x over the paths

ofP that satisfies the constraints of the dual LP as a path covering of the directed g-tree
T and will denote its cost by c(x) = maxe∈T

∑
p∈Pe

x p. We repeat these definitions
for clarity:

Definition 2 Let T be a directed tree. A function x : P → R
+ is called a path covering

of T if the following conditions hold:
−∑

p∈Per
x p ≥ 1 for the edge er incident to the root of T ;

−∑
p∈P̃e

x p − ∑
p∈Pe∩P f

x p ≥ 1 if e �= er and f denotes the parent edge of e.3

The cost c(x) of x is equal to maxe∈T
∑

p∈Pe
x p.

The following lemmaestablishes that the approximation ratiowith augmentation factor
g of SD is bounded by the cost of the path covering.

3 Note that Pe \ P̃e and Pe ∩ P f are the same set.
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914 I. Caragiannis et al.

Lemma 2 Let g ≥ 1 be an integer, I be a facility assignment instance with an optimal
solution O, S be a solution of the SD mechanism when applied on instance Ig, so that
the triplet (I , O, S) is represented as a directed g-tree T which has a path covering
x. Then, SCS(Ig) ≤ c(x) · SCO(I ).

Proof Using the interpretation of the variables of the primal LP, duality, and the defi-
nition of the cost of path covering x , we have that

SCS(Ig) ≤
∑

e∈T
ze ≤

∑

p∈P
xp

∑

e∈p

d(Ae, Foe ) =
∑

e∈T
d(Ae, Foe ) ·

∑

p∈Pe

x p

≤ c(x) ·
∑

e∈T
d(Ae, Foe ) = c(x) · SCO(I )

as desired. �	
In order to establish the upper bounds in Theorem 1, it remains to show that path
coverings with low cost do exist; this is what we do in the next three lemmas. We start
with the statement for no augmentation.

Lemma 3 Let T be a 1-tree with n edges. Then, there is a path covering of T of cost
2n − 1.

Proof First, observe that a directed 1-tree consists of a single branch, where the first
node (the leaf) has out-degree 1 and in-degree zero, the last node (the root) has in-
degree 1 and out-degree 0 and all other nodes have precisely one incoming edge and
one outgoing edge. Therefore, for each edge e in the tree, the set P̃e consists of a single
path.

Rename the edge er that is incident to the root of T as e1 and for i = 2, . . . , n, let
ei be the edge that is at depth i from the root. Hence, the edge en is incident to the
leaf.

Now for every path pei , let xpei = 2i−1. This is a complete assignment to all paths,
since every path originates from the single leaf, and ends at either the root or some
intermediate node. It is not hard to see that the assignment is a path covering, since∑

p∈Per
≥ 1 (due to per = 1), and for every path pei it holds that xpei = ∑i−1

j=1 xpe j +1

and hence,
∑

p∈P̃ei
x p − ∑

p∈Pei \P̃ei
x p ≥ 1. The cost of the path covering is c(x) =

∑n
i=1 xpei = ∑n

i=1 2
i−1 = 2n − 1. �	

In the following, we identify path coverings of low cost for the case of g ≥ 3 and
g = 2. The next two lemmas complete the proof of Theorem 1 that regards the upper
bounds.

Lemma 4 Let g ≥ 3 be an integer and T be a g-tree. Then, there is a path covering
of T of cost g

g−2 .

Proof We prove the lemma using the following assignment x : for every path p of
length �, we set xp = 1

g−2g
2−� if it contains the edge that is incident to the root and

xp = g−1
g−2g

1−� otherwise.
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We will first show that
∑

p∈Pe
x p = g

g−2 for every edge e using induction. We will
do so by visiting the edges in a bottom-up manner (i.e., an edge will be visited only
after its child-edges have been visited) and prove the equality for edge e using the
information that the equality holds for its child-edges. As the basis of our induction,
consider an edge e that is incident to a leaf at depth � ≥ 1 from the root. If � = 1,
this means that the tree consists of a single edge and there is a single path p with
xp = g

g−2 . If � ≥ 2, then the paths that contain edge e are those which end at each
ancestor of the leaf adjacent to e. Hence,

∑

p∈Pe

x p =
�−1∑

i=1

g − 1

g − 2
g1−i + 1

g − 2
g2−� = g

g − 2
.

Now, let us focus on an edge e that is not incident to a leaf. Assume that
∑

p∈Pei
x p =

g
g−2 for each child-edge ei (for i ∈ [g]) of e (this is the induction hypothesis). Let
u be the node to which edges e and ei with i ∈ [g] are incident. The set of paths in
Pe consists of the following disjoint sets of paths: for each edge ei and for each path
p ∈ P̃ei , setPe contains all super-paths of p, i.e., paths originating from the leaf-node
reached by p and ending at each ancestor of node u; we use the notation sup(p) to
denote the set of super-paths of p; sup(p) consists of strict super-paths of p, i.e., it
does not contain p. Observe that, the definition of x implies that a super-path q of
p that is longer than p by j has xq = 1

g−1g
1− j x p if q is adjacent to the root and

xq = g− j x p otherwise. Hence, assuming that node u is at depth � ≥ 1 from the root,
we have that

∑

p∈Pe

x p =
g∑

i=1

∑

p∈P̃ei

∑

q∈sup(p)

xq =
⎛

⎝
�−1∑

j=1

g− j + 1

g − 1
g1−�

⎞

⎠
g∑

i=1

∑

p∈P̃ei

x p

= 1

g − 1

⎛

⎝
g∑

i=1

∑

p∈Pei

x p −
∑

p∈Pe

x p

⎞

⎠ ,

which yields
∑

p∈Pe
x p = g

g−2 as desired, since
∑

p∈Pei
x p = g

g−2 by the induction
hypothesis.

It remains to show feasibility. Clearly,
∑

p∈Pe
x p = g

g−2 ≥ 1 if e is adjacent to the
root. Otherwise, consider an edge e, its parent edge f , and their common endpoint u.
Assuming that u is at depth � from the root (and using definitions and observations
we used above), we have

∑

p∈Pe∩P f

x p =
∑

p∈P̃e

∑

q∈sup(p)

xq =
⎛

⎝
�−1∑

j=1

g− j + 1

g − 1
g1−�

⎞

⎠
∑

p∈P̃e

x p = 1

g − 1

∑

p∈P̃e

x p,
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916 I. Caragiannis et al.

which, together with the fact that

g

g − 2
=

∑

p∈Pe

x p =
∑

p∈Pe∩P f

x p +
∑

p∈P̃e

x p,

yields

∑

p∈Pe∩P f

x p = 1

g − 2
and

∑

p∈P̃e

x p = g − 1

g − 2

and, consequently,
∑

p∈P̃e
x p − ∑

p∈Pe∩P f
x p = 1 as desired. �	

Finally, we state the lemma for augmentation factor g = 2.

Lemma 5 Let T be a 2-tree with n edges. Then, there is a path covering of T of cost
at most log (n + 1).

Proof Again, as in the proof of Lemma 4, we will construct the path covering x by
visiting the edges of the tree in a bottom-up manner, i.e., first visiting edges that are
incident to leaves and in such a way that an edge that is not adjacent to a leaf is visited
only after its two child-edges have been visited. The assignment x will be defined
using a temporary assignment y.

When visiting an edge e that is adjacent to a leaf, we determine the temporary value
yp = log (n + 1) associated with the path p consisting of edge e only. When visiting
an edge e that is not adjacent to a leaf, we set the temporary value for each path that
originates from a leaf and terminates with edge e and determine the final value for
each path of P̃ei that originates from a leaf and terminates with the child-edge ei (with
i ∈ {1, 2}) of e. In particular, let p be a path of P̃ei and let yp be the temporary value
assigned to it during our previous visit to edge ei . During the phase associated with
edge e, for the super-path q of p that terminates with edge e, we set the temporary
value

yq =
∑

p′∈P̃ei
yp′ − 1

2
∑

p′∈P̃ei
yp′

yp (1)

and determine the final value

xp =
∑

p′∈P̃ei
yp′ + 1

2
∑

p′∈P̃ei
yp′

yp (2)

of path p. After we have visited all edges, we set the final value xp for each path p
that originates from a leaf and terminates with edge er to be equal to its temporary
value yp.

Consider an edge e that has at least one non-leaf child-edge ei with i ∈ {1, 2}. Let
p ∈ P̃ei and q be the super-path of p that terminates with edge e. Observe that Eqs.

123



Truthful facility assignment... 917

(1) and (2) imply that xp + yq = yp, which means that the temporary value of a path
p is redistributed as final value of the path and temporary value of its super-path that
terminates with its parent edge e. This argument can be repeated for all super-paths
of p, and, together with the way we determine the final values of paths in Per at the
end of the above process, it implies that the temporary value of a path p in P̃ei is
redistributed as total final value of path p and all its super-paths. By denoting the set
of super-paths of path p by sup(p), we get

yp =
∑

q∈{p}∪sup(p)

xq .

Clearly, this equality holds if p ∈ Per as well. Now, observe that Eqs. (1) and (2)
imply

xp − yq = yp
∑

p′∈P̃ei
yp′

.

Hence, by summing over all paths p of P̃ei and their corresponding super-paths, we
have that

∑

p∈P̃ei

x p −
∑

p∈Pei ∩P̃e

yp = 1.

Since the temporary value yp on a path p is redistributed as final value on p and the
paths of sup(p), we have that

∑

p∈Pei ∩P̃e

yp =
∑

p∈Pei ∩Pe

x p,

and the feasibility condition

∑

p∈P̃ei

x p −
∑

p∈Pei ∩Pe

x p = 1 (3)

on edge ei follows by the last two equalities.
We still have to prove the bound on the cost of x as well as the feasibility condition

for the edge adjacent to the root. In order to do so, we will prove that for every edge
e which defines a subtree with Ne nodes (including both its endpoints), it holds that

log (n + 1) ≥
∑

p∈Pe

x p ≥ log (n + 1) − log Ne + 1.

The leftmost inequality yields the bound on the cost of x and the rightmost inequality
yields the feasiblity constraint

∑
p∈Per

x p ≥ 1 for the edge er that is incident to the
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root (recall that Ner = n + 1). We prove the inequality inductively, starting from the
edges that are incident to leaves, and proceeding to the remaining edges in a bottom-up
manner. To prove the inequality for an edge e that is not adjacent to a leaf, we use the
fact that the inequality has been proved for its child-edges before.

Since Ne = 2 for every edge e incident to a leaf, both inequalities hold (and are
essentially the same equality) in this case. Now consider an edge e that is not incident
to a leaf and is such that

log (n + 1) ≥
∑

p∈Pei

x p ≥ log (n + 1) − log Nei + 1

for each child-edge ei (with i ∈ {1, 2}) of e. Using the feasibility condition (Eq. 3) for
edges e1 and e2 (which recall that it holds with equality), we have

∑

p∈Pe

x p =
∑

p∈Pe∩Pe1

xp +
∑

p∈Pe∩Pe2

xp

= 1

2

∑

p∈Pe1∩Pe

x p + 1

2

⎛

⎜
⎝

∑

p∈P̃e1

xp − 1

⎞

⎟
⎠ + 1

2

∑

p∈Pe2∩Pe

x p + 1

2

⎛

⎜
⎝

∑

p∈P̃e2

xp − 1

⎞

⎟
⎠

= 1

2

∑

p∈Pe1

xp + 1

2

∑

p∈Pe2

xp − 1. (4)

By the induction hypothesis, we have
∑

p∈Pe1
xp ≤ log (n + 1) and

∑
p∈Pe2

xp ≤
log (n + 1). So, (4) implies that

∑
p∈Pe

x p ≤ log (n + 1) for any edge e as well, and
the bound on the cost of x follows.
Using (4) and the assumption on the total final value of paths in Pe1 and Pe2 , we get

∑

p∈Pe

x p ≥ 1

2

(
log (n + 1) − log Ne1 + 1

) + 1

2

(
log (n + 1) − log Ne2 + 1

) − 1

= log (n + 1) − log
√
Ne1 · Ne2 ≥ log (n + 1) − log

(
Ne1 + Ne2

2

)

= log (n + 1) − log Ne + 1.

The second inequality follows by the relation of the geometric and arithmetic mean
and the last equality is due to the fact that Ne = Ne1 + Ne2 . This completes the proof
of the lemma. �	

4 Approximation guarantees for random serial dictatorship

In the previous section, we showed that the performance of SD significantly improves
even with a small augmentation factor. A natural next question is to study its random-
ized counterpart, RSD. Could randomization help in achieving much better ratios? In
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the following, we state an approximation guarantee for RSD, when there is no resource
augmentation.

Theorem 2 The approximation ratio of RSDwithout resource augmentation in facility
assignment instances with n agents is ratio(RSD) ≤ n.

Proof Here again, wewill use the alternative interpretation of the problem,where there
are n agents and n facilities (without loss of generality, capacity slots are interpreted
as different facilities of unit capacity which coincide on the same point).Wewill prove
the lemma by induction on n.
When n = 1, RSD outputs an optimal solution. For the induction step, assume that
for n = k, it holds that ratio(RSD) ≤ k and consider the case when n = k + 1. Let
di = min j∈[k+1] d(Ai , Fj ) and ti = argmin j∈[k+1] d(Ai , Fj ). With a slight abuse of
notation, let SCRSD(L, T ) be the expected social cost of Random Serial Dictatorship
on any instancewith agents in L and facilities in T . Similarly, let SCOPT (L, T ) denote
the social cost of the optimal assignment between agents in L and facilities in T . Then,
we have that

SCRSD(N , M) = 1

k + 1

k+1∑

i=1

(di + SCRSD(N−{i}, M−{ti }))

≤ 1

k + 1

k+1∑

i=1

di + 1

k + 1

k+1∑

i=1

k · SCOPT (N−{i}, M−{ti })

≤ 1

k + 1

k+1∑

i=1

di + 1

k + 1

k+1∑

i=1

k · (SCOPT (N , M) + di )

= 1

k + 1

k+1∑

i=1

di + k

k + 1

k+1∑

i=1

(di + SCOPT (N , M))

≤ (k + 1) · SCOPT (N , M)

where the first inequality follows from the induction hypothesis and the last inequality
follows from the fact that SCOPT (N , M) ≥ ∑k+1

i=1 di . For the second inequality,
observe first that if in the optimal assignment, agent i is matched with ti , then the
inequality clearly holds. Hence, assume without loss of generality that in the optimal
assignment, agent i is matched with some facility j �= ti and facility ti is matched with
some agent i∗. Then, if we remove agent i and facility ti from the optimal assignment
on N and M and add the pair i∗ and j , we obtain an assignment on N−{i}, M−{ti }. Let
S be that assignment and let SCS(N−{i}, M−{ti }) be its social cost. By the definition
of SCOPT (N−{i}, M−{ti }), we have

SCOPT (N−{i}, M−{ti }) ≤ SCS(N−{i}, M−{ti })
≤ SCOPT (N , M) − d(Ai∗ , Fti ) − d(Ai , Fj ) + d(Ai∗ , Fj )

≤ SCOPT (N , M) + d(Ai , Fti )

= SCOPT (N , M) + di
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where the last inequality follows from the triangle inequality. This completes the proof
of the lemma. �	

5 Lower bounds

In this section, we provide lower bounds on the approximation ratio with augmentation
of the mechanisms that we study. Interestingly, the constructed instances are all on a
simple metric space, the real line metric. For SD, the lower bounds that we prove show
that our analysis in Sect. 3 is tight. For RSD and augmentation g = 1, while the bound
is not tight, it shows that even if there is a more involved analysis that potentially yields
better upper bounds, it is not possible to obtain a much better approximation ratio and
in particular, it is not possible to match the logarithmic approximation guarantee of
SD with augmentation g = 2. The lower bounds will be established by the following
theorem.

Theorem 3 The approximation ratio of SD with augmentation factor g in facility
assignment instances with n agents is

1. ratio(SD) ≥ 2n − 1
2. ratio2(SD) ≥ log (n + 1)
3. ratiog(SD) ≥ g

g−2 when g ≥ 3.

The approximation ratio of RSD is at least ratio(RSD) ≥ n0.29 (without resource
augmentation).

All the statements in Theorem 3 will follow by the same construction, with agents and
facilities lying on the real line. Note that similar instances for proving the simplest
cases of Theorem 3 have appeared in the related literature in the past [36, 38, 45]; here
we include those instances as part of a more general construction that allows us to
obtain lower bounds for different augmentation factors as well as for Random Serial
Dictatorship.

Let k > 0 be a positive integer and ε > 0. There are k + 2 points of interest
that will host agents and facilities; these have the coordinates −ε, 1, 2, ..., and 2k .
For i = 0, 1, ..., k − 1, there are �i agents at level i and are located at point 2i . For
i = 0, 1, ..., k − 1, we use ni = ∑i

j=0 � j . Facilities are partitioned into k + 1 levels;
each level has a single facility. The facility of level 0 has capacity c0 and is located
at point −ε. For i = 1, 2, ..., k, the facility of level i is located at point 2i and has
capacity ci . The different lower bounds will be obtained by setting the values of the
quantities �i and ci appropriately, but in all cases, we will set ci = �i . Note that then,
the optimal cost is at most �0(1+ ε)which is obtained by assigning the agents of level
i to the facility of level i for i = 0, 1, ..., k − 1. Clearly, the optimal cost can become
arbitrarily close to �0 by selecting ε to be sufficiently small.

Proof of Statements (1), (2), and (3) in Theorem 3:We will set the parameters of the
construction appropriately and will consider the execution of SD using any ordering
of the agents that is non-decreasing in terms of level. Let g ≥ 1 be the augmentation
factor. We set �i = ci = gk−i−1 for i = 0, 1, ..., k − 1 and ck = 1 (see Fig. 2). Note
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Fig. 2 The lower bound construction of Theorem 3 for 5 facilities (k = 4). The gray boxes correspond
to facilities, the white boxes correspond to agents. For example, by setting l0 = c0 = 8, l1 = c1 = 4,
l2 = c2 = 2 and l3 = c3 = 1, we obtain the instance for the lower bound when g = 2

that the gk−1 agents of level 0 that are considered first will be assigned to the facility
of level 1 which is their closest one; it is at distance 1 from the agents of level 0, clearly
closer compared to facilities of higher levels but also closer compared to the facility of
level 0 which is at distance 1+ ε from the agents of level 0. Note that the (augmented)
capacity of the facility of level 1 is exactly gk−1 which means that the agents of level
0 occupy it in full. The agents of level 1 appear next in the ordering and are assigned
to facility of level 2 (since it is the closest facility that has available space). Again, the
agents of level 1 occupy the facility in full. Continuing in this way, we have that the
agents of level i (located at point 2i ) are assigned to the facility of level i + 1 (at point
2i+1) for i = 0, 1, ..., k − 1.

The social cost is then
∑k−1

i=0 gk−i−12i = �0
∑k−1

i=0 (2/g)i while the number of
agents is n = ∑k−1

i=0 gk−i−1. If g = 1, we have n = k agents and a social cost of
(2k − 1)�0 = (2n − 1)�0. If g = 2, we have n = 2k − 1 and a social cost of k�0 =
�0 log (n + 1). Finally, for g ≥ 3, we have a social cost of �0

1−(2/g)k

1−2/g ≥ �0

(
g

g−2 − δ
)
,

where the inequality holds for every positive δ by selecting k to be sufficiently large.
This completes the proof of the first three statements.

Proof of the lowerbound for RSD inTheorem3:For the lower bound ofRSD,we set
the parameters of the construction as follows: �0 = c0 = 1 and �i = ci = (γ −1)·γ i−1

for i = 1, ..., k−1, and ck = 1, where γ will be determined later. The proof is slightly
more involved. We will need a definition and two technical lemmas.

Definition 3 An ordering has the “chain of levels” property if, for i = 1, 2, ..., k − 1,
at least one agent of level i appears after all agents of levels 0, 1, ..., i − 1.

Recall that ni = ∑i
j=0 � j . We now have the following lemma.

Lemma 6 The probability that a random ordering of the agents has a chain of levels

is
∏k−1

i=1

(
1 − ni−1

ni

)
.

123



922 I. Caragiannis et al.

Proof We can view the generation of a uniformly random ordering of all agents as
a process that proceeds level by level. At level 0, the process simply computes a
uniformly random ordering of the agents of level 0. At level i > 0, it computes a
uniformly random ordering of the agents in levels 0, 1, ..., i as follows. It uses the
random ordering of the agents in levels 0, 1, ..., i − 1, computes a uniformly random
ordering of the agents of level i and picks one among the possible merges of the two
orderings uniformly at random.

Now, in each step i > 0, the number of possible merges of the two orderings is
equal to

( ni
ni−1

)
while the number of merged orderings in which the last agent belongs

to level i (as the “chain of levels” property requires) is
(ni−1
ni−1

)
. Since the random events

at the different steps are independent, we obtain that the probability that the resulting

ordering will have a chain of levels is
∏k−1

i=1

(ni−1
ni−1

)
/
( ni
ni−1

) = ∏k−1
i=1

(
1 − ni−1

ni

)
. �	

Lemma 7 Consider the application of SD on the above instance using an ordering of
the agents that has a chain of levels. Then, for i = 0, 1, ..., k − 1, at least one agent
of level i is assigned to the facility of level i + 1.

Proof We first claim that an agent of level i cannot be assigned to a facility of a lower
level than i . Assume by contradiction that this is not the case and consider the first
agent a in the ordering which is assigned to a facility of a lower level; in particular,
let i be the level to which agent a belongs and let i ′ < i be the level of the facility
to which agent a is assigned to. This means that all facilities in levels i ′ + 1, ..., i
are full by agents that appear before agent a in the ordering. Note that these facilities
cannot contain any agent from levels higher than i (since agent a is the first one that
is assigned to a facility of a lower level) or any agent in level i ′ or lower (since the
facility of level i ′ which is closer to them has free space). Since agent a belongs to
level i as well, we obtain that the total capacity of the facilities in levels i ′ + 1, ..., i
is strictly smaller than the total number of agents in these levels; this contradicts the
definition of the instance.

Now, we will prove the lemma by considering the last agent from each level in an
ordering with a chain of levels. When the agent of level 0 is considered, the chain
of levels property guarantees that some of the agents of level 1 has not appeared yet.
Furthermore, the fact that no agent is ever assigned to a facility of lower level implies
that the facility of level 1 (which is closer to the agent compared to the facility of level
0) has free space and the agent of level 0 will be assigned to it. Now, consider the last
agent of level 1. When it appears, the facility of level 1 is full; it contains the agent of
level 0 and the agents of level 1 before the last one. Again, the chain of levels property
guarantees that some of the agents of level 2 has not appeared yet. Together with the
fact that no agent is ever assigned to a facility of lower level, this leads again to the
conclusion that the facility of level 2 (which is again closer to the agent compared to
the facility of level 0 which is still empty) has free space and the agent of level 0 will
be assigned to it. Continuing this reasoning completes the proof of the lemma. �	
We now complete the proof as follows. Observe that the parameters are such that
n0 = 1, ni = 1 + (γ − 1)

∑i
j=1 γ j−1 = γ i for i = 1, ..., k − 1, and the number

of agents is n = nk−1 = γ k−1. By Lemma 7, we have that if the random ordering
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used by RSD happens to have a chain of levels, then some agent of level i will be
assigned to the facility of level i + 1, for i = 0, 1, ..., k − 1. The social cost in this
case is 2k − 1 ≥ 2k−1. By Lemma 6, the probability that a random ordering has a

chain of levels is
(

γ−1
γ

)k−1
and hence, the expected social cost of RSD is at least

(
2 − 2

γ

)k−1 = nlogγ (2−2/γ ), which using γ = 4, is at least (�0 − ε)n0.29. The bound

for RSD follows, as ε can become arbitrarily small.

6 Discussion, challenges and future directions

In this paper, we proposed a resource augmentation framework for algorithmic mech-
anism design, where a mechanism, severely limited by the need for truthfulness is
given some additional allocative power before being compared to the optimal mech-
anism, which operates under no restrictions. We conclude with a discussion of some
interesting special cases, some possible future directions and some connections of our
results with the related literature and their implications to those settings. We start with
the relation of our problem with the literature on online algorithms.

6.1 The onlinemetric matching problem

As wementioned in the introduction, there is a connection between the facility assign-
ment problem and the online metric matching problem (also known as the minimum
online metric bipartite matching or the online transportation problem [36]), which has
been studied in the literature of online algorithms [35, 38, 40, 45].

In the online metric matching problem, there is a set of points F on a metric space
and a set of points A that arrive in an online fashion. At each time that a point in A
arrives, it has to be matched to a point in F . The performance of an online algorithm
is measured by its competitive ratio, i.e., the worst-case ratio over all inputs of the
social cost of the algorithm over the social cost of the optimal matching, that knows
the exact sequence of arriving points in advance. Our setting can be interpreted as
a similar metric matching problem, by “splitting” facilities with capacity ci > 1 to
facilities of unit capacity that coincide on themetric space and by interpreting facilities
as single, indivisible objects. Given this interpretation, SD and RSD can be thought
of as greedy algorithms for the problem above. In particular, SD corresponds to the
greedy algorithm in the setting with adversarial arrivals and RSD corresponds to the
greedy algorithm when the arrival of points in A is according to a uniform random
permutation.

For the online metric matching problem, it was known since the early 90s that
without augmentation, Greedy achieves a competitive ratio of 2n − 1 [35]. Later
on, [36] proved that when the online algorithm operates on doubled capacities,
Greedy is �(log n)-competitive; given the discussion above, this implies a �(log n)-
approximation bound for SD with g = 2 in our setting. Note however that unlike the
result in [36], our analysis is exact, i.e., our log(n+1) bound involves no asymptotics.
Furthermore,we extend the result by proving exact bounds for any augmentation factor
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g ≥ 3; the bounds are all small constants and in fact the ratio goes to 1 as the augmen-
tation factor grows large. These results naturally extend to the online transportation
problem and confirm a conjecture by [22], namely that a constant competitive ratio
can be achieved with augmentation factor 3. Our results for RSD also imply upper
and lower bounds for the performance of Greedy in the online transportation problem
with uniform random arrivals. Specifically, Theorems 1 and 2 give rise to the follow-
ing corollary. We state the corollary using the terminology of the online problem for
consistency.

Corollary 1 The double-competitive ratio of Greedy for the online metric matching
problem is log(n + 1). The g-competitive ratio of Greedy is g/(g − 2), whenever
g ≥ 3. The competitive ratio of Greedy for the online metric matching problem with
uniform random arrivals is between n0.29 and n.

Compared to the related result in [36], we remark that our analysis is substantially
different due to the use of linear programming. This technique for the analysis of
purely combinatorial algorithms has found applications in many different contexts
such as facility location [34], set cover [13], online matching [43], maximum directed
cut [26], wavelength routing [19], revenue optimization [2], as well as the price of
anarchy of non-cooperative games [17, 42, 46]. Like in our case, these techniques
usually lead to tight analysis.

We emphasize that while the connection between SD and RSD and the greedy
algorithm for the onlinemetric matching problem is straightforward, the two problems
are fundamentally different and hence non-greedy online competitive algorithms do
not imply any bounds for our setting and non-serial truthful mechanisms do not imply
anybounds for the online setting. For example,while [36] also prove that amodification
of the greedy algorithm called Balance in fact achieves a O(1) competitive ratio with
augmentation factor 2 for the onlinemetricmatching problem, this result does not have
any implications to our setting, because Balance cannot be translated to a truthful
mechanism in any meaningful way. For some more recent results on the online metric
matching problem and its variants, we refer the reader to the works of [11, 12, 15, 16,
22, 47, 49, 50] and references therein.

6.2 Beyond greedymechanisms

Our main results developed in earlier sections regard the performance of SD and RSD
for several augmentation factors. Ideally, we would like to know whether there exist
truthful mechanisms that achieve better approximation ratios either for g = 1 or for
larger values of g. Answering these questions seems like a quite demanding task. On
one hand, proving lower bounds for all truthful mechanisms is hard given that, besides
truthfulness, we are not aware of any structural properties of those mechanisms. On
the other hand for the upper bounds, we do not have any promising candidate truthful
mechanisms in the literature.

In this section, we provide some results in this direction. First, we settle the best
achievable approximation ratio for the case of two facilities and arbitrary capacities,
when there is no resource augmentation in Sect. 6.2.1 below. Then in Sect. 6.2.2 we
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discuss how some seemingly promising approaches that have been effective in other
related settings in the literature turn out to be insufficient for our setting.

6.2.1 Tight bounds for two facilities without resource augmentation

We start from the observation that for m = 2, the approximation ratio of SD is in fact
3. This follows from [35, Theorem 2.5], where it is proven that the competitive ratio
of the greedy algorithm is 2m −1 (wherem is the number of “servers”, corresponding
to the number of facilities in our setting). Given the discussion above in Sect. 6.1, this
directly implies a 2m − 1 upper bound for our problem.

Therefore, it suffices to prove that no truthful-in-expectationmechanismcan achieve
a better ratio.We startwith the following simple lemma,which is similar to lemmas that
have been proved before [28, 29, 32] in different settings. The statement of the lemma
refers to the class of anomymous mechanisms. A mechanism is anonymous if the
assignment does not depend on the names of the agents; formally if for any location
profile A = (A1, A2, . . . , An), every agent i and any permutation π : N → N, it
holds that M(A, F)i = M(Aπ(1), Aπ(2), . . . Aπ(n), F)π(i). By this definition, in an
anonymous mechanism, agents with exactly the same locations must have the same
probabilities of being assigned to each facility.

Lemma 8 For any truthful-in-expectation mechanism M, there exists an anonymous
truthful-in-expectation mechanism M ′, such that ratio(J ′) ≤ ratio(J ) for any aug-
mentation factor g.

Proof The proof is similar to those of the corresponding lemmas in [28, 29, 32]. LetM ′
be the mechanism that given any instance Ig applies a uniformly random permutation
to the set of indices of the agents and then applies M on Ig . The mechanism is clearly
anonymous. Furthermore, since Ig is a valid input to M , the approximation ratio of
M ′ cannot be worse than that of M , since the approximation ratio is calculated over
all possible input instances. For the same reason, if M is truthful-in-expectation and
since the permutation is independent of the reports, M ′ is truthful-in-expectation. �	

We now can use Lemma 8 to prove our main lower bound for m = 2.

Theorem 4 Let M be any truthful-in-expectation mechanism and let m = 2. Then,
ratio(M) ≥ 3.

Proof For the proof, we will construct two instances I and I ′, both of which will be
defined on the real line, meaning that the positions of the agents and the facilities will
lie on the real line for both instances. Instance I will be the “base instance” on which
we will lower-bound the approximation ratio of any mechanism M , and I ′ will be the
“deviation instance” that we will use via arguments involving truthfulness to bound
certain probabilities in the base instance. From Lemma 8, it suffices to lower-bound
the approximation ratio of anonymous mechanisms only. In particular, we will use the
corollary of anonymity that if all agents’ locations coincide, then their probabilities
of being assigned to any of the two facilities are also the same; instance I ′ will in fact
be an instance where all of the agents’ locations coincide.

Concretely, consider the following instances:
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• The “base instance” I = (A, F) will be an instance such that d(F2, F1) = 2 + ε

for some ε > 0 sufficiently small. Furthermore, for the positions of the agents, let
A1 = . . . = An−1 = F1 and An = F1 + 1, and for the capacities, let c1 = n − 1
and c2 = 1 .

• The “deviation instance” I ′ = (A′, F) will be such that the locations of the
facilities are the same as in I , for the positions of the agents we have A′ =
(A1, . . . , An−1, A′

n) with A′
n = F1, and for the capacities we have c1 = n−1 and

c2 = 1, exactly as in I . In other words, I ′ is exactly the same as I except for the
fact that the position of agent n is now A′

n = F1 rather than An = F1 + 1.

Let pn(I ) and pn(I ′) be the probabilities that agent n is assigned to facility 2 on
instance I and I ′ respectively. By the anonymity of M , since the positions of all
agents in I ′ coincide, it holds that pn(I ′) = p j (I ′) for any j ∈ N , where p j (I ′)
is the probability that agent j is assigned to facility 2 on instance I ′, from which it
follows immediately that pn(I ′) = 1/n. Via the truthfulness of M , we will prove that
pn(I ) = 1/n as well.

To see this, consider the deviation A′
n of agent n on the instance I , resulting in

instance I ′ (where the true position of the agent is in fact An , but the agent is feigning
position A′

n). The cost of the agent after deviating is

pn(I
′) · (1 + ε) + (1 − pn(I

′)) · 1 = 1

n
· (1 + ε) + n − 1

n
,

whereas the agent’s cost before deviating was pn(I ) · (1+ ε) + (1− pn(I )) · 1. Since
M is truthful, the cost after deviating cannot be smaller than before, which only holds
when pn(I ) ≤ 1/n, by a simple calculation. Intuitively, agent n can ensure that she is
treated exactly the same as all of the other agents by the mechanism, by pretending to
have the same position as them.

Since pn(I ) = 1/n, we have that on instance I , the expected social cost of M is at
most

1

n
· (1 + ε) + n − 1

n
· (3 + ε).

This is because when agent n is not assigned to facility 2, which happens with prob-
ability at least (n − 1)/n, some other agent i (with position Ai = F1) is assigned to
facility 2. In that case, the cost of agent n is 1 and the cost of agent i is 2+ ε, resulting
in a social cost of 3 + ε. At the same time, the optimal social cost on instance I is
1 + ε. As ε → 0 and n → ∞, the ratio goes to 3. �	

6.2.2 Serial unilateral mechanisms

Back to the case of a general number m of facilities, we explore a seemingly promis-
ing idea that has been used for improved welfare guarantees in related but different
contexts (e.g. see [28] or [30]), which is based on extending the greedy solutions to
allow for more flexibility. For example, consider the following class of mechanisms,
parameterized by a set of vectors qi and the choice of the permutation of agents.
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Mechanism[Serial Unilateral Mechanisms]. Fix an ordering of the agents (arbitrar-
ily or uniformly at random).Whenever an agent i is selected according to the ordering,
letF i = {Fi

1, . . . , F
i
k } be the set of facilities with non-zero residual capacities. Assign

agent i to facility Fi
j with probability q

i
j , for j = 1, . . . , k, according to some proba-

bility vector (qi1, . . . , q
i
k), such that qij ≥ qi�, whenever d(Ai , Fi

j ) ≤ d(Ai , Fi
� ).

In other words, every time that a serial unilateral mechanism selects an agent, that
agent is assigned to each of the available facilities with probabilities such that it is
not less likely to be assigned to facilities that are closer to the agent’s most preferred
position. Note that if we let j∗i be the facility (among the available ones) that is closest
to Ai for every agent i , then by setting qij∗i

= 1 and qik = 0 for all k �= j∗i , and by

fixing the ordering of agents arbitrarily, we recover exactly SD. If we fix the ordering
uniformly at random, we recover RSD.

For serial unilateral mechanisms to be relevant for our purposes, they have to be
truthful. Oneway to guarantee that is to ensure that the probability vectors (qi1, . . . , q

i
k)

(for each agent i) of the mechanism only depend on ordinal information. Formally, we
will say that agent i prefers facility j over facility j ′, if d(Ai Fj ) ≤ d(Ai , Fj ′), and we
will denote it by j �i j ′. From this, we can derive a preference ordering (�)i for agent
i . With this at hand, we will refer to a serial unilateral mechanism as ordinal if the
probability vectors (qi1, . . . , q

i
k) are the same for any two instances I and I ′ in which

the agents’ costs induce the same preference orderings. Note that both SD and RSD
are ordinal. From standard arguments from the literature on closely related settings
(see [27, 28, 31]), it follows that ordinal serial unilateral mechanisms are truthful.

As a matter of fact, while ordinality is sufficient to guarantee that serial unilateral
mechanisms are truthful, it is not necessary. It is possible to design cardinal serial uni-
lateral mechanisms, in which the probabilities (qi1, . . . , q

i
k) can differ for two instances

I and I ′ that induce the same preference orderings for all the agents. Intuitively, these
probabilities depend not only on the preference orderings induced by the costs, but on
the actual costs themselves.With this additional information, it seems conceivable that
these mechanisms could achieve better approximation ratios. To this end, in a different
but related setting, [28] showed that there are mechanisms of this type that outperform
all ordinal ones. Ensuring truthfulness for these mechanisms is rather intricate, and
we refer the reader to [27] and [28] for examples.

However, unlike environments like the ones studied in [29] or [28] where the objec-
tive is the maximization of utilities, our objective is the minimization of costs, which
poses the following additional inherent complication. Consider an example where for
every agent, her most preferred position Ai coincides with a different facility Fji , and
there is enough capacity to assign every such agent to their corresponding facility.
Then, this allocation should be outputted by the mechanism unequivocally (i.e., with
probability 1), as otherwise the minimum social cost would be 0, the social cost of
the mechanism would be positive, and the approximation ratio would be infinity. It is
not hard to see that among the serial unilateral mechanisms described above, whether
ordinal or cardinal, the only ones that satisfy this requirement are SD and RSD, and
as a consequence, any other mechanism in this class is bound to fail in our setting.
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6.3 Future work

From the discussion above, there are some clear open problems related to the facil-
ity assignment problem. The general question that we would like to answer seems
challenging:

Given any augmentation factor g ≥ 1, what is the best truthful (deterministic or
randomized) mechanism for the problem and what is its approximation ratio?

Since our results for augmentation factors g ≥ 3 are small constants, this question is
most interesting for the case of doubling the capacities or applying no augmentation
at all. A more immediate question is to prove a tight bound on the approximation ratio
of RSD. A different approach could be to consider non-truthful mechanisms for the
problem, and study their equilibrium inefficiency, in the same vein as [21].

More generally, our resource augmentation framework is applicable to other related
problems in the literature of resource allocation and artificial intelligence; for example,
the bi-criteria algorithms of [5] can be seen as instances of resource augmentation and
the same holds for the auction setting of [23]. The framework can also be applied
to broader settings where the loss in performance is due to restrictions other than
truthfulness, such as fairness [20], stability [24] or ordinality [14, 29]; all the problems
in those papers can be studied through the resource augmentation lens. It is not hard
to imagine that similar notions like the price of fairness [20], could be redefined in
terms of resource augmentation.
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1. Abdulkadiroğlu, A., Sönmez, T.: Random serial dictatorship and the core from random endowments
in house allocation problems. Econometrica 66, 689–701 (1998)

2. Abed, F., Caragiannis, I., Voudouris, A.A.: Near-optimal asymmetric binary matrix partitions. Algo-
rithmica 80(1), 48–72 (2018)

3. Anshelevich, E., Das, S.: Matching, cardinal utility, and social welfare. ACM SIGECom Exch. 9(1), 4
(2010)

4. Anshelevich, E., Postl, J.: Randomized social choice functions undermetric preferences. J. Artif. Intell.
Res. 58, 797–827 (2017)

5. Anshelevich, E., Sekar, S.: Blind, greedy, and random: algorithms for matching and clustering using
only ordinal information. In: Proceedings of the 30th AAAI Conference on Artificial Intelligence
(AAAI), pp. 390–396 (2016)

6. Anshelevich, E., Sekar, S.: Truthful mechanisms for matching and clustering in an ordinal world.
In: Proceedings of the 12th International Conference on Web and Internet Economics (WINE), pp.
265–278 (2016)

123

http://creativecommons.org/licenses/by/4.0/


Truthful facility assignment... 929

7. Anshelevich, E., Zhu, W.: Ordinal approximation for social choice, matching, and facility location
problems given candidate positions. ACM Trans. Econ. Comput. 9(2), 1–24 (2021)

8. Anshelevich, E., Bhardwaj, O., Elkind, E., Postl, J., Skowron, P.: Approximating optimal social choice
under metric preferences. Artif. Intell. 264, 27–51 (2018)

9. Anshelevich, E., Filos-Ratsikas, A., Shah, N., Voudouris, A.A.: Distortion in social choice problems:
the first 15 years and beyond. In: Proceedings of the 30th International Joint Conference on Artificial
Intelligence (IJCAI), pp. 4294–4301 (2021)

10. Anshelevich, E., Filos-Ratsikas, A., Voudouris, A.A.: The distortion of distributedmetric social choice.
Artif. Intell. 308, 103713 (2022)

11. Antoniadis, A., Fischer, C., Tönnis, A.: A collection of lower bounds for onlinematching on the line. In:
Proceedings of the 13th Latin American Symposium on Theoretical Informatics (LATIN), pp. 52–65
(2018)

12. Antoniadis, A., Barcelo, N., Nugent, M., Pruhs, K., Scquizzato, M.: A o(n)-competitive deterministic
algorithm for online matching on a line. Algorithmica 81(7), 2917–2933 (2019)

13. Athanassopoulos, S., Caragiannis, I., Kaklamanis, C.: Analysis of approximation algorithms for k-set
cover using factor-revealing linear programs. Theory Comput. Syst. 45(3), 555–576 (2009)

14. Aziz, H., Chen, J., Filos-Ratsikas, A., Mackenzie, S., Mattei, N.: Egalitarianism of random assign-
ment mechanisms. In: Proceedings of the 10th International Conference on Autonomous Agents and
Multiagent Systems (AAMAS), pp. 1267–1268 (2016)

15. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.: A randomized o(log2 k)-competitive algorithm for
metric bipartite matching. Algorithmica 2, 390–403 (2014)

16. Bansal, N., Buchbinder, N., Gupta, A., Naor, J.S.: A randomized o (log 2 k)-competitive algorithm for
metric bipartite matching. Algorithmica 68(2), 390–403 (2014)

17. Bilò, V.: A unifying tool for bounding the quality of non-cooperative solutions in weighted congestion
games. Theory Comput. Syst. 62(5), 1288–1317 (2018)

18. Bogomolnaia, A., Moulin, H.: A new solution to the random assignment problem. J. Econ. Theory
100, 295–328 (2001)

19. Caragiannis, I.: Wavelength management in WDM rings to maximize the number of connections.
SIAM J. Discrete Math. 23(2), 959–978 (2009)

20. Caragiannis, I., Kaklamanis, C., Kanellopoulos, P., Kyropoulou, M.: The efficiency of fair division.
Theory Comput. Syst. 50(4), 589–610 (2012)

21. Christodoulou, G., Filos-Ratsikas, A., Frederiksen, S.K., Goldberg, P.W., Zhang, J., Zhang, J.: Social
welfare in one-sided matching mechanisms. In: Proceedings of the 10th International Conference on
Autonomous Agents and Multiagent Systems (AAMAS), pp. 1297–1298 (2016)

22. Chung, C., Pruhs, K., Uthaisombut, P.: The online transportation problem: on the exponential boost
of one extra server. In: Proceedings of the 8th Latin American Symposium on Theoretical Informatics
(LATIN), pp. 228–239 (2008)

23. Eden, A., Feldman, M., Friedler, O., Talgam-Cohen, I., Weinberg, S.M.: The competition complexity
of auctions: a Bulow-Klemperer result for multi-dimensional bidders. In: Proceedings of the 18thACM
Conference on Economics and Computation (EC), p. 343 (2017)

24. Emek, Y., Langner, T.,Wattenhofer, R.: The price of matching with metric preferences. In: Proceedings
of the 23rd Annual European Symposium on Algorithms (ESA), pp. 459–470 (2015)

25. Enelow, J.M., Hinich, M.J.: The Spatial Theory of Voting: An Introduction. Cambridge University
Press, Cambridge (1984)

26. Feige, U., Jozeph, S.: Oblivious algorithms for themaximumdirected cut problem.Algorithmica 71(2),
409–428 (2015)

27. Feige, U., Tennenholtz, M.: Responsive lotteries. In: Proceedings of the 3rd International Symposium
on Algorithmic Game Theory (SAGT), pp. 150–161 (2010)

28. Filos-Ratsikas, A., Miltersen, P.B.: Truthful approximations to range voting. In: Proceedings of the
10th International Conference on Web and Internet Economics (WINE), pp. 175–188 (2014)

29. Filos-Ratsikas, A., Frederiksen, S.K.S., Zhang, J.: Social welfare in one-sided matchings: random
priority and beyond. In: Proceedings of the 7th International Symposium onAlgorithmic Game Theory
(SAGT), pp. 1–12 (2014)

30. Filos-Ratsikas,A., Frederiksen, S.K., Zhang, J.: Socialwelfare in one-sidedmatchings: randompriority
and beyond. arXiv preprint arXiv:1403.1508 (2014b)

31. Gibbard, A.: Manipulation of schemes that mix voting with chance. Econometrica 45(3), 665–81
(1977)

123

http://arxiv.org/abs/1403.1508


930 I. Caragiannis et al.

32. Guo,M.,Conitzer,V.: Strategy-proof allocation ofmultiple itemsbetween two agentswithout payments
or priors. In: Proceedings of the 9th International Conference on Autonomous Agents and Multiagent
Systems (AAMAS), pp. 881–888 (2010)

33. Hylland, A., Zeckhauser, R.: The efficient allocation of individuals to positions. J. Polit. Econ. 87(2),
293–314 (1979)

34. Jain, K., Mahdian, M., Markakis, E., Saberi, A., Vazirani, V.V.: Greedy facility location algorithms
analyzed using dual fitting with factor-revealing LP. J. ACM 50(6), 795–824 (2003)

35. Kalyanasundaram, B., Pruhs, K.: Online weighted matching. J. Algorithms 14(3), 478–488 (1993)
36. Kalyanasundaram, B., Pruhs, K.: The online transportation problem. SIAM J. Discrete Math. 13(3),

370–383 (2000)
37. Kalyanasundaram, B., Pruhs, K.: Speed is as powerful as clairvoyance. J. ACM 47(4), 617–643 (2000)
38. Khuller, S., Mitchell, S.G., Vazirani, V.V.: On-line algorithms for weighted bipartite matching and

stable marriages. Theor. Comput. Sci. 127(2), 255–267 (1994)
39. Koutsoupias, E.: Weak adversaries for the k-server problem. In: Proceedings of the 40th Annual

Symposium on Foundations of Computer Science (FOCS), pp. 444–449 (1999)
40. Koutsoupias, E., Nanavati, A.: The online matching problem on a line. In: Proceedings of the 1st

International Workshop on Approximation and Online Algorithms (WAOA), pp. 179–191 (2003)
41. Krysta, P., Manlove, D.F., Rastegari, B., Zhang, J.: Size versus truthfulness in the house allocation

problem. Algorithmica 81(9), 3422–3463 (2019)
42. Kulkarni, J., Mirrokni, V.: Robust price of anarchy bounds via LP and Fenchel duality. In: Proceedings

of the 26th Annual ACM-SIAM Symposium on Discrete Algorithms, pp. 1030–1049 (2015)
43. Mahdian, M., Yan, Q.: Online bipartite matching with random arrivals: an approach based on strongly

factor-revealing lps. In: Proceedings of the 43rd ACM Symposium on Theory of Computing (STOC),
pp. 597–606 (2011)

44. Merrill, S., III.,Merrill, S., Grofman, B.: AUnified Theory ofVoting: Directional and Proximity Spatial
Models. Cambridge University Press, Cambridge (1999)

45. Meyerson, A., Nanavati, A., Poplawski, L.: Randomized online algorithms for minimummetric bipar-
tite matching. In: Proceedings of the 17th Annual ACM-SIAM Symposium on Discrete Algorithms
(SODA), pp. 954–959 (2006)

46. Nadav, U., Roughgarden, T.: The limits of smoothness: a primal-dual framework for price of anar-
chy bounds. In: Proceedings of the 6th International Workshop on Internet and Network Economics
(WINE), pp. 319–326 (2010)

47. Nayyar, K., Raghvendra, S.: An input sensitive online algorithm for the metric bipartite matching
problem. In: Proceedings of the 58thAnnual SymposiumonFoundations ofComputer Science (FOCS),
pp. 505–515 (2017)

48. Procaccia, A.D., Tennenholtz, M.: Approximate mechanism design without money. ACMTrans. Econ.
Comput. 1(4), 1–26 (2013)

49. Raghvendra, S.: A robust and optimal online algorithm for minimum metric bipartite matching.
In: Approximation, Randomization, and Combinatorial Optimization. Algorithms and Techniques
(APPROX/RANDOM), vol. 18, pp. 1–16

50. Raghvendram, S.: Optimal analysis of an online algorithm for the bipartite matching problem on a
line. In: Proceedings of the 34th International Symposium on Computational Geometry (SoCG), vol.
67, pp. 1–14 (2018)

51. Roughgarden, T.: Beyond worst-case analysis lecture #3: online paging and resource augmentation.
https://theory.stanford.edu/~tim/f14/l/l3.pdf (2014)

52. Sleator, D.D., Tarjan, R.E.: Amortized efficiency of list update and paging rules. Commun. ACM 28(2),
202–208 (1985)

53. Svensson, L.-G.: Strategy-proof allocation of indivisble goods. Soc. Choice Welf. 16(4), 557–567
(1999)

54. Young, N.: The k-server dual and loose competitiveness for paging. Algorithmica 11(6), 525–541
(1994)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

https://theory.stanford.edu/~tim/f14/l/l3.pdf

	Truthful facility assignment with resource augmentation: an exact analysis of serial dictatorship
	Abstract
	1 Introduction
	1.1 Our results
	1.2 Related work

	2 Preliminaries
	3 Approximation guarantees for serial dictatorship
	4 Approximation guarantees for random serial dictatorship
	5 Lower bounds
	6 Discussion, challenges and future directions
	6.1 The online metric matching problem
	6.2 Beyond greedy mechanisms
	6.2.1 Tight bounds for two facilities without resource augmentation
	6.2.2 Serial unilateral mechanisms

	6.3 Future work

	References




