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Abstract

We study truthful mechanisms for matching and related problems in a partial information

setting, where the agents’ true utilities are hidden, and the algorithm only has access to ordi-

nal preference information. Our model is motivated by the fact that in many settings, agents

cannot express the numerical values of their utility for different outcomes, but are still able

to rank the outcomes in their order of preference. Specifically, we study problems where the

ground truth exists in the form of a weighted graph of agent utilities, but the algorithm can

only elicit the agents’ private information in the form of a preference ordering for each agent

induced by the underlying weights. Against this backdrop, we design truthful algorithms to

approximate the true optimum solution with respect to the hidden weights. Our techniques

yield universally truthful algorithms for a number of graph problems: a 1.76-approximation

algorithm for Max-Weight Matching, 2-approximation algorithm for Max k-matching, a 6-

approximation algorithm for Densest k-subgraph, and a 2-approximation algorithm for Max

Traveling Salesman as long as the hidden weights constitute a metric. We also provide im-

proved approximation algorithms for such problems when the agents are not able to lie about

their preferences. Our results are the first non-trivial truthful approximation algorithms for

these problems, and indicate that in many situations, we can design robust algorithms even

when the agents may lie and only provide ordinal information instead of precise utilities.

1 Introduction

In recent years, the field of algorithm design has been marked by a steady shift towards newer
paradigms that take into the account the behavioral aspects and communication bottlenecks per-
taining to self-interested agents. In contrast to traditional algorithms that are assumed to have
complete information regarding the inputs, mechanisms that interact with autonomous individuals
commonly assume that the input to the algorithm is controlled by the agents themselves. In this
context, a natural constraint that governs the process by which the algorithm elicits inputs from
these agents is truthfulness : agents cannot improve upon the resulting outcome by misreporting the
inputs. Another constraint that has recently gained traction in optimization problems on weighted
graphs (where the agents correspond to the nodes) is that of ordinality: here, each agent can only
submit a preference list of their neighbors ranked in the order of the edge weights. The need for
algorithms that are both truthful and ordinal arises in a number of important settings; however, it
is well known that it is impossible to obtain optimum solutions even when the algorithm is required
to satisfy only one of these two constraints.

In this work, we study the design of approximation algorithms for popular graph optimization
problems including matching, clustering, and team formation with the goal of understanding the
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combined price of truthfulness and ordinality. To be more specific, we consider the above optimiza-
tion problems on a weighted graph whose vertices represent the agents, and where the edge weights
(that correspond to agent utilities) are private to the agents constituting that edge, and pose the
following natural question: “How does a computationally efficient, truthful algorithm that only has
access to each agent’s edge weights in the form of preference rankings perform in comparison to
an optimal algorithm that has full knowledge of the weighted graph?”.

Truthfulness in an ordinal world Mechanisms that are either truthful or ordinal have received
extensive attention across the spectrum of optimization problems. However, non-trivial algorithms
that satisfy both of these considerations exist only for very specific settings [14, 2]. For instance,
the price of ordinality (also referred to as distortion) is well understood for a number of applications
such as voting [3, 7], matching [16, 5], facility location [14], and subset selection [5, 9]. The common
thread in all of these settings where the (input) information is often held by the users is that it
may be impossible or prohibitively expensive for the agents to express their full utilities to the
mechanism; the same agents may incur a smaller overhead if they communicate preference lists
over the other users or candidates in the system. Our main contention in this paper is that in
exactly the same types of settings, it is reasonable to expect strategic agents to lie about their
preferences if it improves their resulting utilities. Motivated by this, we study ordinal algorithms
that are also truthful. Even though such mechanisms are clearly less powerful than their ‘ordinal
but not necessarily truthful’ counterparts, our high level-level contribution is that for several well-
studied graph maximization problems, one can obtain solutions that are only a constant factor
away from the (social welfare of the) optimum, omniscient solution.

Model and Problem Statements The high-level model in this paper is the same as the one
in [5], with the addition of truthfulness as a constraint. The common setting for all the problems
studied in this work is an undirected, complete weighted graph G whose nodes are the set of
self-interested agents N with |N | = N . We use w(x, y) to denote the weight of the edge (x, y) in
the graph for x, y ∈ N . All of the optimization problems studied in this work involve selecting a
subset of edges from G that obey some condition, with the objective of maximizing the weight of
the edges chosen.

Max k-Matching Compute the maximum weight matching consisting of exactly k edges. We
refer to the k = N

2 case as the Weighted Perfect Matching problem.

k-Sum Clustering Given an integer k, partition the nodes into k disjoint sets (S1, . . . , Sk) of

equal size in order to maximize
∑k

i=1

∑

x,y∈Si
w(x, y). (It is assumed that N is divisible by

k). When k = N/2, k-sum clustering reduces to the weighted perfect matching problem.

Densest k-subgraph Given an integer k, compute a set S ⊆ N of size k to maximize the weight
of the edges inside S.

Max TSP In the maximum traveling salesman problem, the objective is to compute a tour T
(cycle that visits each node in N exactly once) to maximize

∑

(x,y)∈T w(x, y).

A crucial but reasonably natural assumption that we make in this work is that the edge weights
satisfy the triangle inequality, i.e., for x, y, z ∈ N , w(x, y) ≤ w(x, z)+w(z, y). For the specific kind
of the problems that we study, the metric structure occurs in a number of well-motivated environ-
ments such as: (i) social networks, where the property captures a specific notion of friendship, (ii)
Euclidean metrics: each agent is a point in a metric space which denotes her skills or beliefs, and
(iii) edit distances: each agent could be represented by a string over a finite alphabet (for e.g., a
gene sequence) and the graph weights represent the edit or Levenshtein distances [24]. The reader
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is asked to refer to [5] for additional details on these specific applications and a mathematical
treatment of friendship in social networks.

Our framework and problem set models a multitude of interesting applications, and not sur-
prisingly, all of the problems described above (with the metric assumption) have been the subject
of a dense body of algorithmic work [5, 15, 17, 19]. In many of these applications, it becomes im-
perative that the algorithm provide good approximation guarantees even in the absence of precise
numerical information regarding the graph weights. For instance, one can imagine partitioning a
set of wedding guests to form a table assignment (k-sum clustering) or selecting a diverse team of
agents in order to tackle a complex task (dense subgraph).

Algorithmic Framework

In this work, we are interested in the design of algorithms that are both ordinal and truthful.
Suppose that for any one of the above problems, we are given an instance described by a weighted
graph; then an algorithm A for this problem is said to be ordinal if it has access only to a vector of
preference orderings induced by the graph weights. That is, the input to this algorithm consists of a
set of N preference orderings reported by each of the agents, where the preference list corresponding
to agent i ∈ I is a ranking over the agents in N −{i} such that ∀j, k ∈ N , if i prefers j to k, then
w(i, j) ≥ w(i, k).

The algorithm is truthful if no single agent can improve their utility by submitting a preference
ordering different from the ‘true ranking’ induced by the graph weights. Here, the utility of each
agent i is simply the total weight of the edges incident to i which are chosen. These utilities have
a natural interpretation with respect to the problems considered in this work. For instance, for
matching problems, an agent’s utility corresponds to her affinity or weight to the agent to whom she
is matched, and for densest subgraph as well as k-sum clustering, the utility is her aggregate weight
to the agents in the same team or cluster. Our objective in this paper is to design mechanisms
that maximize the overall social welfare, i.e., the sum of the utilities of all the agents. Thus, the
goal is to select a maximum-weight set of edges while knowing only ordinal preferences (instead
of the true weights w), with even the ordinal preferences possibly being misrepresented by the
self-interested agents.

Finally, A is said to be an ordinal α-approximation algorithm for α ≥ 1 if for any given
instance along with the graph weights, the total objective value of the maximum weight solution
with respect to the instance weights is at most a factor α times the value of the solution returned
by A, when the input corresponds to the preference rankings induced by the weights. In other
words, such algorithms produce solutions which are always a factor α away from optimum, without
actually knowing what the weights w are. We conclude by pointing out that despite the extensive
body of work on all of the problems described previously, hardly any of the proposed mechanisms
satisfy either truthfulness or ordinality (see Related Work for exceptions), motivating the need for
a new line of algorithmic thinking.

Our Contributions

Our main results are summarized in Table 1. All of the non-matching problems that we study
are NP-Hard even in the full information setting [15, 23, 18]. Our truthful ordinal algorithms
provide constant approximation factors for a variety of problems in this setting, showing that even
if only ordinal information is presented to the algorithm, and even if the agents can lie about
their preferences, we can still form solutions efficiently with close to optimal utility. Note that as
seen in Table 1, in [5] the authors already gave ordinal approximation algorithms for matching
problems: those algorithms were not truthful, however, and achieving non-trivial approximation
bounds while always giving players incentive to tell the truth requires significant additional work.

3



Problem Our Results
Truthful Ordinal Non-Truthful Ordinal

Weighted Perfect Matching 1.7638 1.6 [5]
Max k-Matching 2 2 [5]
k-Sum Clustering 2 2
Densest k-Subgraph 6 ( 4

β2 , β) (*)

Max TSP 2 1.88

Table 1: Approximation factors provided in this paper by both truthful and non-truthful ordinal
algorithms. (*) A bicriteria result for Densest k-subgraph where the set size is relaxed to βk but
the approximation factor is improved from 4 to 4

β2 for β ≥ 1.

For example, even the natural, greedy 2-approximation algorithm for Max k-matching from [5] is
not truthful.

In addition to considering truthful mechanisms, we also develop new approximation algorithms
for the setting where the agents are not able to lie, and thus the algorithm knows their true prefer-
ence ordering. By dropping the truthfulness constraint, we are able to obtain better approximation
factors for clustering, densest subgraph, and max TSP. The improved results are enabled by more
involved algorithmic techniques that invariably sacrifice truthfulness; they establish a clear sepa-
ration between the performance of an unconstrained ordinal algorithm and one that is required to
be truthful.
Techniques: Our proof techniques involve carefully stitching together greedy, random, and serial
dictatorship based solutions. Understandably, and perhaps unavoidably for ordinal settings, the
algorithmic paradigms that form the bedrock for our mechanisms are rather simple. However,
beating the guarantees obtained by a naive application of these techniques involves a more intri-
cate understanding of the interplay between the various approaches. For instance, our algorithm
for the weighted perfect matching problem involves mixing between two simple 2-approximation
algorithms (greedy, random) to achieve a 1.76-guarantee: towards this end, we establish new trade-
offs between greedy and random matchings showing that when one is far away from the optimum
solution, the other one must provably be close to optimum.

Related Work

Algorithms proposed in the vast matching literature usually belong to one of two classes: (i)
Ordinal algorithms that ignore agent utilities, and focus on (unquantifiable) axiomatic properties
such as stability, truthfulness, or other notions of efficiency, and (ii) Optimization algorithms
where the numerical utilities are fully specified. Algorithms belonging to the former class usually
do not result in good approximations for the hidden optimum utilities, while techniques used in the
latter tend to heavily rely on the knowledge of the exact edge weights and are not suitable for this
setting. A notable exception to the above dichotomy is the class of optimization problems studying
ordinal measures of efficiency [1, 11, 6, 20], for example, the average rank of an agent’s partner
in the matching. Such settings usually involve the definition of ‘new utility functions’ based on
given preferences, and thus are fundamentally different from our model where preexisting cardinal
utilities give rise to ordinal preferences.

Broadly speaking, the truthful mechanisms in our work fall under the umbrella of ‘mechanism
design without money’ [2, 8, 13, 16, 22], a recent line of work on designing strategyproof mecha-
nisms for settings like ours, where monetary transfers are irrelevant. A majority of the papers in
this domain deal with mechanisms that elicit agent utilities, specifically for one-sided matchings,
assignments and facility location problems that are somewhat different from the graph problems
we are interested in. The notable exceptions are the recent papers on truthful, ordinal mechanisms
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for one-sided matchings [16, 8] and general allocation problems [2]. While [16] looks at normalized
agent utilities and shows that no ordinal algorithm can provide an approximation factor better
than Θ(

√
N), [8] considers minimum cost metric matching under a resource augmentation frame-

work. The main differences between our work and these two papers are (1) we consider two-sided
matching instead of one-sided, as well as other clustering problems, as well as non-truthful algo-
rithms with better approximation factors, and (2) we consider maximization objectives in which
users attempt to maximize their utility instead of minimize their cost. The latter may seem like
a small difference, but it completely changes the nature of these problems, allowing us to create
many different truthful mechanisms and achieve constant-factor approximations. Finally, [2] looks
at the problem of allocating goods to buyers in a ‘fair fashion’. In that paper, the focus is on
maximizing a popular non-linear objective known as the maximin share, which is incompatible
with our objective of social welfare maximization. That said, an interesting direction is to see if
our techniques extend to other objectives.

As discussed in the Introduction, this paper improves on several results from [5]. In [5], the
authors focused on the problem of maximum-weight matching for the non-truthful setting, with the
main result being an ordinal 1.6-approximation algorithm. In the current paper, we greatly extend
the techniques from [5] so that they may be applied to other problems in addition to matching.
Moreover, we introduce several new techniques for this setting in order to create truthful algorithms;
such algorithms require a somewhat different approach and make much more sense for many of the
settings that we are interested in. Other than [8], these are the first known truthful algorithms for
matching and clustering with metric utilities.

Our work is similar in motivation to the growing body of research studying settings where the
voter preferences are induced by a set of hidden utilities [3, 7, 10, 4, 9, 14]. The voting protocols
in these papers are essentially ordinal approximation algorithms, albeit for a very specific problem
of selecting the utility-maximizing candidate from a set of alternatives.

2 Preliminaries

Truthful Ordinal Mechanisms

As mentioned previously, we are interested in designing incentive-compatible mechanisms that
elicit ordinal preference information from the users, i.e., mechanisms where agents are incentivized
to truthfully report their preferences in order to maximize their utility. We now formally define
the notions of truthfulness pertinent to our setting. Throughout the rest of this paper, we will use
Pi to represent a true ordinal preference of agent i (i.e., one that is induced by the utilities u(i, j)),
and si to represent the preference ordering that agent i submits to the mechanisms (which will be
equal to Pi if i tells the truth).

Definition (Truthful Mechanism) A deterministic mechanism M is said to be truthful if for every
i ∈ N , all ~s−i, s

′
i, we have that ui(Pi, ~s−i) ≥ ui(s

′
i, ~s−i), where ui is the utility guaranteed to agent

i by the mechanism.

Definition (Universally Truthful Mechanisms) A randomized mechanism is said to be universally
truthful if it is a probability distribution over truthful deterministic mechanisms.

Informally, in a universally truthful mechanism, a user is incentivized to be truthful even when
she knows the exact realization of the random variables involved in determining the mechanism.

Definition (Truthful in Expectation) A randomized mechanism is said to be truthful in expec-
tation if an agent always maximizes her expected utility by truthfully reporting her preference
ranking. The expectation is taken over the different outcomes of the mechanism.
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All of our algorithms are universally truthful, not just in expectation. The reader is asked to
refer to [12] for a useful discussion on the types of randomized mechanisms, and settings where
universally truthful mechanisms are strongly preferred as opposed to the mechanisms that only
guarantee truthfulness in expectation.

Approaches for Designing Truthful Matching Mechanisms

As a concrete first step towards designing truthful ordinal mechanisms, we introduce three high-
level algorithmic paradigms that will form the backbone of all the results in this work. These
paradigms are based on the popular algorithmic notions of Greedy, Serial Dictatorship, and Uni-
formly Random. For each of these paradigms, we develop approaches towards designing truthful
mechanisms for the maximum matching problem. In Sections 3 and 4, we develop more sophis-
ticated truthful mechanisms that build upon the simple paradigms presented here, leading to
improved approximation factors.

Greedy via Undominated Edges:

Our first algorithm is the ordinal analogue of the classic greedy matching algorithm, that has been
extensively applied across the matching literature. In order to better understand this algorithm,
we first define the notion of an undominated edge.

Definition (Undominated Edge) Given a set E of edges, (x, y) ∈ E is said to be an undominated
edge if for all (x, a) and (y, b) in E, w(x, y) ≥ w(x, a) and w(x, y) ≥ w(y, b).

We make two simple observations here regarding undominated edges based on which we define
Algorithm 1.

1. Every edge set E has at least one undominated edge. In particular, any maximum weight
edge in E is obviously an undominated edge.

2. Given an edge set E, one can efficiently find at least one undominated edge using only the
ordinal preference information [5].

M := ∅, T is the valid set of edges initialized to the complete graph on N ;
while T is not empty do

pick an undominated edge e = (x, y) from T and add it to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 1: Greedy Algorithm for Max k-Matching

It is not difficult to see that this algorithm gives a 2-approximation for Max-Weight Perfect
Matching, and is truthful for that case. Unfortunately, for Max k-Matching with smaller k, it is
no longer truthful, and thus none of the algorithms that use Greedy as a subroutine (such as the
algorithms from [5]) are truthful.

Proposition 2.1. Algorithm 1 is truthful for the Max k-Matching problem only when k = N
2 .

Proof. We need to prove that for any given strategy profile adopted by the other players ~s−i, player
i maximizes her utility when she is truthful, i.e., if Pi is the true preference ordering of agent i
and s−i is any set of preference orderings for the other agents, then ui(Pi, ~s−i) ≥ ui(s

′
i, ~s−i) for

any s′i. Our proof will proceed via contradiction and will make use of the following fundamental
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property: if Algorithm 1 (for some input) matches agent i to j during some iteration, then both i
and j prefer each other to every other agent that is unmatched during the same round.

We introduce some notation: suppose that M denotes the matching output by Algorithm 1 for
input (Pi, ~s−i), and for every x ∈ N , m(x) is the agent to whom x is matched to under M . Let ej
be the edge added to the matching M in round j of Algorithm 1, denote the round in which i is
matched to m(i) as round k. Assume to the contrary that for input (s′i, ~s−i), i is matched to an
agent she prefers more than m(i). Let the altered matching be referred to as M ′, and let m′(x) be
the agent who x is matched with in M ′.

We begin by proving the following claim: For each j < k, we have that ej ∈ M ′. In other
words, all the edges which are included into M before i is matched by Algorithm 1 must appear
in both matchings no matter what i does. Once we prove this claim, we are done, since ek is the
highest-weight edge from i to any node not in e1, . . . , ek−1, so i maximizes its utility by telling the
truth and receiving utility equal to the weight of ek.

To prove the claim above, we proceed by induction. Note that if k = 1, then i is trivially
truthful, since m(i) is its top choice in the entire graph. Now suppose that we have shown the
claim for edges e1, . . . , ej−1. Let ej = (x, y), and without loss of generality suppose that x is
matched in our algorithm constructing M ′ before y. At the time that x is matched with m′(x),
it must be that m′(x) is the top choice of x from all available nodes. But, by the definition of
our algorithm, y is the top choice of x that is not contained in e1, . . . , ej−1. Since m′(x) is not
contained in e1, . . . , ej−1 due to our inductive hypothesis, this means that x prefers y over m′(x),
and since y is not matched yet, this means that x and y will become matched together in M ′.
Thus, ej is in M ′ as well. This completes the proof of our claim.

To see why this mechanism is not truthful for smaller k, notice that agents which would not be
matched in the first k steps have incentive to lie and form undominated edges where none exist,
all in order to be matched earlier. Assume that the algorithm uses a deterministic tie-breaking
rule to choose between multiple undominated edges in each round. While this does not really
alter the final output for the perfect matching problem, the tie-breaking rule may lead to certain
undominated edges not getting selected for the final matching.

Fix k and suppose that when the input preferences are truthful, agents i, j are not present in
the matching M returned by Algorithm 1. Moreover, suppose that (1) j’s first preference is i, and
(2) the deterministic tie-breaking always prefers (i, j) over other edges (one can design preferences
so that agents favoured by the tie-breaking are not selected for truthful inputs).

Clearly i has incentive to alter its preferences to identify j as its most preferred node and
receive a utility of w(i, j), which is more than its previous utility of zero.

Can we use a similar approach to design algorithms for the other problems that we are interested
in? For k-sum clustering and Densest k-subgraph, one can follow the approach taken in [17, 5], and
use the above matching as an intermediate to compute 4-approximations for the above problems.
For Max TSP, we can directly leverage the above algorithm by maintaining M as a (forest of)
path(s) instead of a matching in order to obtain a 2-approximate Hamiltonian tour. Unfortunately,
as we show in the Appendix, these approaches do not lead to truthful algorithms at all.

Serial Dictatorship

Another popular approach to compute incentive compatible matchings (albeit usually for one-sided
matchings [8, 16]) is serial dictatorship, which we formally define below for our two-sided matching
setting.

Proposition 2.2. Algorithm 2 is universally truthful for the Max k-Matching problem for all k.

Serial dictatorship is among the most prominent of algorithms to feature in this work: our
primary approximation algorithms for Max k-matching and Max TSP involve randomized versions
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M := ∅, T is the set of available agents initialized to N ;
while T is not empty do

pick an available agent x arbitrarily from T ;
let y denote x’s most preferred agent in T − {x}; add (x, y) to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 2: Serial Dictatorship for Max k-Matching

of serial dictatorship.
Randomness A much simpler approach that is completely oblivious to the input preferences

involves selecting a solution uniformly at random. Such an algorithm (described in Algorithm 3)
is obviously truthful. Many of the techniques in this paper rely on carefully combining these three
types of algorithms in order to produce good approximation factors while retaining truthfulness.

M := ∅, T is the valid set of edges initialized to the complete graph on N ;
while T is not empty do

pick an edge e = (x, y) from T uniformly at random and add it to M ;
remove all edges containing x or y from T ; if |M | = k, T = ∅.

end

Algorithm 3: Random Algorithm for Max k-matching

Proposition 2.3. Algorithm 3 is universally truthful for the Max k-matching problem for all k.

3 Truthful Mechanisms for Matching

Weighted Perfect Matching

So far, we have looked at two simply approaches for designing truthful mechanisms (Greedy and
Random) for the weighted perfect matching problem, both of which yield 2-approximations [5] to
the optimum matching. Can we do any better? In [5], the authors use a complex interleaving
of greedy and random approaches to extract a non-truthful 1.6-approximation algorithm. In this
paper, we instead present a simpler algorithm and rather surprising result: a simple random
combination of Algorithms 1 and 3 results in a 1.76-approximation to the optimum matching. The
main insight driving this result is the fact that the random and greedy approaches are in some
senses complementary to each other, i.e., on instances where the approximation guarantee for the
greedy algorithm is close to 2, the random algorithm performs much better.

Theorem 3.1. The following algorihm is a universally truthful mechanism for the weighted perfect
matching problem that obtains a 1.7638-approximation to the optimum matching.
Greedy-Random Mix Algorithm for Weighted Perfect Matching: With probability 3

7 ,

return the output of Algorithm 1 for k = N
2 and with probability 4

7 , return the output of Algorithm 3

for k = N
2 .

Proof. Notation

Our proof mainly involves non-trivial lower bounds on the performance of the random matching
which highlights its complementary nature to the greedy matching. As usual, we begin with
notation that allows us to divide the greedy matching into several parts for easy analysis.
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Dividing Greedy into Two Halves Suppose that GR is the output of the greedy algorithm
for the given instance, and RD is the random matching for the same instance. We abuse notation
and define T := N (GR 1

2
), and GR(T ) = GR 1

2
. Recall that GR 1

2
comprises of the top (max-weight)

fifty percent of the edges in GR. We will some times refer to T as the top half and the rest of the
nodes as the bottom half. Next, define B := N \ T , and let GR(B) denote GR \GR(T ). Observe
that both T and B consist of exactly N

2 nodes. Finally, suppose that w(GR(B)) = xOPT .
Sub-Dividing B We will now go one step further and divide the bottom half B into two sub-
parts, B1 and B2, which will aid us in our analysis of the random matching. Define GR(B1) to
be the top xN

2 edges from GR(B), i.e., GR(B1) := {GR(B)}2x since GR(B) consists only of N
4

edges. Finally, GR(B2) is the final part of the greedy matching, i.e., GR(B2) = GR(B) \GR(B1).
As with our previous definitions, B1 and B2 will represent the nodes contained in GR(B1) and
GR(B2) respectively.

We begin by highlighting some easy observations in order to get familiar with the various
sub-matchings defined above.

Proposition 3.2. 1. w(GR(T )) ≥ 1
2OPT .

2. B1 consists of xN nodes and B2 consists of (12 − x)N nodes.

3. No edge in GR(B2) can have a weight larger than 2GR(B1)
xN .

The first part of the Proposition comes from Lemma B.7. The last part is simply because this
is the average of edge weights in GR(B1).

The rest of the proof involves proving new lower bounds on the weight of the random matching
as a function of x. Specifically, we will fix the performance of the greedy matching (fix x) and then
show that when x is small, the random matching’s weight is close to 5

8OPT . The reminder of the
proof is just basic algebra to bring out the worst-case performance. Let us first formally state our
trivial lower bound on the greedy matching.

Proposition 3.3. The weight of the greedy matching is given by:

w(GR) = w(GR(T )) + w(GR(B)) ≥ 1

2
OPT + xOPT.

Before developing the machinery towards our lower bound for the random matching, we will first
state our end-goal, which we will prove later. Essentially, our main claim provides an unconditional
lower bound for the performance of the random matching as a well as a (conditional) bound for
small x, which will serve as the worst-case.

Claim 3.4. The weight of the random matching is always at least

E[w(RD)] ≥ 5

8
OPT − x(1 − 3

2
x)OPT.

Moreover, when x ≤ 1
8 , the following is a tighter lower bound for the random matching

E[w(RD)] ≥ 5

8
OPT − x(1 − 2x)OPT.

Tackling the Random Matching for Different Cases

We will now prove three lemmas that will act as the main bridges to showing Claim 3.4. These
lemmas provide insight on the random matching for different cases depending on the relative

weights of GR(B1) and GR(B2). First, define α := w(GR(B1))
w(GR(B)) . We begin by studying the case

when α is smaller than 1
2 , i.e., the weights of the edges in GR(B) are somewhat evenly distributed
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across GR(B1) and GR(B2). Moreover, since every edge in GR(B1) is larger than every edge in
GR(B2), the following is an easy lower bound on α.

Lemma 3.5. For any given instance where w(GR(B)) = xOPT , we have that α ≥ 2x.

Proof. GR(B1) consists of xN
2 edges whereas GR(B) consists of N

4 edges.

Therefore, the above lemma indicates that when α ≤ 1
2 , x canot be larger than 1

4 .
Now we give the first of the three lemmas.

Lemma 3.6. Suppose that for a given instance with w(GR(B)) = xOPT , w(GR(B1)) = αxOPT
with α ≤ 1

2 . Then, for x ≤ 1
4 , we have that

w(RD) ≥ 5

8
OPT − x(1 − 2x)OPT.

Proof. From Lemma B.13, we get the following generic lower bound for RD since |B| = N
2 ,

w(RD) ≥ 1

2
OPT +

1

N
{w(T ) − w(B)}.

Moreover, applying Lemma B.5 to T , we also get that w(T )
N ≥ 1

8OPT since there exists a

matching (GR(T )) solely on the nodes inside T having a weight of OPT
2 . Therefore, it suffices to

prove an upper bound on w(B)
N . Recall that B consists of exactly n = N

2 nodes, GR(B) = xOPT ,
and w({GR(B)}2x) = αxOPT ≤ 1

2xOPT . So, directly applying Lemma B.11, we get that,

1

n
w(B) =

2

N
w(B) ≤ 2w(GR(B))(1 − 2x).

So, 1
Nw(B) ≤ xOPT (1−2x). Putting this inside the generic lower bound for RD, we complete

the proof of this lemma.

We now have a bound for the case when α ≤ 1
2 . Next, we provide a universal bound for the

other case (α ≥ 1
2 ). Observe that in this case, w(GR(B1)) ≥ w(GR(B2)). We leverage the low

weight of GR(B2) to prove the following bound.

Lemma 3.7. Suppose that for a given instance with w(GR(B)) = xOPT , w(GR(B1)) = αxOPT
with α ≥ 1

2 . Then, we have that

w(RD) ≥ 5

8
OPT − x(1 − 3

2
x)OPT.

Proof. Once again, we begin with a generic lower bound on RD (Corollary B.14) that depends on

partitioning the node set N into 3 parts (T,B1, B2). Notice that |B2|
N = 1

2 − x.

w(RD) ≥ 1

2
OPT − x

2
OPT +

1

N
{w(T ) +

1

2
(w(T,B1) − w(B1, B2)) − w(B2)}.

As with Lemma 3.6, we know that w(T )
N ≥ 1

8OPT . Now for every edge e in GR(T ), note that
the triangle inequality implies that for any node in B1, going to that node from an endpoint of
e and coming back to the other endpoint of e is larger than the weight of e. Summing these up,
we get that w(T,B1) ≥ |B1|GR(T ). Using the fact that GR(T ) ≥ OPT

2 gives a slightly simplified
version.

w(RD) ≥ 5

8
OPT − x

4
OPT − 1

N
{1

2
w(B1, B2) + w(B2)}.

10



So now, it suffices to prove a lower bound on the negative quantities. From Lemma B.9, we get
that w(B1, B2) ≤ 2w(GR(B1))|B2| = 2αxOPT (1/2 − x)N .

Next, we have to provide an upper bound on w(B2) in order to complete the proof. We know as
per our definitions of GR(B1), GR(B2) that each edge in the latter is no larger than the smallest
edge in the former. Moreover, from Proposition 3.2, we know that w∗ = 2GR(B1)/xN = 2αOPT

N is
an upper bound on the weight of every edge inside GR(B2). So, we can directly turn to Lemma B.10
applied specifically to GR(B2) to obtain

w(B2) ≤ 2w(GR(B2))(
N

2
− xN − t),

where t = w(GR(B2))
w∗

= N(1−α)xOPT
2αOPT = N(1−α)x

2α . In conclusion, we have that

1

N
w(B2) ≤ (1 − α)xOPT (1 − 2x− 1 − α

α
x) ≤ (1 − α)xOPT (1 − 2x). (1)

We are now ready to complete our (lower) bounds on the negative quantities

1

2N
w(B1, B2) +

1

N
w(B2) ≤ αxOPT (1/2 − x) + (1 − α)xOPT (1 − 2x)

= xOPT (1/2 − x)(α + 2 − 2α)

≤ xOPT (1/2 − x)
3

2
(Since α ≥ 1

2
)

=
3

4
xOPT − 3

2
x2OPT.

Plugging the final inequality into the simplified generic lower bound completes the proof.

A careful inspection of the proof of Lemma 3.7 reveals that our lower bound is a bit loose in
two places where we independently replaced α with 1

2 and 1 respectively to provide a worst-case
bound. Unfortunately, as a result, the lower bounds for the α ≥ 1

2 and α ≤ 1
2 cases do not align.

For our purposes however, it is enough to show that the two lower bounds apply when x ≤ 1
8 ,

which we prove below in the third of our lemmas in this subsection.

Lemma 3.8. Suppose that for a given instance with w(GR(B)) = xOPT with x ≤ 1
8 , we have

w(GR(B1)) = αxOPT with α ≥ 1
2 . Then, the following lower bound is true

w(RD) ≥ 5

8
OPT − x(1 − 2x)OPT.

Proof. The proof of the lemma picks up from the previous Lemma 3.7 with only a few simple
tweaks. From Lemma 3.8 (specifically using Inequality 1), we have that

1

2N
w(B1, B2) +

1

N
w(B2) ≤ xOPT {α(1/2 − x) + (1 − α)(1 − x− x

α
)}.

From Lemma B.1, we know that the expression inside the curly parenthesis attains its maximum
value for α = 1

2 in the given range of x. Therefore, substituting α = 1
2 , we get

1

2N
w(B1, B2) +

1

N
w(B2) ≤ OPT {x

4
− x2

2
+

x

2
− 3

2
x2}.

Directly plugging this upper bound into the simplified generic lower bound from Lemma 3.7 is
enough to prove the statement in the Lemma.

(Proof of Claim 3.4) The proof is a direct consequence of Lemmas 3.6, 3.7, and 3.8.
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Final Leg: Proving the Actual Bound

Proposition 3.3 and Claim 3.4 are the only tools that we require to show the final bound. We
prove this in two cases depending on whether or not x ≤ 1

8 .

Case I: x ≤ 1
8

Recall that we pick the random matching with probability p = 4
7 and the greedy mathing with

probability 1 − p = 3
7 . Suppose we use w(M) to denote the weight of the matching returned by

our algorithm. Then,

E[w(M)] = (1 − p)w(GR) + p · w(RD)

≥ OPT {(1 − p)(
1

2
+ x) + (p)(

5

8
− x + 2x2)}

= OPT {1

2
+ p

1

8
+ x(1 − 2p) + 2px2}

Since p is fixed, it is not hard to see that the quantity x(1−2p)+2px2 is minimized at x = 1
2− 1

4p .

Substituting p = 4
7 , we get OPT

E[w(M)] ≤ 1.7638

Case I: x ≥ 1
8

In this case, we need to use a weaker lower bound for RD.

E[w(M)] = (1 − p)w(GR) + pw(RD)

≥ OPT {(1 − p)(
1

2
+ x) + (p)(

5

8
− x +

3

2
x2)}

= OPT {1

2
+ p

1

8
+ x(1 − 2p) +

3

2
px2}

Using basic calculus, we observe the expression in the final line is a non-decreasing function
of x in the range [ 18 ,

1
2 ] and so, its minimum value is attained at x = 1

8 . Substituting this value

above, we get OPT
E[w(M)] ≤ 1.7638.

Max k-Matching

We now move on to the more general Max k-matching problem, where the objective is to compute
a maximum weight matching consisting only of k ≤ N

2 edges. Our previous results do not carry
over to this problem. While we know from [5] that the greedy algorithm is half-optimal, one can
easily construct examples where this is not truthful. On the other hand, the random matching
algorithm is truthful but its approximation factor can be as large as N

k . Our main result in this
section is based on the Random Serial Dictatorship algorithm that in some sense combines the best
of greedy and random into a single algorithm. Such algorithms have received attention for other
matching problems [8, 16]; ours is the first result showing that these algorithms can approximate
the optimum matching up to a small constant factor for metric settings. Specifically, while serial
dictatorship is usually easy to analyze, our algorithm greatly exploits the randomness to select
good edges in expectation.
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Definition: Random Serial Dictatorship is the same algorithm as Serial Dictatorship (Algorithm
2), except the agents x from T are picked uniformly at random.

Theorem 3.9. Random serial dictatorship is a universally truthful mechanism that provides a
2-approximation for the Max k-matching problem.

4 Truthful Mechanisms for Other Problems

Densest k-Subgraph

In this section we present our truthful, ordinal algorithm for Densest k-subgraph, which requires
techniques somewhat different from the ones outlined in Section 2. While “conventional” ap-
proaches such as Greedy and Serial Dictatorship do lead to good approximations for this problem,
they are not truthful, whereas random approaches are truthful but result in poor worst-case ap-
proximation factors. We combat this problem with a somewhat novel approach that combines the
best of both worlds by designing a semi-oblivious algorithm that has the following property: if
agent i is included in the solution, then changing her preference ordering si does not affect the
mechanism’s output.

S := ∅, T is the set of available agents initialized to N ;
while |S| < k do

pick an anchor agent a and another node x, both uniformly at random from T ;
let b denote a’s most preferred agent in T − {a, x};

with probability 1
2 , add a, x to S, and set T = T − {a, x};

with probability 1
2 , add b, x to S and set T = T − {a, b, x};

end

Algorithm 4: Hybrid Algorithm for Densest k-Subgraph

Theorem 4.1. Algorithm 4 is a universally truthful mechanism that yields a 6-approximation for
the Densest k-Subgraph problem.

To see why this is truthful, note that for any particular choice of the anchor agent a, the only case
in which a’s preference ordering makes a difference is when a is definitely not added to the final
team. Therefore, by lying a cannot influence her utility in the event that she is actually chosen.

Remark on size of k Without loss of generality, we assume that k ≤ N
2 so that T does

not become empty before |S| = k. When k ≥ N
2 , there is a trivial algorithm that yields a

6-approximation to the optimum densest subgraph (see Appendix D). Since we are interested in
asymptotic performance bounds, we also assume that k is even. For the rest of this proof, given any
set S, node x, w(S) will denote the total weight of the edges inside S, and w(x, S) :=

∑

j∈S w(x, j).

Proof. Notation We begin by defining some notation pertinent to the analysis. Suppose that our
algorithm proceeds in rounds such that in each round, exactly two nodes are added to our set S,
and at most 3 nodes are removed from A. Therefore, S consists of 2j nodes after j rounds. For
ease of notation, we will number the rounds 2, 4, 6, . . . instead of 1, 2, 3, 4, 5, . . .; thus S has r nodes
at the end of round r. Further, define Sr to be the random set of selected nodes after round r,
i.e., |Sr| = r for any instantiation of this random set.

Next, let us examine the inner workings of the algorithm. Look at any round r, the algorithm
works by selecting a triplet ∆r = {a, x, b}, where a is referred to as the anchor node, x is a node
selected uniformly at random, and b is a’s most preferred agent in Ar − {a, x}, (let Ar be the

13



random set of available nodes at the beginning of round r). For the rest of this proof, we will use
∆r to denote the random triplet of nodes selected in round r. Notice that for a given (ordered)
triplet {a, x, b}, the algorithm adds (a, x) to S with probability half and (b, x) to S also with the
same probability.

Finally, we use OPTr to denote the weight of the optimum solution to the Densest k-subgraph
problem when k = r, and Algr to be the expected weight of the solution output by our algorithm
for the same cardinality, i.e., Algr = E[w(Sr)]. Let algr+2 represent the expected increase in the
weight of the solution output by our algorithm from r to r + 2, i.e., algr+2 = Algr+2 −Algr. We
will prove by induction on even r that OPTr ≤ 6Algr. More specifically, we will show that for
each r, OPTr − OPTr−2 ≤ 6algr.

Proof by Induction: OPTr ≤ 6Algr

Claim 4.2. (Base Case: r = 2) OPT2 ≤ 4Alg2.

Proof. The base case is quite straightforward. Suppose that w∗
max is the heaviest edge in N .

Clearly, OPT2 = w∗
max. Next, let a, x ∈ N be any two agents, and let b denote a’s most preferred

agent in N − {x}. Then, we claim that w(a, x) + w(b, x) ≥ 1
2w

∗
max.

The above claim can be proved in two cases: first, suppose that b is indeed a’s favorite node
in N . Then, as per Lemma D.3, w(a, x) + w(b, x) ≥ w(a, b) ≥ 1

2w
∗
max. In the second case, if a’s

most preferred node in N and N − {x} do not coincide, the only possibility is that x is a’s most
preferred node in N , and by the same lemma w(a, x) ≥ 1

2w
∗
max.

To complete the base case, consider any instantiation of the random triplet, ∆2 = {a, b, x}.
We have that S2 = {a, x} with probability 1

2 and S2 = {b, x} otherwise. Therefore, for this
instantiation w(S2) = 1

2 (w(a, x) + w(b, x)) ≥ 1
4w

∗
max. Taking the expectation over every such

triplet, we get the desired base claim.

Inductive Claim: To Prove OPT
r+2 ≤ 6Alg

r+2

Recall that Sr denotes the random set of chosen nodes at the end of round r. We know from the
induction hypothesis that OPTr ≤ 6Algr = 6E[w(Sr)]. Consider some specific instantiation of Sr,
call it S̄r, and for this instantiation, let ∆̄r+2 = {a, x, b} denote some random triplet selected by
the algorithm in round r+2, i.e., we have a specific instantiation of Sr and ∆r+2 for our algorithm.
As usual, for this triplet, (a, b, x), a is the anchor node, x is the random node and b is a’s most
preferred node in N \ {S̄r ∪ {a, x}}.

Suppose that algr+2 is the increase in the expected weight of the solution returned by our

algorithm during round r + 2 for this specific instantiation of S̄r, ∆̄r+2., i.e., algr+2 = 1
2 [w(S̄r ∪

{a, x})+w(S̄r∪{b, x})]−w(S̄r). Our proof will proceed as follows: we establish an upper bound for
OPTr+2 −OPTr in terms of algr+2, and then take the expectation over all possible instantiations
to get the actual bound.

Before starting with the proof of the inductive claim, we define some auxiliary notation that
will allow us to process OPT as a sequence of additions in each round, so that we can compare the
addition to OPT in round r+ 2 to that of our algorithm in the same round. Fix p, q to be any two
nodes in OPTr+2 \ S̄r, and let T := OPTr+2 \ {p, q}. T will act as a proxy to OPTr in our proofs.
Notice that p, q ∈ N \ S̄r. Finally, in order to avoid messy notation, assume that b is a’s (most)
preferred node in N \ S̄r. If this is not the case (and this can happen with a small probability),
then a’s most preferred node in N \ S̄r has to be x. We deal with this case separately in Section 4
although the proof is quite similar.

We begin with a nice lower bound for algr+2. Suppose that w(a, b) = w∗
a.
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Lemma 4.3. (Lower Bound for our Algorithm)

algr+2 ≥ 1

6
[w(a, S̄r ∩ T ) + w(b, S̄r ∩ T )] +

1

3
|S̄r ∩ T |w∗

a +
1

2
(|S̄r \ T | + 1)w∗

a +
1

r − 1
w(S̄r).

Proof. Recall that algr+2 = 1
2 [w(S̄r ∪{a, x})+w(S̄r ∪{b, x})]−w(S̄r). Simplifying the expression,

we get

algr+2 =
1

2
[w(a, S̄r) + w(b, S̄r) + w(a, x) + w(b, x)] + w(x, S̄r) (2)

Consider the first two terms inside the square brackets. We can divide S̄r into S̄r∩T and S̄r \T
and simplify the two parts as follows,

w(a, S̄r ∩ T ) + w(b, S̄r ∩ T ) ≥ 1

3
[w(a, S̄r ∩ T ) + w(b, S̄r ∩ T )] +

2

3
|S̄r ∩ T |w∗

a.

The right most term in the RHS simply comes from the triangle inequality since for any
i ∈ S̄r ∩ T , w(i, a) + w(i, b) ≥ w(a, b) = w∗

a. Now for the second part, which also follows from the
triangle inequality,

w(a, S̄r \ T ) + w(b, S̄r \ T ) ≥ |S̄r \ T |w∗
a.

To wrap up the proof, we apply Lemma D.4 to w(x, S̄r) to get w(x, S̄r) ≥ 1
r−1w(S̄r). An

additional 1
2w

∗
a can extracted from 1

2 [w(a, x) + w(b, x)]. Adding up the various parts completes
the lemma.

Before showing our upper bound on OPTr+2 −OPTr, we present a simple lemma that allows
us to relate the weights of any given node to the members of a set in terms of w∗

a and the weight
of a to the members of that set. Recall the definitions of p, q ∈ OPTr+2 \ S̄r.

Lemma 4.4. Suppose that T, p, q are as defined previously. Then,

1. w(p, T ) ≤ w(a, T ∩ S̄r) + |T ∩ S̄r|w∗
a + 2|T \ S̄r|w∗

a.

2. w(q, T ) ≤ w(b, T ∩ S̄r) + 2|T ∩ S̄r|w∗
a + 2|T \ S̄r|w∗

a.

Proof. (Part I) The proof proceeds as follows: remember that since b is a’s most preferred node in
N \ S̄r, for any i /∈ S̄r, w(i, a) ≤ w∗

a. This includes i = p. Moreover, for any i, j /∈ S̄r, w(i, j) ≤ 2w∗
a

as per Lemma D.3.

w(p, T ) =
∑

j∈T∩S̄r

w(p, j) +
∑

j∈T\S̄r

w(p, j)

≤
∑

j∈T∩S̄r

[w(p, a) + w(a, j)] +
∑

j∈T\S̄r

2w∗
a

≤
∑

j∈T∩S̄r

[w∗
a + w(a, j)] + 2|T \ S̄r|w∗

a

≤
∑

j∈T∩S̄r

w(a, j) + |T ∩ S̄r|w∗
a + 2|T \ S̄r|w∗

a.
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(Part II) The proof of the second part is almost the same as the first, except that for any
i /∈ S̄r, we have that w(b, i) ≤ 2w∗

a, once again as the product of Lemma D.3.

w(q, T ) =
∑

j∈T∩S̄r

w(q, j) +
∑

j∈T\S̄r

w(q, j)

≤
∑

j∈T∩S̄r

[w(q, b) + w(b, j)] +
∑

j∈T\S̄r

2w∗
a

≤
∑

j∈T∩S̄r

[2w∗
a + w(b, j)] + 2|T \ S̄r|w∗

a

≤
∑

j∈T∩S̄r

w(b, j) + 2|T |w∗
a.

Upper Bound on OPTr+2 to Complete the Inductive Claim

Now we express OPTr+2 −OPTr in terms of algr+2 for the given instantiation.

Lemma 4.5.

OPTr+2 −OPTr ≤ 6algr+2 +
1

r − 1
OPTr −

6

r − 1
w(S̄r).

Proof. Consider OPTr+2 and remember that by definition p, q /∈ S̄r. We can divide up OPTr+2

in two ways.

OPTr+2 = w(T ) + w(p, q) + w(p, T ) + w(q, T )

≤ OPTr + w(p, q) + w(p, T ) + w(q, T ). (First)

OPTr+2 = w(T ∪ {q}) + w(p, q) + w(p, T )

≤ OPTr+1 + w(p, q) + w(p, T ). (Second)

Clearly, w(T ) ≤ OPTr and w(T ∪ {q}) ≤ OPTr+1. Further, applying Lemma D.2, we get
that OPTr+1 ≤ OPTr + 2

r−1OPTr. Using this to simplify the second inequality, we then add the
simplified inequalities above and divide by two to get:

OPTr+2 ≤ OPTr +
1

r − 1
OPTr + w(p, q) + w(p, T ) +

1

2
w(q, T ). (3)

Next, we simplify the (two) rightmost terms in the RHS to reflect their dependence on w∗
a,

which we recall is the weight of the maximum weight edge containing a in N \ S̄r. Applying
Lemma 4.4 (Part 1), we get

w(p, q) + w(p, T ) ≤ 2w∗
a + w(a, S̄r ∩ T ) + |T ∩ S̄r|w∗

a + 2|T \ S̄r|w∗
a. (4)

Similarly, using the second half of Lemma 4.4, we bound w(q, T ).

1

2
w(q, T ) ≤ 1

2
w(b, T ∩ S̄r) + |T ∩ S̄r|w∗

a + |T \ S̄r|w∗
a. (5)

Adding Equations 4 and 5, and substituting the result into Equation 3, we have that
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OPTr+2 −OPTr ≤ 1

r − 1
OPTr + 3(|T \ S̄r| + 1)w∗

a + w(a, S̄r ∩ T ) + w(b, S̄r ∩ T ) + 2|T ∩ S̄r|w∗
a

Recall from Lemma 4.3 that algr+2 ≥ 1
6w(a, T ∩ S̄r) + w(b, T ∩ S̄r)] + 1

3 |T ∩ S̄r|w∗
a + 1

2 (|T \
S̄r| + 1)w∗

a + 1
r−1w(S̄r). Therefore, we get our required lemma by writing the RHS of our upper

bound on OPTr+2 −OPTr in terms of 6algr+2.

OPTr+2 −OPTr ≤ 1

r − 1
OPTr + 6algr+2 −

6

r − 1
w(S̄r)

Having wrapped up our upper bound, we are ready to prove our actual inductive claim.
From our upper bound, we have that for every possible realization of Sr, ∆r+2, we know that

OPTr+2 −OPTr ≤ 1
r−1OPTr + 6algr+2 − 6

r−1w(S̄r). Now, we push to complete our proof,

OPTr+2 −OPTr ≤ 1

r − 1
OPTr + ESr ,∆r+2

[6algr+2 −
6

r − 1
w(Sr)].

The term inside the expectation is clearly 6algr+2 − 6
r−1E[w(Sr)] ≤ 6algr+2 − 1

r−1OPTr; the

final inequality is a result of the induction hypothesis. The term 1
r−1OPTr cancels out, giving us

our desired claim

OPTr+2 ≤ OPTr + 6algr+2 ≤ 6E[w(Sr)] + 6algr+2 = 6E[w(Sr+2)] = 6Algr+2.

Therefore our hybrid algorithm for Densest k-subgraph always returns a solution that is within
a sixth of the optimum densest subgraph.

Inductive Claim when w∗

a
= w(a, x) > w(a, b)

Suppose that x is a’s most preferred node in N \ S̄r. Claim for claim, the proof proceeds in the
same way as above except that the role played by b in the previous proof is now played by x. We
go over the proof of this case for completeness. Assume the same notation as before, and consider
the following lower bound on algr+2.

Part 1: Lower Bound

algr+2 ≥ 1

6
[w(a, T ∩ S̄r) + w(x, T ∩ S̄r)] +

1

3
|T ∩ S̄r|w∗

a +
1

2
(|T \ S̄r| + 1)w∗

a +
1

r − 1
w(S̄r) (6)

To see why Equation 6 is true: first notice that w(a, T ∩ S̄r) + w(x, T ∩ S̄r) ≥ |T ∩ S̄r|w∗
a, and

w(a, T \ S̄r)+w(x, T \ S̄r) ≥ |T \ S̄r|w∗
a by a direct application of the triangle inequality. Therefore,

from these two inequalities we glean that

1

2
[w(a, S̄r) + w(x, S̄r)] ≥ 1

6
[w(a, T ∩ S̄r) + w(x, T ∩ S̄r)] +

1

3
|T ∩ S̄r|w∗

a +
1

2
|T \ S̄r|w∗

a.

The remaining terms in algr+2 are 1
2 [w(x, S̄r)+w(b, S̄r)+w(a, x)+w(b, x)]: (i) From Lemma D.4,

1
2w(x, S̄r) ≥ 1

2(r−1)w(S̄r), (ii) Via the same lemma, 1
2w(b, S̄r) ≥ 1

2(r−1)w(S̄r), and (iii) 1
2 (w(a, x)+

w(b, x)) ≥ 1
2w

∗
a since w(a, x) = w∗

a. Adding (i), (ii), (iii) with our lower bound for 1
2 [w(a, S̄r) +

w(x, S̄r)] completes the proof of the first part, i.e., Equation 6.
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Part 2: Simplifying Lemma

Now, we make the second claim for set T as defined previously and q /∈ S̄r, also as defined
previously.

w(q, T ) ≤ w(x, T ∩ S̄r) + 2|T ∩ S̄r|w∗
a + 2|T \ S̄r|w∗

a. (7)

The proof is exactly the same as in Lemma 4.4 so we do not restate it. Once again, the main
observation here is that for any j /∈ S̄r, w(q, j) ≤ 2w∗

a from Lemma D.3.

Part 3: Upper Bound

Now we are ready to complete the proof. Let us begin by restating Equation 3, which is a generic
condition and does not depend on a, x or b:

OPTr+2 ≤ OPTr +
1

r − 1
OPTr + w(p, q) + w(p, T ) +

1

2
w(q, T ).

From Lemma 4.4, we have that (iv) w(p, q)+w(p, T ) ≤ w(a, T∩S̄r)+|T∩S̄r|w∗
a+2|T \S̄r+1|w∗

a;
(v) From Equation 7, 1

2w(q, T ) ≤ w(x, T ∩ S̄r) + |T ∩ S̄r|w∗
a + |T \ S̄r|w∗

a.
Adding these two equations, the rest of the proof follows as from before.

A 2-approximation algorithm for k-Sum Clustering

In the literature, the k-sum clustering problem has only been studied in a full information setting,
sometimes amidst the class of dispersion problems [17]. The best known approximation algorithm
for this is a 2-approximation that uses the optimum matching as an intermediate. Instead, we
give a much simpler algorithm with the same factor that is completely oblivious to the input, and
is therefore truthful. Although the analysis of the algorithm involves new upper bounds on the
optimum solution, it is still not difficult, so we include this result mostly for completeness.

Recall that in the Max k-Sum problem, we are provided as input a vector of preference lists
P (N ) along with a positive integer 2 ≤ k ≤ N

2 with the objective being to partition the set of points

N into k equal-sized clusters (of size γ = N
k ; we assume that N is divisible by k) S = (S1, . . . , Sk)

to maximize
∑k

i=1

∑

x,y∈Si
w(x, y).

Theorem 4.6. There exists an ordinal universally truthful 2-approximation algorithm for the k-
sum clustering problem.

Proof. We use a simple approach that picks sets (clusters) of size γ uniformly at random.

1. For i = 1 to k

2. Choose γ nodes uniformly at random from N .

3. Remove these nodes from N , and add them to Si.

4. Return the final solution S.

Lemma 4.7. (Lower Bound) The expected value of the objective function for the clustering re-
turned by our algorithm (S1, . . . , Sk) is exactly

γ − 1

N − 1

∑

(x,y)∈N×N

w(x, y).
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Proof. We proceed via a symmetry argument although it is not hard to verify that the same bound
can be obtained via a more exhaustive counting argument. First, by linearity of expectation, we
have that the value of the objective (in expectation) is

∑

(x,y)∈N×N w(x, y)Pr(x, y ∈ Si) where
the second term is the probability that x and y belong to the same cluster in S. Using a symmetry
argument (since our process chooses edges uniformly at random), we claim that the probability
Pr(x, y ∈ Si) is the same for every x, y ∈ N .

Now, fix any arbitrary node x ∈ N : since there γ − 1 other nodes in the same cluster as x,
this means that

∑

y 6=x Pr(x, y ∈ Si) = γ − 1. Therefore, for every (x, y), Pr(x, y ∈ Si) = γ−1
N−1 .

Substituting this in the expected value of the objective function gives us the desired result.

Lemma 4.8. (Upper Bound) Suppose that O = (O1, . . . , Ok) is the optimum solution for a given
instance of the Max k-sum problem. Then, we have the following upper bound on the value of the
optimum solution

k
∑

i=1

∑

x,y∈Oi

w(x, y) ≤ 2(γ − 1)

N − 1

∑

(x,y)∈N×N

w(x, y).

Proof. Suppose that x and y are two nodes belonging to the same cluster in O. Then, by the
triangle inequality, we have that for every z ∈ N (including x and y), w(x, z) + w(y, z) ≥ w(x, y).
Summing this up over all z ∈ N , we have

∑

z∈N (w(x, z) + w(y, z)) ≥ Nw(x, y). Repeating this
process over all (x, y) ∈ S and z ∈ N , we get

k
∑

i=1

∑

x,y∈Si

∑

z∈N

(w(x, z) + w(y, z)) ≥ N

k
∑

i=1

∑

x,y∈Oi

w(x, y)

= NOPT.

Now, given some edge w(x, z), how many times does this edge appear in the LHS? Without
loss of generality, suppose that x ∈ Oi and z ∈ Oj . Then, x has γ − 1 edges inside Oi and w(x, z)
appears once in the LHS for each of these neighboring edges. Similarly, z has γ−1 edges inside Oj

and w(x, z) appears once in the LHS for each edge. Therefore, for every x, z ∈ N , w(x, z) appears
2(γ − 1) times in the LHS of the above equation. Substituting this, we prove the lemma,

∑

x,y∈N

2(γ − 1)w(x, y) ≥ NOPT.

The rest of the theorem follows immediately from the two lemmas.

Max Traveling Salesman Problem

The max traveling salesman problem has received a lot of attention in the literature despite not
being as popular as the minimization variant, and has seen a plethora of algorithms for both
the metric and the non-metric versions [18, 19]. Such algorithms usually work by looking at
the optimum matching and cycle cover and cleverly interspersing the two solutions to form a
Hamiltonian cycle. In adapting this approach to our setting, we would be bottlenecked by the
best possible ordinal algorithms for the above two problems. Instead, we take a direct approach
towards computing a tour and show that a simple algorithm based on Serial Dictatorship results
in a 2-approximation factor.
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Initialize T to be a random edge from the complete graph on N ;
Let S be the set of available agents initialized to N ;
while S 6= ∅ do

pick one of the end-points of T , say x ;
let y denote x’s most preferred agent in S; add (x, y) to T and remove y from S;

end
Complete T to form a Hamiltonian cycle;

Algorithm 5: Serial Dictatorship for Max TSP

Theorem 4.9. Algorithm 5 is a universally truthful mechanism that provides a 2-approximation
to the optimum tour. Moreover, the algorithm provides a (2 + ǫ)-approximation, where ǫ → 0 as
N → ∞, even when the edge weights do not obey the metric assumption.

It is easy to see that this algorithm is truthful: when an agent i is asked for its preferences, the
first edge of T incident to agent i has already been decided, so i cannot affect it. Thus, to form
the second edge of T incident to i, it may as well specify its most-preferred edge. Note that the
randomization in the first step is essential: if we had selected the first edge based on the input
preferences, then the first node could improve its utility by lying, and the algorithm would no
longer be strategy-proof.

5 Non-Truthful Ordinal Mechanisms

In this section we consider the case when agents are not able to lie, i.e., the algorithm knows their
true ordinal preferences Pi, but is still ignorant of the hidden underlying metric utilities which
induce those preferences. Designing algorithms for this setting captures the true power of ordinal
information, as the necessity for approximation arises from the fact that the algorithm only has
limited ordinal information at its disposal, as opposed to the agents being self-interested. This
can occur due to the fact that specifying ordinal preferences is much easier than specifying the full
numerical utility information; in fact even in the case when such latent numerical utilities exist,
it may be difficult for the agents to quantify them precisely. This is the setting studied in papers
such as [3, 7, 21, 4, 9]; in [5], the authors previously gave ordinal approximation algorithms for
Densest k-Subgraph and Max TSP with approximation factors of 4 and 2.14; here we improve the
TSP approximation factor to 1.88 and give a new ordinal bicriteria approximation algorithm which
shows that by relaxing the set size k by a small amount for Densest k-Subgraph, a much better
approximation can be achieved.

Densest k-Subgraph

4-approximation Algorithm

We begin by presenting an extremely simple 4-approximation algorithm for this problem; while
not explicitly mentioned there, it was alluded to in [5]. Given an input k, the algorithm essentially
computes a 2-approximate maximum matching with exactly k

2 edges using the algorithm from
Theorem 3.9. We then show that the k nodes that make up these edges provide a 4-approximation
to the optimum solution for this problem. Unfortunately, despite the truthfulness of RSD for Max
k-matching, it is easy to construct examples where this mechanism is no longer truthful for Densest
subgraph.
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Bicriteria Approximation

Among the problems that we study, Densest k-subgraph naturally lends itself to bicriteria approx-
imation algorithms. For instance, when we construct committees, a little additional leverage on
the committee size may lead to much more diverse committees. Formally, given a parameter k, an
algorithm for Densest k-subgraph is said to be a bi-criteria (α, β) approximation if the objective
value of the solution S output by the algorithm for every instance is at least a factor 1

α times that
of the optimum solution of size k, and if |S| ≤ βk, for α, β ≥ 1. Here, we give bounds on how α
decreases when β increases. In particular, we show that if we are allowed to choose a committee
of size 2k, the value of our solution is equal to the optimum solution of size k. If instead we must
form a committee of size exactly k, then this results in an ordinal 4-approximation algorithm.

Theorem 5.1. We can efficiently compute an ordinal ( 4
β2 , β)-approximate solution for the Densest

k-subgraph problem for β ≤ 2, i.e., a solution of size βk, whose value is at least β2

4 times that of
the optimum solution of size k.

The algorithm that provides us the approximation factor is simple: we compute a greedy matching
of size βk

2 , and return its endpoints. However the analysis is quite involved. One of the salient
features of this result is that a small change in β results in a super-linear improvement in efficiency.
For example, in order to obtain a 2-approximation to the Densest k-subgraph, it is enough to
compute a set of size ∼ 1.4k.

Proof Sketch: The proof involves carefully charging different sets of node distances in the optimal
solution to node distances in our solution. So, before giving the main proof, we provide a series
of very general charging lemmas. We define a new helpful tool which we call the top-intersecting
matching; we are able to use this to establish various bounds which yield our result for Densest
k-subgraph. We believe that this tool and the bounds we show using it may be useful in forming
other ordinal approximations.

Specifically, given a matching M , we will use N(M) to denote the set of nodes which form the
endpoints of the edges in M . Suppose that we are provided a matching M of some given size, and
a set B ⊆ N(M). Now, given an integer t ≤ |B|, define M(t, B) to be the top (i.e., highest weight)
t edges in M , such each edge in M(t, B) contains at least one node from B. We refer to M(t, B)
as the top-intersecting matching. In the proof, we highlight the versatility of the top-intersecting
matching by charging different sets of inter-node distances to this matching. Afterwards, we use
these charging lemmas to prove the main theorem. To give the flavor of these arguments, we
provide some of the upper bounds below. Here we assume that M is a greedy matching of size k,
initialized with the complete edge set.

Lemma 5.2. Suppose that M is a greedy matching, and suppose that B and C are two disjoint
sets such that B ⊆ N(M) with |B| = 2m, and C ∩N(M) = ∅. Then the following bounds hold,

∑

x,y∈B

w(x, y) ≤
∑

x,y∈N(M(m,B))∩B

w(x, y) +
5r

2
w(M(m,B))

∑

x∈B,y∈C

w(x, y) ≤ 2|C|w(M(m,B))

∑

x,y∈C

w(x, y) ≤ (|C|2)

|M | −m
w(M \M(m,B))

where r = |B \N(M(m,B))|.
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Max Traveling Salesman

We now present an ordinal (but not truthful) 1.88-approximation algorithm for Max TSP. Unlike
most of the algorithms in this paper, this algorithm is rather complex, since it requires carefully
balancing several different tour constructions.

Theorem 5.3. We give an ordinal and efficient approximation algorithms for Max TSP whose
approximation factor approaches 32

17 ≈ 1.88 as N → ∞.

Proof Sketch: Before defining our randomized algorithm, we first present the following lemmas:
one gives a relationship between matching and Hamiltonian paths and the other shows how to
stitch together two paths to form a good tour using only ordinal information.

Lemma 5.4. Given any matching M with k edges, there exists an efficient ordinal algorithm that
computes a Hamiltonian path Q containing M such that the weight of the Hamiltonian path in
expectation is at least

[
3

2
− 1

k
]w(M).

Lemma 5.5. Let H1 and H2 be two Hamiltonian paths on two different sets of nodes, with a
and b the endpoints of H1. Then, we can form a tour T by connecting the two paths such that
w(T ) ≥ w(H1) + w(H2) + w(a, b) without knowing the edge weights.

Our main techniques involve carefully stitching together greedy and random sub-tours, and
establishing the tradeoffs between them. Our randomized algorithm returns two tours computed
by two different sub-routines with equal probability: these are given by Algorithms 6 and 7.

output: Tour T1

Let M be a greedy matching of size k = N
3 , and B be the nodes not in M ;

Complete M using Lemma 5.4 to form a Hamiltonian path HT on nodes of M ;
Form a Hamiltonian path HB on B using the following randomized algorithm.;
Randomized Path Algorithm ;
Form a random permutation on the nodes in B;
Join the nodes in the same order to form the path;
(i.e., join the first and second nodes, second and third, and so on.);
Final Output T1 is the output formed by using Lemma 5.5 for H1 = HB and H2 = HT .

Algorithm 6: First Subroutine of the randomized algorithm for Max TSP

Lemma 5.6. The following is a lower bound on the weight of the tour returned by Algorithm 6

E[w(T1)] ≥ [
3

8
− 3

4N
]w(T ∗) +

6

N

∑

x,y∈B

w(x, y).

Lemma 5.7. The expected weight of the tour returned by Algorithm 7 is at least [ 1116 − 3
4N ]w(T ∗)−

6
N

∑

x,y∈B w(x, y).

The final bound is obtained by using E[w(T )] = 1
2 (E(w(T1)] + E[w(T2)]).

6 Conclusion

In this paper we study ordinal algorithms, i.e., algorithms which are aware only of preference
orderings instead of the hidden weights or utilities which generate such orderings. Perhaps surpris-
ingly, our results indicate that for many problems including Matching, k-sum clustering, Densest
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output: Tour T2

Let M be a greedy matching of size k = N
3 , and B be the nodes not in M ;

Select N
6 edges uniformly at random from M ;

Complete these edges using Lemma 5.4 to form a Hamiltonian path HT with N
3 nodes;

Let A be the set of nodes in M but not in HT ;
Randomized Alternating Path Algorithm;
Initialize HAB = ∅;
Select one node uniformly at random from A;
Select one node uniformly at random from B;
Add both the nodes to HAB in the same order;
Remove them from A and B respectively ;
Repeat the above process until A = B = ∅;
Final Output;
T2 is the output formed by using Lemma 5.5 for H1 = HAB and H2 = HT .

Algorithm 7: Second Subroutine of the randomized algorithm for Max TSP

Subgraph, and Traveling Salesman, ordinal algorithms perform almost as well as algorithms which
know the underlying metric weights, even when the agents involved can lie about their preferences.
This indicates that for settings involving strategic agents where it is expensive, or impossible to
obtain the true numerical weights or utilities, one can use ordinal mechanisms without much loss
in welfare.

How do these algorithms stand in comparison to unconstrained ordinal algorithms that do not
obey truthfulness? In the full version of this paper, we present non-truthful, ordinal algorithms
for the same set of problems including a 4-approximation algorithm for Densest subgraph and a
1.88-approximation algorithm for Max TSP. In conjunction with the ordinal 1.6-approximation
algorithm for perfect matching from [5], the improved approximation factors indicate a clear sep-
aration between the two classes of algorithms. On the surface, the improvement is not surprising
since in many settings, truthfulness often places strong constraints on the set of allowed algorithms
and techniques; indeed, all of our truthful mechanisms are derived using the three simple tech-
niques outlined in Section 2. That said, given the absence of matching lower bounds in this work,
the resolution of the gap between these two classes of algorithms is perhaps the most important
question that is yet to be addressed.
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A Appendix: Proofs from Section 2

Greedy Algorithms for Other Problems

We now provide some intuition on why greedy approaches do not lead to truthful algorithms for
any of the other problems that we study in this work.
Max k-sum and Densest k-subgraph In any clustering problem, using a greedy algorithm (or
even serial dictatorship for that matter) could result in agents underplaying their most preferred
node if that node will anyway be chosen in a later round. As a concrete example, consider the
densest k-subgraph problem with k = 4, and an instance with 6 nodes whose preferences we define
partially: a’s top 3 nodes are b, c, d; b’s top two nodes are a and d; c’s first two nodes are a, e; d’s
top two preferences are b and e and finally, e, f prefer each other as a first choice.

Consider the simple algorithm that first picks a matching M with k
2 -edges and returns the

same set of nodes as in the matching. Moreover, suppose that the algorithm’s tie-breaking involves
selecting edges containing and a or b before edges containing e, f and then c, d. Now, under these
preferences, we claim that node a stands to improve her utility by lying when all the other agents
are being truthful. To see why, first observe that if node a truthfully reports her preferences, the
algorithm returns {a, b, e, f} as the solution set. On the other hand, if a lies and points to c as her
first preference, then the algorithm picks (a, c) first followed by (b, d) resulting in the set {a, b, c, d},
which is strictly preferable from a’s perspective. A similar example holds for Max k-sum with fixed
tie-breaking rules.

Max TSP The negative example is a bit more subtle for Max TSP. Suppose that the greedy
algorithm works by repeatedly picking undominated edges to build a forest of paths (so only edges
that do not violate this property are maintained). Remember that an agent’s utility for this
problem is simply the sum of weights of the two edges that she is connected to. We construct
a specific sub-instance where a node stands to gain by lying about her first preferences in order
to increase her aggregate utility. It is not particularly hard to design a full set of preferences
consistent with the sub-instance.

Now, suppose that for a certain instance, the algorithm has already proceeded for a given num-
ber of rounds resulting in a forest of three disjoint paths: {a1, a2, a3}, {b1, b2, b3}, and {c1, c2, c3}.
Our antagonist-in-chief for this instance will be a separate node x whose first four choices are
a1 > a3 > b1 > t, with w(x, t) = 1 and w(x, a1) = w(x, a3) = w(x, b1) = 2. Moreover, suppose
that a1’s first and second choices are x > c1, for c1, it is a1 > b1, for b1: c1 > x, and finally, a3’s
top choice is x. Now, if x is truthful, the unfolding series of events among these nodes will result
in the addition of the edges (x, a1) and (x, t) giving x a total utility of 3. On the other hand, it is
preferable for x to make a3 its first preference resulting in x’s two edges being (x, a3) and (x, b1),
which is a strictly better solution from x’s perspective.

B Appendix: Proofs from Section 3: 1.7638-Approximation

Algorithm for Weighted Perfect Matching

Useful but Generic Lemmas

We begin with some general lemmas that do not bear any obvious relation to greedy or random
matchings, but will be useful in proving some of our results later on.

Lemma B.1. Consider the following function of two variables (x, α) whose domains are as follows:
x ∈ [0, 0.5] and α ∈ [0, 1].

f(x, α) = α(
1

2
− x) + (1 − α)(1 − x− x

α
).
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For any fixed x ∈ [0, 18 ], f(x) is not increasing from α = 1
2 to 1. That is, as long as x ∈ [0, 1

8 ],

max
α∈[0.5,1]

f(x, α) = f(x,
1

2
).

Proof. For a fixed x, we can differentiate f with respect to α, and get

∂f

∂α
=

x

α2
− 1

2
.

The lemma follows from the observation that the derivative is not positive when α2 ≥ 2x.

Our next set of lemmas allow us to establish upper bounds on dot-products of weight vectors.
For better understanding, one can imagine these vectors to be the weights of the edges in a greedy
matching. Specifically, the lemmas help us identify the distribution of the weights that lead to our
worst case bounds. We begin with the following trivial lemma.

Lemma B.2. Consider two vectors (w1
i )ni=1 and (w2

i )ni=1 which are identical (i.e., w1
i = w2

i ),
except that ∃r1 ≤ r2, ǫ > 0 such that w1

r1 = w2
r1 + ǫ and w1

r2 = w2
r2 − ǫ.

Let ~a be any fixed vector of the same length satisfying a1 ≥ a2 ≥ . . . ≥ an. Then,

n
∑

i=1

w1
i ai ≥

n
∑

i=1

w2
i ai.

By repeatedly applying the above lemma one can identify weight vectors that dominate all
other weight vectors with respect to the above sum. In essence, the above lemma indicates that it
is always preferable (higher dot product) to transfer the weights from the larger indices of a vector
to smaller indices. By repeatedly using the lemma, one arrives at the following corollary.

Corollary B.3. Consider two vectors (w1
i )ni=1 and (w2

i )ni=1 that satisfy the following conditions

1.
∑n

i=1 w
1
i =

∑n
i=1 w

2
i

2. ∃ some index k such that for every r ≤ k, w1
r ≥ w2

r and for every r > k, w1
r ≤ w2

r .

Let ~a be any fixed vector of the same length satisfying a1 ≥ a2 ≥ . . . ≥ an. Then,

n
∑

i=1

w1
i ai ≥

n
∑

i=1

w2
i ai.

Our final lemma is somewhat more specific and identifies a certain condition under which it is
useful to transfer weight from the lower indices to the higher indices.

Lemma B.4. Consider two vectors (w1
i )2n+1

i=1 and (w2
i )2n+1

i=1 that satisfy the following conditions

1.
∑n

i=1 w
1
i =

∑n
i=1 w

2
i , and

∑2n+1
i=n+1 w

1
i =

∑2n+1
i=n+1 w

2
i

2.
∑n

i=1 w
2
i =

∑2n+1
i=n+1 w

2
i .

3. w2
1 = w0; for every 2 ≤ i ≤ 2n, w2

i = w̄ ≤ w0, and w2
2n+1 = wf .

4. for every 1 ≤ i ≤ 2n, w1
i = w̄ + ǫ for some ǫ > 0 and w1

2n+1 = 0.

Then, for any N ≥ 2n + 1,

2n+1
∑

i=1

w1
i (N − 2i) ≥

2n+1
∑

i=1

w2
i (N − 2i).
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Proof. Let us begin by establishing exact relationships between w0, w̄, wf , ǫ. First, we exploit
Condition (2) to show that w0 − w̄ = wf . Substituting the values of w2

i in Condition (2) gives us,

w0 + w̄(n− 1) = w̄n + wf .

Adding and subtracting w̄, from the LHS gives us the desired equation. Next, we derive an
exact formula for ǫ in terms of w0, w̄, wf , by adding up the two halves of Condition (1).

w0 + (2n− 1)w̄ + wf = 2n(w̄ + ǫ).

Therefore, ǫ =
w0−w̄+wf

2n . Now, we can show that the lemma follows from straightforward
algebra. Consider the difference between the RHS and LHS of the lemma claim, this is given by,

RHS − LHS = (w̄ + ǫ− w0)(N − 2) +

2n
∑

i=2

ǫ(N − 2i) − wf (N − 2(2n + 1)

=

2n
∑

i=1

ǫ(N − 2i) − {(w0 − w̄)(N − 2) + wf (N − 2(2n + 1))}

= ǫ(2nN − 2n(2n + 1)) − {(w0 − w̄)(N − 2) + wf (N − 2(2n + 1))}
= (w0 − w̄ + wf )(N − 2n− 1) − {(w0 − w̄)(N − 2) + wf (N − 2(2n + 1))}
= wf (2n + 1) − (w0 − w̄)(2n− 1)

Substituting w0 − w̄ = wf immediately tells us that RHS − LHS ≥ 0, and thus we complete
the lemma.

General Properties of Matchings

Here we restate a simple lemma from [5]. Since the proof is quite easy, we re-state the full proof
here for completeness.

Lemma B.5. (Upper Bound) Let G = (T,E) be a complete subgraph on the set of nodes T ⊆ S
with |T | = n, and let M be any perfect matching on the larger set S. Then, the following is an
upper bound on the weight of M ,

w(M) ≤ 2

n

∑

x∈T
y∈T

w(x, y) +
1

n

∑

x∈T
y∈S\T

w(x, y)

Proof. Fix an edge e = (x, y) ∈ M . Then, by the triangle inequality, the following must hold for
every node z ∈ T : w(x, z) + w(y, z) ≥ w(x, y). Summing this up over all z ∈ T , we get

∑

z∈T

w(x, z) + w(y, z) ≥ nw(x, y) = n(we).

Once again, repeating the above process over all e ∈ M , and then all z ∈ T we have

nw(M) ≤ 2
∑

x∈T
y∈T

w(x, y) +
∑

x∈T
y∈S\T

w(x, y)

Each (x, y) ∈ E appears twice in the RHS: once when we consider the edge in M containing x,
and once when we consider the edge with y.

28



Properties of Greedy Matchings

Notation

We begin with some notation that helps us better characterize the solution returned by the greedy
algorithm. Suppose that GR denotes the output (set of edges) of the greedy algorithm (Algorithm
1) for a given instance. Then, we use wGR

i to represent the weight of the ith largest edge in GR.
For the rest of this proof, we will be abusing notation when expressing the total weight of edges
inside a set. Specifically, (i) for a set of edges E (for e.g., GR), w(E) (w(GR)) will denote the
sum of the weights of edges inside E (total weight of solution returned by greedy algorithm), (ii)
for a set of nodes S, w(S) denotes the the total weight of the edges inside the induced graph on S,
and (iii) for disjoint S, T ⊆ N , w(S, T ) is the total weight of the edges induced in the (complete)
bipartite graph between S, T .

Top x-matching

Given an instance, the corresponding greedy matching GR, and a fraction x ≤ 1, we define the top
x-matching GRx, with respect to the given greedy matching to be the set of the top (maximum
weight) x fraction of edges inside GR. That is, if |GR| = n, |GRx| = xn and every edge in GRx

has a weight no smaller than any edge in GR \GRx. Finally, let N (GRx) denote the nodes that
together make up GRx.

Our first proposition highlights certain fundamental but very crucial properties that apply to
all greedy matchings. These properties, especially local stability, will provide us with a much nicer
platform towards a more detailed analysis of the greedy matching.

Proposition B.6. Suppose that GR (|GR| = n) denotes the output of Algorithm 1 for some
instance N , GR′ ⊆ GR and T = N (GR′) is the set of nodes that form the edges in GR′.

1. (Local Stability) Suppose that Algorithm 1 is run on the sub-instance consisting only of the
nodes in T with the same set of (sub) preferences. Then its output has to be GR′.

2. Suppose that GR′ = GRx for some x ≤ 1, and let k = xn+ 1. Then, in the induced subgraph
on N \ T , the maximum weight of any edge is at most wGR

k .

Proof. We prove both the properties by contradiction. Suppose that local stability does not hold
and running the greedy algorithm on the subinstance returns a matching GR′′ 6= GR′. Consider
GR′ = (e1, e2, . . . , er), where the edges are ordered based on the position in which they were
selected by Algorithm 1 on the full instance, i.e., e1 was first edge in GR′ to be selected by the
algorithm, e2 was the second edge and so on.

Denote by 1 ≤ t ≤ r, the smallest index such that et = (x, y) /∈ GR′′. Without loss of generality,
suppose that the greedy matching algorithm on the sub-instance picks an edge containing x before
it picks an edge containing y. Call this edge (x, z); then we know exists some z 6= y, such
that (i) (x, z) ∈ GR′′, and (ii) z ∈ et2 for some t2 > t. Notice that by then definition of t,
(e1, . . . , et−1) ⊆ GR′′ and so z cannot belong to any of these edges if it is matched to x.

Consider the round in which the greedy algorithm on the sub-instance picked (x, z): in this
round (x, z) is an undominated edge and y is still available. Therefore, x prefers z to y. However,
consider the round in which the original greedy algorithm picked (x, y), clearly (x, y) is once again
undominated and z was still avaiable in this round as t2 > t. Therefore, with respect to this
algorithm x prefers y to z, which is an overall contradiction since we assumed that the preferences
between nodes in T are not altered.

The second part of the lemma is easier to show. Assume by contradiction that ∃ an edge
(x∗, y∗) such that w(x∗, y∗) > wGR

k is the maximum weight edge in the given induced subgraph.
A maximum weight edge is always undominated, and an undominated edge never ceases to be
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undominated, therefore (x∗, y∗) ∈ GR and more specifically (x∗, y∗) ∈ GR \ GRx. However, this
violates the fact that wGR

k is the largest weight edge in GR \GRx.

Local stability has powerful consequences. For a given instance, we can take a subset of the
greedy matching and show that all of the properties that apply to greedy matchings in general
also apply to the subset, as it can be treated as an independent greedy matching. For the rest of
this proof, we will treat greedy sub-matchings as independent greedy matchings on sub-instances,
when it suits our needs.

The next lemma proves a simple but somewhat surprising fact. It is well-known that the
greedy matching algorithm provides a 1

2 -approximation to the optimum matching. However, we
show something much stronger: in order to get the same approximation factor, it is enough to
consider only the heaviest N

4 edges and completely ignore the rest. This allows us to ‘further
optimize’ on the remaining edges using a random matching.

Lemma B.7. Consider some instance N : let GR be the output of the greedy algorithm for this
instance, and OPT is the value of the maximum weight perfect matching for this instance. Then,

w(GR 1
2
) ≥ OPT

2
.

Proof. We proceed via the standard charging argument applied to prove the half-optimality of the
greedy algorithm. Pick any edge in OPT , say e = (x, y), if (x, y) ∈ GR, we charge the edge to
itself. Otherwise, at least one of x or y must be matched to an edge that yields it the same or
better utility, i.e., w.l.o.g, ∃(x, z) ∈ GR such that w(x, z) ≥ w(x, y). In this case, we charge (x, y)
to (x, z). Clearly, every edge in GR has anywhere between 0 to 2 edges (from OPT ) assigned to
it.

For any e ∈ GR, suppose that se is the number of edges from OPT assigned to e. By our
charging argument, the following inequality must be true,

OPT ≤
N
2

∑

i=1

wGR
i sei ,

where ei is the ith largest edge belonging to GR. Observe that
∑

N
2

i=1 sei = N
2 . Consisder

an alternative ‘slot vector’, (~q)ei such that qei = 2 if i ≤ N
4 and qei = 0 otherwise. As per

Corollary B.3, we know that

N
2

∑

i=1

wGR
i sei ≤

N
2

∑

i=1

wGR
i qei = 2w(GR 1

2
).

Greedy Matchings: Induced Distances

In the following series of lemmas, we prove upper bounds on the total weight of induced edges
inside sets of nodes based on associated greedy matchings.

Lemma B.8. Let T be some set of nodes with |T | = n and let GR denote the output of the greedy
algorithm for this instance. Then,

w(T ) ≤ w(GR) +

n/2
∑

i=1

2wGR
i {n− 2i}.
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Proof. We know that GR contains n
2 edges. Let (xi, yi) denote the ith largest edge in GR, and

for any x, let T̄x denote the set of nodes not present in GRx, i.e., T̄x := N (GR \GRx). For every
i ≤ n

2 , we know from Proposition B.6 that wGR
i is the maximum weight edge in T̄ 2i

n
. Therefore,

for every such i, we know that wGR
i ≥ w(xi, j) and wGR

i ≥ w(yi, j) for all j ∈ T̄ 2i
n

. Summing these
up and adding a trivial inequality on both sides, we get

2|T̄ 2i
n
|wGR

i + wGR
i = 2wGR

i (n− 2i) + wGR
i ≥

∑

j∈T̄ 2i
n

[w(xi, j) + w(yi, j)] + w(xi, yi).

Adding these up for all i gives us the lemma.

Lemma B.9. Suppose that GR denotes the output of the greedy matching algorithm for an instance
N . For some given x, define T := N (GRx) and T̄ = N \ T . Then,

w(T, T̄ ) ≤ 2w(GRx)(|T̄x|).
The proof is very similar to that of the previous lemma, so we do not go over it again.

Lemma B.10. Consider some set of nodes T with |T | = n and let GR denote the output of
the greedy algorithm for this instance. Moreover, suppose that the maximum weight edge in GR,
wGR

1 ≤ w∗. Then,

w(T ) ≤ 2w(GR){n− w(GR)

w∗
}.

Proof. As a consequence of Lemma B.8, we have that

w(T ) ≤ w(GR) +

n/2
∑

i=1

2wGR
i {n− 2i}.

We know that for all i, wGR
i ≤ w∗. Let t = ⌊w(GR)

w∗
⌋ be the maximum number of w∗ values

that fit into w(GR) and r = w(GR)− tw∗ be the remainder. Then, we can construct the following
alternative weight vector: w1

i = w∗ if i ≤ t, w1
t+1 = r, and w1

i = 0, otherwise. Using Lemma B.2
repeatedly, we get a simplified inequality,

n/2
∑

i=1

2wGR
i {n− 2i} ≤

n
2

∑

i=1

2w1
i (n− 2i) =

t
∑

i=1

2w∗(n− 2i) + 2r(n− 2(t + 1)) =

= 2w∗(nt− t(t + 1)) + 2r(n− 2(t + 1)) = 2(w∗t + r)(n − t− 1) − 2r(t + 1)

≤ 2w(GR)(n − t− 1) − 2(rt + r2/w∗) = 2w(GR)(n− t− r

w∗
− 1) =

= 2w(GR)(n− w(GR)

w∗
− 1).

We now wrap up the lemma,

w(T ) ≤ w(GR) + 2w(GR)(n− w(GR)

w∗
− 1) ≤ 2w(GR)(n − w(GR)

w∗
).

Our next lemma is perhaps among the most crucial and technically involved of the lemmas in
this matching proof.
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Lemma B.11. Suppose that GR denotes the output of the greedy algorithm for a given instance
described by a set T of nodes with |T | = n. Moreover, suppose that for a given x in the range
[0, 14 ], we have w(GR2x) ≤ 1

2w(GR). Then,

1

n
w(T ) ≤ 2w(GR){1 − 2x}.

Proof. From Lemma B.8, we know that

w(T ) ≤ w(GR) +

n/2
∑

i=1

2wGR
i {n− 2i}.

Our goal for this lemma is to show that (over all possible distributions of greedy edge weights
satisfying the condition in the lemma), the maximum value of the second term in the above
inequality is obtained when the top 2xn edges of the greedy matching all have the same weight,

specifically w(GR)
2xn . First, define m = xn, i.e., wGR

m is the weight of the smallest edge in GR2x

(since GR has n/2 edges, GR2x will have xn edges). Our proof will crucially depend on the weight
of mth heaviest edge in GR, so let us use w̄ to denote wGR

m . We begin with some less ambitious
sub-claims before showing the main result.

(Sub-Claim 1)

m
∑

i=1

2wGR
i {n− 2i} ≤ 2w0(n− 2) +

m
∑

i=2

2w̄(n− 2i),

where w0 is defined so that w0 +
∑m

i=2 w̄ =
∑m

i=1 w
GR
i . To see why this is the case, consider

the two equal-length vectors ~w1 = (w0, w̄, . . . , w̄) and ~w2 = (wGR
1 , . . . , wGR

m ). Since every entity in
~w2 is at least w̄ (by definition) and the two vectors sum up to the same quantity, it must be the
case that w0 ≥ w̄. So, we can apply our general Corollary B.3 with k = 1 and get the sub-claim.
Next, we state a similar claim for the second half of the edges in GR.

(Sub-Claim 2)

n
2

∑

i=m+1

2wGR
i {n− 2i} ≤

2m
∑

i=m+1

2w̄(n− 2i) + 2wf (n− 2(2m + 1)),

where wf is defined so that
∑2m+1

i=m+1 w̄+wf =
∑

n
2

i=m+1 w
GR
i . As per the lemma statement, we

have that
∑2m+1

i=m+1 w̄ + wf = w(GR) − w(GR2x) ≥ w(GR2x) =
∑m

i=1 w
GR
i = w0 +

∑m
i=2 w̄ ≥ mw̄.

The proof of Sub-Claim 2 comes from an easy (repeated) application of Lemma B.2 since for every
i > m, wGR

i ≤ w̄, so we are simply transferring the weights to the smaller indices. Combining
both the sub-claims, we get an intermediate inequality, from which it is more convenient to arrive
at the lemma.

n/2
∑

i=1

2wGR
i {n− 2i} ≤ 2w0(n− 2) + 2

2m
∑

i=2

w̄(n− 2i) + 2wf (n− 2(2m + 1)).

Without loss of generality, we assume that w0 and wf are defined so that w0 +
∑m

i=1 w̄ =
∑2m

i=m+1 w̄ +wf or else we can always transfer some weight from wf to w0, which only leads to an
increase in the right hand side of the above inequality. This is equivalent to saying that the worst
case for our lemma is when w(GR2x) = 1

2OPT .
If w0 = w̄, then wf = 0, and we are done. So suppose that w0 > w̄. The following sub-claim

completes our proof for the x ≤ 1
4 case.

(Sub-Claim 3) 2w0(n− 2) + 2

2m
∑

i=2

w̄(n− 2i) + 2wf (n− 2(2m + 1)) ≤
2m
∑

i=1

2(w̄ + ǫ)(n− 2i),
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where ǫ > 0 is defined correspondingly in order to maintain the aggregate weight. The sub-claim
is directly derived from Lemma B.4.

Finally, we plug all of these into our original generic bound to get

w(T ) ≤ w(GR) + 2

2m
∑

i=1

(w̄ + ǫ){n− 2i} ≤ 2nw(GR)(1 − 2x).

Lemmas concerning Random Matchings

Having carefully laid down the foundation for a careful future analysis of greedy matchings, we
now move on to showing simple generic lower bounds for random matchings that are applicable
across a variety of situations. We begin with an obvious proposition that sets the stage for more
involved bounds.

Proposition B.12. Suppose that RD denotes the random matching for a given instance N . Con-
sider the following two ways of partitioning N : (i) N = T ∪ B with disjoint T,B, and (ii),
N = T ∪B1 ∪B2, where the 3 sets are once again disjoint. Then,

1. E[w(RD)] = 1
N (w(T ) + w(T,B) + w(B)).

2. E[w(RD)] = 1
N {w(T ) + w(T,B1) + w(B1) + w(T ∪B1, B2) + w(B2)}.

Lemma B.13. Suppose that RD denotes the random matching for a given instance N . Consider
the following two ways of partitioning N : (i) N = T ∪ B with disjoint T,B, and (ii), N =
T ∪B1 ∪B2, where the 3 sets are once again disjoint. Then, for OPT denoting the weight of the
maximum-weight matching,

1. E[w(RD)] ≥ 1
N {w(T ) + |B|OPT − w(B)}.

2. E[w(RD)] ≥ 1
N {w(T ) + w(T,B1) + w(B1) + |B2|OPT − w(B2)}

Proof. The first statement of the lemma is obtained by applying Lemma B.5 with w(M) = OPT ,
S = N , T = B.

The second statement is obtained by applying Lemma B.5 with w(M) = OPT , S = N , T = B2.

Our final corollary is obtained by adding the two parts of Lemma B.13 and dividng by two.

Corollary B.14. Suppose that RD denotes the random matching for a given instance N . Consider
the following two ways of partitioning N : (i) N = T ∪ B with disjoint T,B, and (ii), N =
T ∪B1 ∪B2, where the 3 sets are once again disjoint. Moreover, suppose that B1, B2 ⊆ B. Then,

E[w(RD)] ≥ 1

N
{w(T ) +

1

2
(w(T,B1) + (|B| + |B2|)OPT − w(B1, B2)) − w(B2)}.

C Appendix: Proofs from Section 3: Max k-Matching

Theorem 3.9. Random serial dictatorship is a universally truthful mechanism that provides a
2-approximation for the Max k-matching problem.
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Proof. Notation: Given any set of nodes S, we use Ḡ(S) to denote the directed first preference
graph on S defined as follows: for every i ∈ S, there is a directed edge from i to its most preferred
agent in S − {i}. Our algorithm could be viewed as selecting one edge from Ḡ(T ) uniformly at
random in each iteration, where T denotes the set of available agents.

For any set S, define S−1 ⊂ S to be the random set of nodes remaining in S after removing
one edge uniformly at random from Ḡ(S), i.e., S−1 := S − {i, j} with probability 1

|S| for every

(i, j) ∈ Ḡ(S). Finally, we define OPT (S, r) to denote the (weight of the) maximum weight r-
matching in S (containing r edges). When it is clear from the context, we will abuse notation and
use OPT (S, r) to denote the optimum r-matching itself (as opposed to its value).

Our proof depends on the following crucial structural claim: we show that for any set S,
OPT (S, r) − E[OPT (S−1, r − 1)] is at most twice the weight of an edge chosen uniformly at
random from Ḡ(S). This recursive claim implies that if at all we end up selecting a sub-optimal
edge, then this does not hurt our solution by much since E[OPT (S−1, r− 1)] is bound to be large,
and we apply the algorithm recursively on S−1.

Claim C.1. (Structural Claim) For any given set S ⊆ N and r ≤ |S|
2 , we have that

OPT (S, r) ≤ E[OPT (S−1, r − 1)] +
2

|S|
∑

e∈Ḡ(S)

w(e)

In the above claim, the expectation is taken over the different realizations of S−1. In words,
the claim bounds the change in the optima using the ‘increase in profit’ of our algorithm. We first
show how this claim can be used to complete the proof of Theorem 3.9, and then detail the proof
of Claim C.1.

Proposition C.2. As long as Claim C.1 is obeyed for every S, r, our algorithm provides a 2-
approximation to the Max k-matching.

Proof. Suppose that the algorithm proceeds in rounds (1 to k) where in each round exactly one
edge is selected from the first preference graph. Define Si to denote the random set of available
nodes at the beginning of round i (S1 = N , and is deterministic). Then taking expectation over
Claim C.1, we get that for every i ≤ k,

ESi
[OPT (Si, k − i + 1)] − ESi+1

[OPT (Si+1, k − i)] ≤ ESi
[

2

|Si|
∑

e∈Ḡ(Si)

w(e)].

Moreover, if we define Algi to denote the expected weight of chosen edge in round i, the term
in the RHS is simply twice Algi. Therefore, we can simplify the above inequality as follows.

ESi
[OPT (Si, k − i + 1)] − ESi+1

[OPT (Si+1, k − i)] ≤ 2Algi. (8)

We also know that OPT (N , k) can be written as a telescoping summation, OPT (N , k) =
∑k

i=1 E[OPT (Si, k − i + 1)] − E[OPT (Si+1, k − i)]. After bounding the terms in the right hand
side of the summation using Equation 8, we complete the proof,

OPT (N , k) − E[OPT (Sk+1, 0)] ≤
k
∑

i=1

2Algi.

Since E[OPT (Sk+1, 0)] = 0, and the RHS of the above algorithm is exactly the expected weight
of the solution returned by our algorithm, the proposition follows.

It only remains to prove Claim C.1, which we complete now.
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Proof of Claim C.1

We need to prove that OPT (S, r) ≤ E[OPT (S−1, r − 1)] + 2
|S|

∑

e∈Ḡ(S) w(e). Now, for any i ∈ S,

we use oi to denote the agent i is matched to in OPT (S, r). If the agent is unmatched in OPT (S, r),
we let oi be a null element. We also extend the notion of edge weights so that w(i, ∅) = 0 for all
i. Finally, given any i ∈ S, let si denote i’s most preferred node in S, i.e., the node to which i has
an outgoing edge in Ḡ(S).

Suppose that the (random) serial dictatorship removes the edge (a, sa) from Ḡ(S). We proceed
in two cases based on whether or not a is matched to a non-null agent in OPT (S, r). Let E1 denote
the subset of edges in Ḡ(S) such that a is matched to an actual agent in OPT , i.e., oa 6= ∅. Note
that sa may or may not be matched in OPT . Then, for any (a, sa) ∈ E1, we have that

OPT (S − {a, sa}, r − 1)) ≥ OPT (S, r) − w(a, oa) − w(sa, osa) + w(oa, osa).

That is, OPT (S − {a, sa}, r − 1) is at least as good as the matching obtained by pairing up
oa, osa and leaving the other edges of OPT (S, r). The above inequality is robust to osa being
empty.

Observe that by definition w(a, oa) ≤ w(a, sa) and via the triangle inequality, w(sa, osa) ≤
w(oa, sa) + w(oa, osa) ≤ w(oa, soa) + w(oa, osa). So, we get a simplified charging argument for
edges in E1,

OPT (S − {a, sa}, r − 1)) ≥ OPT (S, r) − w(a, sa) − w(oa, soa). (9)

Finally, let us denote the remaining edges in Ḡ(S) as E2, for every edge in E2; we know that
oa = ∅, osa may or may not be empty. We claim that for both of these cases

OPT (S − {a, sa}, r − 1)) ≥ OPT (S, r) − 2w(a, sa). (10)

The main idea in this case is provided by Lemma D.3, from which we infer that the weight of
any edge in OPT (S, r) is at most twice w(a, sa). So, if osa = ∅, then OPT (S − {a, sa}, r − 1)) is
at least OPT (S, r) − w(a, oa). In the case that both of them are null, one can simply remove any
one edge from OPT (S, r) to get a lower bound for OPT (S − {a, sa}, r − 1)).

We are now ready to complete the proof.

E[OPT (S−1, r − 1)] =
1

|S|
∑

(a,sa)∈Ḡ(S)

OPT (S − {a, sa}, r − 1)

≥ OPT (S, r) − 1

|S|{
∑

(a,sa)∈E1

w(a, sa) + w(oa, soa) +
∑

(a,sa)∈E2

2w(a, sa)}

≥ OPT (S, r) − 1

|S|
∑

(a,sa)∈Ḡ(S)

2w(a, sa)

The crucial observation that leads us from line 2 to line 3 is that for any (a, sa) ∈ E1, the edge
(oa, soa) must also belong to E1. Therefore, in both of these cases, we are only counting w(oa, soa)
twice.

D Densest k-subgraph

Claim D.1. (Trivial Algorithm) Suppose that k ≥ N
2 , then the algorithm that selects a set of size

k uniformly at random from N is a universally truthful 6-approximation algorithm for Densest
k-subgraph.

35



Proof. The truthfulness of this algorithm is quite obvious so we show the approximation factor. A
trival upper bound for OPT is OPT ≤ w(N ), where w(T ) denotes the total weight of the graph
induced by T .

Let S be the random set returned by the above algorithm. Then, for some i, j ∈ N , what

is the probability that i, j ∈ S: this probability is exactly
(N−2

k−2)
(N
k)

. As expected, the worst case

occurs when k = N
2 , giving us Pr(i, j ∈ S) ≥ N/2−1

2(N−1) ≥ 1
6 for N > 3. Therefore, we have that

E[w(S)] ≥ 1
6

∑

i,j∈N w(i, j).

General Lemmas

Before proceeding with our main proof, we take a small detour and prove some generic lemmas
that do not depend on our algorithm.

Lemma D.2. For a given instance, let OPTr denote the weight of the densest subgraph of size r.
Then,

OPTr+1 ≤ OPTr +
2

r − 1
OPTr.

Proof. Suppose that Or+1 denotes the optimum solution to the Densest r + 1-subgraph problem.
Then, OPTr+1 = 1

2

∑

i∈Or+1

∑

j∈Or+1
w(i, j). Then by the pigeonhole principle, there must exist

at least one i ∈ Or+1, such that
∑

j∈Or+1
w(i, j) ≤ 2OPTr+1

r+1 : call this node ĩ. Then, we have that

OPTr ≥ w(Or+1 − {ĩ}) = OPTr+1 −
∑

j∈Or+1

w(̃i, j) ≥ OPTr+1 − 2
OPTr+1

r + 1
.

The rightmost term is OPTr+1
r−1
r+1 . Transposing the multiplicative factor gives us the lemma.

Lemma D.3. Consider any set of nodes T , and suppose that for some x ∈ T , y denotes x’s most
preferred node in T . Then for any given edge (i, j) ∈ T × T , we have that w(i, j) ≤ 2w(x, y).

The lemma follows directly from an application of the triangle inequality. Specifically, w(x, y)
is at least half of the weight of the heaviest edge induced in T .

Lemma D.4. Let T ⊆ N be some set of agents and let x be any given node. Then,

w(x, T ) ≥ 1

|T | − 1
w(T ).

Proof. The proof comes from the triangle inequality once again. For every edge (i, j) ∈ T × T ,
we have that w(i, j) ≤ w(i, x) + w(j, x). Adding this inequality over all edges induced in T , we
observe that for each i ∈ T , w(i, x) appears in the RHS exactly |T |− 1 times, i.e., there are |T |− 1
edges inside T containing i. The rest of the proof follows.

E Appendix: Proofs from Section 4: Truthful Mechanism

for Max Traveling Salesman Problem

Theorem E.1. Algorithm 8 is a universally truthful mechanism that provides a 2-approximation
to the optimum tour. Moreover, the algorithm provides a (2 + ǫ)-approximation to OPT , where
ǫ → 0 as N → ∞ even when the weights do not obey the metric assumption.
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Initialize T to be a random edge from the complete graph on N ;
Let S be the set of available agents initialized to N ;
while S 6= ∅ do

pick one of the end-points of T , say x ;
let y denote x’s most preferred agent in S; add (x, y) to T and remove y from S;

end
Complete T to form a Hamiltonian cycle;

Algorithm 8: Path Building Serial Dictatorship for Max TSP

Proof. It is easy to see that this algorithms is truthful: when an agent i is asked for its preferences,
the first edge of T incident to agent i has already been decided, so i cannot affect it. Thus, to
form the second edge of T incident to i, it may as well specify its most-preferred edge.

The proof proceeds via a straightforward paradigm where we charge edges in T ∗, the welfare
maximizing tour, to those in T , the solution returned by our algorithm. We first introduce some
notation beginning with a simple tie-breaking rule that allows for convenient analysis. Specifically,
suppose that (a, b) denotes the first (random) edge added to T . Then, pick one of a or b (say a)
uniformly at random, and term this node as the ‘dead node’. For the rest of algorithm, a does
not get to select another edge and remains as an end-point of T . The second edge containing a
is added only when the tour is completed to form a cycle. We remark that the randomization in
the first step is essential: if we had selected the first edge based on the input preferences, then the
first node could improve its utility by lying, and the algorithm would no longer be strategy-proof.

Next, for any i ∈ N , we will use t∗1(i) and t∗2(i) to denote the two nodes that i is connected to in
T ∗, and t1(i), t2(i) to the nodes connected to i in T . Finally, suppose that er denotes the random
edge selected by the algorithm and id, the (random) dead node. In this proof, we show that for
any realization of er, id, the optimum tour is at most twice the tour returned by our algorithm.
Therefore, the same approximation bound also holds in expectation.

Fix some instantiation of er, id, call it ẽr, ĩd. Our charging argument comprises of two phases:
in the first phase, we charge to the edges in T all of the edges in T ∗ except the ones containing
the dead node ĩd. While doing so, we ensure that for each edge in T , at most two edges in T ∗

are charged to this edge. In the final phase, we carefully charge the edges in T ∗ containing ĩd to
certain edges in T that were charged at most once in the first phase.

First Phase Charging

Suppose that we use Si to denote the set of available nodes at the instant in our algorithm (for
this particular instantiation of er, id) when an edge containing i is added to T . The algorithm then
proceeds to pick i’s most preferred agent in Si and adds the corresponding edge to T . Suppose
that for every i ∈ N , t2(i) denotes its most preferred node in Si.

Now consider any edge (x∗, y∗) in T ∗ such that x∗, y∗ 6= ĩd. Suppose that x∗ was removed from
the set of available nodes before y∗ during the course of the algorithm. Then, y∗ ∈ Sx∗ and so,
w(x∗, t2(x∗)) ≥ w(x∗, y∗) and we can charge the edge (x∗, y∗) ∈ T ∗ to (x∗, t2(x∗)) ∈ T .

After repeating this charging for every edge in T ∗ except (̃id, t
∗
1 (̃id)), (̃id, t

∗
2 (̃id)), we end up

with the following proposition.

Proposition E.2. The following are true at the end of the first phase of charging.

1. At most two edges in T ∗ are charged to any one edge in T .

2. No edges are charged to (̃id, t1(̃id)), (̃id, t2 (̃id)) ∈ T .

3. At most one edge in T ∗ is charged to any of the edges in T containing t∗1 (̃id), t∗2 (̃id).
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Proof. (Statement 1) Consider any edge of the form (i, t2(i)), as per our definitions, i became
unavailable before t2(i). Thus, the only edges charged to (i, t2(i)) are those in T ∗ containing i,
and there can only be two such edges.
Statement 2 Further, suppose that (̃id, t1(̃id)) denotes the random edge in T . Clearly, edges in
T ∗ containing t1 (̃id) are not charged to the random edge. Finally, no edge in OPT is charged to
(̃id, t2(̃id)), since the latter node is the absolute last node to become unavailable.
Statement 3 This is a direct consequence of the fact that we have not charged (̃id, t

∗
1 (̃id)),

(̃id, t
∗
2 (̃id)).

Second Phase Charging

We use the triangle inequality to charge the edge (̃id, t
∗
1 (̃id)):

w(̃id, t
∗
1 (̃id)) ≤ w(̃id, t2(̃id)) + w(t2 (̃id), t∗1 (̃id)) ≤ w(̃id, t2(̃id)) + w(t∗1 (̃id), t2(t∗1 (̃id))).

The final inequality is due to the fact that t2 (̃id) ∈ St∗
1
(̃id)

(since t2(̃id) is the absolute last

node added to the tour, and so it is available during the entire runtime of the algorithm), and so
w(t2 (̃id), t∗1 (̃id)) ≤ w(t∗1 (̃id), t2(t∗1 (̃id))). Therefore, the edge (̃id, t

∗
1 (̃id)) can be charged to two edges

in T , namely (̃id, t2(̃id)) and (t∗1 (̃id), t2(t∗1 (̃id))
Using exactly the same kind of argument, we can also charge the second edge containing ĩd in

T ∗ to two edges in T , namely (̃id, t2 (̃id)) and w(t∗2 (̃id), t2(t∗2 (̃id)). This concludes the second phase
of charging.

In conjunction with Proposition E.2, we have successfully charged every edge in OPT by using
at most two edges in T . This completes our two approximation.

Proof for the Non-Metric Case

The main idea that leads to the bound for the non-metric case is that the first phase of charging
does not use the metric nature of the weights in any way. Therefore, at the end of first phase, we
charged all of the edges in T ∗ minus the ones containing ĩd by using at most two edges in T . Note
that this is for a particular instantiation.

Therefore, taking the expectation over every such instantiation, we get that

Eid [w(T ∗) − w(id, t
∗
1(id)) − w(id, t

∗
2(id))] ≤ 2E[w(T )]

w(T ∗) − 2

N
w(T ∗) ≤ 2E[w(T )].

For the second inequality, we used the fact that for any i ∈ N , Pr[id = i] = 1
N and therefore

every edge (x∗, y∗) in T ∗ appears with the negative sign twice: once when x∗ is dead, and once
when y∗ is dead.

This completes the proof.

F Appendix: Proofs from Section 5

Theorem F.1. We can efficiently compute an ordinal ( 4
β2 , β)-approximate solution for the Densest

k-subgraph problem for β ≤ 2, i.e., a solution of size βk, whose value is at least β2

4 times that of
the optimum solution of size k.
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Proof. The algorithm is described as follows: “Let M be a greedy matching of size β k
2 . Return S,

the set of nodes which are the endpoints of the edges in M”.
The proof is somewhat complicated, and involves carefully charging different sets of node

distances in S∗ to node distances in S. So, before giving the main proof, we provide a series
of very general charging lemmas. We begin by defining a somewhat unusual ‘device’ that guides
our charging arguments. For the rest of this proof, given a matching M , we will use N(M) to
denote the set of nodes which form the endpoints of the edges in M .

Suppose that we are provided a matching M of some given size, and a set B ⊆ N(M). Now,
given an integer t ≤ |B|, define M(t, B) to be the top (i.e., highest weight) t edges in M , such each
edge in M(t, B) contains at least one node from B. We refer to M(t, B) as the top-intersecting
matching. In the following lemmas, we will highlight the versatility of the top-intersecting matching
by charging different sets of inter node distances to this matching. Later, we will show this ‘device’
can be used to prove the main theorem.

Note that in the lemmas that follow we will assume that M is a greedy matching of size k,
initialized with the complete edge set.

Lemma F.2. Suppose that M is a greedy matching, and B ⊆ N(M) is some given set of size 2m.
Then the following is a upper bound for the total distances of the edges inside B,

∑

x,y∈B

w(x, y) ≤
∑

x,y∈N(M(m,B))∩B

w(x, y) +
5r

2
w(M(m,B)),

where r = |B \ N(M(m,B))|, i.e., r is the number of nodes of B that are not inside the set
N(M(m,B)).

Proof. For convenience, let us use A to denote the set N(M(m,B)) ∩B, i.e., the nodes of B that
are contained in M(m,B). By definition of the top-intersecting matching, |A| ≥ m, and therefore
r ≤ m, since |A| + r = |B|.

First, notice that the edges inside B can be divided into three parts as follows with A serving
as the virtual partition.

∑

x,y∈A

w(x, y) +
∑

x∈A
y∈B\A

w(x, y) +
∑

x,y∈B\A

w(x, y).

The first term above is exactly the same as the first term in the RHS of the lemma statement.
Therefore, it suffices if we show that the second term plus the third term above are at most 5r

2
times the weight of the matching M(m,B). We first consider edges going from A to B \A.

First Part: Suppose that (x, y) is an edge where x ∈ A and y ∈ B \A. Let (x, z) be the edge
in M(m,B) that contains x. Since the edges in M were chosen in a greedy fashion and also, since
w(x, z) is at least as large as the edge in M containing y (by definition of M(m,B)) , we infer
that w(x, z) ≥ w(x, y). In this fashion, we get that for a fixed x ∈ A,

∑

y∈B\Aw(x, y) ≤ rw(x, z),

where r is the number of nodes in B \A.
Summing up over all x ∈ A and all y ∈ B\A, we have

∑

x∈A,y∈B\Aw(x, y) ≤ 2r×w(M(m,B)).

Notice that for a given edge (a, b) ∈ M(m,B), (at most) 2r edges in A×B \A can be charged to
this edge, which happens when both a and b belong to A. In summary, we have

∑

x∈A
y∈B\A

w(x, y) ≤ 2rw(M(m,B)).

Second Part: Next, consider B \A: let M∗(B \A) be the optimum matching using only the
nodes in B \A, and let M(B \A) be the (smallest) set of edges of M containing the nodes in B \A.
Observe that the edges in M(B \A) do not belong to M(m,B) by definition.
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Since we chose the edges in M in a greedy fashion, it is not hard to see that for every edge
e = (x, y) of M∗(B \ A), either the edge e is also in M(B \ A), or one of the two edges of
M(B \A) containing x and y must have higher weight than e. If this were not true, then e would
have been chosen for M , since it would be preferred by both x and y. In particular, this means
that the edge emax which has the highest weight of all edges in M(B \ A), must have weight
at least that of any edge in M∗(B \ A). Moreover, every edge of M(m,B) has higher weight
than emax, since otherwise emax would have been chosen for M(m,B) instead of the edges in it.
Since |M∗(B \ A)| = r

2 and |M(m,B)| = m ≥ r, we know that M(m,B) has at least twice as
many edges as M∗(B \ A). In conclusion, we have that w(M∗(B \ A)) ≤ 1

2w(M(m,B)). Finally,
since the weight of a max-weight matching is at least that of a random matching, we know that
∑

x,y∈B\Aw(x, y) ≤ r × w(M∗(B \A)), so we get

∑

x,y∈B\A

w(x, y) ≤ rw(M∗(B \A)) ≤ r

2
w(M(m,B)).

Adding the upper bounds for the two parts, we get the lemma.

Lemma F.3. Suppose that M is a greedy matching, and suppose that B and C are two disjoint
sets such that B ⊆ N(M), and C ∩N(M) = ∅. Then the following is an upper bound for the edges
going from B to C

∑

x∈B,y∈C

w(x, y) ≤ 2|C|w(M(m,B)),

where |B| = 2m.

Proof. Suppose that M(B) is the (minimal) set of edges in M containing every node in B. Clearly,
M(B) contains at most |B| = 2m edges and encompasses M(m,B).

Fix some x ∈ B: for every y ∈ C, we have that w(x, y) ≤ w(x, z), where the latter is the edge
in M containing x. This is because otherwise the edge (x, z) would not have been undominated,
and thus would not have been added to M . In this manner, we can charge

∑

x∈B,y∈C w(x, y) to
the matching M(B), using at most 2|C| slots of each edge, and a total of 2m|C| slots. This means
that we can use a slot transfer argument and transfer all the slots to the edges in M(m,B), using
at most 2|C| slots of each edge. Therefore, we conclude that

∑

x∈B,y∈C

w(x, y) ≤ 2|C|w(M(m,B)).

This bounds edges going from the intersecting part to the disjoint part.

Lemma F.4. Suppose that M is a greedy matching, and suppose that B and C are two disjoint
sets such that B ⊆ N(M), and C ∩N(M) = ∅. Then the following is an upper bound for the edges
contained in C.

∑

x,y∈C

w(x, y) ≤ (|C|2)

|M | −m
w(M \M(m,B)),

where |B| = 2m.
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Proof. Suppose that M∗(C) is the optimum matching containing only the edges in C. Since
the weight of a max-weight matching is at least that of a random matching, we know that
∑

x,y∈C w(x, y) ≤ |C|w(M∗(C)).
Now, since the nodes in C are not present in M , we know that for any edge (x, y) in M and

(a, b) ∈ M∗(C), it must be that w(x, y) ≥ w(x, a) and w(x, y) ≥ w(x, b). Applying the triangle
inequality, we get that w(a, b) ≤ 2w(x, y). Thus, for every edge in M , its weight is at least half
the weight of any edge in M∗(C). Next, consider the set of |M | −m edges in M \M(m,B): by

the above argument we get that w(M∗(C)) ≤ |C|
|M|−mw(M \M(m,B)). Therefore, in conclusion,

we get
∑

x,y∈C

w(x, y) ≤ |C|w(M∗(C)) ≤ w(M \M(m,B))
|C|2

|M | −m
.

Finally, we establish a lower bound on the distances of the edges inside N(M) once again in
terms of the top-intersecting matching.

Lemma F.5. Suppose that M is a greedy matching. Given any B ⊆ N(M) with B = 2m, let
Top = N(M(m,B)) and A = B∩Top. Then the following is a piecewise lower bound for the edges
inside N(M).

1.
∑

x,y∈Aw(x, y) ≥ ∑

x,y∈Aw(x, y) (Trivial Lower Bound)

2.
∑

x∈Top,y∈Top\Aw(x, y) +
∑

x∈Top,y∈N(M)\Top w(x, y) ≥ (2|M | − 2m + r
2 )w(M(m,B))

3.
∑

x,y∈N(M)\Topw(x, y) ≥ (|M | −m)w(M \M(m,B)),

where r = |B \A|.
Note that when we say x ∈ Top and y ∈ Top \ A, we are counting each edge only once. This

is true for the other summations as well.

Proof. Recall that Top refers to the set N(M(m,B)). Remember that A is a subset of Top, and
B \A has no node in common with Top.

The quantity
∑

x,y∈N(M)w(x, y) includes (at least) ‘edges going from (A to A), (Top to Top\A),

(Top to N(M) \ Top), and (N(M) \ Top to N(M) \ Top).
(Part 2.1):

∑

x∈Top
y∈Top\A

w(x, y) ≥ r

2
w(M(m,B)).

Note that |Top| = 2m, and |A| = (2m− r). Now, pick any edge (x, y) ∈ M(m,B), and the r nodes
z ∈ Top \ A and apply the triangle inequality. We get,

∑

z∈Top\Aw(x, z) + w(y, z) ≥ rw(x, y).

Summing this up over all (x, y) ∈ M(m,B), and all z ∈ Top \ A, and dividing by two (since we
count some edges twice), we get the first statement.

(Part 2.2)

∑

x∈Top
y∈N(M)\Top

w(x, y) ≥ (2|M | − 2m)w(M(m,B)).
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This follows almost directly from taking each edge in M(m,B), and every node in N(M) \B, and
applying the triangle equality.

Summing up Parts 2.1 and 2.2, gives us the second statement of our lemma.
(Part 3)

∑

x,y∈N(M)\B

w(x, y) ≥ (|M | −m)w(M \M(m,B)).

This comes from applying Lemma B.5 to the set N(M) \B.

Applying the Generic Claims

Now that we have some general properties of the top-intersecting matching, we shed light on how
to apply the above framework towards our main theorem. Recall that our algorithm involves
choosing a greedy matching M of size βk

2 , and using its endpoints to form the set S of size βk.
Let S∗ be the optimum solution to the Densest Subgraph problem for input parameter k. Define
B to be the set of nodes that are common to both S and S∗, and let |B| = 2m.

Now as per our definitions M(m,B) is the set of m highest weight edges in M all of which con-
tain at least one node from B, i.e., nodes from S∗. Given this framework, we can express the weight
of our optimum solution w(S∗) as

∑

x,y∈Aw(x, y) +
∑

x∈B,y∈B\Aw(x, y) +
∑

x∈B,y∈S∗\B w(x, y) +
∑

x,y∈S∗\B w(x, y). We take A to be the subset of B contained in M(m,B), and r = |B \A|.
Now, we are in a position to bound w(S∗) in terms of w(M(m,B)), and w(M \ M(m,B)).

Summing up Lemmas F.2, F.3, F.4 (take C = S∗ \B) , we get,

w(S∗) ≤
∑

x,y∈A

w(x, y) +[
5r

2
+ 2(k − 2m)]w(M(m,B))

+
2(k − 2m)2

βk − 2m
w(M \M(m,B)).

Next, applying Lemma F.5, we transform the above upper bound to a bound on w(S). Once
again, in order to avoid lengthy notation, we use Top to refer to N(M(m,B)).

w(S∗) ≤
∑

x,y∈A

w(x, y)

+
2(k − 2m) + 5r

2

βk − 2m + r
2

[
∑

x∈Top
y∈Top\A

w(x, y) +
∑

x∈Top
y∈N(M)\Top

w(x, y)]

+
4(k − 2m)2

(βk − 2m)2

∑

x,y∈N(M)\Top

w(x, y)

≤ max

(

1,
2(k − 2m) + 5r

2

βk − 2m + r
2

,
4(k − 2m)2

(βk − 2m)2

)

w(S)

The rest of the proof is somewhat algebraic, so we only sketch the details here. Look at the
second term inside the maximization function above. For a fixed β, and a fixed value of m, we

can show using some simple calculus that the quantity
2(k−2m)+ 5r

2

βk−2m+ r
2

monotonically increases with

r, and therefore is maximized when r attains its maximum value. Moreover, we know that r ≤ m,
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and r ≤ βk − 2m, since S only contains βk nodes and 2m of them are inside N(M(m,B)). Now,
consider 1 ≤ β ≤ 6

5 , and take r = βk − 2m, we get

w(S∗) ≤ max

(

4k + 5βk − 18m

3βk − 6m
,

4(k − 2m)2

(βk − 2m)2

)

w(S)

Moreover, for a fixed β, both of the terms above reach their maximum value when m is at its

smallest (m = 0) giving us w(S∗) ≤ max
(

4+5β
3β , 4

β2

)

w(S) and so when β ≤ 6
5 , we get w(S∗) ≤

4
β2w(S).

Next, take β ≥ 6
5 , and r = m in our general bound for w(S∗). We get,

w(S∗) ≤ max

(

2k − 3m
2

βk − 3m
2

,
4(k − 2m)2

(βk − 2m)2

)

w(S)

This time, for a fixed 6
5 ≤ β ≤ 2, the first term reaches its maximum value when m is

largest (B = S∗ or 2m = k), and the second when m is at its smallest (m = 0), giving us

w(S∗) ≤ max
(

2− 3
4

β− 3
4

, 4
β2

)

w(S) and so when β ≥ 6
5 , we get w(S∗) ≤ 4

β2w(S).

So in both cases, we get our bound of w(S∗) ≤ 4
β2w(S), which completes the proof of the

theorem.

G Appendix: Proofs from Section 5: 1.88 Approximation

for Max TSP

Before defining our randomized algorithm, we first present the following lemma, which gives a
relationship between matching and Hamiltonian paths.

Lemma G.1. Given any matching M with k edges, there exists an efficient ordinal algorithm that
computes a Hamiltonian path Q containing M such that the weight of the Hamiltonian path in
expectation is at least

[
3

2
− 1

k
]w(M).

Proof. We first provide the algorithm, followed by its analysis. Suppose that K is the set of nodes
contained in M .

1. Select a node i ∈ K uniformly at random. Suppose that e(i) is the edge in M containing i.

2. Initialize Q = M .

3. Order the edges in M arbitrarily into (e1, e2, . . . , ek) with the constraint that e1 = e(i).

4. For j = 2 to k,

5. Let x be a node in ej−1 having degree one in Q (if j = 2 choose x 6= i) and ej = (y, z).

6. If y >x z, add (x, y) to Q, else add (x, z) to Q.

Suppose that Q(j) consists of the set of nodes in Q for a given value of j (at the end of that
iteration of the algorithm). We claim that w(Q) ≥ 3

2w(M) − w(e1), which we prove using the
following inductive hypothesis,

w(Q(j)) ≥ w(M) +

j
∑

r=2

1

2
w(er)
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Consider the base case when j = 2. Suppose that e1 = (i, a), and e2 = (x, y). Without loss of
generality, suppose that a prefers x to y, then in that iteration, we add (a, x) to Q. By the triangle
inequality, we also know that w(x, y) ≤ w(x, a) +w(y, a) ≤ 2w(x, a). Therefore, at the end of that
iteration, we have

w(Q) = w(M) + w(x, a) ≥ w(M) +
1

2
w(e2). (11)

The inductive step follows similarly. For some value of j, let x be the degree one node in ej−1,
and ej = (y, z). Suppose that x prefers y to z, then using the same argument as above, we know
that (x, y) is added to our desired set and that w(x, y) ≥ 1

2w(y, z). The claim follows in an almost
similar fashion to Equation 11 and the inductive hypothesis.

In conclusion, the total weight of the path is 3
2w(M) − w(e1). Since the first node i is chosen

uniformly at random, every edge in M has an equal probability (p = 1
k ) of being e1. So, in

expectation, the weight of the tour is 3
2w(M) − 1

kw(M), which completes the lemma.

Our randomized algorithm involves returning two tours computed by two different sub-routines
with equal probability. We define some pertinent notation before describing the two sub-routines.
Suppose that M is the solution returned by the Greedy Matching Procedure for k = 1

3N , i.e., M
contains 2

3 times the number of edges in any perfect matching. We know from Lemma 2.2 in [5]

that w(M) ≥ w(M∗)
2 , where M∗ is the optimum perfect matching in N ; in fact this is not difficult

to see directly by classic charging arguments comparing greedy matchings to maximum-weight
matchings.

Let Top be the set of nodes whose edges form M , and let B = N \ Top. Finally, given any
Hamiltonian path H , we use H(f) and H(l) to denote the dangling nodes of H , i.e., the two
endpoints of H whose degrees are one. Before showing the algorithm, we give a simple lemma that
provides a ‘nice way’ to form a tour using two Hamiltonian Paths.

Lemma G.2. Let H1 and H2 be two Hamiltonian paths on two different sets of nodes. Then, we
can form a tour T by connecting the two paths such that w(T ) ≥ w(H1)+w(H2)+w(H1(f), H1(l))
without knowing the edge weights.

Proof. For ease of notation, we refer to the 4 endpoints of the two paths in the following manner,
H1(f) = a,H1(l) = b,H2(f) = x,H2(l) = y. Without loss of generality, suppose that a prefers x to
y. Then, let T = H1 ∪H2 ∪ {(a, x), (b, y)}. In this case, we have that w(a, b) ≤ w(a, y) +w(b, y) ≤
w(a, x)+w(b, y). Therefore, we get w(T ) = w(H1)+w(H2)+w(a, x)+w(b, y) ≥ w(H1)+w(H2)+
w(a, b).

output: Tour T1

Let M be a greedy matching of size k = N
3 , and B be the nodes not in M ;

Complete M using Lemma G.1 to form a Hamiltonian path HT on Top;
Form a Hamiltonian path HB on B using the following randomized algorithm.;
Randomized Path Algorithm ;
Form a random permutation on the nodes in B;
Join the nodes in the same order to form the path;
(i.e., join the first and second nodes, second and third, and so on.);
Final Output T1 is the output formed by using Lemma G.2 for H1 = HB and H2 = HT .

Algorithm 9: First Subroutine of the randomized algorithm for Max TSP

We now show lower bounds on the weight of T1. Below T ∗ denotes the optimum-weight tour.
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Lemma G.3. The following is a lower bound on the weight of the tour returned by Algorithm 9

E[w(T1)] ≥ [
3

8
− 3

4N
]w(T ∗) +

6

N

∑

x,y∈B

w(x, y).

Proof. Using linearity of expectations, we get that,

E[w(T1)] = E[w(HT )] + E[w(HB) + w(T1 \ (HT ∪HB))].

For any given Hamiltonian path (using only the nodes in B) HB, suppose that TB denotes the
tour obtained by completing the dangling nodes to form a cycle. From Lemma G.2, we get that
w(T1 \ (HT ∪HB))] ≥ w(HB(f), w(HB(l)). In other words, even though the sub-routine outputs
a random tour, the weight of the edges in T but not HT and HB is at least the weight of the
edge between the two dangling nodes of HB . This is true because we completed the tour in a very
particular fashion using Lemma G.2. Abusing notation, we get

E[w(T1)] = E[w(HT )] + E[w(TB)],

where E[w(TB)] is the expected weight of any tour formed using the nodes only in B. How-

ever, using symmetry arguments, we can conclude that E[w(TB)] ≥ |TB |
|B|(|B|−1)/2

∑

x,y∈B w(x, y) ≥
6
N

∑

x,y∈B w(x, y).

Next, applying Lemma G.1, we get that E[w(HT )] = [ 32 − 3
N ]w(M) ≥ [ 34 − 3

2N ]w(M∗) ≥
[ 38 − 3

4N ]w(T ∗). We used the facts that w(M) ≥ w(M∗)
2 , and w(M∗) ≥ w(T∗)

2 .
Summing up the two parts gives the desired result.

Before describing the second sub-routine, we introduce the notion of an alternating-tour. Given
two equal-sized disjoint sets A,B, we say that TAB is a alternating tour if it is a tour, and
it alternates between nodes in A and B. We can similarly define the notion of an alternating
Hamiltonian path or just alternating path. Notice that an alternating path (or even a tour) can
be represented as a sequence of alternating nodes from A and B respectively. In the following
algorithm, we form an alternating path by adding nodes sequentially to HAB. Finally, recall that
M is a greedy matching of size k = N

3 , and B is set of N
3 nodes not in M .

output: Tour T2

Let M be a greedy matching of size k = N
3 , and B be the nodes not in M ;

Select N
6 edges uniformly at random from M ;

Complete these edges using Lemma G.1 to form a Hamiltonian path HT with N
3 nodes;

Let A be the set of nodes in Top but not in HT ;
Randomized Alternating Path Algorithm;
Initialize HAB = ∅;
Select one node uniformly at random from A;
Select one node uniformly at random from B;
Add both the nodes to HAB in the same order;
Remove them from A and B respectively ;
Repeat the above process until A = B = ∅;
Final Output;
T2 is the output formed by using Lemma G.2 for H1 = HAB and H2 = HT .

Algorithm 10: Second Subroutine of the randomized algorithm for Max TSP

Analysis of Sub-routine 2
We begin by defining some additional notation required for the analysis of Algorithm 10. Suppose
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that T2 represents the set of all tours that are output by the algorithm with non-zero probability
(support of T2). Notice that for any T ′ ∈ T2, we can uniquely divide T ′ into H ′

T , H ′
AB, and the

connecting edges, where H ′
T is the path containing only the edges inside Top \A, and H ′

AB is the
alternating path between A and B. Therefore, we have

E[w(T2)] = E[w(HT )] + E[w(HAB) + w(T2 \ (HT ∪HAB))].

Next, consider the two edges connecting HT and HAB, i.e., T2 \ (HT ∪ HAB). Since these
edges were chosen using the mechanism of Lemma G.2, this means that w(T2 \ (HT ∪ HAB)) ≥
w(HAB(f), HAB(l)), for a given alternating path HAB. And so, abusing notation, we get

E[w(T2)] ≥ E[w(HT )] + E[w(TAB)],

where E[w(TAB)] is the expected weight of any alternating tour formed using the nodes in
A,B. Moreover, this tour is specifically formed by the sequential random mechanism described
in Algorithm 10 to choose a Hamiltonian path, followed by a deterministic step where the path is
completed to form a cycle. In what follows, we establish a lower bound on this quantity.

Lemma G.4. The expected weight of the random alternating tour E[w(TAB)] formed using the
nodes in A,B, is at least 3

N

∑

x∈Top,y∈B w(x, y).

Proof. First, notice that

E[w(TAB)] =
∑

S⊂Top
|S|=N

3

E[w(TAB)|A = S]Pr(A = S). (12)

The above equation follows from the fact that for every possible tour returned by the random
algorithm (say TAB = T ′

AB, and A = S), we have that Pr(TAB = T ′
AB) = Pr(TAB = T ′

AB|A =
S)Pr(A = S).

Now, fix A = S: we have that

E[w(TAB)|A = S] =
∑

x∈S,y∈B

w(x, y)Pr((x, y) ∈ TAB).

By symmetry of our random process, we know that every edge (x, y) between S and B has the
same probability of being included into the tour. Consider the sum of such probabilities:

∑

x∈S,y∈B

Pr((x, y) ∈ TAB) =

∑

x∈S,y∈B

∑

tour T∋(x,y)

Pr(TAB = T ) =

∑

tour T

2N

3
Pr(TAB = T ) =

2N

3

The sum above is over all tours T of nodes S ∪B. Since there are N
3 nodes in both S and B,

then there are N2

9 edges between them, and thus the probability of any edge (x, y) from S to B
being in the tour TAB is exactly 6

N . Thus, we have that:

E[w(TAB)|A = S] =
6

N

∑

x∈S
y∈B

w(x, y).
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The rest of the proof follows from rearranging Equation 12 as a summation across the nodes in
Top, and observing that every node from Top is chosen into A with probability one-half.

Our next lemma completes the lower bound for the second sub-routine.

Lemma G.5. The expected weight of the tour returned by Algorithm 10 is at least [ 1116− 3
4N ]w(T ∗)−

6
N

∑

x,y∈B w(x, y).

Proof. Substituting the bound obtained in Lemma G.4 into the Equation for E[w(T2)], we get,

E[w(T2)] = E(w(HT )] +
3

N

∑

x∈Top,y∈B

w(x, y).

The rest of the proof for obtaining a lower bound on E[w(T2)] is as follows. Suppose that
M∗ is the maximum weight matching on N . By applying Lemma B.5 to the set T = B (so
n = N/3), we know that w(M∗) ≤ 6

N

∑

x∈B,y∈B w(x, y) + 3
N

∑

x∈Top,y∈B w(x, y). Using the fact

that w(T ∗) ≤ 2w(M∗), we get 3
N

∑

x∈Top,y∈B w(x, y) ≥ w(T∗)
2 − 6

N

∑

x∈B,y∈B w(x, y).
Note that HT is obtained by randomly taking half of the matching M and then completing

it. From Lemma G.1, we thus have that E[w(HT )] ≥ [ 34 − 3
N ]w(M). Since by our construction,

w(M) is at least half of w(M∗), which is at least half of w(T ∗), we thus have that E[w(HT )] ≥
[ 3
16 − 3

4N ]w(T ∗).
In summary, we have

E[w(T2)] = (
3

16
+

1

2
− 3

4N
)w(T ∗) − 6

N

∑

x,y∈B

w(x, y).

We also know from Lemma G.3 that

E[w(T1)] = (
3

8
− 3

4N
)w(T ∗) +

6

N

∑

x,y∈B

w(x, y).

The final bound is obtained by using E[w(T )] = 1
2 (E(w(T1)] + E[w(T2)]).

H Lower Bounds

Densest k-Subgraph

Claim H.1. No ordinal approximation algorithm, deterministic or randomized, can provide an
approximation factor better than 2 for Densest k-subgraph.

Proof. Since randomized algorithms are more general than deterministic algorithms, it suffices to
show the claim just for Randomized Algorithms.

Given a parameter k, consider an instance of the Densest k-Subgraph with Mk nodes for a
large enough value of M (say M is much larger than k). The set of nodes in the graph can be
divided into M clusters N1, N2, . . . , NM , each containing k nodes. The preference ordering is given
as follows: for a given i, every node in Ni prefers all the nodes in Ni over every node outside of
Ni. The exact preference ordering within Ni and outside of Ni can be arbitrary.

Now, randomly choose one of M clusters and assign a weight of 2 to all the edges strictly
inside that cluster. Assign a weight of 1 to every other edge in the graph. It is easy to see that
these weights induce the given preference orderings. Now, without loss of generality, it suffices to
consider only algorithms that choose k nodes within a fixed cluster. Moreover, since the clusters
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are identical from the ordinal point of view, the optimum algorithm for this instance just picks
one of the M clusters uniformly at random, and therefore, its approximation ratio is 2

1+ 1
M

which

approaches 2 as M → ∞
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