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Abstract. We study social welfare of learning outcomes in mechanisms
with admission. In our repeated game there are n bidders and m mech-
anisms, and in each round each mechanism is available for each bidder
only with a certain probability. Our scenario is an elementary case of sim-
ple mechanism design with incomplete information, where availabilities
are bidder types. It captures natural applications in online markets with
limited supply and can be used to model access of unreliable channels in
wireless networks. If mechanisms satisfy a smoothness guarantee, existing
results show that learning outcomes recover a significant fraction of the
optimal social welfare. These approaches, however, have serious draw-
backs in terms of plausibility and computational complexity. Also, the
guarantees apply only when availabilities are stochastically independent
among bidders. In contrast, we propose an alternative approach where
each bidder uses a single no-regret learning algorithm and applies it in
all rounds. This results in what we call availability-oblivious coarse corre-
lated equilibria. It exponentially decreases the learning burden, simplifies
implementation (e.g., as a method for channel access in wireless devices),
and thereby addresses some of the concerns about Bayes-Nash equilibria
and learning outcomes in Bayesian settings. Our main results are general
composition theorems for smooth mechanisms when valuation functions
of bidders are lattice-submodular. They rely on an interesting connection
to the notion of correlation gap of submodular functions over product
lattices.

1 Introduction

Truthful mechanism design is a central challenge at the intersection of economics
and computer science, but many fundamental techniques are only very rarely
used in practice. For example, sponsored search auctions are used on a daily
basis and generate billions of dollars in revenue, but they are based on simple
and non-truthful procedures to allocate ads on search result pages. In contrast,
truthful mechanisms often involve heavy algorithmic machinery, complicated
allocation techniques, or other hurdles to easy and transparent implementation.

A recent trend is to study non-truthful and conceptually “simple” mecha-
nisms for allocation in markets and their inherent loss in system performance.
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The idea is to analyze the induced game among the bidders and bound the quality
of (possibly manipulated) outcomes in equilibrium. In a seminal paper, Syrgka-
nis and Tardos [25] propose a general technique for bounding social welfare of
these equilibria, based on a so-called “smoothness” technique. These guarantees
apply even to mixed Bayes-Nash equilibria in environments with composition of
mechanisms. For example, in a combinatorial auction we might not sell all items
via a complicated truthful mechanism, but instead sell each item simultaneously
via simple individual single-item auctions. Such a mechanism is obviously not
truthful, since bidders are not even able to express their valuations for all sub-
sets of items. However, if bidders have complement-free XOS valuations, the
(expected) social welfare of allocations in a mixed Bayes-Nash equilibrium turns
out to be a constant-factor approximation of the optimal social welfare.

While this is a fundamental insight into non-truthful mechanisms, it is not
well-understood how this result extends under more realistic conditions. In par-
ticular, there has been recent concern about the plausibility and computational
complexity of exact and approximate Bayes-Nash equilibria [7]. For more gen-
eral Bayesian concepts based on no-regret learning strategies in repeated games,
there are two natural approaches – either bidder types are drawn newly with
bids, or types are drawn only once initially. While the latter is not really in line
with the idea of incomplete information (bidders could communicate their type
in the course of learning, see [7]), the former is in general hard to obtain. Also,
the composition theorem applies only if bidders’ types are drawn independently.

In this paper, we study a variant of simultaneous composition of mechanisms
and show how to avoid the drawbacks of the Bayesian approach. Our scenario is
motivated by limited availability or admission: Suppose bidders try to acquire
items in a repeated online market, in which m items are sold simultaneously
via, say, first-price auctions. However, in each round only some of the items are
actually available for purchase. This scenario can be phrased in the Bayesian
framework when bidder i’s type is given by the set of items available to him. To
obtain an equilibrium in the Bayesian sense, each bidder would have to consider
a complicated bid vector and satisfy an equilibrium condition for each of the
possible 2m subsets of items.

In contrast, here we assume that bidders do not even get to know (or are not
able to account for) their own availabilities before making bids in each round. We
assume they learn with no-regret strategies in a way that is oblivious to their own
and all other bidders’ availabilities. Thereby, bidders arrive at what one might
term an availability-oblivious coarse-correlated equilibrium – a bid distribution
not tailored to the specific availabilities of bidders, which can be computed (ap-
proximately) in polynomial time. Our main result is that for a large class of
valuation functions, we can apply smoothness ideas in this framework and prove
bounds that mirror the guarantees above. The guarantees apply even if some
bidders learn obliviously and others follow a Bayes-Nash bidding strategy. In
particular, we cover a broad domain with simultaneous composition of weakly
smooth mechanisms in the sense of [25] when bidders have lattice-submodular
valuations. Our study covers cases where availabilities are correlated among bid-
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ders and provides lower bounds for combinatorial auctions with item-bidding
and XOS valuations. As a part of our analysis, we use the concept of correlation
gap from [1] for submodular functions over product lattices.

1.1 Our Contribution

We assume that every mechanism satisfies a weak smoothness bound (for more
details see Section 2 below) with parameters λ, µ1, µ2 ≥ 0. It is known that
for each individual mechanism, this implies an upper bound of (max(1, µ1) +
µ2)/λ on the price of anarchy for no-regret learning outcomes and Bayes-Nash
equilibria. Furthermore, the same bound also applies for outcomes of multiple
simultaneous mechanisms that are tailored to availabilities, i.e., not oblivious.

In Section 3 we consider smoothness for oblivious learning and composition
with independent availabilities, where in each round t, each mechanism j is
available to each bidder i independently with probability qi,j . Our smoothness
bound involves the above parameters and the correlation gap of the class of
valuation functions. In particular, if valuations vi come from a class V with a
correlation gap of γ(V), the price of anarchy becomes γ(V) · (max(1, µ1)+µ2)/λ.

Our construction uses smoothness of simultaneous composition from [25].
However, since learning is oblivious, the deviations establishing smoothness must
be independent of availability. Here we use correlation gap to relate the value
for independent deviations to that of type-dependent Bayesian deviations. Cor-
relation gap is a notion originally defined for submodular set functions in [2].
It captures the worst-case ratio between the expected value of independent and
correlated distributions over elements with the same marginals. We use an ex-
tension of this notion from [1] to Cartesian products of outcome spaces such as
product lattices. For the class V of monotone lattice-submodular valuations, we
prove a correlation gap of γ(V) = e/(e−1), which simplifies and slightly extends
previous results.

In Section 4, we analyze oblivious learning for composition with correlated
availabilities in the form of “everybody-or-nobody” – each mechanism is either
available to all bidders or to no bidder. The probability for availability of mecha-
nism j is qj , and availabilities are independent among mechanisms. In this case,
we simulate independence by assuming that each bidder draws random types and
outcomes for himself. We also consider distributions where outcomes are drawn
independently according to the marginals from the optimal correlated distribu-
tion over outcomes. While these two distributions are directly related via correla-
tion gap, the technical challenge is to show that there is a connection to the value
obtained by the bidder. For lattice-submodular functions, we show a smoothness
bound that implies a price of anarchy of 4e/(e− 1) · (max(1, µ1) + µ2)/λ

2.
For neither of the results is it necessary that all bidders follow our oblivious-

learning approach. We only require that bidders have no regret compared to this
strategy. This is also fulfilled if some or all bidders determine their bids based
on the actually available items rather than in the oblivious way.

Finally, in Section 5 we show a lower bound for simultaneous composition of
single-item first-price auctions with general XOS valuation functions. The corre-
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lation gap for such functions is known to be large [2], but this does not directly
imply a lower bound on the price of anarchy for oblivious learning. We provide
a class of instances where the price of anarchy for oblivious learning becomes
Ω((logm)/(logm logm)). This shows that for XOS functions it is impossible to
generalize the constant price of anarchy for single-item first-price auctions.

Our results have additional implications beyond auctions for the analysis of
regret learning in wireless networks. We discuss these in Appendix A.

1.2 Related Work

Closely related to our work are combinatorial auctions with item bidding, where
multiple items are being sold in separate auctions. Bidders are generally inter-
ested in multiple items. However, depending on the bidder, some items may
be substitutes for others. As the auctions work independently, bidders have to
strategize in order to buy not too many items simultaneously. In a number of
papers [9,5,18,16] the efficiency of Nash and Bayes-Nash equilibria has been
studied. It has been shown that, if the single items are sold in first or second
price auctions and if the valuation functions are XOS or subadditive, the price
of anarchy is constant. Limitations of this approach are shown in [10,24].

Many of these proofs follow a similar pattern, namely showing smoothness.
This concept has been introduced by [22,23] to analyze correlated and Bayes-
Nash equilibria of general games. In [25] it was adjusted to mechanisms, and it
was shown that simultaneous or sequential composition of smooth mechanisms
is again smooth. Combinatorial auctions with item bidding are an example of
a simultaneous composition. To show smoothness of the combined mechanism,
it is thus enough to show smoothness of each single auction. Other examples of
smooth mechanisms are position auctions with generalized second price [8,21]
and greedy auctions [19]. The smoothness approach for mixed Bayes-Nash equi-
libria shown in [25] is, in fact, slightly more general and continues to hold for
variants of Bayesian correlated equilibrium [17].

The complexity of finding such equilibria has been studied only very recently.
It has been shown in [7,15] that equilibria are hard to find in some settings. In
contrast, in [14] a different auction format is studied that yields good bounds
on social welfare for equilibria that can be found more easily. Although similar
in spirit, our approach is different – it shows that in some scenarios agents can
reduce the computational effort and still obtain reasonably good states with
existing mechanisms.

As such, our approach is closer to recent work [13] that shows hardness results
for learning full-information coarse-correlated equilibria in simultaneous single-
item second-price auctions with unit-demand bidders. As a remedy, a form of
so-called no-envy learning is proposed, in which bidders use a different form of
bidding that enables convergence in polynomial time. While achieving a general
no-regret guarantee against all possible bid vectors is hard, we note here that
our approach based on smoothness requires only a guarantee with respect to
bids that are derived directly from the XOS representation of the bidder val-
uation. As such, bidders can obtain the guarantees required for our results in
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polynomial time. Conceptually, we here treat a different problem – the impact
of availabilities, and more generally, different bidder types on learning outcomes
in repeated mechanism design.

A model with dynamic populations in games has recently been considered
in [20]. Each round a small portion of players are replaced by others with differ-
ent utility functions. When players use algorithms that minimize a notion called
adaptive regret, smoothness conditions and the resulting bounds on the price of
anarchy continue to hold if there are solutions which remain near-optimal over
time with a small number of structural changes. Using tools from differential
privacy, these conditions are shown for some special classes of games, including
first-price auctions with unit-demand or gross-substitutes valuations. In con-
trast, our scenario is orthogonal, since we consider much more general classes of
mechanims and allow changes in each round for possibly all players. However,
our model of change captures the notion of availability and therefore is much
more specific than the adversarial approach of [20].

The notion of correlation gap was defined and analyzed for stochastic opti-
mization in [2,1]. The notion was used in [26] for analyzing revenue maximization
with sequential auctions, which is very different from our approach.

2 Model and Preliminaries

There are n bidders that participate in m simultaneous mechanisms. Each mech-
anism j ∈ [m] is a pair Mj = (fj , pj), consisting of an outcome function and pay-
ment functions. More formally, function fj : Bj → Xj maps every bid vector b·,j
on mechanism j into an outcome space Xj . The function pj = (p1,j , . . . , pn,j) de-
fines a payment for each bidder. That is, depending on the bid vector, pi,j : Bj →
R≥0 defines the non-negative payment for bidder i in mechanism j.

We consider a repeated framework with oblivious learning in a simultane-
ous composition of mechanisms with availabilities. There are T rounds and in
each round the bidders participate in m simultaneous mechanisms. In round
t = 1, . . . , T , each bidder places a bid bti,j for each mechanism, the mechanism
determines the outcome and the payments, and bidder i has a utility func-
tion ui(b

t) = vi(f(b
t)) − pi(b

t), where vi is a valuation function over vectors
of outcomes and pi =

∑

j pi,j(b
t). In addition, in each round we assume that

each mechanism is available to each bidder with a certain probability. We let
the Bernoulli random variable Ai,j = 1 if mechanism j is available to bidder
i. Due to availability, the mechanisms must also be applicable when only sub-
sets of bidders are placing bids. For this reason, it will be convenient to assume
that the outcome space for mechanism j ∈ [m] is Xj = X1,j × . . . × Xn,j and
xj ∈ Xj is xj = (xi,j)i∈[n]. We assume that each bidder, for whom the mecha-
nism is not available, must place a bid of “0”. If bidder i bids 0 for mechanism
j, we assume fj(0, b−i,j) = ⊥i,j, where ⊥i,j is a “losing” outcome, and payment
pi,j(0, b−i,j) = 0. For convenience, we will denote by f = (fj)j∈[m] the composed
mechanism and by X = X1 × . . .×Xm its outcome space.
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Oblivious Learning We assume oblivious learning – each bidder runs a single
no-regret learning algorithm and uses the utility of every round as feedback, no
matter how the availability in each round turns out. In hindsight, the average
history of play for oblivious learning becomes an availability-oblivious variant
of coarse-correlated equilibrium [6]. Hence, the outcomes of oblivious learning
are captured by the coarse-correlated equilibria in the following one-shot game:
First, all bidders simultaneously place a bid for every mechanism. They know
only the probability distribution of the availabilities. Only after they placed their
bids, the availability of each mechanism for each bidder is determined at random.

Definition 1. An availability-oblivious coarse-correlated equilibrium is a dis-
tribution over bid vectors b (independent of A) such that, in expectation over all
availabilities, it is not beneficial for any bidder i to switch to another bid b′i. For
each i and each b′i, we have E [ui(b

′
i, b−i)] ≤ E [ui(b)].

Indeed, our results also hold for a larger class of equilibria, in which a subset of
bidders might not be oblivious to availabilities. For our guarantees, it is enough to
consider distributions over bidding strategies b which might dependent on A such
that, in expectation over all availabilities, it is not beneficial for any bidder i to
switch to another bid b′i. For each i and each b′i, we haveE [ui(b

′
i, b−i)] ≤ E [ui(b)].

Note that both ordinary coarse-correlated equilibria and availability-oblivious
ones fulfill this property.

We bound the performance of these equilibria by deriving suitable smooth-
ness bounds.

Smoothness We assume that each mechanism j satisfies weak smoothness as de-
fined in [25]. For any valuations vi,j : Xj → R

≥0 there are (possibly randomized)
deviations1 b′i,j for each i ∈ [n] such that for all bid vectors b·,j

E




∑

i∈[n]

vi,j(fj(b
′
i,j , b−i,j))− pi,j(b

′
i,j , b−i,j)





≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj)− µ1 ·
∑

i∈[n]

pi,j(b·,j)− µ2

∑

i∈[n]

hi,j(bi,j , fj(b·,j)) , (1)

where hi,j(bi,j , xj) = maxb−i,j :fj(b·,j)=xj
pi,j(b·,j). For intuition, assume that (1)

holds with µ2 = 0. Consider a learning outcome with a no-regret guarantee where
every bidder i can gain at most ǫ in any fixed deviation, i.e., E[vi,j(fj(b·,j)) −
pi,j(b·,j)] ≥ E

[
vi,j(fj(b

′
i,j , b−i,j))− pi,j(b

′
i,j , b−i,j)

]
− ǫ . Applying (1) pointwise

∑

i∈[n]

E[vi,j(fj(b·,j))−pi,j(b·,j)] ≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj)−µ1 ·
∑

i∈[n]

E[pi,j(b·,j)]−nǫ,

1 In slight contrast to [25], we here assume that the smoothness deviations of a bidder
do not depend on his own current bid. This serves to simplify our exposition and
can be incorporated into our analysis.
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which implies for social welfare

∑

i∈[n]

E [vi,j(fj(b·,j))] ≥ λ· max
xj∈Xj

∑

i∈[n]

vi,j(xj)+(1−µ1)·
∑

i∈[n]

E[pi,j(b·,j)]−nǫ .

Every bidder i can stay away from the market and payments are non-negative,
so 0 ≤ E[pi,j(b·,j)] ≤ E[vi,j(fj(b·,j))] + ǫ and

max(1, µ1)
∑

i∈[n]

E [vi,j(fj(b·,j))] ≥ λ · max
xj∈Xj

∑

i∈[n]

vi,j(xj)− (n+ µ1)ǫ .

Thus, for ǫ → 0, the price of anarchy tends to max(1, µ1)/λ. More generally, (1)
implies a bound on the price of anarchy of (µ2+max(1, µ1))/λ for many equilib-
rium concepts. If µ2 > 0, then the bound relies on an additional no-overbidding
assumption, which directly transfers to our results. For details see [25].

Valuation Functions Our main results apply for the class of monotone lattice-
submodular valuations. Suppose for every mechanism j the set Xij of possible
outcomes for bidder i forms a lattice (Xij ,�ij) with a partial order �ij . Bidder
i has a lattice-submodular valuation vi if and only if it is submodular on the
product lattice (Xi,�i) of outcomes for bidder i: ∀xi, x̃i ∈ Xi : vi(xi∨x̃i)+vi(xi∧
x̃i) ≤ vi(xi) + vi(x̃i). In the paper, we concentrate on distributive lattices, for
which this definition is equivalent to the diminishing marginal returns property:

∀zi �i yi ∈ Xi =⇒ ∀t ∈ Xi : vi(t ∨ yi)− v(yi) ≥ vi(t ∨ zi)− v(zi).

Lattice-submodular functions generalize submodular set functions but are a
strict subclass of XOS functions. Bidder i has an XOS valuation vi if and only
if there are additive functions v1i , v

2
i , . . . with vki

i (xi) =
∑

j v
ki

ij (xij) for every

xi,j ∈ Xi,j and vi(xi) = maxki
vki

i (xi).

3 Composition with Independent Admission

We first consider simultaneous composition of smooth mechanisms with inde-
pendent availabilities. Here, all random variables Ai,j are independent, and we
let qi,j = Pr [Ai,j = 1].

Definition 2. Let v be a valuation function on a product lattice, coming from a
class of valuation functions V. Given vectors x1, . . . , xk and numbers α1, . . . , αk ∈
[0, 1] such that

∑k

j=1 αj = 1, determine another vector y at random by setting

component yi to xj
i independently with probability αj. Then, the smallest γ s.t.

∑k

j=1 αjv(x
j) ≤ γ ·E [v(y)] is the correlation gap of class V.

Theorem 1. Suppose bidder valuations are monotone and come from a class V
with a correlation gap of γ(V). The price of anarchy for oblivious learning for si-
multaneous composition of weakly (λ, µ1, µ2)-smooth mechanisms with valuations
from V and fully independent availability is at most γ(V) · (µ2 +max(1, µ1))/λ.
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Before the proof of the main theorem of this section, we note that in Ap-
pendix C.1 we also prove an upper bound of e/(e − 1) on the correlation gap
of lattice-submodular valuations with diminishing marginal returns. This result
slightly generalizes the result of [1] from composition of totally ordered sets to
arbitrary product lattices.

Lemma 1 (Correlation Gap on a Product Lattice). Let v be a function
with diminishing marginal returns on a product lattice. Given vectors x1, . . . , xk

and numbers α1, . . . , αk ∈ [0, 1] such that
∑k

j=1 αj = 1, determine another vector

y at random by setting component yi to xj
i independently with probability αj.

Then E [v(y)] ≥
(
1− 1

e

)∑k
j=1 αjv(x

j).

From here, we arrive at the following corrolary of the main theorem.

Corollary 1. The price of anarchy for oblivious learning for simultaneous comp-
osition of weakly (λ, µ1, µ2)-smooth mechanisms with monotone lattice-submodular
valuations and fully independent availability is at most e/(e−1)·(µ2+max(1, µ1))/λ.

Proof of Theorem 1. We will prove the theorem by defining an availability-
oblivious (randomized) deviation b′i for each player i such that the following
inequality will hold for any (not necessarily availability-oblivious) bidding strat-
egy b:

∑

i

E [ui(b
′
i, b−i)]

≥
1

γ(V)
· λ ·

∑

i

E [vi(x
∗)]− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] , (2)

where x∗ denotes the (random) optimal outcome. From this inequality, whose
form is in fact exactly that of the smoothness condition (1), the claim of the
theorem follows as described in Section 2.

In more detail, to attain the aforementioned inequality, we will relate each
player’s utility for deviating to b′i to the utility he could achieve if he was
allowed to see and react upon the availabilities. In that case, he could sim-
ply use the smoothness deviation tailored to the specific availability profile
Ai = (Ai,1, . . . , Ai,m) that he is encountering. We denote this non-oblivious

smoothness deviation by bAi

i . Because the global mechanism is a simultaneous
composition of (λ, µ1, µ2)-smooth mechanisms, it is again (λ, µ1, µ2)-smooth.
Therefore we know that the non-oblivious deviations bAi

i do exist, and they
satisfy the smoothness inequality (1) by definition.

We proceed to define, for each player i, the availability-oblivious deviation
b′i. First, bidder i assumes for himself a reduced valuation function v̄i = α · vi,
for some appropriate α to be chosen later. The deviation b′i is a composition of
component-wise independent deviations b′i,j, i.e. b

′
i = (b′i,1, . . . , b

′
i,m) where each

b′i,j is chosen independently. To arrive at b′i,j, bidder i assumes that mechanism
j is available to him and draws all other availabilities independently according
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to probabilities qi′,j′ . This means that he draws availabilities for all other play-
ers on all mechanisms and also his own availabilities on all mechanisms other
than j. Now he has a full availability profile, and therefore he can consider
the non-oblivious smoothness deviation. He observes the j-th component of this
smoothness deviation and sets b′i,j to be equal to it. Note that b′i,j will be applied
only with the probability that mechanism j is in fact available to bidder i, i.e.
with probability qi,j .

Next, we want to compare ui(b
′
i, b−i) and ui(b

Ai

i , b−i). Let us focus on the

valuation vi(f(b
′
i, b−i)) first. The non-oblivious smoothness deviation bAi

i is a
vector whose components are correlated. More precisely, to form this bid we
observe Ai, sample the availabilities A−i and bids b−i of other players, and
take the optimal allocation x∗ for the resulting availability profile A. Then, we
determine the ℓ for which v̄i(x

∗
i ) =

∑

j v̄
ℓ
i,j(x

∗
i,j) and use v̄ℓi,j for determining

bAi

i,j (note that Ai can be regarded as bidder i’s type in a Bayesian sense, for

more details see [25]). Therefore, the components of bAi

i are correlated through

the common choice of ℓ. Our deviation b′i is assembled by setting b′i,j = (bAi

i,j)kj

independently for each j.
Formally, let rℓi,j denote the conditional probability that the optimum yields

an outcome vector x∗ that attains its maximum value for bidder i in v̄ℓi , given
that Ai,j = 1. Then, the marginal probability of observing bAi

i,j = (bAi

i,j)ℓ is

rℓi,jqi,j . In b′i we pick ℓ independently for each mechanism with probability

rℓi,j , which yields a combined probability of rℓi,jqi,j for availability and devi-

ation. Thus, b′i simulates the marginal probabilities of outcomes in bAi

i , i.e.,

Pr [fj(b
′
i, b−i) = yi,j | A−i, b−i] = Pr

[

fj(b
Ai

i , b−i) = yi,j | A−i, b−i

]

for all yi,j ∈

Xi,j , for each j ∈ [m]. Hence, for fixed A−i, b−i, the two expected valuations

E [vi(f(b
′
i, b−i)) | A−i, b−i] and E

[

vi(f(b
Ai

i , b−i)) | A−i, b−i

]

are related via cor-

relation gap.
Thus, setting α = 1/γ(V) and v̄i(x) = 1/γ(V) · vi(x) we get

E [vi(f(b
′
i, b−i)) | A−i, b−i] =

∑

y∈X

vi(y) ·Pr [f(b′i, b−i) = y | A−i, b−i]

=
∑

y∈X

vi(y) ·
∏

j

Pr [fj(b
′
i, b−i) = yi,j | A−i, b−i]

≥
1

γ(V)
·
∑

y∈X

vi(y) ·Pr
[

f(bAi

i , b−i) = y | A−i, b−i

]

=
1

γ(V)
·E
[

vi(f(b
Ai

i , b−i)) | A−i, b−i

]

= E
[

v̄i(f(b
Ai

i , b−i)) | A−i, b−i

]

.

In addition, because payments are simply additive across mechanisms, it is
straightforward to see that for every bidder i

E [pi(b
′
i, b−i) | A−i, b−i] = E

[

pi(b
Ai

i , b−i) | A−i, b−i

]

.
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This allows to apply the smoothness bound for Bayesian mechanisms with inde-
pendent types from [25] to derive

∑

i

E [ui(b
′
i, b−i)]

=
∑

i

E [vi(f(b
′
i, b−i))]−E [pi(b

′
i, b−i)]

≥
∑

i

E
[

v̄i(f(b
Ai

i , b−i))
]

−E
[

pi(b
Ai

i , b−i)
]

≥ λ ·
∑

i

E [v̄i(x
∗)]− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))]

=
λ

γ(V)
·
∑

i

E [vi(x
∗)]− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))]

This proves the desired smoothness guarantee and implies the theorem. ⊓⊔

4 Composition with Everybody-or-Nobody Admission

We consider the case in which at each point in time each mechanism is either
available to all bidders or to none. We let Aj = Ai,j for all i ∈ [n] and qj =
Pr [Aj = 1]. Note that all Aj are assumed to be independent.

Let the social optimum be denoted by x∗. We assume that x∗
j = ⊥j if Aj =

0. Otherwise, x∗ might have different values, depending on the availabilities
of other mechanisms. Let us denote the possible outcomes by x1

j , x
2
j , . . . and

let rℓj := Pr
[
x∗
j = xℓ

j

∣
∣ Aj = 1

]
. That is, rℓj is the marginal probability of xℓ

j

conditioned on j being available. Theorem 2 formulates our main result in this
section.

Theorem 2. The price of anarchy for oblivious learning for simultaneous comp-
osition of weakly (λ, µ1, µ2)-smooth mechanisms with monotone lattice-submodular
valuations and everybody-or-nobody admission is at most 4e/(e − 1) · (µ2 +
max(1, µ1))/λ

2.

Proof. We will prove that, for each bidder i and each mechanism j there are
randomized deviation strategies b′i,j that are independent of the availabilities
such that the following smoothness guarantee holds against any (potentially
non-oblivious) bidding strategy b:

∑

i

E [ui(b
′
i, b−i)]

≥

(

1−
1

e

)
λ2

4

∑

i

E [vi(x
∗)]− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] .

From this guarantee the claim of the theorem again follows as described in
Section 2.
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To define b′i,j , every bidder i draws two vectors zi and t̃i at random as follows.

He sets zij to xℓ
j with probability rℓj/α, where α = 2/λ, and to ⊥j with the

remaining probability. Furthermore, he sets t̃ij to xℓ
j with probability qjr

ℓ
j and

to ⊥j with the remaining probability. These draws are performed independent
of any availabilities. Observe that for each i, we have E

[∑

i′ vi′(t̃
i)
]
≥ (1 −

1
e )E [

∑

i′ vi′(x
∗)] by Lemma 1.

Due to the random draws, each bidder i′ defines functions wi′

i,j : Ωj → R

for each bidder i and each mechanism j. Function wi′

i,j maps an outcome of
mechanism j, denoted by yj, to a real number as follows

wi′

i,j(yj) = vi(t̃
i′

1 , . . . , t̃
i′

j−1, yj∧z
i′

j ,⊥j+1, . . . ,⊥m)−vi(t̃
i′

1 , . . . , t̃
i′

j−1,⊥j , . . . ,⊥m) .

Note that these functions do not necessarily reflect the actual value any out-
come might have. They are only used to define the deviation strategy: bidder
i′ pretends all bidders i, including himself, would have valuations wi′

i,j for the
outcome of mechanism j. This gives him a deviation strategy b′i′,j by setting

b′i′,j = b∗i′,j(w
i′

1,j , . . . , w
i′

n,j) as defined by the smoothness of mechanism j.
The proofs for the following three lemmas are presented in Appendix C.2, C.3, C.4.

Lemma 2. For every bidder i and deviating bids b′i,j = b∗i,j(w
i
1,j , . . . , w

i
n,j),

E [vi(f(b
′
i, b−i))] ≥

∑

j

E
[
wi

i,j(fj(b
′
i,j , b−i))

]
−

1

α(α + 1)
E
[
vi(t̃

i)
]

.

Lemma 3. For the adjusted functions w we can apply smoothness to obtain

∑

i

∑

j

E
[
wi

i,j(fj(b
′
i,j , b−i))− pi,j(b

′
i,j , b−i)

]

≥ λ
∑

i

∑

j

qjE
[
w1

i,j(z
1
j )
]
− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] .

Lemma 4. For function w1, random vectors z1j and t̃1, and every mechanism j

∑

j

qjE
[
w1

i,j(z
1
j )
]

=
1

α
E
[
vi(t̃

1)
]

.

The bound from Lemma 3 has striking similarities to the smoothness bound
(1). However, it is expressed in terms of the functions wi′

i,j rather than the actual
valuation functions vi. The other two Lemmas show that, in expectation, these
functions are close enough to the functions vi so that this bound actually suffices
to prove the main result:

∑

i

E [ui(b
′
i, b−i)] =

∑

i

E



vi(f(b
′
i, b−i))−

∑

j

pi,j(b
′
i,j , b−i)
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≥
∑

i

∑

j

E
[
wi

i,j(fj(b
′
i,j , b−i))− pi,j(b

′
i,j , b−i)

]
−

1

α(α+ 1)

∑

i

E
[
vi(t̃

i)
]

(by Lemma 2)

≥ λ
∑

i

∑

j

qjE
[
w1

i,j(z
1
j )
]
− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))]

−
1

α(α+ 1)

∑

i

E
[
vi(t̃

1)
]

(by Lemma 3)

=
∑

i

(
λ

α
−

1

α(α+ 1)

)

E
[
vi(t̃

i)
]
− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] .

(by Lemma 4)

By setting α = 2
λ

∑

i

E [ui(b
′
i, b−i)] ≥

λ2

4

∑

i

E
[
vi(t̃

1)
]
− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))]

≥

(

1−
1

e

)
λ2

4

∑

i

E [vi(x
∗)]− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] .

The last step follows from Lemma 1.

Note that technically the mechanism could be randomized itself. Our results
extend to this case in a straightforward way.

5 A Lower Bound for General XOS Functions

In this section we consider combinatorial auctions with item bidding and first-
price auctions. We can apply the previous analysis, since for each bidder the
outcomes form a trivial 2-element lattice – winning an item is the supremum
outcome, not winning is the infimum outcome. In the analysis, observe that each
bidder determines a random allocation of items according to the probabilities
in the optimum. Based on these allocations, bidders determine the valuations
wi′

i,j , which in turn form the basis for the deviation. The first-price auction with
general bidding space is (1 − 1/e, 1, 0)-smooth [25]. If valuation functions are
submodular, the composition theorems can be applied to yield the following
corollary.

Corollary 2. The price of anarchy for oblivious learning for simultaneous com-
position of single-item first-price auctions with monotone submodular valuations
and fully independent availability is at most 1/(1−1/e)2; for everybody-or-nobody
admission it is at most 4/(1− 1/e)3.

For more general XOS valuations, we prove a lower bound that with obliv-
ious bidding we will not be able to show a guarantee based on the smoothness
parameters – even for a single bidder, so the bound applies without assumptions
on correlation among bidders. The proof can be found in Appendix C.5.
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Theorem 3. In a simultaneous composition of discrete first-price single-item
auctions with m items and XOS valuations, the price of anarchy for pure Nash
equilibria with oblivious bidding can be as large as Ω((logm)/(log logm)), while
each single mechanism is weakly (1/2, 1, 0)-smooth.

6 Conclusion

In this paper, we have studied an oblivious variant for no-regret learning in
repeated games with incomplete information and proved a composition theorem
for smooth mechanisms. The bounds show that even if bidders apply learning
algorithms independently of their types, they can still obtain outcomes that
approximate the optimal social welfare within a small ratio.

Our primary motivation are changes over time on the supply side. That is,
bidders value items the same at all times but are constrained when they can buy
them. A different interpretation that leads to the same model is when bidders
value items differently from time to time. Here the valuation for a bundle has
the special structure that it is given by the value of a fixed submodular function
evaluated on the intersection of this bundle with a random set.

There is potential to generalize this approach to other interesting settings.
For example, one could consider general independent types, where the complete
availability-vector of a single bidder is drawn from a bidder-specific distribu-
tion, and for each bidder this is done independently. In Appendix B, we give a
partial answer and show how our techniques can be extended to the following
case. Consider simultaneous single-item auctions with unit-demand valuations,
i.e., vi(S) = maxj∈S vi,j . The distribution over valuations is such that for each
item the value vi,j is independently drawn from a distribution of small support.
Independent availabilities can be captured in this setting by setting vi,j to a
fixed value or to 0 with the respective probabilities.
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A Applications beyond Auctions

Our results have interesting implications beyond mechanisms that incorporate
standard auction formats. A very intriguing one is channel allocation in wire-
less networks. The overall problem is to maximize the utilization of a wireless
channel while avoiding interference. To this end, the following game was defined
in [3]: Each player i corresponds to a pair of a sender si and a receiver ri. The
transmission from si to ri is successful if the signal-to-interference-plus-noise
ratio (SINR) is high enough. This means that the incoming interference from
senders transmitting simultaneously plus ambient noise is by a factor smaller
than the intended signal. Formally, transmission i is successful if

p
d(si,ri)α

∑

j∈S\{i}
p

d(sj ,ri)α
+ ν

≥ β .

Here p > 0 is the (fixed) power level, S ⊆ [n] is the set of simultaneous trans-
missions; α > 0, β > 0, and ν ≥ 0 are constants.

To derive a game, each player has two strategies bi: either he decides to
transmit or not to. The best possible outcome is a successful transmission. An
unsuccessful transmission is the worst possible outcome. Due to the energy con-
sumption, it is considered to be even worse than not transmitting at all. This is
reflected in the following utility function.

ui(b) =







1 if bi = 1 and i is successful against b−i

−1 if bi = 1 and i is not successful against b−i

0 if bi = 0

The robust price of anarchy of this game is constant [4]. In every coarse cor-
related equilibrium, the expected number of successful transmissions is only a
constant smaller than the maximum possible number of simultaneous successful
transmissions.

Quite surprisingly, this game corresponds to a smooth mechanism as follows.
Each player decides whether to transmit; a player always has valuation 2 for
making a successful transmission. However, whenever making a transmission
(successful or not), the bidder has to pay 1. This is comparable to an all-pay
auction, where each bidder has to pay his bid, regardless of whether he wins the
respective item.

Theorem 4. The mechanism representing the channel-allocation game is weakly
(1, µ1, µ2)-smooth for µ1 = O(1) and µ2 = 0.

Proof. Let S ⊆ N be a maximum set of players that can transmit simultaneously.
Define b′ by setting b′i = 1 for i ∈ S and b′i = 0 for i 6∈ S. That is, ui(b

′
i, b−i) = 0

for all i 6∈ S. Consider some bid vector b, let T be the set of players making a
transmission attempt. Note that by our definition

∑

i pi(b) = |T |.
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Furthermore, i ∈ S is successful under (b′i, b−i) if and only if

p
d(si,ri)α

∑

j∈T\{i}
p

d(sj ,ri)α
+ ν

≥ β ,

for which it is sufficient to have

∑

j∈T\{i}

d(si, ri)
α

d(sj , ri)α
+

d(si, ri)
α

p
ν <

1

β
,

which is equivalent to

∑

j∈T\{i}

aj,i < 1 where aj,i = min

{

1,
1

1
β
− d(si,ri)α

p
ν

d(si, ri)
α

d(sj , ri)α

}

.

This implies ui(b
′
i, b−i) ≥ 1− 2

∑

j∈T\{i} aj,i. Taking the sum over all i ∈ S, we
get

∑

i∈S

ui(b
′
i, b−i) ≥ |S| − 2

∑

j∈T

∑

i∈S\{j}

aj,i .

Lemma 11 in [4] shows that
∑

i∈S\{j} aj,i ≤ C for some constant C because

S \ {j} is a feasible set. This gives us

∑

i∈N

ui(b
′
i, b−i) =

∑

i∈S

ui(b
′
i, b−i) ≥ |S|−2

∑

j∈T

C = |S|−2C
∑

i∈N

pi(b) .

⊓⊔

By applying our composition theorems, we obtain a constant price of anarchy
for oblivious learning in this game even when we have multiple channels with fully
independent or everybody-or-nobody availability. This simplifies and generalizes
an approach based on sleeping expert learning in [11]. Furthermore, our analysis
can also be conducted similarly for other interference models with a bounded
independence condition, see [11,12] for a discussion.

B Extension to Changing Unit-Demand Functions

We now consider a case in which valuations change over time rather than the
supply. In particular, we consider a unit-demand setting, i.e., there are values vi,j
such that vi(S) = maxj∈S vi,j . We assume that each of the vi,j is an independent
random variable in which constantly many outcomes have a positive probability.
So, for a fixed player i, the valuation is defined such that for k = 1, . . . ,K we

let vi,j = v
(k)
i,j with probability q

(k)
i,j ,

∑K

k=1 q
(k)
i,j = 1. Without loss of generality,

let v
(1)
i,j ≥ v

(2)
i,j ≥ . . . ≥ v

(K)
i,j .

To apply availability-oblivious learning, player i now makes K copies of each

item j. The kth copy of item j has value v
(k)
i,j , and it is available whenever

16



vi,j ≥ v
(k)
i,j . Note that, when restricting the consideration to only the most valu-

able item, we can equivalently assume that availabilities of items are drawn

independently with probability q
(k)
i,j /

∑K
k′=k q

(k′)
i,j for the kth copy of item j.

By the same argument as in Section 3, we then have

∑

i

E [ui(b
′
i, b−i)] =

∑

i

E [vi(f(b
′
i, b−i))]−E [pi(b

′
i, b−i)]

≥

(

1−
1

e

)
∑

i

E
[

vi(f(b
Ai

i , b−i))
]

−E
[

pi(b
Ai

i , b−i)
]

,

when comparing the availability-oblivious deviation b′i with the availability-
aware ones bAi

i .
Therefore, if each single mechanism is weakly (λ, µ1, µ2)-smooth, the price of

anarchy for oblivious learning is at most e/(e− 1) · (µ2 +max(1, µ1))/λ·.

C Missing Proofs

C.1 Proof of Lemma 1

Without loss of generality, let v(x1) ≥ v(x2) ≥ . . . ≥ v(xk). For each component
i ∈ [m], let Ji ∈ [k] be the random variable of the index of the vector from which
yi was taken.

Let z be defined by

zi =

{

⊥i if Ji = 1

yi otherwise

If Ji 6= 1, we have

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm) = 0 .

Otherwise, if Ji = 1, we have

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)

≥ v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, yi, zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

= v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm).

That is, in combination, we get

E [v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)]

≥ α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

∣
∣ Ji = 1

]

= α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

]
,

where the last step uses the independence of the components.
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Note that, by diminishing marginal returns, we have

v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i , zi+1, . . . , zm)− v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1,⊥i, zi+1, . . . , zm)

≥ v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, x

1
i ∨ zi, zi+1, . . . , zm)

− v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, zi+1, . . . , zm).

Applying furthermore x1
i ∨ zi = x1

i ∨ yi and taking the expectation, we get

E [v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)]

≥ α1E
[
v(x1

1 ∨ y1, . . . , x
1
i−1 ∨ yi−1, x

1
i ∨ yi, zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, zi+1, . . . , zm)

]
.

Overall, we get

E [v(y)] = E

[

v(z) +

m∑

i=1

v(y1, . . . , yi, zi+1, . . . , zm)− v(y1, . . . , yi−1, zi, . . . , zm)

]

≥ E [v(z)] +
m∑

i=1

α1E
[
v(x1

1 ∨ y1, . . . , x
1
i ∨ yi, zi+1, . . . , zm)

−v(x1
1 ∨ y1, . . . , x

1
i−1 ∨ yi−1, zi, . . . , zm)

]

= E [v(z)] + α1

(
E
[
v(x1 ∨ y)

]
−E [v(z)]

)

≥ (1− α1)E [v(z)] + α1v(x
1) .

By applying this argument inductively, we also get

E [v(y)] ≥

k∑

i=1

αiv(x
1)

i−1∏

i′=1

(1− αi′ ) .

As we assumed v(x1) ≥ v(x2) ≥ . . . ≥ v(xk), the FKG inequality gives us

k∑

i=1

αiv(x
1)

i−1∏

i′=1

(1− αi′ ) ≥

(
k∑

i=1

αi

i−1∏

i′=1

(1− αi′)

)(
k∑

i=1

αiv(x
1)

)

.

This implies

E [v(y)] ≥

(

1

k

k∑

i=1

(

1−
1

k

)i−1
)(

k∑

i=1

αiv(x
1)

)

≥

(

1−
1

e

) k∑

i=1

αiv(x
1) .⊓⊔

C.2 Proof of Lemma 2

Let yij = fj(b
′
i,j , b−i) ∧ zij and ẑij = zij if j is available and ẑij = ⊥j otherwise.

Notice that fj(b
′
i,j , b−i) ∧ ẑij = fj(b

′
i,j , b−i) ∧ zij . This is because ẑij = zij when j

is available and fj(b
′
i,j , b−i) = ⊥j when j is not available.
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By monotonicity, we have vi(f(b
′
i, b−i)) ≥ vi(f(b

′
i, b−i) ∧ zi) = vi(y

i). Fur-
thermore, we can decompose vi(y

i) into a telescoping sum by

vi(y
i) =

∑

j

vi(y
i
1, . . . , y

i
j ,⊥j+1, . . . ,⊥m)− vi(y

i
1, . . . , y

i
j−1,⊥j , . . . ,⊥m) .

Next, we bound each of these terms independently using diminishing marginal
returns multiple times

vi(y
i
1, . . . , y

i
j,⊥j+1, . . . ,⊥m)− vi(y

i
1, . . . , y

i
j−1,⊥j, . . . ,⊥m)

≥ vi(ẑ
i
1, . . . , ẑ

i
j−1, y

i
j,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1, . . . , ẑ

i
j−1,⊥j, . . . ,⊥m)

≥ vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, y

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

= vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, y

i
j ,⊥j+1, . . . ,⊥m)

)

≥ vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1, y

i
j ,⊥j+1, . . . ,⊥m)

)

= vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

−
(
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m)

)

+ vi(t̃
i
1, . . . , t̃

i
j−1, y

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m) .

That is, by linearity of expectation, we have

E
[
vi(y

i
1, . . . , y

i
j,⊥j+1, . . . ,⊥m)− vi(y

i
1, . . . , y

i
j−1,⊥j , . . . ,⊥m)

]
≥

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]

︸ ︷︷ ︸

part 1

− E
[
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m)

]

︸ ︷︷ ︸

part 2

+ E
[
vi(t̃

i
1, . . . , t̃

i
j−1, y

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m)

]

︸ ︷︷ ︸

part 3

.

To simplify part 2, we use the fact that t̃i1, . . . , t̃
i
j−1 and ẑij are independent.

Therefore, we have

E
[
vi(t̃

i
1, . . . , t̃

i
j−1, ẑ

i
j,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m)

]

=
∑

ℓ

qjr
ℓ
j

α
E
[
vi(t̃

i
1, . . . , t̃

i
j−1, x

ℓ
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j, . . . ,⊥m)

]

=
1

α
E
[
vi(t̃

i
1, . . . , t̃

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j, . . . ,⊥m)

]
.

For the same reason, we can also bound part 1 by using

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]
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= E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ∨ t̃ij ,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j,⊥j+1, . . . ,⊥m)

]

+E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j, . . . ,⊥m)

]

≤ E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, t̃

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j, . . . ,⊥m)

]

+E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j ,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j, . . . ,⊥m)

]

= (α+ 1)E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j,⊥j+1, . . . ,⊥m)

−vi(ẑ
i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j, . . . ,⊥m)

]
,

which implies

E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1, ẑ

i
j,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j, . . . ,⊥m)

]

≥
1

α+ 1
E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]

Finally, part 3 is precisely the definition of E
[
wi

i,j(y
i
j)
]
. Therefore, in com-

bination, we get

E
[
vi(y

i
1, . . . , y

i
j,⊥j+1, . . . ,⊥m)− vi(y

i
1, . . . , y

i
j−1,⊥j , . . . ,⊥m)

]

≥
1

α+ 1
E
[
vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j ∨ t̃ij ,⊥j+1, . . . ,⊥m)− vi(ẑ

i
1 ∨ t̃i1, . . . , ẑ

i
j−1 ∨ t̃ij−1,⊥j , . . . ,⊥m)

]

−
1

α
E
[
vi(t̃

i
1, . . . , t̃

i
j ,⊥j+1, . . . ,⊥m)− vi(t̃

i
1, . . . , t̃

i
j−1,⊥j , . . . ,⊥m)

]

+E
[
wi

i,j(y
i
j)
]

Taking the sum over all j, we get two telescoping sums, which simplify to
E
[
vi(ẑ

i ∨ t̃i)
]
(part 1) and E

[
vi(t̃

i)
]
(part 2). This gives us

E [vi(f(b
′
i, b−i))] ≥ E

[
vi(y

i)
]
≥

1

α+ 1
E
[
vi(ẑ

i ∨ t̃i)
]
−

1

α
E
[
vi(t̃

i)
]
+
∑

j

E
[
wi

i,j(y
i
j)
]

≥
∑

j

E
[
wi

i,j(y
i
j)
]
−

1

α(α+ 1)
E
[
vi(t̃

i)
]
=
∑

j

E
[
wi

i,j(f(b
′
i, b−i))

]
−

1

α(α + 1)
E
[
vi(t̃

i)
]

.

⊓⊔

C.3 Proof of Lemma 3

Note that functions wi′

i,j are identically distributed for different i′ and indepen-
dent of any availabilities. Therefore, we have

E
[

wi′

i,j(fj(b
′
i,j , b−i)

∣
∣
∣ Aj = 1

]

= E
[
w1

i,j(fj(b
∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))

∣
∣ Aj = 1

]

(3)
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and

E
[
pi,j(b

′
i,j , b−i)

∣
∣ Aj = 1

]
= E

[
pi,j(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i)

∣
∣ Aj = 1

]
. (4)

Next, we apply the smoothness of each separate mechanism. Let us first
assume mechanism j is available and z1 and t̃1 are fixed arbitrarily. This also
fixes the functions w1

1,j , . . . , w
1
n,j . We pretend these are the actual valuation

functions. Then smoothness gives us

∑

i

w1
i,j(fj(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))− pi,j(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i)

≥ λ

(

max
y∈Ωj

∑

i

w1
i,j(y)

)

− µ1

∑

i

pi,j(b)− µ2

∑

i

hi,j(bi, f(b))

≥ λ

(
∑

i

w1
i,j(z

1
j )

)

− µ1

∑

i

pi,j(b)− µ2

∑

i

hi,j(bi, f(b)) .

Taking the expectation over z1 and t̃1, we can combine this bound with (3)
and (4) to get

∑

i

E
[
wi

i,j(fj(b
′
i,j , b−i))− pi,j(b

′
i,j , b−i)

∣
∣ Aj = 1

]

=
∑

i

E
[
w1

i,j(b
∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i))− pi,j(b

∗
i,j(w

1
1,j , . . . , w

1
n,j), b−i)

∣
∣ Aj = 1

]

≥ E

[

λ
∑

i

w1
i,j(z

1
j )− µ1

∑

i

pi,j(b)− µ2

∑

i

hi,j(bi, f(b))

∣
∣
∣
∣
∣
Aj = 1

]

.

If j is not available, then naturally fj(b
′
i,j , b−i) = ⊥j and pi,j(b

′
i,j , b−i) = pi,j(b) =

0. By definition, however, w1
i,j(z

1
j ) is independent of the fact whether j is avail-

able or not. Therefore, we have

∑

i

E
[
wi

i,j(fj(b
′
i,j , b−i)) − pi,j(b

′
i,j , b−i)

]

≥ qjE

[

λ
∑

i

w1
i,j(z

1
j )

∣
∣
∣
∣
∣
Aj = 1

]

− qjE

[

µ1

∑

i

pi,j(b) + µ2

∑

i

hi,j(bi, f(b))

∣
∣
∣
∣
∣
Aj = 1

]

= qjE

[

λ
∑

i

w1
i,j(z

1
j )

]

−E

[

µ1

∑

i

pi,j(b)

]

−E

[

µ2

∑

i

hi,j(bi, f(b))

]

.

We can take the sum over all j to get

∑

i

∑

j

E
[
wi

i,j(fj(b
′
i,j , b−i))− pi,j(b

′
i,j , b−i)

]

≥ λ
∑

i

∑

j

qjE
[
w1

i,j(z
1
j )
]
− µ1

∑

i

E [pi(b)]− µ2

∑

i

E [hi(bi, f(b))] .⊓⊔ (5)
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C.4 Proof of Lemma 4

By only plugging in the definitions of w1
i,j , z

1, and t̃1, we get

∑

j

qjE
[
w1

i,j(z
1
j )
]

=
∑

j

qjE
[
vi(t̃

1
1, . . . , t̃

1
j−1, z

1
j ,⊥j+1, . . . ,⊥m)− vi(t̃

1
1, . . . , t̃

1
j−1,⊥j , . . . ,⊥m)

]

=
∑

j

qj
∑

ℓ

rℓ
α
E
[
vi(t̃

1
1, . . . , t̃

1
j−1, x

ℓ
j ,⊥j+1, . . . ,⊥m)− vi(t̃

1
1, . . . , t̃

1
j−1,⊥j, . . . ,⊥m)

]

=
∑

j

1

α

∑

ℓ

qjrℓE
[
vi(t̃

1
1, . . . , t̃

1
j−1, x

ℓ
j ,⊥j+1, . . . ,⊥m)− vi(t̃

1
1, . . . , t̃

1
j−1,⊥j , . . . ,⊥m)

]

=
∑

j

1

α
E
[
vi(t̃

1
1, . . . , t̃

1
j ,⊥j+1, . . . ,⊥m)− vi(t̃

1
1, . . . , t̃

1
j−1,⊥j , . . . ,⊥m)

]

=
1

α
E
[
vi(t̃

1)
]

.

⊓⊔

C.5 Proof of Theorem 3

Consider the following single-item first-price auction with a discrete bidding
space. Each bidder has valuation 0 or 2 for the item, and the set of possible
bids is {0, 1, 2}. The item is sold to one of the bidders with the maximal bid
(arbitrary but fixed deterministic tie-breaking), and only this bidder pays his
bid. If all bidders bid 0, the item is not given away. It is easy to see that if each
bidder i in this auction deviates to half of his valuation, the auction becomes
smooth with λ = 1/2, µ1 = 1 and µ2 = 0. Hence, the auction has a price of
anarchy of at most 2.

We compose this auction for a set [m] of m = k2 items, for some integer
k > 0, and every item is sold simultaneously via the first-price auction above.
There is a single bidder, and he has an XOS valuation function v as follows.
The items are grouped into k groups M1, . . . ,Mk of k items each. For a set of
items S ⊆ [m] we have v(S) = maxℓ=1,...,k

∑m
j=1 v

ℓ
j with vℓj = 2 if j ∈ Mℓ and

0 otherwise, for ℓ = 1, . . . , k. Consequently, v(S) = 2maxℓ=1,...,k |S ∩ Mℓ|. We
assume each item j ∈ [m] is available independently with probability qj = 1/k.

If the bidder can deviate depending on the set of available items, a social
optimum b∗ is obvious – he considers the group ℓ∗ with the maximum number
of available items and bids b∗j = 1 for all j ∈ Mℓ∗ and 0 otherwise. This way
he always obtains a set S of items that maximizes the valuation. Furthermore,
this is also the best-response since he obtains the maximum valuation at mini-
mum required payment, and the marginal utility of every obtained item is 1. In
contrast, we show that every oblivious deterministic best-response bid b allows
to recover at most a small fraction of the above described optimum. Thus, even

22



the price of anarchy for pure equilibria cannot be bounded by the smoothness
guarantee.

In the optimum b∗, the bidder gets all available items from the group with the
maximum number of available items. The number of available items in a group
follows a binomial distribution B(k, 1/k). This scenario is almost identical to
throwing k balls uniformly at random into k bins and recording the maximum
number of balls in any bin. Now in each bin k balls appear independently at
random with probability 1/k each, and an almost identical analysis implies

E [v(S(b∗))] = Θ

(
log k

log log k

)

.

Now consider an oblivious deterministic best-response b. The valuation func-
tion v treats all items of a group in a symmetric way and all groups in a sym-
metric way. Let us denote by rℓ the number of items j ∈ Mℓ with bj = 1. For a
fixed vector r, expected value and payments are the same no matter on which
particular items j ∈ Mℓ a bid bj = 1 is placed. For any two groups Mℓ and Mℓ′ ,
the expected valuation and payments remain the same if we change the bid to
have bj = 1 for rℓ items in Mℓ′ and rℓ′ items in Mℓ′ . Moreover, the expected
payment depends only on

∑

ℓ rℓ. Now suppose there are two groups Mℓ and Mℓ′

such that rℓ, rℓ′ ≤ k/2. This bidding strategy is obviously dominated by any bid
that bids 1 on rℓ + rℓ′ items in Mℓ and none in Mℓ′ . In conclusion, w.l.o.g. we
can assume that r1 ≥ r2 ≥ r3 ≥ . . . ≥ rk and there is k′ such that rℓ ≥ k/2 for
ℓ = 1, . . . , k′ − 1, rk′−1 ≥ rk′ ≥ 0 and rℓ = 0 for ℓ = k′ + 1, . . . , k.

We show that every oblivious best-response b has E [v(S(b))] = O(1). Let
p(b) denote the total payments, Xj denote the event that item j is available, and
Yℓ =

∑

j∈Mℓ
Xj the number of available items in group Mℓ, for all ℓ = 1, . . . , k.

Note that

E [v(S(b))− p(b)] = E



 max
ℓ=1,...,k′




∑

j∈Mℓ,bj=1

2Xj



−
∑

j∈[m],bj=1

Xj





≤ 2E

[

max
ℓ=1,...,k′

Yℓ

]

−
k′ − 1

2
.

Further, for any d = 1, . . . , k we can use Chernoff bounds to see

Pr

[

max
ℓ=1,...,k′

Yℓ ≥ d

]

= 1−(1−Pr [Y1 ≥ d])k
′

≤ 1−(1−ed−1/dd)k
′

≤ min{1, k′ed−1/dd} .

Hence,

E

[

max
ℓ=1,...,k′

Yℓ

]

=
k∑

d=1

Pr

[

max
ℓ=1,...,k′

Yℓ ≥ d

]

≤
k∑

d=1

min{1, (k′/e)·(e/d)d} ≤
3 log k′

log log k′
+

1

ek′
.

Thus, E [v(S(b))− p(b)] < (6 log k′)/(log log k′) + 6/(ek′) − (k′ − 1)/2, which is
positive only for k′ ≤ 34. Every bid b with k′ ≥ 35 is dominated by b′ with
b′j = 0 for all j ∈ [m]. Hence, for a best-response b we have E [v(S(b))] < 17.
This proves the theorem. ⊓⊔
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