
On the Price of Stability of Undirected Multicast Games

Rupert Freeman∗, Samuel Haney†, and Debmalya Panigrahi†

Department of Computer Science, Duke University, Durham, NC 27708, USA
{rupert,shaney,debmalya}@cs.duke.edu

Abstract

In multicast network design games, a set of agents choose paths from their source locations to a
common sink with the goal of minimizing their individual costs, where the cost of an edge is divided
equally among the agents using it. Since the work of Anshelevich et al. (FOCS 2004) that introduced
network design games, the main open problem in this field has been the price of stability (PoS) of
multicast games. For the special case of broadcast games (every vertex is a terminal, i.e., has an agent),
a series of works has culminated in a constant upper bound on the PoS (Bilò et al., FOCS 2013). However,
no significantly sub-logarithmic bound is known for multicast games. In this paper, we make progress
toward resolving this question by showing a constant upper bound on the PoS of multicast games for
quasi-bipartite graphs. These are graphs where all edges are between two terminals (as in broadcast
games) or between a terminal and a nonterminal, but there is no edge between nonterminals. This
represents a natural class of intermediate generality between broadcast and multicast games. In addition
to the result itself, our techniques overcome some of the fundamental difficulties of analyzing the PoS of
general multicast games, and are a promising step toward resolving this major open problem.

1 Introduction

In cost sharing network design games, we are given a graph/network G = (V,E) with edge costs and a set of
users (agents/players) who want to send traffic from their respective source vertices to sink vertices. Every
agent must choose a path along which to route traffic, and the cost of every edge is shared equally among all
agents having the edge in their chosen path, i.e., using the edge to route traffic. This creates a congestion
game since the players benefit from other players choosing the same resources. A Nash equilibrium is attained
in this game when no agent has incentive to unilaterally deviate from her current routing path. The social
cost of such a game is the sum of costs of edges being used in at least one routing path, and efficiency of the
game is measured by the ratio of the social cost in an equilibrium state to that in an optimal state. (The
optimal state is defined as one where the social cost is minimized, but the agents need not be in equilibrium.)
The maximum value of this ratio (i.e., for the most expensive equilibrium state) is called the price of anarchy
of the game, while the minimum value (i.e., for the least expensive equilibrium state) is called its price of
stability. It is well known that even for the most restricted settings, the price of anarchy can be Ω(n) for
n agents (see Figure 1 for a simple example). Therefore, the main question of research interest has been to
bound the price of stability (PoS) of this class of congestion games.

Anshelevich et al. [2] introduced network design games and obtained a bound of O(log n) on the PoS
in directed networks with arbitrary source-sink pairs. While this is tight for directed networks, they left
determining tighter bounds on the PoS in undirected networks as an open question. Subsequent work
has focused on the case of all agents sharing a common sink (called multicast games) and its restricted
subclass where every vertex has an agent residing at it (called broadcast games). These problems are natural
analogs of the Steiner tree and minimum spanning tree (MST) problems in a game-theoretic setting. For
broadcast games, Fiat et al. [13] improved the PoS bound to O(log log n), which was subsequently improved

∗Supported in part by NSF IIS-1527434 and ARO W911NF-12-1-0550.
†Supported in part by NSF Awards CCF-1527084 and CCF-1535972l.

1

ar
X

iv
:1

61
0.

06
51

5v
1

 [
cs

.D
S]

 2
0

O
ct

 2
01

6

1 + ε n

n

0 0 0

Figure 1: An example with a price of anarchy of Ω(n). Each black vertex is an agent, and the white vertex
is the root (i.e. the common sink). There is a NE where every agent routes through the edge of weight n.
Each agent has a cost of 1 in such a configuration. On the other hand, the optimal configuration has a total
cost of 1 + ε where every agent routes through the edge of cost (1 + ε).

to O(log log log n) by Lee and Ligett [15], and ultimately to O(1) by Bilò, Flamminni, and Moscardelli [5].
For multicast games, however, progress has been much slower, and the only improvement over the O(log n)
result of Anshelevich et al. is a bound of O(log n/ log log n) due to Li [16]. In contrast, the best known lower
bounds on the PoS of both broadcast and multicast games are small constants [4]. Determining the PoS of
multicast games has become one of the most compelling open questions in the area of network games.

In this paper, we achieve progress toward answering this question. In the multicast setting, a vertex is
said to be a terminal if it has an agent on it, else it is called a nonterminal. Note that in the broadcast
problem, there are no nonterminals and all the edges are between terminal vertices. In this paper, we
consider multicast games in quasi-bipartite graphs: all edges are either between two terminals, or between a
nonterminal and a terminal. (That is, there is no edge with both nonterminal endpoints.) This represents a
natural setting of intermediate generality between broadcast and multicast games. Moreover, quasi-bipartite
graphs have been widely studied for the Steiner tree problem (see, e.g., [17, 18, 7, 6]) and has provided
insights for the problem on general graphs. Our main result is an O(1) bound on the PoS of multicast
games in quasi-bipartite graphs.

Theorem 1. The price of stability of multicast games in quasi-bipartite graphs is a constant.

In Table 1, we summarize the known and new results for single sink network design and the corresponding
cost sharing games.

Table 1: Single sink Network Design: Optimization and Cost sharing games.
Optimization (Approximation factor) Cost sharing game (Price of Stability)

MST Poly-time solvable Broadcast O(1) [5]
Quasi-bipartite Steiner 1.22 [6] Quasi-bipartite Multicast O(1) [This paper]

Steiner Tree 1.39 [6] Multicast O
(

logn
log logn

)
[16]

In addition to the result itself, our techniques overcome some of the fundamental difficulties of analyzing
the PoS of general multicast games, and therefore represent a promising step toward resolving this important
open problem. To illustrate this point, we outline the salient features of our analysis below.

The previous PoS bounds for multicast games [2, 16] are based on analyzing a potential function φe
defined on each edge e as its cost scaled by the harmonic of the number of agents using the edge, i.e.,
φe = cost(e) · (1 + 1/2 + 1/3 + · · ·+ 1/j) where j is the number of terminals using e. The overall potential
is φ =

∑
e φe. When an agent changes her routing path (called a move), this potential exactly tracks the

change in her shared cost. If the move is an improving one, then the shared cost of the agent decreases and
so too does the potential. As a consequence, for an arbitrary sequence of improving moves starting with
the optimal Steiner tree, the potential decreases in each move until a Nash Equilibrium (NE) is reached.
This immediately yields a PoS bound of H(n) = O(log n) [2]. To see this, note that the potential of any
configuration is bounded below by its cost, and above by its cost times H(n). Then, letting SNE be the
Nash equilibrium state reached, and T ∗ be the optimal routing tree, we have

c(SNE) ≤ φ(SNE) ≤ φ(T ∗) ≤ H(n)c(T ∗).

2

This bound was later improved to O(log n/ log logn) by Li [16] with a similar but more careful accounting
argument.

The previous PoS bounds for broadcast games [13, 15, 5] use a different strategy. As in the case of
multicast games, these results analyze a game dynamics that starts with an optimal solution (MST) and
ends in an NE. However, the sequence of moves is carefully constructed — the moves are not arbitrary
improving moves. At a high level, the sequence follows the same pattern in all the previous results for
broadcast games:

1. Perform a critical move: Allow some terminal v to switch its path to introduce a single new edge into
the solution, that is not in the optimal routing tree and is adjacent to v. This edge is associated with
v and denoted ev. Any edge introduced by the algorithm in any move other than a critical move uses
only edges in the current routing tree, and edges in the optimal routing tree. Therefore, we only need
to account for edges added by critical moves.

2. Perform a sequence of moves to ensure that the routing tree is homogenous. That is, the difference in
costs of a pair of terminals is bounded by a function of the length of the path between them on the
optimal routing tree. For example, suppose two terminals w and w′ differ in cost by more than the
length of the path between them in the optimal routing tree. Then the terminal with larger cost has
an improving move that uses this path, and then the other terminal’s path to the root. Such a move
introduces only edges in the optimal routing tree.

3. Absorb a set of terminals around v in the shortest path metric defined on the optimal tree: terminals
w replace their current strategy with the path in the optimal routing tree to v, and then v’s path to
the root. If w had an associated edge ew, introduced via a previous critical move, it is removed from
the solution in this step.

The absorbing step allows us to account for the cost of edges added via critical moves, by arguing that
vertices associated with critical edges of similar length must be well-separated on the optimal routing tree.
If edges eu and ev are not far apart, the second edge to be added would be removed from the solution via
the absorbing step.

Homogeneity facilitates absorption: Suppose v has performed a critical move adding edge ev, and let w
be some other terminal. While v pays c(ev) to use edge ev, w would only pay c(ev)/2 to use ev, since it
would split the cost with v. That is, if w bought a path to v and then used v’s path to the root, it would
save at least c(ev)/2 over v’s current cost. If the current costs paid by v and w are not too different, and
the distance between v and w not too large, then such a move is improving for w.

The previous results differ in how well they can homogenize: the tighter the bound on the difference in
costs of a pair of terminals as a function of the length of the path between them in the optimal routing tree,
the larger the radius in the absorb step. In turn, a larger radius of absorption establishes a larger separation
between edges with similar cost, which yields a smaller (tighter) bound on the PoS.

This homogenization-absorption framework has not previously been extended to multicast games. The
main difficulty is that there can be nonterminals that are in the routing tree at equilibrium but are not
in the optimal tree. No edge incident on these vertices is in the optimal tree metric, and therefore these
vertices cannot be included in the homogenization process. So, any critical edge incident on such a vertex
cannot be charged via absorption. This creates the following basic problem: what metric can we use for the
homogenization-absorption framework that will satisfy the following two properties?

1. The metric is feasible – the sum of all edge costs in (a spanning tree of) the metric is bounded by
the cost of the optimal routing tree. These edges can therefore be added or removed at will, without
need to perform another set of moves to pay for them (in contrast to critical edges). This allows us to
homogenize using these edges.

2. The metric either includes all vertices (as is the case with the optimal tree metric for broadcast
games), or if there are vertices not included in the metric, critical edges adjacent to these vertices can
be accounted for separately, outside the homogenization-absorption framework.

We create such a metric for quasi-bipartite graphs, allowing us to extend the homogenization-absorption
framework to multicast games. Our metric is based on a dynamic tree containing all the terminals and

3

a dynamic set of nonterminals. We show that under certain conditions, we can include the shortest edge
incident on a nonterminal vertex, even if it is not in the optimal routing tree, in this dynamic tree. These
edges are added and removed throughout the course of the algorithm. Our new metric is now defined by
shortest path distances on this dynamic tree: the optimal routing tree extended with these special edges.
We ensure homogeneity not on the optimal routing tree, but on this dynamic metric. Likewise, absorption
happens on this new metric. We define the metric in such a way that the following hold:

1. The metric is feasible. That is, the total cost of all edges in the dynamic tree is within a constant
factor of the cost of the optimal tree.

2. Consider some critical edge ev such that the corresponding vertex v is not in the metric. That is, it
was not possible to add the shortest edge adjacent to v to the dynamic tree while keeping it feasible.
Therefore, v is at infinite distance from every other vertex in this metric, ruling out homogenization.
Then, ev can be accounted for separately, outside the homogenization-absorption framework.

For the remaining edges ev such that v is in the metric, we account for them by using the homogenization-
absorption framework. Our main technical contribution is in creating this feasible dynamic metric, going
beyond the use of static optimal metrics in broadcast games. While the proof of feasibility currently relies
on the quasi-bipartiteness of the underlying graph, we believe that this new idea of a feasible dynamic metric
is a promising ingredient for multicast games in general graphs.

1.1 Related Work

Recall that the upper bounds for the PoS are a (large) constant and O(logn
log logn) for broadcast and multicast

games, respectively. The corresponding best known lower bounds are 1.818 and 1.862 respectively by Bilò et
al. [4], leaving a significant gap, even for broadcast games. Moreover, Lee and Ligett [15] show that obtaining
superconstant lower bounds, even for multicast games where they might exist, is beyond current techniques.
While this lends credence to the belief that the PoS of multicast games is O(1), Kawase and Makino [14]
have shown that the potential function approach of Anshelevich et al. [2] cannot yield a constant bound on
the PoS, even for broadcast games. In fact, Bilò et al. [5] used a different approach for broadcast games, as
do we for multicast games on quasi-bipartite graphs.

Various special cases of network design games have also been considered. For small instances (n = 2, 3, 4),
both upper [10] and lower [3] bounds have been studied. [10] show upper bounds of 1.65 and 4/3 for two and
three players respectively. For weighted players, Anshelevich et al. [2] showed that pure Nash equilibria exist
for n = 2, but the possibility of a corresponding result for n ≥ 3 was refuted by Chen and Roughgarden [9],
who also provided a logarithmic upper bound on the PoS. An almost matching lower bound was later given
by Albers [1]. Recently, Fanelli et al. [12], showed that the PoS of network design games on undirected rings
is 3/2.

Network design games have also been studied for specific dynamics. In particular, starting with an empty
graph, suppose agents arrive online and choose their best response paths. After all arrivals, agents make
improving moves until an NE is reached. The worst-case inefficiency of this process was determined to
be poly-logarithmic by Charikar et al. [8], who also posed the question of bounding the inefficiency if the
arrivals and moves are arbitrarily interleaved. This question remains open. Upper and lower bounds for the
strong PoA of undirected network design games have also been investigated [1, 11]. They show that the
price of anarchy in this setting is Θ(log n).

2 Preliminaries

Let G = (V,E) be an undirected edge-weighted graph and let c(e) denote the cost of edge e. Let U ⊆ V be
a set of terminals and r ∈ U . In an instance of a network design game, each terminal u is associated with a
player, or agent, that must select a path from u to r. We consider instances in which G is quasi-bipartite,
that is no edge e has two nonterminal end points.

A solution, or state, is a set of paths connecting each player to the root. Let S be the set of all
possible solutions. For a solution S, a terminal u, and some subset E′ of the edges in the graph, let
cE
′

u (S) =
∑
e∈E′ c(e)/ne(S) be the cost paid by u for using edges in E′, where ne(S) is the number of

4

players using edge e in state S. Let pu(S) be the set of edges used by u to connect to the root in S and

let cu(S) = c
pu(S)
u (S) be the total cost paid by u to use those edges. For a nonterminal v, if every terminal

u with v ∈ pu(S) uses the same path from v to the root then define pv(S) to be this path from v to r,

and cv(S) = c
pv(S)
u (S). Additionally, we will sometimes refer to the cost a vertex v pays, even if v is a

nonterminal. By this we mean cv(S). For any vertex v ∈ S, let ev be the edge in pv(S) with v as an
endpoint.

Let Φ : S → R+ be the potential function introduced by Rosenthal [19], defined by

Φ(S) =
∑
e∈E

c(e)Hne(S) = c(e)

(
1 +

1

2
+ · · ·+ 1

ne(S)

)
.

Let u ∈ U and suppose S and S′ are states for which pv(S) = pv(S
′) for all players v 6= u. Then Φ(S′) −

Φ(S) = cu(S′) − cu(S). In particular, if a single player changes their path to a path of lower cost, the
potential decreases.

The goal of each player is to find a path of minimum cost. A solution where no player can benefit by
unilaterally changing their path is called a Nash Equilibrium. Let T ∗ be a solution that minimizes the total
cost paid. Note that T ∗ is a minimum Steiner tree for G. The price of stability (PoS) is the ratio between
the minimum cost of a Nash equilibrium and the cost of T ∗.

Let pT∗(u, v) be the path in T ∗ between u and v. Let v1, . . . , vn be the vertices of T ∗ in the or-
der they appear in a depth first search of T ∗. Let MC, the “main cycle”, be the concatenation of
pT∗(v1, v2), pT∗(v2, v3), . . . , pT∗(vn−1, vn), pT∗(vn, v1). Note that each edge in T ∗ appears exactly twice in
MC. The following property will be helpful:

Fact 1. Any x to y path in MC completely contains pT∗(x, y).

Define the class of edge e, class(e), as α if 256α ≤ c(e) < 256α+1. Without loss of generality, we assume
that c(e) ≥ 1 for all e ∈ E, so the minimum possible edge class is 0. For simplicity, define bc(e)c = 256class(e),
a lower bound for c(e), and dc(e)e = 256class(e)+1, an upper bound for c(e).

For each nonterminal v, let σv be the minimum cost edge adjacent to v in G. Let tv be the terminal
adjacent to σv. Let T+ be the extended optimal metric: T ∗ ∪ {σv}v∈V . We maintain a dynamic set of
nonterminals

ZS = {w /∈ T ∗ : c(σw) ≤ bc(ew)c/64} .

That is, ZS are those nonterminals w in solution S whose first edge ew has cost within a constant factor of
the cost of σw For any w ∈ S, if σw is added to S while w ∈ ZS , then we will show that we will be able
to pay for σw if it remains in the final solution. We prove this fact in Section 4.2. In the description of the
algorithm, we denote the current state by Scurr. For ease of notation, we define Z = ZScurr .

The remaining definitions are modifications of key definitions from [5]. The interval around vertex v ∈ T ∗
with budget y, Iv,y, is the concatenation of its right and left intervals, I+v,y and I−v,y, where I+v,y is the maximal
contiguous interval in MC with v a left endpoint such that

2
∑
α≥0

256α+1H2
nI+,α

≤ y,

where nI+,α is the number of edges of class α in I+v,y (repeated edges are counted every time they appear).
We define I−v,y similarly.

The neighborhood of v in state S, NS(v) is an interval around v as well as certain w 6∈ T ∗ with tw in the
interval. Formally,

NS(v) =

Iv, bc(ev)c
56
∪
{
w ∈ ZS

∣∣∣tw ∈ Iv, bc(ev)c
56

and c(σw) ≤ bc(ev)c64

}
if v ∈ T ∗,

I
tv,
bc(ev)c

56
∪
{
w ∈ ZS

∣∣∣tw ∈ Itv, bc(ev)c
56

and c(σw) ≤ bc(ev)c64

}
otherwise.

N+
S (v) and N−S (v) are the right and left intervals of the neighborhood respectively (that is, the portions of

NS(v) to the right and left of v or tv respectively). We denote NScurr (v) as N(v). Roughly speaking, we are

5

a

r

a

r

a

r

b

b
ea

eb eaeb

Figure 2: Types of critical improving moves. Dotted edges represent the new edges being added.

going to charge the cost of edges in the final solution not in T ∗ to the interval portions of non-overlapping
right neighborhoods.

Observe that every edge in N(v) ∩ T ∗ has class at most class(ev)− 2. If this were false,

2
∑
α>0

256α+1H2
nI+,α

≥ 256class(ev) >
bc(ev)c

56
,

which contradicts the definition of N(v). A path X = pT∗(x, y) is homogenous if

|cx(S)− cy(S)| ≤ 4
∑
α≥0

256α+1H2
nX,α .

If X = pT∗(x, y) ⊆ N(v) ∩ T ∗ is a homogenous path then

|cx(S)− cy(S)| ≤ 4
∑
α≥0

256α+1H2
nX,α ≤ 8

∑
α≥0

256α+1H2
nN+(v),α

≤ bc(e)c/14.

N(v) is homogenous if the following holds: For all x, y ∈ N(v) with x, y 6= uv, a special vertex to be

defined later, such that the path in T+ from x to y does not contain v, |cx(Scurr) − cy(Scurr)| ≤ 23bc(ev)c
112 .

Homogenous neighborhoods allow us to bound the difference in cost between any two vertices in N(v) which
will be useful when arguing that players have improving strategy changes.

3 Algorithm

The initial state of the algorithm is the minimum cost tree T ∗ connecting all the terminals to the root. The
algorithm carefully schedules a series of potential-reducing moves. (Recall the potential function Φ(S) =∑
e∈E c(e)Hne(S) introduced in Section 2). Since there are finitely many states possible, such a series of

moves must always be finite. Since any improving move reduces potential, we must be at a Nash equilibrium
if there is no potential reducing move. These moves are scheduled such that if any edge outside of T ∗ is
introduced, it is subsequently accounted for by charging to some part of T ∗. In particular, we will show that
at any point in the process, and therefore in the equilibrium state at the end, the total cost of these edges
is bounded by O(1) · c(T ∗).

The algorithm is a series of loops, which we run repeatedly until we reach a Nash equilibrium. Each
loop begins with a terminal, a, performing either a safe improving move, or a critical improving move. In
both cases, a switches strategy to follow a new path to the root. Let S be the state before the start of
the loop. A safe improving move is one which results in some state S′ ⊆ T ∗ ∪ S, i.e., the new path of a
contains edges currently in S and edges in the optimal tree T ∗. A safe improving move requires no additional
accounting on our part. A critical improving move on the other hand introduces one or two new edges that
must be accounted for (see Figure 2). We will show later that in any non-equilibrium state, a safe or critical
improving move always exists (see Lemma 10).

The algorithm will use a sequence of (potential-reducing) moves to account for the new edges introduced
by a critical move. At a high level, each of these edges is accounted for in the following way. Let ev be the
edge in question, and v be the first vertex using ev on its path to the root.

1. In some neighborhood around v, perform a sequence of moves to ensure that for every pair of vertices
(excluding v and at most one other special vertex), the difference in shared costs of these vertices is not

6

too large. (Recall that the while nonterminals do not pay anything, the shared cost of a nonterminal
u is defined to be cu(S), the cost that a terminal using u pays on its subpath from u to the root).
This sequence of moves must be potential-reducing, and cannot add any edges outside of T ∗ ∪S to the
solution.

2. For every vertex y in the neighborhood around v, v has an alternative path to the root consisting of
the path in T+ to y, and y’s path to the root. (Recall from Section 2 that T+ is the optimal tree, T ∗,
augmented with minimum cost edges incident on nonterminals {σw : w is a nonterminal}.)

(a) If there is a y for which this alternative path is an improving path for v, then v can switch to this
new path and ev will be removed from the solution.

(b) If every path is not improving for v, then we show that every vertex in the neighborhood of v has
an improving move that uses ev.

These steps ensure that we either remove ev from the solution, or else for any vertex y in the neighborhood
we remove edge ey 6∈ T ∗ from the solution. We elaborate on the steps above, referencing the subroutines
described in Algorithm 2 – Homogenize, Absorb, and MakeTree:

Step 1: This is accomplished in two ways. For any path in T ∗, the Homogenize subroutine ensures
that a path in T ∗ is homogenous. Recall that this gives a bound (relative to the cost of ev) on the difference
in shared costs of the endpoints of the path. Additionally, for any pair of adjacent vertices, if the difference
in the shared costs is more than the cost of the edge between them, then one vertex must have an improving
move through this edge. This move adds no edges outside of T ∗. The second way of bounding differences
in shared cost is much weaker, but we will use it only a small number of times. Overall, the path between
any two vertices in the neighborhood will comprise homogenous segments connected by edges whose cost is
bounded by the second method above. Adding up the cost bounds for each of these segments gives us the
total bound. Lemma 4 gives the technical details.

Step 2(a): The purpose of this step is to establish that either the shared cost of v is not much larger
than the shared cost of every other vertex in its neighborhood, or that we can otherwise remove ev from
the solution. If the shared cost of v is much larger than some other vertex in the neighborhood, then it is
also much larger than the shared cost of an adjacent vertex (call it q) in T+. This is because every pair of
vertices in the neighborhood have a similar shared cost (by Step 1). Then, v has a lower cost path to the
root consisting of the (v, q) edge, combined with q’s current path to the root. Such a move would remove ev
from the solution.

Step 2(b): If we reach this step, we need to account for the cost of ev by making every other vertex in
the neighborhood give up its first edge, if that edge is not in T+. This ensures that at the end, the edges
in the solution that are not in T+ will be very far apart. This is accomplished via the Absorb function: v
is currently paying the entire cost of ev, while any vertex that would switch to using v’s path to the root
would only pay at most half the cost of ev. Furthermore, if vertices close to v in T+ switch first, vertices
farther from v (who must pay a higher cost to buy a path to v) will reap the benefits of more sharing, and
therefore a further reduction in shared cost. This is formalized in the definition of Absorb.

There are some other details which we mention here before moving on to a more formal description of
the algorithm:

• If v is a nonterminal, let uv be the terminal that added v as part the critical move. We avoid including
uv in any path provided to the Homogenize subroutine. This is because Homogenize switches the
strategies of terminals to follow the strategy of some terminal on input path. If terminals were switched
to follow uv’s path, this would increase the sharing on ev, when it is required at the beginning of Step
(2b) that only one terminal is using ev. When v is a terminal, then uv is undefined and this problem
does not exist. We define two versions of a loop of the algorithm, defined as MainLoop in Algorithm 1,
to account for this difference.

• We have only described how to account for a single edge, but sometimes a critical move adds two new
edges that must be accounted for. Suppose ea and eb are the new edges added by a (a is a terminal
and b is a nonterminal). Then we run MainLoop(eb) first, and then MainLoop(ea). The first loop
does not increase sharing on ea, so the second loop is still valid.

7

• We assume the existence of a function MakeTree. This function takes as input a set of strategies.
Its output is a new set of strategies such that (1) the new set of strategies has lower potential than the
old set, (2) the edge set of the new strategies is a subset of the old edge set, and (3) the edge set of
the new strategies is a tree. In particular, MakeTree(Scurr \ {puv (Scurr), pv(Scurr)}), used on line 9
does not increase sharing on ev, since v and uv are the only two vertices using ev on their path to the
root. MakeTree(Scurr \ {puv (Scurr), pv(Scurr)}) will also not increase sharing on euv if this edge has
just been added (and therefore uv is the only vertex using the edge). We will not go into more detail
about this function, since an identical function was used in both [5] and [13].

• We assume that all edges in E with c(e) > c(T ∗) have been removed from the graph. This is without
loss of generality: if the final state Sf is a Nash equilibrium, then Sf is still an equilibrium after
reintroducing e with c(e) > c(T ∗). This is because any vertex with an improving move that adds such
an edge e also has a path to the root (the path in T ∗) with total cost less than c(e).

We walk through the peusdocode next: We execute the MainLoop function given in Algorithm 1 either
once or twice, once for each edge not in T ∗ ∪ S that is added by a critical move. If two edges have been
added, we execute in the order MainLoop(eb) then MainLoop(ea) (where a is the terminal and b is the
nonterminal). We define two versions of MainLoop(ev), one when v is a terminal, and one when v is a
nonterminal, appearing on lines 17 and 1 respectively. When v is a nonterminal, we denote the terminal
which added ev to the solution as part of the initial improving move as uv. For brevity, we define uv as
“empty” when v is a terminal. Thus if v is a terminal, define N(v) \ {uv} = N(v).

1: function MainLoop(ev) . v is a nonterminal and uv the terminal which added ev as part of a critical
move.

2: while any of the following if conditions are true do
3: if ∃X = pT∗(x, y) ∈ N(v) ∩ T ∗ with uv, v 6∈ X and X not homogenous then Homogenize(X)

4: if ∃x, y ∈ N(v) \ {v} adjacent to uv with cx(Scurr)− cy(Scurr) > c(x, uv) + c(uv, y) then
5: Replace x’s strategy with (x, uv) ∪ (uv, y) ∪ py(Scurr).

6: if ∃w ∈ N(v) \ T ∗ such that tw 6= v, uv with |cw(Scurr)− ctw(Scurr)| > c(σw) then
7: Assuming WLOG ctw(Scurr) > cw(Scurr), replace tw’s strategy with σw ∪ pw(Scurr).

8: if Scurr \ {puv (Scurr), pv(Scurr)} is not a tree then
9: MakeTree(Scurr \ {puv (Scurr), pv(Scurr)})

10: for q ∈ N(v) \ {v, uv} adjacent in T+ to either v or uv do
11: if c(v, q) + cq(Scurr) < cv(Scurr) then
12: v changes strategy to (v, q) ∪ pq(Scurr).
13: return
14: Repeat the previous 3 lines substituting uv for v.
15: . Note that uv changing strategy will remove v from the solution.

16: Absorb(v)

17: function MainLoop(ev) . v a terminal.
18: while any of the following if conditions are true do
19: if ∃X = pT∗(x, y) ∈ N(v) ∩ T ∗ with v 6∈ X and X is not homogenous then Homogenize(X)

20: if ∃w ∈ N(v) \ T ∗ such that tw 6= v with |cw(Scurr)− ctw(Scurr)| > c(σw) then
21: Assuming WLOG ctw(Scurr) > cw(Scurr), replace tw’s strategy with σw ∪ pw(Scurr).

22: if Scurr \ {pv(Scurr)} is not a tree then MakeTree(Scurr \ {pv(Scurr)})
23: for q ∈ N(v) adjacent in T+ to v do
24: if c(v, q) + cq(Scurr) < cv(Scurr) then
25: v changes strategy to (v, q) ∪ pq(Scurr).
26: return
27: Absorb(v)

Algorithm 1: Main loop to be executed for each edge added to the solution as part of a critical move.

8

25: function Homogenize(X = pT∗(x, y))
26: Let X = (x = x1, x2, . . . , xk, xk+1 = y)
27: Let S′ be the current state.
28: for i← 1 to k do
29: for j ← i down to 1 do
30: Change xj ’s strategy to pT∗(xj , xi+1) ∪ pxi(S).

31: if Φ(Scurr) < Φ(S′) then return
32: else Reset state to S′

Require: cq(S) ≥ cv(S)− 2·bc(ev)c
7 ∀q ∈ N(v) \ {uv} . See Lemma 5

33: function Absorb(v) . v absorbs N(v) \ {uv}
34: for q ∈ N(v) ∩ T ∗ \ {uv} in breadth-first order from r according to T ∗ do
35: if v 6∈ T ∗ then Change q’s strategy along with its descendants to pT∗(q, tv) ∪ σv ∪ pv(S).
36: else Change q’s strategy along with its descendants to pT∗(q, v) ∪ pv(S).

37: Let S′ be the current state.
38: for q ∈ N(v) \ T ∗, in reverse breadth-first order from r according to S′ do
39: Change q’s strategy along with its descendants to σq ∪ ptq (S′).

Algorithm 2: Helper functions for Algorithm 1.

The while loops at lines 2 and 18 terminate with N(v) being homogenous. For any violated if statement
within the while loop, we perform a move that reduces potential, and does not increase sharing on ev, or
on euv if it was added along with ev as part of uv’s critical move. In Lemma 4 we show that if none of these
if conditions hold, N(v) is homogenous. Therefore, this while loop eventually terminates in a homogenous
state.

We next use the cost bound given by Lemma 4 to ensure that the cost that v pays is similar to the cost
every other vertex in N(v) pays. If these costs are not close, we show in Lemma 5 that the condition at
line 11/24 will be true, and ev will be deleted from the solution.

If ev is still present at this point, we finally call the Absorb function. Lemma 5 ensures that the
precondition of the Absorb function is met. We use this condition to show that the switches made by all
the vertices in N(v) in the Absorb function are improving, and therefore reduce potential.

Note that although we do not make this explicit, if at any point Scurr contains edges that are not part
of pu(Scurr) for any terminal u, these edges are deleted immediately. This ensures that any nonterminal in
Scurr is always used as part of some terminal’s path to r.

4 Analysis

In this section, we first prove some properties about the algorithm. Then we analyze the cost of the final
Nash equilibrium.

4.1 Termination

We first show that all parts of the algorithm reduce potential, guaranteeing that the algorithm terminates
(by the definition of the potential function, the minimum decrease in potential is bounded away from 0).

Most steps in the algorithm involve single terminals making improving moves, and therefore these steps
reduce potential. There are two parts of the algorithm for which it is not immediately obvious that potential
is reduced: the Homogenize function and the Absorb function. We first show that the Homogenize
function reduces potential.

Theorem 2. Suppose there is a path X = pT∗(x, y) ∈ N(v) which is not homogenous. Let (x = x1, x2, . . . , xk, xk+1 =
y) be the sequence of vertices in X. Then there exists a prefix of X, (x1, . . . , xi), such that the sequence of
moves in which each xj , j ∈ {1, . . . , i}, switches its strategy to pT∗(xj , xi+1) ∪ pxi+1(S) reduces potential.

9

Note that the order in which the vertices move does not affect the change in potential of the entire
sequence of moves. However, to help prove the theorem, we will assume that the vertices execute these
moves in the order xi, xi−1, . . . , x1, the order given in Algorithm 2. Let ej = (xj , xj+1). Let S be the state
before the prefix move starts, and let Sj be the state just after xj switches its strategy. Note that Sj+1 is
the state just before xj switches.

Lemma 3. The prefix move given in Theorem 2 for prefix (x1, . . . , xi) does not reduce potential only if

i∑
j=1

cxj (S)− ci+1(S) ≤ 2

i∑
j=1

2Hjc(ej).

Proof. The change in potential caused by xj ’s switch is cxj (Sj) − cxj (Sj+1). Partition the edges of xj ’s
strategy in S into 3 sets: edges in pT∗(xj , xi+1), edges in pxi+1(S), and all other edges, called E1,j , E2,j , and
E3,j respectively. Additionally, let E4,j be the remaining edges in xi+1’s strategy: those not in E2,j . For
edge e, let ne(S) be the number of players using edge e in state S.

• cE1,j
xj (Sj+1) ≥ 0 = c

E1,j
xj (S)−

∑
e∈E1,j

1
ne(S)

c(e), since c
E1,j
xj (S) =

∑
e∈E1,j

1
ne(S)

c(e).

• cE2,j
xj (Sj+1)− cE2,j

xi+1(Sj+1) = c
E2,j
xj (S)− cE2,j

xi+1(S) = 0 since all edges in E2 are shared.

• cE3,j
xj (Sj+1) ≥ c

E3,j
xj (S) since xj ’s cost on this edge set has not decreased, since no sharing has been

added.

• cE4,j
xi+1(Sj+1) ≤ cE4,j

xi+1(S) since sharing on these edges only increases.

These facts give us

cxi+1(Sj+1)− cxj (Sj+1) = cE4,j
xi+1

(Sj+1) + cE2,j
xi+1

(Sj+1)− cE1,j
xj (Sj+1)− cE2,j

xj (Sj+1)− cE3,j
xj (Sj+1)

≤ cE4,j
xi+1

(S) + cE2,j
xi+1

(S)− cE2,j
xj (S)− cE1,j

xj (S) +
∑
e∈E1,j

1

ne(S)
c(e)− cE3,j

xj (S)

= cxi+1(S)− cxj (S) +
∑
e∈E1,j

1

ne(S)
c(e).

Then,

cxj (Sj)− cxj (Sj+1) ≤
i∑

h=j

2
1

h− j + 1
c(eh) + cxi+1(Sj+1)− cxj (Sj+1)

≤ cxi+1
(S)− cxj (S) +

∑
e∈E1,j

1

ne(S)
c(e) +

i∑
h=j

2
1

h− j + 1
c(eh).

Summing over all j gives

i∑
j=1

(
cxj (Sj)− cxj (Sj+1)

)
≥ 0 =⇒

i∑
j=1

(
cxj (S)− cxi+1

(S)
)
≤

i∑
j=1

2

i∑
h=j

1

h− j + 1
c(eh) +

i∑
j=1

∑
e∈E1,j

1

ne(S)
c(e)

≤ 2

i∑
j=1

Hjc(ej) +

i∑
j=1

c(ej) ≤ 4

i∑
j=1

Hjc(ej).

10

Assume that for all i, 1 ≤ i ≤ k, the prefix move given in Theorem 2 for prefix (x1, . . . , xi) does not
reduce potential. Then we show that pT∗(x, y) is homogenous. Let

gj =

{
1

j(j+1) for j < k, and
1
j for j = k.

Note that
∑k
j=i gj = 1/i for all i ≤ k. From Lemma 3 we have

i∑
j=1

cxj (S)− cxi+1
(S) ≤ 2

i∑
j=1

2Hjc(ej) ∀i, 1 ≤ i ≤ k

=⇒
k∑
i=1

gi i∑
j=1

cxj (S)− cxi+1(S)

 ≤ k∑
i=1

2gi

i∑
j=1

2Hjc(ej).

Rewriting
∑i
j=1 cxj (S)− cxi+1(S) as

∑i
j=1

∑i
h=j cxh(S)− cxh+1

(S) and rearranging, we obtain

k∑
i=1

gi i∑
j=1

j
(
cxj (S)− cxj+1

(S)
) ≤ k∑

i=1

2gi

i∑
j=1

2Hjc(ej).

Rearranging the sums, we get

k∑
j=1

j (cxj (S)− cxj+1
(S)
) k∑
i=j

gi

 ≤ 4

k∑
j=1

Hjc(ej)

k∑
i=j

gi

=⇒
k∑
j=1

cxj (S)− cxj+1
(S) ≤ 4

k∑
j=1

Hj

j
c(ej)

=⇒ cx(S)− cy(S) ≤ 4
∑
α≥0

256α+1

nα,X∑
j=1

Hj

j

 ≤ 4
∑
α≥0

256α+1H2
nα,X .

This completes the proof of Theorem 2.
Before we can analyze the absorb function, we need to show that the precondition for the Absorb

function (see just before line 33) is satisfied. We state and prove the precondition in Lemma 5. The proof
of Lemma 5 requires a homogenous solution, so we first prove homogeneity in the follow lemma (Lemma 4).

Lemma 4. When the while loops on lines 2 and 18 terminate, N(v) is homogenous.

Proof. Let S = Scurr. Let x, y ∈ N(v) such that the path in T+ from x to y does not contain v. Let P be
this path. In the simplest case, both x and y are in T ∗, and uv, if it exists, does not lie in P . Then, we
can bound the cost difference between x and y using the homogenous property, guaranteed by line 3/19 of

the MainLoop function. That is, |cx(S)− cy(S)| ≤ bc(ev)c14 . Next let us consider the general case, in which
both x and y are nonterminals, and uv ∈ P . Let P = (x, tx, . . . , ul, uv, ur, . . . , ty, y). We have the following
bounds:

|cx(S)− ctx(S)| ≤ bc(ev)c
64

, |ctx(S)− cul(S)| ≤ bc(ev)c
14

, |cul(S)− cur (S)| ≤ 2bc(ev)c
256

|cty (S)− cur (S)| ≤ bc(ev)c
14

, |cy(S)− cty (S)| ≤ bc(ev)c
64

.

Combining these ensures |cx(S)− cy(S)| ≤ 23bc(ev)c
112 .

We use Lemma 4 to show the precondition for the Absorb function.

11

Lemma 5. If the for loops on line 10/23 terminate without the algorithm returning, then

cp(Scurr) ≥ cv(Scurr)−
2 · bc(ev)c

7

for all p ∈ N(v), p 6= uv.

Proof. Let S = Scurr. Again, we suppose that uv is not adjacent to v in T ∗. Suppose the claim does not

hold, that is, cv(S) − cp(S) > 2·bc(ev)c
7 for some p ∈ N(v) Let P = (p, . . . , q, v) be the path from p to v in

T+ and suppose q 6= uv. By Lemma 4,

|cp(S)− cq(S)| ≤ 23bc(ev)c
112

=⇒ cv(S)− cq(S) >
9bc(ev)c

112
.

But, the cost of edge (v, q) is at most bc(ev)c256 < 9bc(ev)c
112 , so v must have had an improving move in line 11/24.

Now suppose uv is adjacent to v in T ∗ and lies in P . Then P = (p, . . . , q, uv, v). By Lemma 4,

|cp(S)− cq(S)| ≤ 23bc(ev)c
112

=⇒ cv(S)− cq(S) >
9bc(ev)c

112
.

But, the cost of edge (v, uv) is at most bc(ev)c256 (since this edge is in T ∗), and the same is true of the edge

(uv, q). Therefore v can switch its path to (v, uv) ∪ (uv, q) ∪ pq(S) and pay cost at most 2 bc(ev)c256 + cq(S) <
9bc(ev)c

112 + cq(S) < cv(S). Note that this improving move for v implies an improving move for uv in line 11
where puv (S) no longer includes v but instead consists of (uv, q) ∪ pq(S).

Now that we have shown the precondition is satisfied, we must show that the absorb function reduces
potential.

Theorem 6. If cq(Scurr) ≥ cv(Scurr) − 2·bc(ev)c
7 for all q 6= uv ∈ N(v), then every strategy change in

Absorb reduces potential.

The proof follows from the following three lemmas.

Lemma 7. At the beginning of the Absorb(v) function, v and uv (if v is a nonterminal) are the only
vertices using ev.

Proof. First consider the case where v is a nonterminal. We show that no edge added to the solution by
the critical move (this is at least ev, and possibly euv as well) is used by any terminal other than uv as a
result of lines 1 to 15. At the start of MainLoop on line 1, uv is the only terminal using ev and euv , by the
definition of a critical move.

Note that Homogenize(X) only increases sharing on edges in X and the path px(S) for some x ∈ X.
However, since in line 3 we only consider segments not containing v, no edge adjacent to v is in X either.
And since v is the only vertex using ev and v /∈ X, there is no x for which ev ∈ px(S). Therefore line 3 does
not increase sharing on ev. An identical argument shows that this line does not increase sharing on euv , if
v is a nonterminal.

Next consider line 4 of Algorithm 1. The only edges on which sharing can increase are (x, uv), (uv, y),
and edges in py(S). By our simplifying assumption, uv is not adjacent to v in T ∗ and therefore x, y 6= v.
Therefore neither (x, uv) nor (uv, y) is equal to euv or ev. Additionally, euv , ev /∈ py(S). Therefore sharing
does not increase on either euv or ev.

Line 7 increases sharing on exactly one of pw(S) and ptw(S), as well as σw, but only for w 6= v, uv. We
know that uv is the only terminal using euv or ev in S, so neither of these outcomes increases sharing on ev.
Line 9 uses only the MakeTree function, which, by definition, does not increase the sharing on euv or ev.

Lastly consider the for loop beginning at line 10. By definition, Absorb(v) is only run if the for loop
does not result in a change to Scurr, so this can not increase sharing on ev/euv .

If the condition in line 11 is ever true, then the algorithm does not begin the Absorb function. Therefore
we only need to consider what happens when the condition in line 11 is never true, in which case the entire
for loop has no effect.

12

Now consider the case where v is a terminal. Note that before the start of the MainLoop function
beginning at Line 17, v is the only vertex using ev (either because v only added a single new edge for the
critical move, or v added two edges but the execution of MainLoop on the second edge did not increase
sharing on ev by the argument above). Using the same argument as for the case of v being a nonterminal, we
can prove that this function does not increase sharing on ev, and we omit the details to avoid repetition.

Lemma 8. Let {q1, . . . , qk} denote all vertices in N(v) sorted by breadth first order from v according to T ∗.
Then changing qi’s strategy as in Lines 35 and 36 is potential decreasing for all i ∈ {1 . . . k}.

Proof. Suppose that ev = {v, w}. Let S be the solution before Absorb(v) is called and let Si be the solution
after qi has changed strategy. Therefore cqi(S

i−1) is the cost paid by qi directly before switching, and cqi(S
i)

is the cost paid by qi directly after switching. cqi(S
i−1) is exactly equal to the cost paid by qi before any

players switched, minus the reduction in qi’s cost due to sharing on pqi(S) from q1, . . . , qi−1 changing their
strategies. Since we know that ev /∈ pqi(S), we can divide this reduction into two components: the reduction
due to sharing on edges in N(v)∩ T ∗ ∩ pqi(S), and the reduction due to sharing on edges in pw(S)∩ pqi(S).
Denote the latter quantity by decw. The former quantity is upper bounded by the maximum cost qi could
pay on N(v)∩T ∗ in S (remembering that uv may not be using any edges in N(v) and thus not contributing

to sharing), 2 bc(ev)c56 + 2 bc(ev)c256 . So we can upper bound the total decrease in qi’s cost due to the players’

switching by bc(ev)c28 + decw + bc(ev)c
128 . Therefore

cqi(S
i−1) ≥ cv(S)− 2 · bc(ev)c

7
− bc(ev)c

28
− decw −

bc(ev)c
128

.

Suppose that v is a terminal and consider the cost paid by qi directly after switching, cqi(S
i). qi is

sharing edge ev with at least one other player (namely v), so on the edges shared with v, qi is paying at

most cv(S)− bc(ev)c2 − decw. And on the edges not shared with v, namely the edges in pT∗(qi, v), qi pays at

most 2
∑
α≥0 256α+1HnN+(v),α

+ 2 bc(ev)c256 ≤ bc(ev)c56 + bc(ev)c
128 . So

cqi(S
i) ≤ cv(S)− bc(ev)c

2
− decw +

bc(ev)c
56

+
bc(ev)c

128
< cv(S)− decw −

6 · bc(ev)c
14

< cqi(S
i−1). (1)

Therefore, it is an improving move for qi to switch.
Now suppose that v is a nonterminal. Then by definition, there is some terminal u using the edges {u, v}

and ev. Suppose that qi 6= q1. Then when qi switches in the absorbing process, it shares the cost of ev with
q1. For all i ≥ 2, qi shares the cost of edge ev with (at least) q1. Therefore, Equation 1 holds for all i.

The last case is when v is a nonterminal and q1 = qi. But if this is the case then edge {u, v} ∈ T ∗. If
this were not true, then there is some path p∗T (u, v) = {u, x1, x2, . . . , xn, xn+1 = v}. Since the network is
quasi-bipartite, xn must be a terminal, and xn comes before qi in a breadth first traversal of T ∗ rooted at
v, contradicting that qi = q1. Therefore qi is already using strategy {u, v} ∪ pv(S), so there is no switch to
be done by q1 in step 1 of the Absorb function. For i ≥ 2, qi pays at most half the cost of edge ev (since it
is shared with u), so Equation 1 holds.

Lemma 9. Let {s1, . . . , sk} denote all nonterminals in N(v) \ T ∗ with class(esi) ≤ class(ev), sorted in
breadth-first order from r according to S. Then for all i ∈ {1 . . . k}, it is an improving move for si to switch
as in Line 39. Moreover, after Absorb(v) is completed, esi is no longer in the solution and is replaced by
σsi (that is, σsi is the first edge on si’s path to the root, psi).

Proof. Let S be the solution before Absorb(v) is called. Let si ∈ N(v) \ T ∗. Consider first the case where
esi = σsi . In this case si is already taking strategy esi ∪ ptsi (S

′), since descendants are absorbed in lines 35
and 36, and there is no change to make in line 39. Suppose for the rest of the proof that esi 6= σsi .

Let Si be the solution after si has switched strategy. In particular, csi(S
i+1) is the cost paid by si

directly before switching, and csi(S
i) is the cost paid by si directly after switching. csi(S

i+1) is the cost paid
by si before the absorbing process began, csi(S), minus the cost reduction due to sharing on psi(S) due to
other vertices switching as part of the absorbing process. Since σsi /∈ psi(S), there is no contribution to the
latter term due to sharing on σsi . The only other edges in psi(S) that can have increased sharing as a result
of previous moves in the absorbing process are edges in N(v) ∩ T ∗ ∩ psi(S) and edges in pw(S) ∩ psi(S).

13

Therefore we have the same bound on this term as in Lemma 8, bc(ev)c28 + bc(ev)c128 +decw. We also know, from
the precondition for Absorb, that

csi(S) ≥ cv(S)− 2 · bc(ev)c
7

.

Therefore the cost that u pays immediately before switching, csi(S
i+1), satisfies

csi(S
i+1) ≥ cv(S)− 2 · bc(ev)c

7
− bc(ev)c

28
− bc(ev)c

128
− decw = cv(S)− decw −

10 · bc(ev)c
28

.

Now consider si’s cost immediately after switching (before any descendants switch), csi(S
i). si pays at

most the entire cost of σsi . As in the proof of Lemma 8, si pays at most cv(S) − bc(ev)c2 − decw on edges

shared with v, and at most bc(ev)c56 + bc(ev)c
128 on edges between tsi and v. So csi(S

i) satisfies

csi(S
i) ≤ c(σsi) + cv(S)− bc(ev)c

2
− decw +

bc(ev)c
28

+
bc(ev)c

128

≤ bc(ev)c
64

+ cv(S)− bc(ev)c
2

− decw +
bc(ev)c

14

< cv(S)− decw −
11 · bc(ev)c

28
< csi(S

i+1),

which proves the first part of the lemma. The second part follows from the definition of the move.

Theorems 2 and 6 prove that the entire main loop is potential reducing. Since the minimum decrease
in potential is bounded away from zero, and the potential is always at least zero, the algorithm necessarily
terminates.

However, termination alone does not guarantee that the final state is a Nash equilibrium. Since we have
restricted the set of moves that the algorithm can perform, we must show that whenever an improving move
is available to some terminal, there is also an improving move that is either a safe or critical move.

Lemma 10. The final state reached by the algorithm, Sf , is a Nash equilibrium.

Proof. Suppose for contradiction that Sf is not a Nash equilibrium, that there is an improving deviation
for some player q. Consider the most improving deviation (that with lowest cost) and denote this lowest
cost path to the root as pq(S

′
f) = {q = q1, q2, . . . , qk = r}. Of all vertices qi, consider the terminal with

highest index such that pqi(Sf) 6= {qi, qi+1, . . . , qk = r}. Since pq(S
′
f) is of lower cost to q than the path

{q = q1, q2, . . . , qi−1, qi} ∪ pqi(Sf), it must also be the case that {qi, qi+1, . . . , qk = r} is of lower cost to qi
than pqi(Sf). And by the maximality of index i, qi has an improving move where she can add edge {qi, qi+1}
(if qi+1 is a terminal), or edges {qi, qi+1}, {qi+1, qi+2} (if qi+1 is not a terminal). This is necessarily either a
safe or critical move.

Therefore, if an improving move exists for any player at state Sf , then a safe or critical move exists for
some player, contradicting termination of the algorithm.

4.2 Cost Analysis

Our goal for this section is to show our main result, Theorem 1. We will show that c(Sf) = O(c(T ∗)). That
is, we will show that that the cost of the final Nash equilibrium reached by the algorithm, Sf , is within a
constant factor of the cost of the optimal tree, T ∗.

To establish the theorem, it is sufficient to show that c(Sf \T ∗) = O(c(T ∗)). We devise a charging scheme
that distributes the cost of edges in Sf \ T ∗ among edges in T ∗. Each e ∈ Sf \ T ∗ must be an ev edge for
some vertex v. Furthermore, these ev edges were not later removed as the result of an absorbing process
initiated from another ev′ . At a high level, this allows us to distribute the cost of each ev to the edges in
the neighborhood N(v) ∩ T ∗, since the Absorb(v) function removes many other ev′ edges where v′ ∈ N(v)
from the solution. When v is a terminal, this is the same argument used in [5]; however, we will need to take
special care when distributing cost for ev when v is a nonterminal as well as for some σv edges when v /∈ T ∗.

14

We first consider a set of edges that we will not charge to their neighborhood. Define

Eσ = {ev ∈ Sf |v is a nonterminal,
bc(ev)c

64
≤ c(σv)}.

We bound the cost of Eσ by the cost of edges in Sf \ Eσ.

Lemma 11. c(Eσ) = O(c(Sf \ Eσ)).

Proof. Let ev = (v, w) ∈ Eσ, where v is a nonterminal. First observe that since (v, w) ∈ Sf , v is not a leaf.
Let eu = (u, v), where u is necessarily a terminal. Since c(ev) ≤ 64 · c(σv), we have that c(ev) ≤ 64 · c(eu)
from the definition of σv. Thus, we charge c(ev) to c(eu). Observe that no edge in Sf \ Eσ is charged more
than once since every nonterminal has a unique parent in Sf , and edges in Sf \Eσ are only charged the cost
of the first edge used by their parent (if at all).

Our goal now is to find a set of edges ev such that the right neighborhoods associated with edges of the
same class are not overlapping. In the absence of nonterminals, this is simple: For every edge in Sf \T ∗, the
right neighborhoods of vertices corresponding to edges of the same class being overlapping implies that each
edge is contained in the other’s neighborhood. Therefore, we argue that the second edge to arrive would
have deleted the first through the Absorb function, which gives a contradiction. With nonterminals, the
same property does not hold. When edge ev is added for some nonterminal v, euv will not be deleted from
the solution, even if uv falls in v’s neighborhood. The presence of σv for which no MainLoop(σv) was run
(added, e.g., in line 35) further complicates things. To show that no right neighborhoods overlap, we will
therefore remove some edges from Sf \ (T ∗ ∪ Eσ).

For nonterminal v, if v is adjacent to at least two edges in Sf \ (T ∗∪Eσ) and σv is one such edge, remove
σv and charge it to one of the remaining edges adjacent to v. Next, for any pair of edges eu and ev in
Sf \ (T ∗∪Eσ) such that u was the terminal which added ev, we delete the smaller of eu and ev and charge it
to the remaining edge. We are left with a set of edges which we denote E∗, each of which has been charged
by at most two edges that were removed (and each edge removed is charged to some edge in E∗).

Our argument will charge to each edge in T ∗ at most one edge in E∗ of each class. To make the argument
simpler, it is desirable to charge those σv’s for which MainLoop(σv) was never run to higher classes than
their actual classes. To this end, we increase the cost of each such σv to c(eσv), the cost of the first edge on
v’s path in the state just before σv was added.

Lemma 12. For edges eu, ev ∈ E∗, if class(ev) = class(eu), then N+(v) and N+(u) are disjoint.

Proof. If class(ev) = class(eu) and N+(v) and N+(u) overlap, then the vertex corresponding to the edge
arriving first is in the neighborhood of the other. Suppose N+(v) and N+(u) overlap, eu preceded ev, and

u 6∈ N(v). If u 6∈ T ∗, c(σu) ≤ bc(eu)c
64 = bc(ev)c

64 , and thus tu ∈ N(v) implies u ∈ N(v). Then tu (or u if
u ∈ T ∗) must lie to the left of N(v) in MC, which means that N+(u) strictly contains N−(v), a contradiction
given that class(ev) = class(eu).

Suppose eu, ev ∈ E∗ with class(ev) = class(eu). Suppose eu preceded ev and N+(v) and N+(u) overlap,
which implies u ∈ N(v) as shown above. We consider two cases for edge ev, and derive contradictions in all
cases. First, suppose Mainloop(ev) was run when ev was added. Then eu cannot exist after the completion
of Absorb(v), by definition of Absorb.

If the MainLoop(ev) was not run, then ev = σw for some w, and ev was introduced because w was in
Z. Let eσw be the first edge on w’s path to the root in the state just after σw was added, which we denote
Sσw (this may be different from w’s current first edge, ew). Then MainLoop(eσw) caused the deletion of all
edges eq such that q ∈ NSσw (w). We consider two possible times when eu was added: If eu was added before
eσw , then MainLoop(eσw) deleted eu since u ∈ NSσw (w) because class(eu) = class(eσw). If eu was added
after eσw , class(eu) = class(eσw) implies that w ∈ N(u). But then eσw was removed from the solution and
w was removed from Z, so the addition of σw = ev was not possible.

Given Lemma 12, the scheme from [5] for distributing the cost of each ev to its neighborhood can be
applied directly. This gives us the following lemma, which along with Lemma 11 establishes Theorem 1.

Lemma 13. The cost of each ev ∈ E∗ can be distributed to the edges in N+(v) (and its boundary) such that
the total charge on any edge e′ ∈ T ∗ is O(c(e′)).

15

Proof. Let ev ∈ E∗. Let α = class(ev). Throughout this proof we will be interested only in edges N+(v)∩T ∗.
For simplicity, we will simply write N+(v) instead of N+(v) ∩ T ∗.

We first consider the case where N+(v) = MC = N(v). If v is a terminal, then ev is the only edge not
in Sf \ Eσ, since all other terminals are following their path in T ∗ to v. But all edges added by a critical
move must have c(e) ≤ c(T ∗) by definition. So in this case, c(Sf \ Eσ) ≤ c(T ∗). If v is a Steiner vertex,
then Sf \ Eσ can also include σv, since all terminals u are using strategy pT∗(u, tv) ∪ σv ∪ pv(S). Since
c(σv) ≤ c(ev), we have c(Sf \ Eσ) ≤ 2c(T ∗).

Now we consider the case where N+(v) 6= MC. Recall that every edge in N+(v) has class at most α− 2.
Let a 6∈ N+(v) be the first edge to the right of N+(v) in T ∗, and let µ = class(a). There are two cases.

Case 1: µ ≥ α− 1. In this case we can charge c(ev) to a. We show that only one edge of each class will
get charged to a. Suppose that this is not the case, that there is some ev′ with class(ev′) = α, such that a
is the first edge to the right of N+(v′) in T ∗. Then the edges of N+(v) have non-empty intersection with
those of N+(v′), contradicting Lemma 12.

So the total cost charged to edge a in this fashion is no greater than
∑µ+1
γ=0 256γ+1 < 256µ+3 ≤ 2563c(a).

Since each e ∈ T ∗ appears at most twice in MC, e is charged a total cost of at most 2 · 2563c(e).
Case 2: µ ≤ α − 2. In this case we charge c(ev) to a subset of the edges in N+(v). We first prove a

technical claim.

Claim 1. There exists some class 1 ≤ β ≤ α− 2 such that

256β+1H2
nN+(v),β

256α−1
≥ 1

256
α−β

2

.

Proof. Assume, for contradiction, that there exists no such β. That is,
256γ+1H2

n
N+(v),γ

256α−1 < 1

256
α−γ

2

for all

0 ≤ γ ≤ α− 2. Then we can sum over all classes:

α−2∑
γ=0

256γ+1H2
nN+(v),γ

=

α−2∑
γ=0

256γ+1H2
nN+(v),γ

256α−1
256α−1

< 256α−1
α−2∑
γ=0

1

256
α−γ

2

< 256α−1. (2)

However, we also know from maximality of N+(v) that

2

(
α−2∑
γ=0

256γ+1H2
nN+(v),γ

+ 256µ+1H2
nN+(v),µ+1 − 256µ+1H2

nN+(v),µ

)
≥ 256α

56
,

which implies that, using the fact that H2
i+1 −H2

i ≤ 5
4 for any i ≥ 0,

2

α−2∑
γ=0

256γ+1H2
nN+(v),γ

≥ 256α

56
− 2 · 256µ+1(H2

nN+(v),µ+1 −H2
nN+(v),µ

)

≥ 256α

56
− 10

4
256α−1 > 256α−1,

contradicting Equation 2.

Consider all edges of class β. By using the inequality Hi ≤ 1 + ln i and rearranging the equation from
Claim 1, we get that

nN+(v),β ≥ e
√

256
α−β−4

2 −1.

16

We charge c(ev) ≤ 256α+1 equally across all edges of class β. Therefore each edge of class β is charged at
most

256α+1 1

e

√
256

α−β−4
2 −1

= 256β
256α−β+1

e

√
256

α−β−4
2 −1

.

Suppose that any other edge ev′ of class α is (partially) charged to some edge a that ev has also been
partially charged to. Then a ∈ N+(v) and a ∈ N+(v′) overlap, a contradiction to Lemma 12. Therefore the
total amount charged to a is at most∑

γ≥β+2

256β
256α−β+1

e

√
256

α−β−4
2 −1

= 256β
∑
z≥0

256z+3

e

√
256

z−2
2 −1

= O(256β)

= O(c(a)).

Since each edge e appears in MC at most twice, the total cost of E∗ from this type of charging is O(c(T ∗)).
This proves the lemma.

References

[1] Susanne Albers. On the value of coordination in network design. SIAM J. Comput., 38(6):2273–2302,
2009.

[2] Elliot Anshelevich, Anirban Dasgupta, Jon M. Kleinberg, Éva Tardos, Tom Wexler, and Tim Roughgar-
den. The price of stability for network design with fair cost allocation. SIAM J. Comput., 38(4):1602–
1623, 2008.

[3] Vittorio Bilò and Roberta Bove. Bounds on the price of stability of undirected network design games
with three players. Journal of Interconnection Networks, 12(1-2):1–17, 2011.

[4] Vittorio Bilò, Ioannis Caragiannis, Angelo Fanelli, and Gianpiero Monaco. Improved lower bounds on
the price of stability of undirected network design games. Theory Comput. Syst., 52(4):668–686, 2013.

[5] Vittorio Bilò, Michele Flammini, and Luca Moscardelli. The price of stability for undirected broadcast
network design with fair cost allocation is constant. In FOCS, pages 638–647, 2013.

[6] Jaroslaw Byrka, Fabrizio Grandoni, Thomas Rothvoß, and Laura Sanità. Steiner tree approximation
via iterative randomized rounding. J. ACM, 60(1):6, 2013.

[7] Deeparnab Chakrabarty, Nikhil R. Devanur, and Vijay V. Vazirani. New geometry-inspired relaxations
and algorithms for the metric steiner tree problem. Math. Program., 130(1):1–32, 2011.

[8] Moses Charikar, Howard J. Karloff, Claire Mathieu, Joseph Naor, and Michael E. Saks. Online multicast
with egalitarian cost sharing. In SPAA 2008: Proceedings of the 20th Annual ACM Symposium on
Parallelism in Algorithms and Architectures, Munich, Germany, June 14-16, 2008, pages 70–76, 2008.

[9] Ho-Lin Chen and Tim Roughgarden. Network design with weighted players. Theory Comput. Syst.,
45(2):302–324, 2009.

[10] George Christodoulou, Christine Chung, Katrina Ligett, Evangelia Pyrga, and Rob van Stee. On
the price of stability for undirected network design. In Approximation and Online Algorithms, 7th
International Workshop, WAOA 2009, Copenhagen, Denmark, September 10-11, 2009. Revised Papers,
pages 86–97, 2009.

[11] Amir Epstein, Michal Feldman, and Yishay Mansour. Strong equilibrium in cost sharing connection
games. Games and Economic Behavior, 67(1):51–68, 2009.

[12] Angelo Fanelli, Dariusz Leniowski, Gianpiero Monaco, and Piotr Sankowski. The ring design game with
fair cost allocation. Theor. Comput. Sci., 562:90–100, 2015.

17

[13] Amos Fiat, Haim Kaplan, Meital Levy, Svetlana Olonetsky, and Ronen Shabo. On the price of stability
for designing undirected networks with fair cost allocations. In ICALP, pages 608–618, 2006.

[14] Yasushi Kawase and Kazuhisa Makino. Nash equilibria with minimum potential in undirected broadcast
games. Theor. Comput. Sci., 482:33–47, 2013.

[15] Euiwoong Lee and Katrina Ligett. Improved bounds on the price of stability in network cost sharing
games. In EC, pages 607–620, 2013.

[16] Jian Li. An o(log(n)/log(log(n))) upper bound on the price of stability for undirected shapley network
design games. Inf. Process. Lett., 109(15):876–878, 2009.

[17] Sridhar Rajagopalan and Vijay V. Vazirani. On the bidirected cut relaxation for the metric steiner tree
problem. In SODA., pages 742–751, 1999.

[18] Gabriel Robins and Alexander Zelikovsky. Tighter bounds for graph steiner tree approximation. SIAM
J. Discrete Math., 19(1):122–134, 2005.

[19] Robert W Rosenthal. A class of games possessing pure-strategy nash equilibria. International Journal
of Game Theory, 2(1):65–67, 1973.

18

	1 Introduction
	1.1 Related Work

	2 Preliminaries
	3 Algorithm
	4 Analysis
	4.1 Termination
	4.2 Cost Analysis

