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Abstract. “Net neutrality” often refers to the policy dictating that an
Internet service provider (ISP) cannot charge content providers (CPs)
for delivering their content to consumers. Many past quantitative mod-
els designed to determine whether net neutrality is a good idea have been
rather equivocal in their conclusions. Here we propose a very simple two-
sided market model, in which the types of the consumers and the CPs are
power-law distributed — a kind of distribution known to often arise pre-
cisely in connection with Internet-related phenomena. We derive mostly
analytical, closed-form results for several regimes: (a) Net neutrality, (b)
social optimum, (c) maximum revenue by the ISP, or (d) maximum ISP
revenue under quality differentiation. One unexpected conclusion is that
(a) and (b) will differ significantly, unless average CP productivity is
very high.

1 Introduction

The Internet is by far the world’s most crucial technological artifact. A mere
quarter century after its beginning, it has emerged to become, through connect-
ing over two billion people, the nexus of all human activity — intellectual, social,
economic — and to satisfy, to varying and rapidly evolving degrees, humanity’s
thirst for information and access, communication and interaction, education and
wisdom, entertainment and excitement, opportunity and publicity, let alone jus-
tice, freedom, democracy. The Internet is also a gestalt, complex system; a novel,
mysterious, and fascinating scientific object studied intensely by researchers of
all colors, including computer scientists and economists.

From the point of view of economics (that is to say, efficiency and scarcity)
one useful abstraction of the Internet is that of a two-sided market [1,19]. In such
a market, a platform (e.g., a game console, or an operating system, or an Internet
service provider (ISP)) brings together two populations of agents: players with
game developers, or users with application programmers, or, in the case of ISPs,
Internet users with Internet content providers (CPs, such as Google, NYT, or
Shtetl-optimized). Two-sided markets are interesting because they can exhibit
network effects and other complex externalities. An important question is, if the
two populations are passive price-takers, what is the platform policy (typically,
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pricing for access from both sides1) that maximizes platform revenue, and what
is the socially optimum policy? Plus, if these two differ substantially, how should
the two-sided market be optimally regulated?

In the case of the Internet, this question has been known as the net neutrality
debate, see [21,8] and the related work section for the complex history and di-
verse and precarious current status. The term “net neutrality” has been used in
many different senses. Most fundamentally, and closest to home, net neutrality
is the computer science argument that the end-to-end principle in networking
[18] implies that ISPs have no access to the content or origin of packets (as such
information adds nothing to the network’s ability to operate properly). In policy,
law, and economics, by “net neutrality” one typically understands two implied
consequences of the end-to-end principle, namely that ISPs cannot/should not
(a) treat flows differentially depending on the originating CP; or (b) charge CPs
for resource use, or for content delivery to consumers.

There is a substantial and growing literature of economic research on net
neutrality, and the two subtly different interpretations of the term “net neutral-
ity” (a) and (b) above give rise to divergent threads within it (see the Related
Work section). Typically the models include only one ISP (even though inter-
esting analyses of multiple ISPs exist [14]) who charges (or does not) the two
sides of the market for access, while the utility of the two populations is mod-
eled in a number of different natural ways. Unsurprisingly, there is no definitive
answer in the literature to the key question above (“which ISP policy is socially
optimal?”), even though interesting points can be made based on such models
(more in the related work section).

The model. In this paper we introduce and analyze a new model of two-sided
market motivated by the net neutrality problem. Our goals in defining this model
have been these:

– Keep the model very simple, with very few and crisp parameters and assump-
tions, so that general conclusions can be drawn.

– At the same time, adopt assumptions (e.g. about distributions) compatible
with the acknowledged reality of the Internet. Our model is the first to
assume that the types of both users and CPs are power-law distributed.

Power law distributions [7,13] (see also [9] for their use in economic modeling)
are simple distributions outside the exponential family, with one parameter (the
exponent) typically ranging between 2 and 3 — thus, they also serve our goal of
parametric parsimony. Even though they had been observed in many places since
the early 20th century (in city populations, word frequencies, incomes, etc.2), it
was the Internet that brought them to the center of technical discourse — indeed

1 Possibly negative prices: recall that in the first two examples the practice includes
subsidies.

2 Power law distributions have been called “the signature of human activity,” even
though they also appear in life and the cosmos, and they are easy to confuse with
the lognormal distribution.
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it seems almost impossible to understand and model any aspect of the Internet
and the web without resorting to these types of distributions. It seems natural
to suppose that CP type (capturing the CP’s quality, or market share, or size) is
so distributed, since power-law distributed firm size is a known characteristic of
dynamic industries. It is also natural to accept that consumer types (measuring
motivation, interest in the Internet) are power-law distributed — for example,
incomes are distributed this way. Type distributions lie at the basis of our model.
The product of consumer type x times CP type y, times the speed of the net,
captures the matching probability, the probability that a consumer of type x will
“like” (download content from) a CP of type y. This, together with a simple
assumption on network speed (we take it inversely proportional to total traffic)
defines the expected utility of both CPs and consumers: For a CP we assume
it is proportional to the number of consumers who like it (modeling advertising
income, or else popularity) and for a consumer a concave function, such as the
square root, of the number of CPs that s/he likes. Finally, in the appendix we
also briefly discuss a simple model of quality-of-service differentiation where an
ISP charges CPs for using a privileged channel akin to the so-called “Paris metro
pricing” [16].

Naturally, there are many aspects of this complex problem that we do not
model: We do not model ISP costs, and, most importantly for the net neutral-
ity debate, ISP technology and investment. However, our work can inform this
crucial aspect of the problem, as our analytical results depend explicitly on the
total network capacity. Our model of CP cost is simplistic (we assume that it is,
in expectation, proportional to its type), but we have obtained similar results
under different assumptions. We assume that there is only one ISP (as does
most of the literature); however, our results can be used to solve simple models
with many ISPs. And we do not model one of the salient characteristics of the
Internet, namely its rapid growth; however, our use of power-law distributions
in CP size can be seen as taking into account the exquisitely dynamic nature of
the Internet market.

Our results. We derive closed-form analytical results for almost all of the ques-
tions raised by our model: For the optimum ISP policy, for the optimum ISP
policy under net neutrality, as well as for the ISP policy that maximizes social
welfare, but also for comparisons between them; for a few points that are hard
to answer analytically, we have very clean computational results.

Our most surprising conclusion is that, in this model, net neutrality is not
socially optimal unless CP costs are very small. That is, there is in general a
socially optimum price the ISP should charge the CPs, and this price is zero only
if a parameter measuring CP costs (essentially, the average inverse productivity
in the CP industry) is below a threshold. Regulation is needed for efficiency,
requiring the ISP to charge CPs not necessarily zero, as in net neutrality, but
the socially optimum price, typically smaller than what the ISP would like to
charge.

The question then, for the regime of large CP costs, becomes: among the two
suboptimal extremes (net neutrality or ISP revenue maximization), which is the
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more efficient? It turns out that the answer varies (see the computational results
in Fig. 1): For CP costs just above the neutrality threshold, net neutrality is
better. For larger CP costs, ISP revenue maximization is better. Interestingly,
in both cases the differences in social welfare between the three regimes does
not seem that great. Overall, our model yields concrete, quantitative, and crisp
results for the net neutrality problem, stemming from rather involved analysis,
of the kind we believe had not been available in the literature, for a kind of model
(consumers and CPs of power-law distributed types) that is arguably especially
fit for the problem in hand.

Our results are summarized in Table 1. The parameters shown in this table
will be mentioned in next section.

Table 1. Summary of results

CP costs (a) Optimal CP fee (bopt) Optimal

membership fee (copt)

Max-Rev a > λ
2

x
2−γ
0
γ−2

a 0

(c = 0) 0 ≤ a ≤ λ
2

x
2−γ
0
γ−2

λ
γ−2

x2−γ
0 − a 0

Max-Rev a ≤ 1
2
( γ−2
γ−1

φ′(Ȳ x0) + λ)X̄ λ
γ−2

x2−γ
0 − a φ( 1

β−2
y2−β

0 x0)

(c > 0) a > 1
2
( γ−2
γ−1

φ′(Ȳ x0) + λ)X̄ ( 2λ
γ−1
γ−2

φ′(
√
Ȳ 1
β−2

y∗2−βx0)+λ
− 1)a φ(

√
Ȳ 1
β−2

y∗2−βx0)

Socially a ≤ 1
2
(
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄) ≤ λ

γ−2
x2−γ

0 − a ≤ φ(
√
Ȳ 1
β−2

ŷ2−βx0)

Optimum a 1
2
(
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄) ( 2λ

1
X̄

∫∞
x0

φ′(
√
Ȳ 1
β−2

ŷ2−βx)x1−γdx+λ
− 1)a ≤ φ(

√
Ȳ 1
β−2

ŷ2−βx0)

Related Work

For aspects of policy, law, and history of the subject see [8,17,20,21]. [12] is an
eloquent advocacy of net neutrality backed by modest quantitative argument,
while [2] is an exploration of possible business models in the CP industry and
the ways they affect the net neutrality issue; the model involves only one CP. [5]
propose a sophisticated and realistic model of CP-consumer interaction, but the
complexity of their model prevents definite conclusions about net neutrality; an
important monotonicity principle is shown, stating that social welfare is always
coterminous with the total content transmitted through the network. In earlier
work [6], a simple model in a similar spirit to ours was proposed, albeit with
CP and consumer types uniformly distributed. Their results are dependent on
parameter value ranges, with CP costs playing an important role, as they do in
our results. In the model of [14] there are many regional monopolist ISPs, and
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deviation from net neutrality leads in a tragedy in the commons situation (the
commons being the CP industry). The effect and nature of competition among
ISPs is taken on in [10], through a mostly qualitative analysis.

Net neutrality as differentiation in quality of service has also been addressed
in the economic literature. In [3,4] consumers are connected to two CPs through
a single ISP running a network with realistic (i.e., informed by queueing theory)
delays, and two levels of service (a fast lane sold through bidding in [4], a pri-
ority service in [3]), and the two CPs choose level of service according to their
profitability. In contrast, [11] models CPs by their tolerance of network delays.
Finally, [15] model the network as a sophisticated extensive-form game, in which
CPs, ISPs, and consumers interact by setting prices and choosing services; they
conclude that net neutrality prevails in several environments, for example in the
presence of priority lanes.

2 The Model

In our basic model an ISP delivers the content of CPs to a population of con-
sumers:

– The consumers are modeled as a continuum of values for the consumer type
X, intuitively, a measure of the value this particular consumer receives from
browsing the Internet. Importantly we assume that X is power-law dis-
tributed, that is, the density function is pγ(x) = x−γ for x ≥ x0, where

x0 = ( 1
γ−1 )

1
γ−1 is the minimum type. We denote the expectation of X by

X̄ = 1
γ−2 ( 1

γ−1 )
2−γ
γ−1 .

– Similarly, each CP has a type Y with density function pβ(y) = y−β for all

y ≥ y0 = ( 1
β−1 )

1
β−1 , a measure of the CPs quality, or size. Again, Ȳ =

1
β−2 ( 1

β−1 )
2−β
β−1 .

– Bandwidth and speed: The ISP provides bandwidth B (B is taken to be one
for simplicity, even though our results can be rewritten as functions also of
B, for the study of issues of investment and technology innovation by the
ISP). The speed of the network is then a decreasing function of the total
traffic T , denoted Sp(T ), specified next.

– Calculation of T . Crucially, we assume that the infinitesimal contribution
to traffic by consumers of type3 x and CPs of type y, or equivalently, the
intensity with which a consumer of type x will like and download the content
of a CP of type y, is proportional to the product of the three magnitudes x,
y, and Sp(T ) (times dx · dy, of course). Therefore, the total traffic is

T =

∫ ∞
xt

∫ ∞
yt

Sp(T )xypγ(x)pβ(y)dxdy

Here xt and yt are the key parameters sought by our analysis, namely the
minimum types of consumers and CPs respectively that participate in the

3 More formally, of types between x and x+ dx, etc.
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market (do not drop out), given the charges imposed by the ISP. The max-
imum traffic T0 occurs when xt = x0 and yt = y0. We use the relative speed
function Sp(T ) = T0

T . Thus,

T0 =

∫ ∞
x0

∫ ∞
y0

xypγ(x)pβ(y)dxdy =

∫ ∞
x0

x1−γdx

∫ ∞
y0

y1−βdy = X̄Ȳ

Since T only depends on xt, yt,

T =

√∫ ∞
xt

∫ ∞
yt

T0xypγ(x)pβ(y)dxdy =

√
X̄Ȳ

∫ ∞
xt

x1−γdx

∫ ∞
yt

y1−βdy

– Utility functions.
• The utility of a user of type x is assumed to be φ(Nx)−c, where Nx is the

expected number of content providers this user likes, c is the membership
fee imposed on users by the ISP (independent of the traffic), and φ(r) is
a concave function such as

√
r. Therefore, the utility function for a user

of type x is

φ(

∫ ∞
yt

T0

T
xy1−βdy)− c

• Finally, we assume that the utility function of a content provider of type
y is λNy − by − ay where
∗ λ is a needed “exchange rate” between the utility of consumers and

that of CPs;
∗ Ny is the expected number of consumers who like this content provider

— notice that we assume advertising income to be proportional to
the number of users;

∗ ay is the expected costs of a content provider of type y;
∗ by is the payment that the content provider needs to pay to the

platform. Notice here a simplifying modeling maneuver: While we
would like to make the CP’s payment a linear function of the traffic
originating from it, which is roughly Ny, we make it instead a linear
function of its quality y, which is proportional to Ny.

Thus, the utility function of a content provider with quality y is as
follows:

λ

∫ ∞
xt

T0

T
x1−γydx− by − ay

– Revenue of the ISP, from charges imposed on consumers and CPs:

R = c

∫ ∞
xt

x−γdx+ b

∫ ∞
yt

y × y−βdy = c

∫ ∞
xt

x−γdx+ b

∫ ∞
yt

y1−βdy,

– Thus, the parameters of our model are these: power-law exponents γ and β;
the consumer concave function φ; and the CP utility parameters a (expected
cost per unit of size) and λ. The decision variables are b and c (the prices
charged).
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3 Revenue Maximization

We calculate the optimum prices for the ISP to charge the two sides of the
market. For technical reasons we start by finding the optimum b (CP fee) when
c = 0 (this is Theorem 1), and then proceed to the general case (Theorem 2).
The proofs are in the Appendix A.

Theorem 1. If c = 0, the optimal pricing strategy is

bopt =

 a a > λ
2
x2−γ

0

γ−2

λ
γ−2x

2−γ
0 − a 0 ≤ a ≤ λ

2
x2−γ

0

γ−2

Theorem 2. If c > 0, a ≥ 0 and φ(·) is a positive increasing concave function,
the optimal pricing strategy is

– If a ≤ 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄,{
bopt = λ

γ−2x
2−γ
0 − a

copt = φ( 1
β−2y

2−β
0 x0)

– If a > 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄,
bopt = ( 2λ

γ−1
γ−2φ

′(
√
Ȳ 1
β−2y

∗2−βx0)+λ
− 1)a

copt = φ(
√
Ȳ 1
β−2y

∗2−βx0)

where y∗ is the solution of yt which satisfies the following equation:

a− 1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

x0
x1−γdx

x0) + λ)

√
T0

√∫∞
x0
x1−γdx√∫∞

yt
y1−βdy

= 0

4 Socially optimum pricing

While excluding consumers is obviously inefficient, rather surprisingly including
all CPs may not be socially optimal. The intuitive reason is that low quality CPs
clutter the Internet and incur large costs without adding enough value. Again
we must determine the optimal xt and yt, and the corresponding b and c. Let S
denote the social welfare. We have:

S =

∫ ∞
xt

v(x)x−γdx+

∫ ∞
yt

v(y)y−βdy − a
∫ ∞
yt

y1−βdy (1)

where

v(x) = φ(

∫ ∞
yt

T0

T
y1−βxdy) = φ(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x) (2)
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and

v(y) = λ

∫ ∞
xt

T0

T
x1−γydx = λ

√
T0

∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

y (3)

Plugging these two equation above into Eq. 1, we get

S =

∫ ∞
xt

φ(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x)x−γdx+ λ
√
T0

√∫ ∞
xt

x1−γdx

√∫ ∞
yt

y1−βdy − a
∫ ∞
yt

y1−βdy

We can prove the following.

Theorem 3. To maximize the social welfare, the optimal xt = x0, while the
optimal yt satisfies the following

yt =

{
y0 ifa ≤ 1

2 (
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄)

ŷ ifa > 1
2 (
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄)

where ŷ is the solution of the following equation of yt:

a− 1

2
(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
yt

y1−βdy)x1−γdx+ λX̄)

√
Ȳ√∫∞

yt
y1−βdy

) = 0

In terms of the pricing strategy,

– If a ≤ 1
2 (
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄),

{
b̂opt ≤ λ

γ−2x
2−γ
0 − a

ĉopt ≤ φ( 1
β−2y

2−β
0 x0)

– If a > 1
2 (
∫∞
x0
φ′(xȲ )x1−γdx+ λX̄)


b̂opt = ( 2λ

1
X̄

∫∞
x0
φ′(

√
Ȳ 1
β−2 ŷ

2−βx)x1−γdx+λ
− 1)a

ĉopt ≤ φ(
√
Ȳ 1
β−2 ŷ

2−βx0)
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Proof. Firstly, we consider the optimal xt to maximize social welfare of the
platform. As we know, S is a function of xt and yt, which is denoted by S(xt, yt).

∂S(xt, yt)

∂xt
=

1

2

x1−γ
t∫∞

xt
x1−γdx

∫ ∞
xt

φ′(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x)

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γdx

− φ(

√
T0

∫∞
yt
y1−βdy∫∞

xt
x1−γdx

xt)x
−γ
t −

1

2

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

≤ 1

2

x−γt∫∞
xt
x1−γdx

∫ ∞
xt

φ′(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xtx
1−γdx

− φ(

√
T0

∫∞
yt
y1−βdy∫∞

xt
x1−γdx

xt)x
−γ
t −

1

2

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

≤ 1

2

x−γt∫∞
xt
x1−γdx

φ(

√
T0

∫∞
yt
y1−βdy∫∞

xt
x1−γdx

xt)

∫ ∞
xt

x1−γdx− φ(

√
T0

∫∞
yt
y1−βdy∫∞

xt
x1−γdx

xt)x
−γ
t

− 1

2

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t = −1

2
φ(

√
T0

∫∞
yt
y1−βdy∫∞

xt
x1−γdx

xt)x
−γ
t −

1

2

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

≤ 0
(4)

The first inequality in above proof is based on the fact that φ′ is a decreas-
ing function of xt. The second inequality is because ∀x ≥ 0, xφ′(x) ≤ φ(x).
Therefore, the optimal xt is x0.

Next, we consider yt.

∂S(xt, yt)

∂yt
= ay1−β

t − 1

2

∫ ∞
xt

φ′(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x)

√
T0y

1−β
t√∫∞

xt
x1−γdx

∫∞
yt
y1−βdy

x1−γdx

− 1

2
λ

√
T0

∫∞
xt
x1−γdx√∫

yt
y1−γdy

y1−β
t

= y1−β
t (a− 1

2
(

∫ ∞
xt

φ′(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x)x1−γdx+ λ

∫ ∞
xt

x1−γdx)

√
Ȳ√∫∞

yt
y1−βdy

)

= y1−β
t (a− 1

2
(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
yt

y1−βdy)x1−γdx+ λX̄)

√
Ȳ√∫∞

yt
y1−βdy

)

(5)
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Based on the same discussion in the proof of Theorem 2,

h(yt) =
1

2
(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
yt

y1−βdy)x1−γdx+ λX̄)

√
Ȳ√∫∞

yt
y1−βdy

)

is an increasing function of yt. Thus,

– If a ≤ h(y0), then ∂S(xt,yt)
∂yt

≤ 0. Thus the optimal yt is y0.
In this case, the optimal pricing strategy is{

b̂opt ≤ λ
γ−2x

2−γ
0 − a

ĉopt ≤ φ( 1
β−2y

2−β
0 x0)

– If a > h(y0), then there exists a unique solution ŷ for h(yt) − a = 0. Then
the socially optimal pricing is

b̂opt = ( 2λ
1
X̄

∫∞
x0
φ′(

√
Ȳ 1
β−2 ŷ

2−βx)x1−γdx+λ
− 1)a

ĉopt ≤ φ(
√
Ȳ 1
β−2 ŷ

2−βx0)

4.1 Comparison of ŷ and y∗

We would like to know the relationship between the socially optimum cut off
point for CPs ŷ and its revenue maximizing counterpart y∗. This relationship
depends on γ, β, and φ. When φ belongs to a natural class of concave functions —
namely, fractional powers — such comparison is possible: Revenue maximization
demands that more CPs be cut off than does efficiency, assuming CP costs are
not very low.

Let us define two important constants

ζ = max{1

2
(
γ − 2

γ − 1
φ′(Ȳ x0) + λ)X̄,

1

2
(

∫ ∞
x0

φ′(xȲ )x1−γdx+ λX̄)}

η = min{1

2
(
γ − 2

γ − 1
φ′(Ȳ x0) + λ)X̄,

1

2
(

∫ ∞
x0

φ′(xȲ )x1−γdx+ λX̄)}

Theorem 4. Suppose a > ζ and φ(x) = xθ where 0 < θ < 1. Then ŷ < y∗.

Proof. For y∗,

a =
1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
y∗
y1−βdy√∫∞

x0
x1−γdx

x0) + λ)

√
T0

√∫∞
x0
x1−γdx√∫∞

y∗
y1−βdy

=
1

2
(
γ − 2

γ − 1
φ′(

√
Ȳ

∫ ∞
y∗

y1−βdyx0) + λ)
X̄
√
Ȳ√∫∞

y∗
y1−βdy

= g(y∗)

(6)
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For ŷ,

a =
1

2
(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
ŷ

y1−βdy)x1−γdx+ λX̄)

√
Ȳ√∫∞

ŷ
y1−βdy

) = h(ŷ) (7)

Suppose ŷ = y∗ = y′, then

h(y′)− g(y′)

=
1

2

√
Ȳ√∫∞

y′
y1−βdy

y′(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
y′

y1−βdy)x1−γdx− γ − 2

γ − 1
φ′(x0

√
Ȳ

∫ ∞
y′

y1−βdy)X̄)

(8)

Let
√
Ȳ
∫∞
y′
y1−βdy = Z, then∫ ∞
x0

φ′(Zx)x1−γdx− γ − 2

γ − 1
φ′(Zx0)X̄

=

∫ ∞
x0

θZθ−1xθ−γdx− γ − 2

γ − 1
θ(Zx0)θ−1 1

γ − 2
x2−γ

0

= θZθ−1x1+θ−γ
0 (

1

γ − θ − 1
− 1

γ − 1
) > 0

(9)

Thus, if ŷ = y∗, h(ŷ)−g(y∗) > 0. Since g and h are both increasing functions,
then ŷ < y∗ if h(ŷ) = g(y∗) = a.

4.2 Welfare Comparison

To summarize our results so far:

– In both revenue and welfare maximization, no consumers are left outside the
market.

– When CP costs are small (a ≤ η), then no CPs are cut off either.
– When η < a ≤ ζ, then no CPs are cut off for social optimality, however,

some CPs will be cut off for revenue optimality.4

– But otherwise, some CPs must be cut off for efficiency (that is, network
neutrality is socially suboptimal), while more will have to be cut off for
revenue optimality. 5

4 This is because 1
2
( γ−2
γ−1

φ′(Ȳ x0) + λ)X̄ < 1
2
(
∫∞
x0
φ′(xȲ )x1−γdx + λX̄) when φ is a

fractional power function.
5 Perhaps what is most striking in this figure (especially to somebody trained in ap-

proximation algorithms and the price of anarchy) is that, in all three cases and for
these parameters and model, neither of the two extreme regimes (revenue maximiza-
tion and net neutrality) is catastrophically suboptimal in social welfare.
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But the question now arises, how does the social welfare of net neutrality
compare with that of revenue optimality? Simulations show that the answer
depends on CP costs, that is to say, a. In the simulation γ = β = 2.5 and λ = 0.1
where φ(x) = x1/2. Fig. 1 shows the social welfare curve for three different values
of a: 1.1ζ, 1.5ζ, 2ζ. When a = 1.1ζ (that is, close to the neutrality region) net
neutrality has better social welfare than revenue, while when a = 1.5ζ, 2ζ the
social welfare in revenue optimum case is quite a bit larger than the social welfare
in net neutrality. In fact, we can show that there is a single transition in this
regard (proof in the Appendix B):

Theorem 5. If φ(x) = xθ(0 < θ < 1), there exists a unique ā such that when
a < ā net neutrality has better welfare than revenue maximization, while the
opposite happens when a > ā.

Fig. 1. Social Welfare Curve

5 Conclusion and Further Work

We have presented a parsimonious model of the Internet as a two-sided market
with power-law distributed types from the two sides, with a simple cost structure
for CPs, and utilities for the two sides based on simple and natural assumptions.

– Net neutrality is socially optimum only when CP productivity is very high.
For lower levels of CP productivity (larger a), net neutrality is better than
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ISP revenue maximization, but net neutrality is worse than ISP revenue
maximization for even lower values. The preeminence of CP productivity as
the determining factor of the optimum regulatory regime is one interesting
insight from our model.

There are many possible extensions that seem very interesting, and some of
them appear to be within reach.

1. Here we have adopted the “no payment” interpretation of net neutrality.
What about the “non-differentiation” point of view? We have interesting
preliminary results of this sort (see the Appendix C). Assume that part of
the bandwidth is set aside for paying CPs. The point is that the payment
counter-incentive will increase speed in this “channel” (this is the Paris
metro pricing idea [16]). How large part of the total bandwidth should be
so allocated, and how should it be priced? In the appendix we answer these
questions, analytically and in more detail computationally, for the case a = 0
— that is, zero costs for CPs. The general a case seems harder, but it would
be interesting to crack it.

2. How could we make our model more realistic, without sacrificing much of its
simplicity? We have tried other forms of CP costs and charges (for example,
constant instead of linear in y) without seeing qualitatively different results.
But how about changing the utility model? One alternative model would
weigh CP revenue by the type of the users it attracts. Another would use
more elaborate and realistic speed functions, for example from queueing
theory.

3. We have not considered subsidies of CPs by the ISP (negative b; note that
subsidies are common in two-way markets). Would they ever improve social
welfare, or even ISP revenue?

4. A common argument against net neutrality is that it does not incentivize
ISPs to invest in network technology. What can our model tell us about this?
In our calculations we have used, for simplicity that the bandwidth B is one.
We suspect that re-introducing B into our formulas might reveal interesting
insights about incentives of the ISP to invest.

5. We have assumed a monopolist ISP; how would ISP competition affect the
market? We suspect that many ISPs competing for consumers under revenue
maximization would result in c = 0, and would charge CPs in near-identical
ways, because each of them will be “selling” to the CPs a different lot (in
expectation of the same size) of the same product: the consumers who (ran-
domly) chose this ISP. Hence we suspect that our results summarized in
Theorem 1 come close to obtaining yet another interesting comparison point,
telling us how the ISP’s monopoly is affecting the efficiency of the market.
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Appendix

A Proofs of Theorems 1 and 2

Theorem 1. If c = 0, the optimal pricing strategy is

bopt =

 a a > λ
2
x2−γ

0

γ−2

λ
γ−2x

2−γ
0 − a 0 ≤ a ≤ λ

2
x2−γ

0

γ−2

Proof. Since c = 0, xt = x0, and the revenue of the ISP is R = b
∫∞
yt
y1−βdy.

Since the ISP would like to maximize revenue, byt should be the threshold pay-
ment for content providers. In other words,

b = λ

∫ ∞
x0

T0

T
x1−γdx− a (10)

which means the utility of the content provider with yt quality is 0.
Therefore, the revenue of the platform is only a function of yt. We rewrite it

as

R(yt) = (λ

∫ ∞
x0

T0

T
x1−γdx− a)

∫ ∞
yt

y1−βdy

We plug T =
√
T0

∫∞
x0
x1−γdx

∫∞
yt
y1−βdy into the above equation,

R(yt) = (λ

∫ ∞
x0

√
T0√∫∞

x0
x1−γdx

∫∞
yt
y1−βdy

x1−γdx− a)

∫ ∞
yt

y1−βdy

= (λ

√
T0

∫∞
x0
x1−γdx√∫∞

yt
y1−βdy

− a)

∫ ∞
yt

y1−βdy

= λ
√
T0

√∫ ∞
x0

x1−γdx

√∫ ∞
yt

y1−βdy − a
∫ ∞
yt

y1−βdy

(11)

Thus,

dR(yt)

dyt
= λ

√
T0

√∫ ∞
x0

x1−γdx
− 1

2y
1−β
t√∫∞

yt
y1−βdy

+ ay1−β
t

= y1−β
t (a− λ

2

√
T0

√∫ ∞
x0

x1−γdx
1√∫∞

yt
y1−βdy

)

Obviously, 1√∫∞
yt
y1−βdy

is an increasing function with respect to yt. Therefore,

we have the following claims:
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– If a ≤ λ
2

√
T0

√∫∞
x0
x1−γdx 1√∫∞

y0
y1−βdy

= λ
2
x2−γ

0

γ−2 , dR(yt)
dyt

≤ 0. Then the yt =

y0 based on the optimal pricing strategy. Based on simple calculation, bopt =
λ
γ−2x

2−γ
0 − a.

– If a > λ
2
x2−γ

0

γ−2 , we let dR(yt)
dyt

= 0, which implies

a =
λ

2

√
T0

√∫ ∞
x0

x1−γdx
1√∫∞

yt
y1−βdy

(12)

Based on Eq.10 and Eq.12, the optimal payment is

bopt = a

Theorem 2. If c > 0, a ≥ 0 and φ(·) is a positive increasing concave function,
the optimal pricing strategy is

– If a ≤ 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄,{
bopt = λ

γ−2x
2−γ
0 − a

copt = φ( 1
β−2y

2−β
0 x0)

– If a > 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄,
bopt = ( 2λ

γ−1
γ−2φ

′(
√
Ȳ 1
β−2y

∗2−βx0)+λ
− 1)a

copt = φ(
√
Ȳ 1
β−2y

∗2−βx0)

where y∗ is the solution of yt which satisfies the following equation:

a− 1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

x0
x1−γdx

x0) + λ)

√
T0

√∫∞
x0
x1−γdx√∫∞

yt
y1−βdy

= 0

Proof. The revenue of the platform is R = c
∫∞
xt
x−γdx+ b

∫∞
yt
y1−βdy. To max-

imize the revenue, the platform organizer would set c and b as the threshold fee
for users and content providers. Specifically,

c = φ(

∫ ∞
yt

T0

T
y1−βxtdy)

b = λ

∫ ∞
xt

T0

T
x1−γdx− a

(13)

where the utility of the content provider with yt quality is 0 and the utility
of the user with xt quality is 0. Thus, the revenue of the platform is the function
of xt, yt by plugging T into.
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R(xt, yt) = φ(

∫ ∞
yt

T0

T
y1−βxtdy)

∫ ∞
xt

x−γdx+ (λ

∫ ∞
xt

T0

T
x1−γdx− a)

∫ ∞
yt

y1−βdy

= φ(

∫ ∞
yt

√
T0√∫∞

xt
x1−γdx

∫∞
yt
y1−βdy

y1−βxtdy)

∫ ∞
xt

x−γdx+ (λ

√
T0

∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

− a)

∫ ∞
yt

y1−βdy

= φ(

√
T0

∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)

∫ ∞
xt

x−γdx+ (λ

√
T0

∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

− a)

∫ ∞
yt

y1−βdy

= φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)

∫ ∞
xt

x−γdx+ λ
√
T0

√∫ ∞
xt

x1−γdx

√∫ ∞
yt

y1−βdy − a
∫ ∞
yt

y1−βdy

(14)

Thus,

∂R(xt, yt)

∂xt
=

∫ ∞
xt

x−γdx · φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)
√
T0

√∫ ∞
yt

y1−βdy

√∫∞
xt
x1−γdx+ 1

2
x2−γ
t√∫∞

xt
x1−γdx∫∞

xt
x1−γdx

− φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)x
−γ
t −

λ

2

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

=
1

γ − 1
x1−γ
t · φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

(1 +
γ − 2

2
)

− φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)x
−γ
t −

λ

2

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

≤ γx−γt
2(γ − 1)

φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)− φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)x
−γ
t −

λ

2

x1−γ
t

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

= φ(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)x
−γ
t (

γ

2(γ − 1)
− 1)− λ

2

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

x1−γ
t

≤ 0
(15)

The first inequality is based on the following property of φ(·): for any x ≥
0, xφ′(x) ≤ φ(x). This is because:

Let f(x) = xφ′(x) − φ(x), then f(0) = −φ(0) ≤ 0 and f ′(x) = φ′(x) +
xφ′′(x)− φ′(x) = xφ′′(x) ≤ 0. Thus, xφ′(x)− φ(x) ≤ −φ(0) ≤ 0.
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According to the discussion above, we could know xt = x0 under the optimal
pricing strategy. Then we turn to consider the optimal yt in the following,

∂R(xt, yt)

∂yt
= −φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt)
1
2

√
T0y

1−β
t√∫∞

xt
x1−γdx

√∫∞
yt
y1−βdy

xt

∫ ∞
xt

x−γdx

− λ

2

√
T0

√∫∞
xt
x1−γdxy1−β

t√∫∞
yt
y1−βdy

+ ay1−β
t

= ay1−β
t − 1

2

√
T0

√∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

y1−β
t (

γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt) + λ)

= y1−β
t (a− 1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt) + λ)

√
T0

√∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

)

(16)

Based on Eq. 15, xt = x0. Therefore, we let

g(yt) =
1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

xt
x1−γdx

xt) + λ)

√
T0

√∫∞
xt
x1−γdx√∫∞

yt
y1−βdy

=
1

2
(
γ − 2

γ − 1
φ′(

√
T0

√∫∞
yt
y1−βdy√∫∞

x0
x1−γdx

x0) + λ)

√
T0

√∫∞
x0
x1−γdx√∫∞

yt
y1−βdy

Since φ′(·) is a decreasing function and

√
T0

√∫∞
yt
y1−βdy√∫∞

x0
x1−γdx

x0 is also a decreasing

function of yt, φ
′(

√
T0

√∫∞
yt
y1−βdy√∫∞

x0
x1−γdx

x0) is an increasing function with respect to yt.

Besides, we notice that 1√∫∞
yt
y1−βdy

is an increasing function of yt. Thus, g(yt)

is an increasing function with respect to yt.

– If a ≤ g(y0) = 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄, then ∂R(xt,yt)
∂yt

≤ 0. Then, the optimal
yt is y0. The optimal pricing strategy of the platform is{

bopt = λ
γ−2x

2−γ
0 − a

copt = φ( 1
β−2y

2−β
0 x0)

– If a > g(y0) = 1
2 (γ−2
γ−1φ

′(Ȳ x0) + λ)X̄, then there exists a unique yt s.t.

a = g(yt), we denote this solution as y∗. The optimal pricing strategy of the
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platform is 
bopt = ( 2λ

γ−2
γ−1φ

′(
√
Ȳ 1
β−2y

∗2−βx0)+λ
− 1)a

copt = φ(
√
Ȳ 1
β−2y

∗2−βx0)

B Proof of Theorem 5

Theorem 5. If φ(x) = xθ(0 < θ < 1), there exists a unique ā such that when
a < ā net neutrality has better welfare than revenue maximization, while the
opposite happens when a ≥ ā.

Proof. From Eq 6 it is easy to check that a is an increasing function of y∗ since
φ′(·) is also an increasing function of y∗.

Now, in revenue optimization, the social welfare S is a function of y∗, that
is,

S(x0, y
∗) =

∫ ∞
x0

φ(

√
T0

∫∞
y∗
y1−βdy√∫∞

x0
x1−γdx

x)x−γdx+ λ
√
T0

√∫ ∞
x0

x1−γdx

√∫ ∞
y∗

y1−βdy − a
∫ ∞
y∗

y1−βdy

Following the same computation as Eq 5, we have

∂S
∂y∗

= y∗1−β(a− 1

2
(

∫ ∞
x0

φ′(x

√
Ȳ

∫ ∞
y∗

y1−βdy)x1−γdx+ λX̄)

√
Ȳ√∫∞

y∗
y1−βdy

))

Based on the discussion in Theorem 4, a = g(y∗) < h(y∗). Therefore, ∂S
∂y∗ < 0.

Thus, the social welfare S is a decreasing function of y∗, which implies it is a
decreasing function of a, denoted by S∗(a).

In the initial y0 case, the social welfare is also a decreasing function of a,
denoted by S0(a). When a = ζ = 1

2 (
∫∞
x0
φ′(xȲ )x1−γdx + λX̄), ŷ = y0 < y∗,

therefore, S0(a) > S∗(a).
When a tends to infinity,

S∗(a)− S0(a) = a(

∫ ∞
y0

y1−βdy −
∫ ∞
y∗

y1−βdy)− λ
√
T0

√∫ ∞
x0

x1−γdx(

√∫ ∞
y0

y1−βdy −

√∫ ∞
y∗

y1−βdy)

−
∫ ∞
x0

(φ(

√
T0

∫∞
y0
y1−βdy√∫∞

x0
x1−γdx

x)− φ(

√
T0

∫∞
y∗
y1−βdy√∫∞

x0
x1−γdx

x))x−γdx

= a(

∫ ∞
y0

y1−βdy −
∫ ∞
y∗

y1−βdy)− neg > 0

(17)
since the negative part of S∗(a)−S0(a), neg is bounded. Finally, combining

the monotone property of S0(a) and S∗(a) and the above, we conclude that there
exists a unique transition with S0(a) = S∗(a).
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C Paris Metro Pricing

Can we extend our analysis to study net neutrality under its interpretation of
“non-differentiation”? In this section we analyze a simple model of this sort.
Suppose that the ISP splits the pipe, assumed to be of capacity one, into two
channels, the pay channel of capacity B1 ≤ 1, and the free channel with capacity
1 − B1. CPs can choose between the two (we assume the decision is binary). If
a CP of type y uses the free chanel it is charged zero, but if it uses the paying
channel it is charged by. Consumers have access to content transmitted through
both channels.

We can now calculate the speed at the two channels. Thus the speed function
of pay channel is B1T0

T1
where T1 is the traffic of the payhannel, which is measured

as follows:

T1 =

∫ ∞
xt

∫ ∞
yt

B1T0

T1
xydpγ(x)dpβ(y) =

B1T0

T1

∫ ∞
xt

∫ ∞
yt

x1−γy1−βdxdy

=

√
B1T0

∫ ∞
xt

x1−γdx

∫ ∞
yt

y1−βdy

where yt is the threshold type of content providers for inclusion in the paying
channel.

We assume that a = 0, and hence no content providers drop out completely.

Similarly, the traffic of Channel II T2 is denoted as T2 =
√

(1−B1)T0

∫∞
xt
x1−γdx

∫ yt
y0
y1−βdy

To maximize revenue,

c = φ((

∫ yt

y0

(1−B1)T0

T2
y1−βdy +

∫ ∞
yt

B1T0

T1
y1−βdy)xt) (18)

λyt

∫ ∞
xt

B1T0

T1
x1−γdx− byt = λyt

∫ ∞
xt

(1−B1)T0

T2
x1−γdx (19)

Hence this decision problem is equivalent to the following optimization prob-
lem:

max
xt,yt,B1

R(xt, yt, B1) = c

∫ ∞
xt

x−γdx+ b

∫ ∞
yt

y1−βdy (20)

s.t. xt ≥ x0, yt ≥ y0

B1T0

T1
≥ (1−B1)T0

T2

0 ≤ B1 ≤ 1

(21)

where c and b satisfy Eq. 18, Eq. 19. The figure below shows how the optimal
B1, xt, yt depend on γ, β, λ.

In all experiments, we assume φ(x) = x1/2 and λ is very small (with large λ
may lead the model will degenerates to one-channel case). We see that γ has a
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threshold behavior: below the threshold, the two-channel model will degenerate
to one-channel case. Above the threshold, the two-channel model has perfor-
mance better than the one-channel model. In addition, we find that if λ is small
enough and γ exceeds the threshold, the optimal B1 is only related to β (see
Fig. 3).

Fig. 2. Optimal B1 based on different γs and βs .

Finally, xt = x0 persists in the two-channel model:

Theorem 6. If φ(·) is a increasing concave function and ∀x ≥ 0, φ(x) ≥ 0, in
the two-channel model, the optimal xt is always be x0 for any a.

Proof. The revenue function of two-channel platform can be represented as fol-
lows:

R(xt, yt, B1) = c

∫ ∞
xt

x−γdx+ b

∫ ∞
yt

y1−βdy

= φ((

∫ yt

y0

(1−B1)T0

T2
y1−βdy +

∫ ∞
yt

B1T0

T1
y1−βdy)xt)

∫ ∞
xt

x−γdx

+ λ

∫ ∞
xt

x1−γdx(
B1T0

T1
− (1−B1)T0

T2
)

∫ ∞
yt

y1−βdy

= φ(

√
T0(
√∫∞

yt
y1−βdy

√
B1 +

√∫ yt
y0
y1−βdy

√
1−B1)√∫∞

xt
x1−γdx

xt)

∫ ∞
xt

x−γdx

+ λ

√∫ ∞
xt

x1−γdx
√
T0(

√
B1√∫∞

yt
y1−βdy

−
√

1−B1√∫ yt
y0
y1−βdy

)

∫ ∞
yt

y1−βdy

(22)
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Fig. 3. Optimal B1 based on different γs and βs .

Then we focus on the decision problem that ”Which xt is optimal?” Firstly,
we let

√
T0(
√∫∞

yt
y1−βdy

√
B1 +

√∫ yt
y0
y1−βdy

√
1−B1)√∫∞

xt
x1−γdx

xt = η(xt, yt, B1)

∂R(xt, yt, B1)

∂xt
= −φ(η)x−γt + φ′(η)

∂η

∂xt

∫ ∞
xt

x−γdx

− 1

2
λ
√
T0(

√
B1√∫∞

yt
y1−βdy

−
√

1−B1√∫ yt
y0
y1−βdy

)

∫ ∞
yt

y1−βdy
x1−γ
t√∫∞

xt
x1−γdx

≤ −φ(η)x−γt + φ′(η)(1 +
γ − 2

2
)

1

γ − 1
ηx−γt

≤ −φ(η)x−γt +
γ

2(γ − 1)
φ(η)x1−γ

t

= (
γ

2(γ − 1)
− 1)φ(η)x1−γ

t ≤ 0

(23)
The first inequality is based on the same calculation as Eq.15 where ∂η

∂xt
=

(1 + γ−2
2 ) ηxt and

∫∞
xt
x−γdx = 1

γ−1x
1−γ
t . The second inequality above is based

on the fact that ∀x ≥ 0, xφ′(x) ≤ φ(x).
Therefore, the optimal xt for two-channel platform is always be x0.
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