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Abstract

Quasiliearity is a ubiquitous and questionable assumptionin the standard study of Walrasian equilib-
ria. Quasilinearity implies that a buyer’s value for goods purchased in a Walrasian equilibrium is always
additive with goods purchased with unspent money. It is a particularly suspect assumption in combina-
torial auctions, where buyers’ complex preferences over goods would naturally extend beyond the items
obtained in the Walrasian equilibrium.

We study Walrasian equilibria in combinatorial auctions when quasilinearity is not assumed. We
show that existence can be reduced to an Arrow-Debreu style market with one divisible good and many
indivisible goods, and that a “fractional” Walrasian equilibrium always exists. We also show that stan-
dard integral Walrasian equilibria are related to integralsolutions of an induced configuration LP as-
sociated with a fractional Walrasian equilibrium, generalizing known results for both quasilinear and
non-quasilnear settings.

1 Introduction

Money is inherently useless; it only holds value because of the promise that it can be used to buy something
useful. Thus, an agent’s utility for money will depend substantially on what she already has and the alter-
native ways that it can be spent. A student who saves money on her habitual cup of coffee can spend it on
many things. On the other hand, a corporate event planner whois given a dedicated budget for drinks may
not receive any benefit for discounted coffee; on the contrary, she cannot spend the money on herself, and
her budget may get cut next time if she doesn’t spend enough onthe current event.

General market equilibria capture the ephemerality of money. Arrow and Debreu’s exchange model is
simple: agents have goods; they sell those goods, then buy what they want most. In this setting, money has
no inherent value and is simply a lubricant facilitating exchange. This works because Arrow and Debreu
capture the entire economy, so there is nothing outside the market on which to spend money.

In contrast, Walrasian (competitive) equilbria only capture a slice of the overall market. To do so, they
must attribute utility to unspent money, since it can be spent elsewhere. In a Walrasian equilibrium model,
agents arrive with money and only spend it if the received value outweighs the cost.

The default way to capture the implicit value of money is through a quasilinear utility function, i.e. a
bidder’s utilityu is the difference between her valuev and the price she paysp. Quasilinearity assumes that
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an agent’s total value is additive in what she gets now and what she gets from an outside option, and that the
amount of utility she gets from an outside option scales linearly with the amount of money she applies to
it. Both are plausible modeling assumptions, but assuming that they are always true is only somewhat more
defensible than assuming that a bidder always has an additive valuation over all items in the market.

We can illustrate one simple violation with our coffee example. Suppose our student will buy exactly
one cup of coffee each day. If she doesn’t buy coffee now, she will spend $3 on coffee elsewhere, so her
value for coffee now is $3; however, if we give herboth a cup of coffeeand $3, she will spend the extra
$3 on something completely different, like a movie ticket (she already has her cup of coffee). Whether this
movie ticket gives her the same utility as a cup of coffee, or half the utility, or a quarter of the utility — there
is nothing in our market model to imply that her utility from an extra $3 is in any way tied to her utility for
a cup of coffee, except that it is plausiblyat mosther utility for a cup of coffee.1 In effect, the student’s
marginal utility for $3 is completely different depending on whether or not she gets coffee now.

Relaxing quasilinearity for Walrasian equilbria is thus a fundamental question, particularly in combina-
torial auction domains where bidders are assumed to have complex preferences over sets of items. This is
the topic of our paper. Existing relaxations of quasilinearity focus on unit demand agents, and the literature
is quite limited. The existence of Walrasian equilibria wasfirst shown by Quinzii[1984]. Later, Alaei et
al. [2011] show that Walrasian equilibria exist using a direct approach and have the same kind of lattice
structure as standard Walrasian equilibria for unit demandbidders. Maskin[1987] studies a superficially
different problem and adds a single divisible good (i.e. money) to a standard general market model with in-
divisible goods; his result is that market equilibria always exist. We study Walrasian equilibria with general
utilities in an even more obvious setting: combinatorial auctions. In a combinatorial auction, bidders may
have complex preferences over the multiple goods being sold. Thus it is natural that one should extend these
complex preferences to items outside the Walrasian micromarket by allowing non-quasilinear preferences
for money. Our main results establish conditions under which a Walrasian equilibrium exists.

Fractional Walrasian Equilibria and Market Equilibria
Walrasian equilibria capture a microcosm of a larger market. To do so, they capture both an agent’s

utility for unspent money and goods’ inherent indivisibility at small scales. As our prior discussion sug-
gests, money is simply a proxy for the portion of the general market outside the goods available in the
Walrasian equilibrium. It is therefore not surprising thatthe first step in our work constructs a reduction
from a Walrasian equilibrium problem to a general Arrow-Debreu market with an extra good (money), and
an extra agent (the selller). Together, the extra good and agent capture the market outside the Walrasian
equilibrium. This market is special because all goods except money have supply 1 and are indivisible.
Maskin[Maskin, 1987] studies a similar market without adding the seller as an agent. Our first result shows
that the equilibria are the same:

Lemma 1.1(Informal). A set of prices and allocations for a combinatorial auction are a Walrasian equilib-
rium if and only if they correspond to a market equilibrium ofthe associated special Arrow-Debreu market.

The relationship with the special Arrow-Debreu market alsolays the foundation for our first main result
— “fractional” Walrasian equilibria always exist:

Theorem 1.2(Informal). In a combinatorial auction setting, a fractional Walrasianequilibirium always
exists, that is there exists a set of prices and, for each player, a distribution over sets of goods whose support
is the collection of all demanded sets under the equilibriumprices, and market clears in expectation.

This follows by proving that an auction’s associated general market model always has a fixed point, and
that demand of a bidder at the fixed point can always be decomposed into a distribution over goods.

1We know that she chose a cup of coffee over a movie ticket initially, so that implies her value for a cup of coffee is less thanher
value for a movie ticket. On the other hand, there might also be complementarities here if the student is unable to enjoy the movie
without first having a cup of coffee...
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Configuration LPs and True Walrasian Equilibria
To understand true (non-fractional) Walrasian equilibria, we must understand the combinatorial auc-

tion’s configuration linear program. In a quasilinear setting, the configuration LP captures theway goods
can be (fractionally) assigned to bidders; the LP’s objective is the total value generated by the assignment.
Walrasian equilibria here are known to be equivalent to integral optima of an auction’s configuration LP.

Unfortunately, the configuration LP is not available without quasilinearity because a bidder’s value is
not well-defined. Instead, we introduce aninduced configuration LPthat is associated with a particular
price vectorp∗. This LP is constructed by fixing bidders’ utilities atp∗ and assuming they are otherwise
quasilinear. Integral optima are again related to Walrasian equilibria, but only ifp∗ already supported a
fractional Walrasian equilibrium:

Theorem 1.3(Informal). A Walrasian equilibrium for a combinatorial auction existsif and only if there is
a price vectorp∗ supporting a fractional Walrasian equilibrium for which the induced configuration LP has
an integral optimum.

This theorem has a couple of interesting corollaries. First, we can see how it relates to the results of
Maskin[1987], Quinzii [1984], and Alaei et al.[2011]:

Corollary 1.4. If the induced configuration LP is always integral, a combinatorial auction always has a
Walrasian equilibrium.

In unit-demand settings, the induced configuration LP is a matching LP at any fixed pricep∗. Thus, it
is integral and always has an integral optimum, and Walrasian equilibria will always exist. This generalizes
the results of Maskin, Quinzii and Alaei et al. — Maskin studied a sibling of our general market model and
effectively showed that when bidders are unit demand, thereis always an integral solution for every fixed
point, while Alaei et al. directly show that Walrasian equilibria exist for unit demand settings.

Another simple but useful corollary happens when the configuration LP is independent ofp∗:

Corollary 1.5. If the induced configuration LP is independent ofp∗, then a combinatorial auction has
a Walrasian equilibrium if and only if the configuration LP has an integral optimum, regardless of any
properties ofp∗.

The dependence onp∗ cancels when utilities are quasilinear, and it explains whywe can simply talk
about the configuration LP without talking about a specific set of pricesp∗.

Together, these results build a picture of the equilibrium landscape outside quasilinearity — Walrasian
equilibria still exist at least in a fractional form, but testing existence in general is substantially more com-
plicated. Existence is still related to a configuration LP, but that LP can only be defined once pricesp∗ are
in hand.

Related Work The objective of this paper is establishing existence characterization for competitive equi-
libria in combinatorial auction. The problem is closely related to the existing literature in economics and
theoretical computer science from different directions. First, there is a prominent literature on competi-
tive equilibrium in combinatorial auctions for the quasilinear setting. These papers characterize existence
conditions for a Walrasian equilibrium and provide practical necessary conditions for a competitive equilib-
rium to exist in the quasilinear setting such as gross substitute, e.g. Gul and Stacchetti[1999], Bikhchan-
dani and Mamer[1997], Bevia, Quinzii, and and Silva[1999], Murota and Tamura[2001]. People have
also thought about using the properties of competitive equilibria in quasilinear settings when valuations
are satisfying the gross substitute, such as lattice structure[Gul and Stacchetti, 1999], in order to design as-
cending auctions and identifying the connections between the well-known VCG mechanism[Vickrey, 1961;
Groves, 1973; Clarke, 1971] and Walrasian equilibria[Kelso Jr and Crawford, 1982; Cramtonet al., 2006;
Nisanet al., 2007]. Closely related is the literature on assignment games and core allocations, in which
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they tried to generalize the stable matching concept (either one-to-one matching, one-to-many matching, or
many-to-many matching) to two-sided markets with indivisible goods and quasilinear utilities, e.g. Shapley
and Shubik[1971] and Echenique et al.[2004].

The second direction that connects our work to the literature is the existing work on non-quasilinear
utilities (or non-transferable utilities) and two-sided matching markets or general Arrow-Debreu market
[Arrow and Debreu, 1954] with only one divisible good and unit-demand agents. The problem formulation
is as introduced by Demange and Gale[1985]. The existence of competitive equilibria for non-quasilinear
utilities was first proved by Quinzii[1984], Gale [1984], Svensson[1984], and later by Kaneko and Ya-
mamoto[1986]. They showed if there is a single divisible good (say money) in an economy and if agents
are unit-demand then there still exists a competitive equilibrium under certain reasonable (monotonicity)
conditions. There is also the work of Maskin[1987] on fair allocation of indivisible goods with money, that
provides a simpler proof for the existence of the equilibrium with indivisible goods and only one divisible
item in the unit-demand case. More recently, there has been awork on two-sided matching markets with non-
transferable utilities by Alaei et al.[2011] that followed a different combinatorial approach. They showed
the existence of competitive equilibrium when utility functions are monotone, and generalized the lattice
structure and properties associated with the minimum lattice point to a general non-quasilinear setting.

2 Settings and Notations

We are looking at acombinatorial auction, in which we have a setI of m items and a setB of n buyers
interested in these items. For everyx ∈ {0, 1}m and pricep ∈ R+, let ui(x, p) be the utility of bidder
i if she gets bundleX = {j ∈ I : xj = 1} of items under the pricep. We assume utilities are strictly
decreasing and continuous with respect to the pricep, and increasing with respect toxj for every itemj.
The competitive equilibrium (also known asWalrasian equilibrium) can be defined in this setting as follows.

Definition 2.1. A Walrasian Equilibrium (WE) is a pair of allocation and prices({x(i)}ni=1, {pj}
m
j=1) that

satisfies the following conditions:

• ∀i ∈ B andj ∈ I : x(i) ∈ {0, 1}m andpj ∈ R+.

• [Feasibility] ∀j ∈ I :
∑n

i=1 x
(i)
j ≤ 1.

• [Satisfaction] ∀i ∈ B : x(i) ∈ argmax

x′∈{0,1}m
ui(x

′,
∑m

j=1 pjx
′
j),

• [Market clearance] ∀j ∈ I, if pj > 0 then
∑n

i=1 x
(i)
j = 1.

Besides WE, we also need to define a fractional equilibrium, in which each buyer has a distribution over
bundles of items. However, such an allocation is only feasible in expectation, meaning that each item gets
allocated with probability less than or equal to1. Note that such an equilibrium cannot be realized in reality
and it is just a solution concept that will shed insight on thestructure of WE, as we show later in this paper.
More precisely, we have the following definition:

Definition 2.2. In a combinatorial auction(I,B, {ui(.)}i∈B), a fractional WE is defined to be a pair of
allocation and prices({xi,S}, {pj}) such that

• ∀(i, S) ∈ B × 2I andj ∈ I : xi,S ∈ R+ andpj ∈ R+.

• [Feasibility] ∀j ∈ I :
∑

i∈B,S:j∈S

xi,S ≤ 1, ∀i ∈ B :
∑

S⊆I

xi,S = 1.
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• [Satisfaction] ∀i ∈ B, if xi,S > 0 then1S ∈ argmax

x′∈{0,1}m
ui(x

′,
∑m

j=1 pjx
′
j).

• [Market clearance] ∀j ∈ I, if pj > 0 then
∑

i∈B,S:j∈S

xi,S = 1.

In this paper, we also talk about a special case ofArrow-Debreu marketsin which all commodities
except one are indivisible. In such markets, there is a setA of N of agents in the market who are interested
in trading a setC of M commodities. We assume all commodities are indivisible except the last commodity
j = M (we sometimes call this commodity ‘money’). Each agenti will bring an endowmentw(i) ∈ R

M
+ of

commodities to the market to trade. Agenti gets a utility ofũi(x) for an allocationx ∈ {0, 1}M−1 × R+

of commodities. Moreover, we assumeũi(x) is strictly increasing with respect toxj for all j ∈ C and
continuous with respect to allocation of money, i.e.xM . We next define thegeneral market equilibriumfor
such a market.

Definition 2.3. A General Market Equilibrium (GME) is a pair of allocation and prices({x(i)}Ni=1, {pj}
M
j=1)

that satisfies the following conditions:

• ∀i ∈ A andj ∈ C/{M} : x
(i)
j ∈ {0, 1} andpj ∈ R+.

• ∀i ∈ A : x
(i)
M ∈ R+ andPM ∈ R+.

• [Satisfaction] ∀i ∈ A : x(i) ∈ argmax

j 6=M :x′
j∈{0,1},x

′
M

∈R+

ũi(x
′) s.t.

∑M
j=1 x

′
jpj ≤

∑M
j=1w

(i)
j pj.

• [Market clearance] ∀j ∈ C, if pj > 0 then
∑N

i=1 x
(i)
j =

∑N
i=1w

(i)
j .

To define more notations for an Arrow-Debreu market with onlyone divisible good, letDi({pj}j∈C)
be the collection of feasible allocation of commodities to agenti, such that each maximizes utility of agent
i under prices{pj}j∈C and they satisfy the budget constraint of agenti. In other words:

Di({pj}j∈C) , argmax

j 6=M :x′
j∈{0,1},x

′
M

∈R+

ũi(x
′) s.t.

M∑

j=1

x′jpj ≤

M∑

j=1

w
(i)
j pj (1)

Let D̄i({pj}j∈C) be all vectors inDi({pj}j∈C) when we delete the allocation of the divisible good, i.e. last
coordinate, from all vectors. Define total demand to beD({pj}j∈C) ,

∑
i∈ADi({pj}j∈C) and the total

demand for items to bēD({pj}j∈C) ,
∑

i∈A D̄i({pj}j∈C), where summations are Minkowski summations
of sets. Moreover, let̃Di = Conv(Di) andD̃ = Conv(D) where Conv(.) is the convex hull of its argument.
Clearly, all these sets are finite (because utility is strictly increasing in money and hence given an allocation
of indivisible items the allocation of money will be the unique number that fills the budget slack) and
hence convex hulls are well defined. Also, from the definitionof convex hull and Minkowski summation,
D̃ =

∑
i∈A D̃i.

3 Reduction from combinatorial auction to Arrow-Debreu market

We start by defining a general Arrow-Debreu market with one divisible good.

Definition 3.1. Given a combinatorial auction(I,B, {ui(.)}i∈B), its corresponding Arrow-Debreu market
(C,A, {ũi(.)}i∈A, {w

(i)}i∈A) is the following:
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• There areM = m + 1 commodities, where the firstm indivisible commodities inC are items inI,
and the last divisible commodity is a special commodity called ‘money’.

• There areN = n+ 1 agents:

– For everyi ∈ [n] we havẽui(x, y) = ui(x,
Z
n
− y) for everyx ∈ {0, 1}m, y ∈ R+, whereZ is

large enough such thatZ >
∑n

i=1 ui(1, 0),

– The last agent is a special agent called the ‘seller’ and her utility is computed as̃un+1(x, y) = y
for everyx ∈ {0, 1}m, y ∈ R+.

• For everyi ∈ [n], endowment of agenti isw(i) = (0, 0, . . . , 0, Z
n
). For the seller,wn+1 = (1, 1, . . . , 1, 0).

We now have the following lemma, which basically shows that the correspondence described in Defini-
tion 3.1 preserves the equilibrium.

Lemma 3.2. A pair ({x(i)}ni=1, {pj}
m
j=1) is a WE for the combinatorial auction(I,B, {ui(.)}i∈B) if and

only if there exists a GME({x̃(i)}Ni=1, {p̃j}
M
j=1) for its corresponding Arrow-Debreu market(C,A, {ũi(.)}i∈A, {w

(i)}i∈A)

as in Definition 3.1 such that∀(i, j) ∈ [N − 1] × [M − 1] : x̃
(i)
j = x

(i)
j , x̃(N)

M =
∑m

j=1 pj , ∀j ∈ [M − 1] :
p̃j
p̃M

= pj and p̃M > 0.

Proof. We first show that given a WE({x(i)}ni=1, {pj}
m
j=1) for the combinatorial auction, we can generate a

GME for its corresponding Arrow-Debreu market that satisfies desired conditions. For everyj ∈ [M − 1],

let p̃j = pj and letp̃M = 1. For all(i, j) ∈ [N − 1]× [M − 1] let x̃(i)j = x
(i)
j . Let the seller collect all trade

money, i.e.̃x(N)
M =

∑m
j=1 pj andx̃(N)

j = 0, j ∈ [M−1]. Finally, letx̃(i)M = Z
n
−
∑M−1

j=1 x
(i)
j pj , i ∈ [N−1].

It is easy to show that market clears, because forj ∈ [M − 1], if p̃j > 0, thenpj > 0 and hence the itemj
gets allocated in the combinatorial auction. Consequently,

N∑

i=1

x̃
(i)
j =

n∑

i=1

x
(i)
j = 1 =

N∑

i=1

w
(i)
j (2)

Moreover, for money item (for which̃pM > 0), we have

N∑

i=1

x̃
(i)
M = Z −

N−1∑

i=1

m∑

j=1

x̃
(i)
j p̃j +

m∑

j=1

pj = Z +

m∑

j=1

pj(1−

n∑

i=1

x
(i)
j )

(1)
=

N∑

i=1

w
(i)
M (3)

where (1) is true, because ifpj > 0,
∑n

i=1 x
(i)
j = 1, and

∑N
i=1 w

(i)
M = Z. To show the satisfaction condition,

it is obvious that the seller gets its optimal allocation under budget constraints (it sells all the items and gets
the money for it). For an agenti ∈ [N −1], fix any feasible allocationx′ of commodities to this agent. Now,
we have:

ũi(x̃
(i)) = ui({x

(i)
j }j∈[m],

Z

n
− x̃

(i)
M ) = ui({x

(i)
j }j∈[m],

m∑

j=1

x
(i)
j pj) ≥ ui({x

′
j}j∈[m],

m∑

j=1

x′jpj)

= ũi({x
′
j}j∈[m],

Z

n
−

m∑

j=1

x′jpj)
(1)

≥ ũi({x
′
j}j∈[m], x

′
M ), (4)

where (1) holds, because utilities in the market are increasing with respect to money commodity and for a
feasible allocationx′,

∑m
j=1 x

′
jpj +x′M =

∑M−1
j=1 x′j p̃j +x′M ≤ Z

n
. It is also true that̃x(i) meets the budget

constraint, i.e.
∑M−1

j=1 x̃
(i)
j p̃j + x̃

(i)
M ≤ Z

n
, which completes the proof.
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To prove the other direction, suppose a GME({x̃(i)}Ni=1, {p̃j}
M
j=1) is given and it satisfies the conditions

in the statement of the lemma. Now∀(i, j) ∈ [n] × [m] let x(i)j = x̃
(i)
j . Moreover, letpj =

p̃j
p̃M

, j ∈ [m].

Clearly the allocation{x(i)}i∈[n] is a feasible allocation and clears the market due to the factthat{x̃(i)}i∈[N ]

clears the Arrow-Debreu market and̃x(N)
j = 0 in any GME (because seller’s utility is strictly increasing

with money and she gets zero utility by receiving any commodity j ∈ [M − 1]). To see satisfaction, , fix an
allocation of items to bidderi, e.g.x′, in the combinatorial auction. Now we have

ui({x
(i)
j }j∈[m],

m∑

j=1

x
(i)
j pj) = ũi({x̃

(i)
j }j∈[m],

Z

n
−

m∑

j=1

x̃
(i)
j

p̃j
p̃M

)
(1)

≥ ũi({x̃
(i)
j }j∈[m], x̃

(i)
M )

(2)

≥ ũi({x
′
j}j∈[m],

Z

n
−

m∑

j=1

x′j
p̃j
p̃M

) = ui({x
′
j}j∈[m],

m∑

j=1

x′jpj) (5)

where (1) holds because
∑M−1

j=1 x̃
(i)
j p̃j+x̃

(i)
M p̃M ≤ p̃M

Z
n

, and (2) holds because({x′j}j∈[m],
Z
n
−
∑m

j=1 x
′
j
p̃j
p̃M

)
meets the budget constraint of bidderi in Arrow-Debreu market , or more concretely:

M−1∑

j=1

x′j p̃j + (
Z

n
−

m∑

j=1

x′j
p̃j
p̃M

)p̃M = p̃M
Z

n
=

M∑

j=1

w
(i)
j p̃j (6)

4 A Generalization of configuration LP

In this section, we start exploring the connections betweenwelfare maximization and WE for non-quasilinear
utilities in combinatorial auctions. In the quasilinear world, whereui(x, p) = vi(x)− p, the following con-
nections are known:

• The combinatorial auction configuration LP, i.e. the following linear program

maximize
∑

i∈B,S⊆I

xi,Svi(1S)

subject to
∑

S⊆I

xi,S ≤ 1, i ∈ B.

∑

i∈B

∑

S⊆I:j∈S

xi,S ≤ 1, j ∈ I.

xi,S ≥ 0, i ∈ B, S ⊆ I.

that characterizes maximum welfare allocations, has an integral optimal solution if and only if WE
exists.

• A vector of prices is a WE price vector if it forms an optimal solution to the dual of the configuration
LP. Moreover, if a dual solution can be supported by an integral feasible primal, then it is a WE price
vector.

The question we address here is how can one generalize these concepts to the case of non-quasilinear utili-
ties, in the hope that they shed some insights on existence and structural properties of WE for non-quasilinear
utilities. To this end, we first define anequivalent quasilinear value functionfor each bidder, which will act
similar to the value function in the quasilinear configuration LP.

7



Definition 4.1. Fix a vector of pricesp∗. For bidderi with utility functionui(x, p), the equivalent quasilin-
ear value function at price vectorp∗ is defined as

v
(p∗)
i (x) , ui(x,

m∑

j=1

xjp
∗
j) +

m∑

j=1

p∗j (7)

As it can be seen from the definition, the equivalent quasi-linear value function, together with prices
p∗, will generate the same utility as the original utility function, if we assume quasi-linearity. Given the
definition of an equivalent quasilinear value function for each bidder at a fixed price vectorp∗, here is a
natural generalization to the configuration LP. The programmaximizes welfare with respect to the equivalent
quasilinear value function.

Definition 4.2 (Induced configuration LP at pricep∗). Fixing a price vectorp∗, the induced configuration
LP at pricep∗ is defined as the following linear program with variables{xi,S}i∈B,S⊆I (allocation):

maximize
∑

i∈B,S⊆I

xi,Sv
(p∗)
i (1S)

subject to
∑

S⊆I

xi,S ≤ 1, i ∈ B.

∑

i∈B

∑

S⊆I:j∈S

xi,S ≤ 1, j ∈ I.

xi,S ≥ 0, i ∈ B, S ⊆ I.

Similar to the quasilinear utilities, one can look at the dual program of the linear program in Defini-
tion 4.2 which sheds more insights on the structure of the WE,as we show later in this paper.

Definition 4.3 (Dual induced configuration LP at pricep∗). Fixing a price vectorp∗, the dual of the in-
duced configuration LP in Definition 4.2 is the following linear program with variable{ui}i∈B(utilities)
and{pj}j∈I(prices).

minimize
∑

i∈B

ui +
∑

j∈I

pj

subject to
∑

j∈S

pj + ui ≥ v
(p∗)
i (1S), i ∈ B, S ⊆ I.

ui ≥ 0, pj ≥ 0, i ∈ B, j ∈ I.

In the next section we show how the linear programs in Definitions 4.2 and 4.3 are related to the existence
of WE in non-quasilinear settings.

5 main results and their applications

Our main result is proving the existence of WE under necessary and sufficient structural conditions, and
bridging the gap between the concept of WE and configuration LP for non-quasilinear utilities. More accu-
rately, we show the induced configuration LP in Definition 4.2is strong enough to provide us with necessary
and sufficient conditions for the existence of equilibrium,however we have to look at this LP whenp∗ is
also an equilibrium price vector. Using the reduction in Section 3.1 to general markets, we show such item
prices always exist. Moreover, it turned out that by using the primal-dual LP machinery one can show such
prices will get supported by an integral allocation to form aWE if and only if the corresponding induced
configuration LP has an integral optimal solution.
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Definition 5.1. Fix a combinatorial auction(I,B, {ui(.)}i∈B) and consider its corresponding Arrow-
Debreu market(C,A, {ũi(.)}i∈A, {w

(i)}i∈A), as defined in Section 3.1. Themarket correspondenceφ is
defined as follows.

∀(p, d) ∈ R
M
+ × R

M
+ : φ(p, d) = (D̃(p),F(d)), (8)

whereF(d) , argmax
p̂∈RM

+

p̂.(d − (1, 1, . . . , 1, Z)) and D̃(p) is the convex hull of total demand setD(p). We

say a point(p, d) is afixed pointof the market correspondence if

(p, d) ∈ φ(p, d) = (D̃(p)),F(d)). (9)

As we will show later, the fixed point of market correspondenceφ defined in Definition 5.1 always exists,
under monotonicity assumptions on utility functions. Thisfixed point is essentially giving us an equilibrium
price vector that can be supported by afractional allocation of items to buyers in a way that it produces
an envy-free market clearing outcome ( i.e. an outcome that everyone gets an optimal allocation under
prices and market clears). However, we expect integral allocations in a WE of the combinatorial auction. To
address this we utilize the induced configuration LP defined in Definition 4.2 and its dual in Definition 4.3 at
the fixed point price to see if the supporting fractional allocation can basically be decomposed into integral
allocations. This helps us to find a structural characterization for WE. Putting all the pieces together, we get
two main results.

Theorem 5.2. Given a combinatorial auction(I,B, {ui(.)}i∈B) in which for every buyeri the utility func-
tion ui(x, p) is increasing with respect to allocation of items, and strictly decreasing and continuous with
respect to the money, afractionalWE (Definition 2.2) always exists.

Theorem 5.3. Given a combinatorial auction(I,B, {ui(.)}i∈B) that satisfies conditions in Theorem 5.2,
and its corresponding Arrow-Debreu market(C,A, {ũi(.)}i∈A, {w

(i)}i∈A) as in Definition 3.1, a pair of
prices and allocation({pj}j∈I , {x(i)}i∈B) is a WE if and only if:

• ∃ p̃ ∈ R
M
+ and d̃ ∈ R

M
+ s.t. p̃M > 0, d̃M = Z, j ∈ [m] : pj =

p̃j
p̃M

and(p̃, d̃) is a fixed point ofφ.

• {xi,S} is an optimal integral solution for the induced configuration LP at pricesp∗ = p, where

∀i ∈ B, S ⊆ I : xi,S = 1 ⇐⇒ j ∈ S : x
(i)
j = 1.

While our main results in Theorems 5.2 and Theorem 5.3 characterize structural necessary and sufficient
conditions for the existence of competitive equilibria, there are simple corollaries of these theorems that
are of interest. The first corollary, whose proof can be seen from the proofs of Theorem 5.2 and 5.3 in
Section 6, states the relationship between the dual of induced configuration LP at some pricep∗ and prices
in a competitive equilibrium (either fractional or integral).

Corollary 5.4. For a combinatorial auction(I,B, {ui(.)}i∈B) and its corresponding Arrow-Debreu market
(C,A, {ũi(.)}i∈A, {w

(i)}i∈A), these statements are equivalent:

• Price vectorp is a fractional WE price vector, as in Definition 2.2.

• There exists a price vector̃p ∈ R
M
+ s.t. (p̃, d̃) is a fixed point of the market correspondenceφ and

pj =
p̃j
p̃M

.

• Letui = max
S⊆I

v
(p)
i (1S)−

∑
j∈S pj. Then(u, p) is an optimal solution to the dual of induced config-

uration LP at pricep.

9



Another corollary of our main result is the connection between fractional WE, as in Defintion 2.2, and
true (integral) WE, as in Definition 2.1. In fact, by directlyapplying Corollary 5.4 to Theorem 5.3 one can
restate Theorem 5.3 through the following corollary, whichbypasses the relationship to markets and reveals
the relationship between fractional and integral WE.

Corollary 5.5. Given a combinatorial auction(I,B, {ui(.)}i∈B) that satisfies conditions in Theorem 5.2, a
pair of prices and allocation({pj}j∈I , {x(i)}i∈B) is a WE if and only if:

• p is a price vector of a fractional WE, as in Definition 2.2.

• {xi,S} is an optimal integral solution for the induced configuration LP at pricesp∗ = p, where

∀i ∈ B, S ⊆ I : xi,S = 1 ⇐⇒ j ∈ S : x
(i)
j = 1.

The next corollary of our results is the existence of competitive equilibrium for the special case of
unit-demand bidders (or matching markets). In this case, each buyer is interested in at most one item and a
feasible allocation is an integral matching. Our result, somehow surprisingly, will give a simple proof for the
existence of WE in this setting, which has been observed and proved in the literature first by Quinzii[1984],
and later by Alaei et.[Alaei et al., 2011] and Maskin[Maskin, 1987] - Maskin and Quinzii studied the
matching markets with one divisible goods and showed the existence of an envy-free outcome in such a
market, while Alaei et al. directly showed that competitiveequilibrium exists by a combinatorial proof.

Corollary 5.6. [Alaei et al., 2011; Quinzii, 1984; Maskin, 1987] In a special case of unit-demand bidders,
if the utilities are increasing with respect to the allocation and strictly decreasing and continuous with
respect to money, competitive equilibrium always exists.

Proof. Pick any price vectorp∗ and look at the induced configuration LP at this price. Interestingly, the feasi-
ble polytope of such LP is the matching polytope. We know matching polytope is integral[Schrijver, 1983],
and hence there always exists an integral optimal solution to the induced configuration LP at any price vector
p∗. As we show later in the proof of Theorem 5.2, there always exists a fractional WE price vectorp under
the conditions in the statement of the corollary. Now, induced configuration LP at pricep has an optimal
integral primal solutionx that supports any optimal solution(p̂, û) of the dual program ( meaning that for
each biddersi the item she gets inx is her preferred item under pricesp̂, she gets a utilitŷui and also market
clears ). According to Corollary 5.4,p is also an optimal dual solution for the induced configuration LP at
pricep, and hencex supportsp. So(x, p) forms a WE for the matching market.

The last corollary of our result is a simple proof for the classic result of Gul and Stacchetti[Gul and Stacchetti, 1999],
in which they demonstrate the relationship between competitive equilibria and configuration LP in the case
of quasilinear utilities (which is the case whenui(x, p) = vi(x) − p for all i ∈ B, wherevi(1S) denotes
the value of bidderi for bundleS). In fact, in the special case of quasilinear, the induced configuration LP
at any pricep∗ will not be a function ofp∗, asv(p

∗)
i (1S) = ui(1S ,

∑
j∈S p

∗
j) +

∑
j∈S p

∗
j = vi(1S). We

therefore have the following corollary.

Corollary 5.7. [Gul and Stacchetti, 1999] Given a combinatorial auction with quasilinear utilities,a WE
exists if and only if the configuration LP has an integral optimal solution.

Proof. Mixing Theorem 5.2 and Corollary 5.5, we conclude there always exist a price vectorp such that it
is a factional WE price vector and together with{ui},whereui = max

S⊆I
vi(1S)−

∑
j∈S pj, forms an optimal

solution to the dual of configuration LP. So, using Theorem 5.3 a WE exists if and only if there exists an
integral optimal solution for the configuration LP.
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6 Proof of the main results

6.1 Proof of Theorem 5.2

We begin by looking at the market correspondenceφ (Definition 5.1). We have the following lemma, whose
proof is basically by Kakutani’s fixed point theorem[Kakutani and others, 1941]. Checking the conditions
of this theorem is technical and we omit the details for the sake of brevity. We assert that the proof is similar
to the fixed-point proof in[Arrow and Debreu, 1954] or [Maskin, 1987] with a minor modification.

Lemma 6.1. If for all i ∈ B, ui(x, p) satisfies the following conditions:

• Continuous with respect top,

• Increasing with respect toxj : j ∈ I,

• Strictly decreasing with respect top,

then the market correspondenceφ will have a fixed point.

Proof. By the conditions in the statement of the lemma, the correspondenceφ satisfies all the hypotheses of
the Kakutani’s fixed point theorem in[Kakutani and others, 1941], and it therefore has a fixed point.

Due to Lemma 6.1,φ has a fixed point(p∗, d∗), whered∗ ∈ D̃(p∗) =
∑

i∈A D̃i(p
∗) and

p∗ ∈ F(d∗) = argmax
p̂∈RM

+

p̂.(d∗ − (1, 1, . . . , 1, Z)).

By the definition ofD̃(p∗) there exits{d̃(i)}i∈A such thatd̃(i) ∈ D̃i(p
∗) = Conv(Di(p

∗)) andd∗ =∑
i∈A d̃(i). For eachi, d̃(i) is a convex combination of vectors of the form[1S , αS ], each[1S , αS ] ∈

Di(p
∗) and therefor maximizing the utility of agenti subject to the budget constraint under pricesp∗ in

the corresponding Arrow-Debreu market . For each agenti, let {xi,S} be the coefficients of this convex
combination. As a result, for each agenti ∈ [n] the followings hold.

∑

S⊆[M−1]

xi,S = 1, (10)

∀j ∈ [m] :
∑

S:j∈S

xi,S = d̃
(i)
j . (11)

Now, because 1) at every point inDi(p
∗) each agent satisfies her budget constraint under pricesp∗, 2) each

d̃(i) is a convex combination of such points, and 3)d∗ =
∑

i∈A d̃(i), the following holds.

p∗.d∗ =
∑

j∈[m+1]

d∗jp
∗
j =

∑

i∈[n+1]

∑

j∈[m+1]

d̃
(i)
j p∗j ≤ p∗m+1

∑

i∈n

Z

n
+

∑

j∈[m]

p∗j = p∗.(1, 1, . . . , 1, Z).

As a result,p∗.(d∗ − (1, 1, . . . , 1, Z)) ≤ 0. By the definition ofF(p∗) and due to the fact that at all-zero
price vector the dot product is zero, we concludep∗.(d∗ − (1, 1, . . . , 1, Z)) = 0. If p∗m+1 = 0 then the seller
in the market, i.e. agentn + 1, will buy infinite amount of money item due to lack of a budget constraint,
and henced∗m+1 > Z. By definition ofF(p∗), this impliesp∗.(d∗ − (1, 1, . . . , 1, Z)) > 0, a contradiction.
Sop∗m+1 > 0. Now if d∗j > 1 for somej ∈ [m], again by definition ofF(p∗), p∗.(d∗− (1, 1, . . . , 1, Z)) > 0
which is a contradiction. So,d∗j ≤ 1 for all j ∈ [m]. Because utilities are strictly increasing with money in

11



the market,d∗m+1 = Z. Note thatd̃(n+1)
j = 0 for j ∈ [m], because seller is not interested in buying back

any items. Therefore:
∀j ∈ [m] :

∑

i∈[n],S:j∈S

xi,S =
∑

i∈[n]

d̃
(i)
j = d∗j ≤ 1. (12)

Finally, let pj ,
p∗j

p∗m+1

(this is possible becausep∗m+1 > 0). First of all, we know that ifpj > 0, then

p∗j > 0. This impliesd∗j = 1, asp∗.(d∗ − (1, 1, . . . , Z)) = 0 and∀j′ ∈ [m] : d∗j′ ≤ 1. As a result

pj > 0 :
∑

i∈[n],S:j∈S

xi,S = d∗j = 1 (13)

We know if xi,S > 0, then(1S , αS) ∈ Di(p
∗) for someαS ≥ 0. Similar to the proof of Lemma 3.2,αS

is such thatp∗m+1αS +
∑

j∈[m] 1S(j)p
∗
j = Z

n
. Hence, similar to what happens in that proof, we can easily

verify that 1S will be a demanded allocation for agenti under pricesp∗ in the combinatorial auction, as
(1S , αS) is a demanded allocation of goods for agenti in its corresponding market. I.e.

1S ∈ argmax

x′∈{0,1}m
ui(x

′,
m∑

j=1

pjx
′
j) (14)

So,({xi,S}i∈B,S∈2I , {pj}j∈I) will be a fractional WE as in Definition 2.2, due to Equations 10, 12, 13,
and 14.

6.2 Proof of Theorem 5.3.

6.2.1 [Part 1, ‘if’ direction]

Suppose(p̃, d̃) is a fixed point of the correspondenceφ (this fixed point always exists, due to Lemma 6.1, and
p̃M > 0). Now, following the proof of Theorem 5.2, there exists a fractional WE({x̃i,S}i∈B,S⊆I , {pj}j∈I),

as in Definition 2.2, such thatj ∈ [m] : pj =
p̃j
p̃M

. Now fix p∗ = p and consider the induced configuration
LP atp∗. Note that{x̃i,S} is a feasible solution for this LP by the definition of fractional WE. For every
i ∈ B let ui = max

S⊆I
ui(1S ,

∑
j∈S pj). Then(u, p) will form a feasible solution for the dual of induced

configuration LP at pricep∗ = p, simply because∀i ∈ B : ui ≥ 0, ∀j ∈ I : pj ≥ 0 and we have:

∀i ∈ B,S ⊆ I : ui +
∑

j∈S

pj ≥ ui(1S ,
∑

j∈S

pj) +
∑

j∈S

pj = v
(p∗)
i (1S) (15)

We next prove that(u, p) will form an optimal solution for the dual of induced configuration LP at price
p∗ = p, by supporting this feasible dual solution with the feasible primal solution{x̃i,S}. This can be done
by the method of complementary slackness as following:

• if x̃i,S > 0, then by Definition 2.2 we have1S ∈ argmax

x′∈{0,1}m
ui(x

′,
∑m

j=1 pjx
′
j). Therefore,

ui +
∑

j∈S

pj = ui(1S ,
∑

j∈S

pj) +
∑

j∈S

pj = v
(p∗)
i (1S). (16)

• if pj > 0, then by Definition 2.2 we have
∑

i∈B,S:j∈S x̃i,S = d̃j = 1.

• Due to the proof of Theorem 5.2, there always exists at least one point in the convex combination of
demanded vectors of buyeri, and hence ifui > 0 then

∑
S⊆I xi,S = 1.
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So(u, p) is an optimal dual solution. Now suppose{xi,S} be an optimal integral solution to configuration
LP at pricep. Accordingly, {xi,S} and(u, p) should satisfy complementary slackness conditions. These
conditions show why({xi,S}, p) will form a WE:

• Proof of satisfaction: due to complementary slackness, if buyer i gets bundlesS, thenxi,S = 1 > 0,
and therefore:

ui +
∑

j∈S

pj = v
(p∗)
i (1S) ⇒ ui(1S ,

∑

j∈S

pj) = ui = max
S′⊆I

ui(1S′ ,
∑

j∈S′

pj). (17)

• Proof of market clearance: due to complementary slackness,if pj > 0, then
∑

i∈B,S:j∈S

xi,S = 1, as

desired.

So, putting all pieces together, we conclude that(x, p) is a WE for the combinatorial auction, wherepj =
p̃j
p̃M

, (p̃, d̃) is a fixed point of the market correspondenceφ, as stated in the Theorem 5.3, andx
(i)
j = 1 ⇐⇒

j ∈ S, xi,S = 1

6.2.2 [Part 2, ‘only if’ direction]

Suppose({xi,S}i∈B,S⊆I , {pj}j∈I) forms a WE. It is easy to see that{xi,S} will be an optimal solution to
the induced configuration LP at pricep∗ = p. To see this, letui = max

S⊆I
ui(1S ,

∑
j∈S pj). Similar to the

proof of Part 1,(u, p) forms a feasible solution for the dual LP of the induced configuration LP at price
p∗ = p. Now, we claim{xi,S} together with(u, p) satisfy complementary slackness conditions, which
shows{xi,S} and(u, p) are optimal solutions to the primal and dual of the induced configuration LP at price
p∗ = p respectively. To see this, we have the followings:

• If xi,S > 0, then satisfaction property implies that1S ∈ argmax

x′∈{0,1}m
ui(x

′,
∑m

j=1 pjx
′
j), and therefore:

ui +
∑

j∈S

pj = ui(1S ,
∑

j∈S

pj) +
∑

j∈S

pj = v
(p∗)
i (1S). (18)

• If pj > 0, then market clearance property implies
∑

i∈B,S:j∈S xi,S = 1.

• If ui > 0, then this implies bidderi gets a non-empty bundle of items under this WE, and hence∑
S⊆I xi,S = 1.

which is as desired. Now, for everyj ∈ I, let d̃j ,
∑

i∈B,S:j∈S xi,S andp̃j , pj. Also, let d̃M = Z and

p̃M = 1. We next show that(p̃, d̃) is a fixed point of the market correspondence mapφ. To this end, for every

i ∈ B let Si denotes the bundle of items such thatxi,Si
= 1. Moreover, letd(i)M = Z

n
−

∑
j∈Si

p̃j. We show

(1Si
, d

(i)
M ) ∈ Di(p̃). Note thatp̃Md

(i)
M +

∑
j∈[M−1] 1Si

(j)p̃j = p̃M
Z
n

. Moreover, ifx′ ∈ {0, 1}M−1 × R+

satisfies the budget constraint of agenti, i.e.x′M p̃M +
∑

j∈[M−1] x
′
j p̃j ≤ p̃M

Z
n

, the following holds:

ũi(1Si
, d

(i)
M ) = ui(1Si

,
Z

n
− d

(i)
M ) = ui(1Si

,
∑

j∈Si

p̃j)

(1)

≥ ui({x
′
j}j∈[m],

∑

j∈[m]

p̃jx
′
j)

(2)

≥ ui({x
′
j}j∈[m],

Z

n
− x′M ) = ũi(x

′),
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in which (1) holds becauseSi is an optimal bundle for bidderi under prices{p̃}j∈I and (2) holds be-
cause utilities{ui(.)} are decreasing with respect to money in the combinatorial auction. Therefored(i) =

(1Si
, d

(i)
M ) ∈ Di(p̃) for i ∈ [n]. Moreover, it is clear thatd(N) = (0,

∑m
j=1 p̃j) ∈ DN (p̃). So, d̃ =

∑
i∈A d(i) ∈ D(p̃) ⊆ D̃(p̃). Furthermore,̃dj ≤ 1 for j ∈ [m], andd̃M = Z. Hence, for every price vector

p ∈ R
M
+ , p.(d̃− (1, 1, . . . , 1, Z)) ≤ 0. Due to the market clearance of the WE, we know that ifp̃j > 0, then

d̃j = 1. As a result,p̃.(d̃ − (1, 1, . . . , 1, Z)) = 0. So, p̃ ∈ F(d̃). Putting pieces together,̃p ∈ F(d̃) and
d̃ ∈ D̃(p̃), and hence(p̃, d̃) is a fixed-point of the market correspondenceφ.

7 Conclusion

In the study of Walrasian equilibria, it is standard to assume that bidders have utilities that are quasilinear
in money. Unfortunately, this is a strong assumption that has attracted little attention. We strive to study
Walrasian equilibria in general combinatorial auction settings without assuming utilities are quasilinear, and
our main results shed light on when they exist. Unsurprisingly, we find that some of the strong results for
quasilinear bidders break when we relax our utility model. We show structure that does exist, and how it
connects to a few key results for general quasilinear and unit demand non-quasilinear settings; however, we
have only touched a small fraction of what is known about the quasilinear setting, and that is one source of
interesting open questions. For example:

• What natural properties of utility functions guarantee theexistence of Walrasian equilibria?In quasi-
linear settings, it is known that gross substitutes is sufficient in a combinatorial auction.

• When do equilibria have a lattice structure?It is known that in quasilinear settings and in unit-demand
non-quasiliniear ones, Walrasian equilibria have a lattice structure. Does this exist more generally?

Another direction for research surrounds generalizationsof Walrasian equilibria:

• When do combinatorial Walrasian equilibria exist in general? In quasilinear settings where Wal-
rasian equilibria fail to exist, one line of research shows that a kind of combinatorial equilibrium does
exist[Feldmanet al., 2016].

A third direction for research is to ask when quasilinearityis justified:

• What kinds of micromarkets naturally lead to quasilinear relationships with the global market?Tak-
ing the view that Walrasian equilibria capture a small sliceof a market, one should be able to identify
conditions under which a micromarket naturally has a quasilinear relationship with the other options
available to an agent.
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