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Abstract

Quasiliearity is a ubiquitous and questionable assumjatitime standard study of Walrasian equilib-
ria. Quasilinearity implies that a buyer’s value for goodsghased in a Walrasian equilibrium is always
additive with goods purchased with unspent money. It is dqudarly suspect assumption in combina-
torial auctions, where buyers’ complex preferences ovedgavould naturally extend beyond the items
obtained in the Walrasian equilibrium.

We study Walrasian equilibria in combinatorial auctionsewtguasilinearity is not assumed. We
show that existence can be reduced to an Arrow-Debreu stgtkehwith one divisible good and many
indivisible goods, and that a “fractional” Walrasian eduium always exists. We also show that stan-
dard integral Walrasian equilibria are related to integ@utions of an induced configuration LP as-
sociated with a fractional Walrasian equilibrium, genierafy known results for both quasilinear and
non-quasilnear settings.

1 Introduction

Money is inherently useless; it only holds value becausbaptromise that it can be used to buy something
useful. Thus, an agent’s utility for money will depend sabsially on what she already has and the alter-
native ways that it can be spent. A student who saves monegohnabitual cup of coffee can spend it on
many things. On the other hand, a corporate event planneiisagiven a dedicated budget for drinks may
not receive any benefit for discounted coffee; on the coptsdre cannot spend the money on herself, and
her budget may get cut next time if she doesn’t spend enougiheocurrent event.

General market equilibria capture the ephemerality of moAerow and Debreu’s exchange model is
simple: agents have goods; they sell those goods, then baytty want most. In this setting, money has
no inherent value and is simply a lubricant facilitating leage. This works because Arrow and Debreu
capture the entire economy, so there is nothing outside #r&ethon which to spend money.

In contrast, Walrasian (competitive) equilbria only capta slice of the overall market. To do so, they
must attribute utility to unspent money, since it can be spé&ewhere. In a Walrasian equilibrium model,
agents arrive with money and only spend it if the receivedevalutweighs the cost.

The default way to capture the implicit value of money is tlgly a quasilinear utility function, i.e. a
bidder’s utility « is the difference between her valu@and the price she pays Quasilinearity assumes that
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an agent’s total value is additive in what she gets now and slf&gets from an outside option, and that the
amount of utility she gets from an outside option scalesalityewith the amount of money she applies to
it. Both are plausible modeling assumptions, but assunfiagthey are always true is only somewhat more
defensible than assuming that a bidder always has an aglgéluation over all items in the market.

We can illustrate one simple violation with our coffee exénBuppose our student will buy exactly
one cup of coffee each day. If she doesn’t buy coffee now, shepend $3 on coffee elsewhere, so her
value for coffee now is $3; however, if we give heoth a cup of coffeeand $3, she will spend the extra
$3 on something completely different, like a movie tickdtgslready has her cup of coffee). Whether this
movie ticket gives her the same ultility as a cup of coffee,aitthe utility, or a quarter of the utility — there
is nothing in our market model to imply that her utility from axtra $3 is in any way tied to her utility for
a cup of coffee, except that it is plausitdy mosther utility for a cup of coffeél In effect, the student’s
marginal utility for $3 is completely different depending whether or not she gets coffee now.

Relaxing quasilinearity for Walrasian equilbria is thusiadamental question, particularly in combina-
torial auction domains where bidders are assumed to havelermreferences over sets of items. This is
the topic of our paper. Existing relaxations of quasiliftgeiocus on unit demand agents, and the literature
is quite limited. The existence of Walrasian equilibria viast shown by Quinzii1984. Later, Alaei et
al. [2011] show that Walrasian equilibria exist using a direct appinoasd have the same kind of lattice
structure as standard Walrasian equilibria for unit demaidders. Maski1987 studies a superficially
different problem and adds a single divisible good (i.e. eyro a standard general market model with in-
divisible goods; his result is that market equilibria alwaxist. We study Walrasian equilibria with general
utilities in an even more obvious setting: combinatoriattaans. In a combinatorial auction, bidders may
have complex preferences over the multiple goods being 3dids it is natural that one should extend these
complex preferences to items outside the Walrasian miarkehdy allowing non-quasilinear preferences
for money. Our main results establish conditions under WwhitValrasian equilibrium exists.

Fractional Walrasian Equilibria and Market Equilibria

Walrasian equilibria capture a microcosm of a larger market do so, they capture both an agent’s
utility for unspent money and goods’ inherent indivisityilat small scales. As our prior discussion sug-
gests, money is simply a proxy for the portion of the generatkat outside the goods available in the
Walrasian equilibrium. It is therefore not surprising thia first step in our work constructs a reduction
from a Walrasian equilibrium problem to a general Arrow-Bebmarket with an extra good (money), and
an extra agent (the selller). Together, the extra good aedtamppture the market outside the Walrasian
equilibrium. This market is special because all goods exoegney have supply 1 and are indivisible.
Maskin[Maskin, 1987 studies a similar market without adding the seller as antagaur first result shows
that the equilibria are the same:

Lemma 1.1(Informal). A set of prices and allocations for a combinatorial auctior a Walrasian equilib-
rium if and only if they correspond to a market equilibriumtlodé associated special Arrow-Debreu market.

The relationship with the special Arrow-Debreu market #g@ the foundation for our first main result
— “fractional” Walrasian equilibria always exist:

Theorem 1.2(Informal). In a combinatorial auction setting, a fractional Walrasiaguilibirium always
exists, that is there exists a set of prices and, for eacheplaydistribution over sets of goods whose support
is the collection of all demanded sets under the equilibrprives, and market clears in expectation.

This follows by proving that an auction’s associated gemaarket model always has a fixed point, and
that demand of a bidder at the fixed point can always be deceedpato a distribution over goods.

IWe know that she chose a cup of coffee over a movie tickeglhjifiso that implies her value for a cup of coffee is less then
value for a movie ticket. On the other hand, there might alsodmplementarities here if the student is unable to enjeyrtbvie
without first having a cup of coffee...



Configuration LPs and True Walrasian Equilibria

To understand true (non-fractional) Walrasian equilibvie must understand the combinatorial auc-
tion’s configuration linear program In a quasilinear setting, the configuration LP capturesatég goods
can be (fractionally) assigned to bidders; the LP’s objecis the total value generated by the assignment.
Walrasian equilibria here are known to be equivalent tagireteoptima of an auction’s configuration LP.

Unfortunately, the configuration LP is not available withguasilinearity because a bidder’s value is
not well-defined. Instead, we introduce emluced configuration LPRhat is associated with a particular
price vectorp*. This LP is constructed by fixing bidders’ utilities at and assuming they are otherwise
quasilinear. Integral optima are again related to Walrasiguilibria, but only ifp* already supported a
fractional Walrasian equilibrium:

Theorem 1.3(Informal). A Walrasian equilibrium for a combinatorial auction existand only if there is
a price vectonp* supporting a fractional Walrasian equilibrium for whichelinduced configuration LP has
an integral optimum.

This theorem has a couple of interesting corollaries. First can see how it relates to the results of
Maskin[[1987, Quinzii [1984, and Alaei et al[2011]:

Corollary 1.4. If the induced configuration LP is always integral, a combangl auction always has a
Walrasian equilibrium.

In unit-demand settings, the induced configuration LP is &chiag LP at any fixed pricg*. Thus, it
is integral and always has an integral optimum, and Walnasgailibria will always exist. This generalizes
the results of Maskin, Quinzii and Alaei et al. — Maskin stdla sibling of our general market model and
effectively showed that when bidders are unit demand, tiseadways an integral solution for every fixed
point, while Alaei et al. directly show that Walrasian edarila exist for unit demand settings.

Another simple but useful corollary happens when the cordigon LP is independent of:

Corollary 1.5. If the induced configuration LP is independentydf then a combinatorial auction has
a Walrasian equilibrium if and only if the configuration LP han integral optimum, regardless of any
properties ofp*.

The dependence agoi cancels when utilities are quasilinear, and it explains wieycan simply talk
about the configuration LP without talking about a specificoég@ricesp*.

Together, these results build a picture of the equilibriamdiscape outside quasilinearity — Walrasian
equilibria still exist at least in a fractional form, but tieg existence in general is substantially more com-
plicated. Existence is still related to a configuration LI, that LP can only be defined once prige€sare
in hand.

Related Work The objective of this paper is establishing existence atarization for competitive equi-
libria in combinatorial auction. The problem is closelyateld to the existing literature in economics and
theoretical computer science from different directionststi-there is a prominent literature on competi-
tive equilibrium in combinatorial auctions for the quasdar setting. These papers characterize existence
conditions for a Walrasian equilibrium and provide praaiticecessary conditions for a competitive equilib-
rium to exist in the quasilinear setting such as gross substie.g. Gul and Stacchetfl999, Bikhchan-
dani and Mamef1997, Bevia, Quinzii, and and Silf4999, Murota and Tamurg2001]. People have
also thought about using the properties of competitive ldgizi in quasilinear settings when valuations
are satisfying the gross substitute, such as lattice st@iGul and Stacchetti, 1999in order to design as-
cending auctions and identifying the connections betwkenvell-known VCG mechanisiVickrey, 1961 ;
Groves, 1973; Clarke, 19¥ &nd Walrasian equilibri§Kelso Jr and Crawford, 1982; Cramtehal,, 2006;
Nisanet al, 2007. Closely related is the literature on assignment games arel allocations, in which
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they tried to generalize the stable matching concept (edhe-to-one matching, one-to-many matching, or
many-to-many matching) to two-sided markets with indisigoods and quasilinear utilities, e.g. Shapley
and Shubii1971] and Echenique et d2004.

The second direction that connects our work to the liteeatsrthe existing work on non-quasilinear
utilities (or non-transferable utilities) and two-sidedatthing markets or general Arrow-Debreu market
[Arrow and Debreu, 1954with only one divisible good and unit-demand agents. Thélera formulation
is as introduced by Demange and GHI68H. The existence of competitive equilibria for non-quasitin
utilities was first proved by Quinz{1984, Gale [1984, Svenssori1984, and later by Kaneko and Ya-
mamoto[198d. They showed if there is a single divisible good (say moneyar economy and if agents
are unit-demand then there still exists a competitive dmiiim under certain reasonable (monotonicity)
conditions. There is also the work of Maski®87 on fair allocation of indivisible goods with money, that
provides a simpler proof for the existence of the equilibriwith indivisible goods and only one divisible
item in the unit-demand case. More recently, there has besnkeon two-sided matching markets with non-
transferable utilities by Alaei et 2017 that followed a different combinatorial approach. Theyvbd
the existence of competitive equilibrium when utility feions are monotone, and generalized the lattice
structure and properties associated with the minimunciafibint to a general non-quasilinear setting.

2 Settings and Notations

We are looking at @ombinatorial auctionin which we have a seéf of m items and a seB of n buyers
interested in these items. For everye {0,1}" and pricep € R, let u;(z,p) be the utility of bidder

i if she gets bundleX = {j € Z : z; = 1} of items under the price. We assume dutilities are strictly
decreasing and continuous with respect to the pricand increasing with respect ig for every itemj.
The competitive equilibrium (also known ¥¢alrasian equilibrium can be defined in this setting as follows.

Definition 2.1. A Walrasian Equilibrium (WE) is a pair of allocation and pes({zV}?, {p;}7-,) that
satisfies the following conditions:

e VicBandjeZ: 2™ ¢ {0,1}™ andp; € R.

o [Feasibility] vj e 7: 37 o\ < 1.

o [Satisfaction] Vi € B: z() ¢ arg{(rpﬁx w2, 3250 pia),
x/e s m

e [Market clearance] Vj € Z, if p; > 0 then)_" ;| gcg.i) =1.

Besides WE, we also need to define a fractional equilibritmayhiich each buyer has a distribution over
bundles of items. However, such an allocation is only fdasibexpectation, meaning that each item gets
allocated with probability less than or equalltoNote that such an equilibrium cannot be realized in reality

and it is just a solution concept that will shed insight ondtrecture of WE, as we show later in this paper.
More precisely, we have the following definition:

Definition 2.2. In a combinatorial auction(Z, B, {u;(.) }:cr), a fractional WE is defined to be a pair of
allocation and priceg{z; s}, {p;}) such that

e V(i,S)eBx2randjeT: =z;5€R;andp; € R;.

o [Feashility] Vi €Z: >  as<1, VieB:» zmg=L
i€B,S:jeS SCT



e [Satisfaction] Vi € B, if z; ¢ > 0thenlg € ar%ma}x wi (2, Z;n:l pjw;-).
z'e{0,1}™

o [Market clearance] Vjj € Z,if p; > 0then > ;5 =1.
icB,5jes

In this paper, we also talk about a special cas@&wwbw-Debreu marketsn which all commodities
except one are indivisible. In such markets, there is adseft vV of agents in the market who are interested
in trading a se€ of M commodities. We assume all commodities are indivisibleepkthe last commodity
j = M (we sometimes call this commodity ‘money’). Each agewtll bring an endowment®) € RY of
commodities to the market to trade. Agérdets a utility ofi;(z) for an allocationr € {0, 1} -1 x R,
of commodities. Moreover, we assumg(x) is strictly increasing with respect to; for all j € C and
continuous with respect to allocation of money, icg;. We next define thgeneral market equilibriunfor
such a market.

Definition 2.3. A General Market Equilibrium (GME) is a pair of allocation alprices({x(" w1 {p] 1)
that satisfies the following conditions:

e Vic Aandj € C/{M} : :L' 6{0 1} andp; € R,
eVicA: 2\) cR, andPy € R,.

o [Satisfaction] Vi € A : 2() € argmax dig(a’) s )L afpy < 5L wf
j;éM:x;E{O,l}yl’SueRﬁL

o [Market clearance] Vj € C, if p; > 0 then-N 2 = SN w®.

To define more notations for an Arrow-Debreu market with comy divisible good, leD;({p;};ec)
be the collection of feasible allocation of commaodities get:, such that each maximizes utility of agent
i under pricegp; } jec and they satisfy the budget constraint of agerh other words:

M M
Di({pj}iec) = argmax a;(2') s.t. Zw;—pj < Zw](-l)pj (1)
j= 7=1

J#M:ae{0,1}, 2, ERY

Let D;({p;}jec) be all vectors inD;({p; };cc) when we delete the allocation of the divisible good, i.et las
coordinate, from all vectors. Define total demand todgp;}jcc) = > ;c 4 Di({pj}jec) and the total
demand for items to b®({p; }jcc) = 3, 4 Di({p;};ec), where summations are Minkowski summations
of sets. Moreover, leD; = Cony(D;) andD = Conv(D) where Cony.) is the convex hull of its argument.
Clearly, all these sets are finite (because utility is d¥ricicreasing in money and hence given an allocation
of indivisible items the allocation of money will be the un& number that fills the budget slack) and
hence convex hulls are well defined. Also, from the definitbrronvex hull and Minkowski summation,

D EZE.AD
3 Reduction from combinatorial auction to Arrow-Debreu market

We start by defining a general Arrow-Debreu market with onésitile good.

Definition 3.1. Given a combinatorial auctio(iZ, B, {u;(.) }:ci), its corresponding Arrow-Debreu market
(Ca -A7 {ﬂl()}le./h {w(l) }iE.A) is the fO”OWing:



e There areM = m + 1 commodities, where the firgt indivisible commodities i@ are items inZ,
and the last divisible commodity is a special commodityechiinoney’.

e There areN = n + 1 agents:
— For everyi € [n] we havei;(z,y) = u;(z, £ — y) for everyz € {0,1}™,y € Ry, whereZ is
large enough such that > >~ | u;(1,0),
— The last agent is a special agent called the ‘seller’ and héityiis computed asi,, 1 (z,y) =y
for everyz € {0,1}",y € R4.
e Foreveryi € [n], endowment of ageits w® = (0,0,...,0, Z). Forthe sellerw, 11 = (1,1,...,1,0).

We now have the following lemma, which basically shows thatdorrespondence described in Defini-
tion[3.1 preserves the equilibrium.

Lemma 3.2. A pair ({7, {pj m™1) is a WE for the combinatorial auctiofZ, 3, {u;(.) }scg) if and
only if there exists a GME{#(} N | {p] L) forits corresponding Arrow-Debreu mark@t, A, {ii;(.) }ica, {w® }ica)
as in Definitior 3.1l such that(i, j) € [N -1 x[M-1]: N(’) xg.), x%}” =P Vi€ M —1]:

p o ~
p—;j = p; andpy > 0.

Proof. We first show that given a WE z ("}, | {p;}7L,) for the combinatorial auction, we can generate a
GME for its corresponding Arrow-Debreu market that satisflesired conditions. For evejye [M — 1],

letp; = p; and letpy, = 1. Forall (i, j) € [N —1] x [M —1] Ieti(i) (i) . Letthe seller collect all trade

money, i.ejgg) = 1D andig. ) je[M-1). Flnally Ietxgvj) = Z Z 1 x )pj , i€ [N-1].
It is easy to show that market clears, becauseg fer[A/ — 1], if p; > 0, thenpJ >0 and hence the item
gets allocated in the combinatorial auction. Consequ;ently

N n
S e =3 <13 @

Moreover, for money item (for which,; > 0), we have

N m m . . N
Zig&):Z— Z£§i>~j+zpjzz+zpj(1_ xg-i))(é)ng\? 3)
i=1 — ; . ‘ -

@
Il
—
<
Il
—
<
I
—_
<
—
-
Il
—
-
|
—_

where (1) is true, becauseyif > 0, > | « j =1,andy_ Y, wM = Z. To show the satisfaction condition,

it is obvious that the seller gets its optimal allocation embudget constraints (it sells all the items and gets
the money for it). For an agente [N — 1], fix any feasible allocation’ of commodities to this agent. Now,
we have:

e i Z G i N (i -
@ (#9) = wi({2}}jepmps = = #0p) = 6l Yyepm 2 2'p3) = wil{afsem, Y w5p))
j=1 j=1
3 7z & N
= @i ({2} }jeim); - > @hpy) > wi({a} ey 2, (4)

=1

where (1) holds, because utilities in the market are inangasith respect to money commaodity and for a
feasible allocation’, Y7 | oip; + 2y, = S5 a/p; + 2, < £. Itis also true that®) meets the budget

constraint, i.ey" " x(l)p] +&\) < Z which completes the proof
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To prove the other direction, suppose a GME(Z' 1 {p] ) is given and it satisfies the conditions
in the statement of the lemma. Now:, j) € [n] x [m] let ;ng.) = ;n() Moreover, letp; = pM,j € [m].
Clearly the aIIocatior{x(")}ie[n} is a feasible allocation and clears the market due to theHatfz(?) Fie[N]

clears the Arrow-Debreu market aﬁéiN ) = 0in any GME (because seller’s utility is strictly increasing
with money and she gets zero utility by receiving any comityoflic [M — 1]). To see satisfaction, , fix an
allocation of items to biddet, e.g.z’, in the combinatorial auction. Now we have

7 7 ﬁ 1 7 3
wil({2$"}iepm) Zx p;) = ({2} }je[m],— Zw< 21y Yy ({2} 23)
7=1

T pm

2 ~ m
Yz
2 ({2} jepm) Zw L) = w;({«} jepm), D 7pj) (5)
- pM —
7j=1 7j=1
where (1) holds because 1! &\, +2) iy < parZ, and (2) holds becausés’;} e, 257, o 22 )
meets the budget constraint of bldden Arrow- Debreu market , or more concretely
M-1 m ~
. Z _ i
DR R G PR pM— w( Pj (6)
I n PM
7j=1 7=1 7j=1
O

4 A Generalization of configuration LP

In this section, we start exploring the connections betwealfare maximization and WE for non-quasilinear
utilities in combinatorial auctions. In the quasilinearndowhereu;(x, p) = v;(z) — p, the following con-
nections are known:

e The combinatorial auction configuration LP, i.e. the foliog/linear program

maximize > x; svi(1s)

i€B,SCT
subject to Z zig <1, i €B.

SCT

> mis<1, jeL

i€B SCTjes

TS >0, 1€ B,S’g:[

that characterizes maximum welfare allocations, has agiat optimal solution if and only if WE
exists.

e A vector of prices is a WE price vector if it forms an optimalumn to the dual of the configuration
LP. Moreover, if a dual solution can be supported by an iatefgasible primal, then it is a WE price
vector.

The guestion we address here is how can one generalize thesepts to the case of non-quasilinear utili-
ties, in the hope that they shed some insights on existertstarctural properties of WE for non-quasilinear
utilities. To this end, we first define aguivalent quasilinear value functidar each bidder, which will act
similar to the value function in the quasilinear configuratLP.



Definition 4.1. Fix a vector of priceg*. For bidder: with utility functionw;(x, p), the equivalent quasilin-
ear value function at price vecter* is defined as

o (2) 2wy, Y wp)) + > p) (7)
j=1 J=1

As it can be seen from the definition, the equivalent quasidr value function, together with prices
p*, will generate the same utility as the original utility faiom, if we assume quasi-linearity. Given the
definition of an equivalent quasilinear value function fack bidder at a fixed price vectpt, here is a
natural generalization to the configuration LP. The prognaeximizes welfare with respect to the equivalent
guasilinear value function.

Definition 4.2 (Induced configuration LP at prigg’). Fixing a price vectorp*, theinduced configuration
LP at pricep* is defined as the following linear program with variables; s }ics, sc7 (allocation):

maximize Z zi 50 (1)

i€B,SCT
subject to Z zis <1, i€ B.

SCT

> mis<1, jeL

ieB SCTjes

;5 2> 0, 1€B,SCI.

Similar to the quasilinear utilities, one can look at the lduagram of the linear program in Defini-
tion[4.2 which sheds more insights on the structure of the &¢Eye show later in this paper.

Definition 4.3 (Dual induced configuration LP at prige). Fixing a price vectorp*, the dual of the in-
duced configuration LP in Definition_ 4.2 is the following kmeprogram with variable{u; };cs(utilities)

and{p; } jez(prices).

minimize Z u; + ij

i€B JET

subject to ij +u; > vi(p*)(ls), ieB,SCT.
jES
uizo,pjzo, 1€B,j €.

In the next section we show how the linear programs in Dedingi4.2 and 4]3 are related to the existence
of WE in non-quasilinear settings.

5 main results and their applications

Our main result is proving the existence of WE under necgssad sufficient structural conditions, and
bridging the gap between the concept of WE and configurat®ifiok non-quasilinear utilities. More accu-
rately, we show the induced configuration LP in Definifiodi4.&trong enough to provide us with necessary
and sufficient conditions for the existence of equilibriumowever we have to look at this LP wheh is
also an equilibrium price vector. Using the reduction int®ed3.1 to general markets, we show such item
prices always exist. Moreover, it turned out that by usirgghimal-dual LP machinery one can show such
prices will get supported by an integral allocation to foridV& if and only if the corresponding induced
configuration LP has an integral optimal solution.
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Definition 5.1. Fix a combinatorial auction(Z, B, {u;(.) }ieg) and consider its corresponding Arrow-
Debreu marke(C, A, {i;(.)Yica, {fwD}ic4), as defined in Sectidn 3.1. Thearket correspondencgis
defined as follows.

V(p,d) € RY x RY : ¢(p,d) = (D(p), F(d)), 8)
whereF(d) £ argmaxp.(d — (1,1,...,1,Z)) and D(p) is the convex hull of total demand setp). We
peRY
say a point(p, d) is afixed pointof the market correspondence if
(p,d) € ¢(p,d) = (D(p)), F(d)). 9)

As we will show later, the fixed point of market correspondesdefined in Definitiol 51 always exists,
under monotonicity assumptions on utility functions. Tined point is essentially giving us an equilibrium
price vector that can be supported byractional allocation of items to buyers in a way that it produces
an envy-free market clearing outcome ( i.e. an outcome thatyene gets an optimal allocation under
prices and market clears). However, we expect integratatiions in a WE of the combinatorial auction. To
address this we utilize the induced configuration LP definddgfinition[4.2 and its dual in Definitidn 4.3 at
the fixed point price to see if the supporting fractional edliion can basically be decomposed into integral
allocations. This helps us to find a structural characteadagor WE. Putting all the pieces together, we get
two main results.

Theorem 5.2. Given a combinatorial auctiofiZ, B, {u;(.) }ieg) in which for every buyet the utility func-
tion u;(x, p) is increasing with respect to allocation of items, and dlyidecreasing and continuous with
respect to the money,feactional WE (Definitior{ 2.R) always exists.

Theorem 5.3. Given a combinatorial auctiofiZ, 3, {u;(.) }:c) that satisfies conditions in TheorémI5.2,
and its corresponding Arrow-Debreu markt, A, {i;(.) }ica, {w® }ic4) as in Definitio 311, a pair of
prices and allocation({p;}jez, { }icp) is @a WE if and only if:

e 3pc R andd c RY st.jpy > 0,dyr = Z,5 € [m] : pj = 5—;1 and(p, d) is a fixed point of.

e {z; 5} is an optimal integral solution for the induced configuratibP at pricesp* = p, where
VieB,SCT:zs=1+ jeS:al)=1.

While our main results in Theorerns b.2 and Thedrer 5.3 cterae structural necessary and sufficient
conditions for the existence of competitive equilibriagrin are simple corollaries of these theorems that
are of interest. The first corollary, whose proof can be seem fthe proofs of Theorem 8.2 ahd 5.3 in
Sectior 6, states the relationship between the dual of edigonfiguration LP at some prigé and prices
in a competitive equilibrium (either fractional or intefra

Corollary 5.4. For a combinatorial auction{Z, B, {u;(.) }scg) and its corresponding Arrow-Debreu market
(C, A, {1 () Yiea, {wD }ic 1), these statements are equivalent:

e Price vectorp is a fractional WE price vector, as in Definition 2.2.

e There exists a price vectgr € R% s.t. (p,d) is a fixed point of the market correspondengand
p; = %-

o Letu; = max vi(p)(ls) — >_;es Pj- Then(u, p) is an optimal solution to the dual of induced config-
uration LP at pricep.



Another corollary of our main result is the connection bewéractional WE, as in Defintidn 2.2, and
true (integral) WE, as in Definition 2.1. In fact, by direcipplying Corollary 5.4 to Theorem 5.3 one can
restate Theorein 3.3 through the following corollary, wHigipasses the relationship to markets and reveals
the relationship between fractional and integral WE.

Corollary 5.5. Given a combinatorial auctio(iZ, B, {u;(.) }:c5) that satisfies conditions in TheorémI5.2, a
pair of prices and allocatior{{p; } ez, {z" }ici) is @ WE if and only if:

e pis a price vector of a fractional WE, as in Definitibn R.2.

e {z; 5} is an optimal integral solution for the induced configuratibP at pricesp* = p, where
VieB,SCT:zs=1+ jeS:al)=1.

The next corollary of our results is the existence of conmipetiequilibrium for the special case of
unit-demand bidders (or matching markets). In this caseh bayer is interested in at most one item and a
feasible allocation is an integral matching. Our resulisbow surprisingly, will give a simple proof for the
existence of WE in this setting, which has been observed enag in the literature first by QuinZL984,
and later by Alaei et[Alaeiet al, 2011 and Maskin[Maskin, 1987 - Maskin and Quinzii studied the
matching markets with one divisible goods and showed thst@xte of an envy-free outcome in such a
market, while Alaei et al. directly showed that competitaguilibrium exists by a combinatorial proof.

Corollary 5.6. [Alaeiet al, 2011; Quinzii, 1984; Maskin, 1987n a special case of unit-demand bidders,
if the utilities are increasing with respect to the allocati and strictly decreasing and continuous with
respect to money, competitive equilibrium always exists.

Proof. Pick any price vectgp* and look at the induced configuration LP at this price. Irdgengly, the feasi-
ble polytope of such LP is the matching polytope. We know imiatg polytope is integrd/Schrijver, 1983,
and hence there always exists an integral optimal solutidinet induced configuration LP at any price vector
p*. As we show later in the proof of Theorém5.2, there alwaystex fractional WE price vectgrunder
the conditions in the statement of the corollary. Now, iretliconfiguration LP at price has an optimal
integral primal solutione that supports any optimal solutidp, ) of the dual program ( meaning that for
each bidders the item she gets imis her preferred item under pricgsshe gets a utilityi; and also market
clears ). According to Corollafy 5.4,is also an optimal dual solution for the induced configurati® at
pricep, and hence: supportsgp. So(z,p) forms a WE for the matching market. O

The last corollary of our result is a simple proof for the slasesult of Gul and StaccheliGul and Stacchetti, 1999
in which they demonstrate the relationship between conneetquilibria and configuration LP in the case
of quasilinear utilities (which is the case whep(x,p) = v;(xz) — p for all : € B, wherev;(1s) denotes
the value of biddef for bundleS). In fact, in the special case of quasilinear, the inducedigaration LP
at any pricep* will not be a function ofp*, aS’UZ(p*)(ls) = ui(1s, > jesPj) T 2jesP; = vi(ls). We
therefore have the following corollary.

Corollary 5.7. [[Gul'and Stacchetti, 1999Given a combinatorial auction with quasilinear utilities, WE
exists if and only if the configuration LP has an integral opi solution.

Proof. Mixing Theorenl 5.2 and Corollafy 8.5, we conclude there gbwexist a price vectgp such that it
is a factional WE price vector and together wjth; } ,whereu; = max vi(1s) — > e pj, forms an optimal

solution to the dual of configuration LP. So, using TheofeBi&WE exists if and only if there exists an
integral optimal solution for the configuration LP. O
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6 Proof of the main results

6.1 Proof of Theorem 5.2

We begin by looking at the market correspondend®efinition[5.1). We have the following lemma, whose
proof is basically by Kakutani’s fixed point theordii®akutani and others, 19%1Checking the conditions
of this theorem is technical and we omit the details for the s brevity. We assert that the proof is similar
to the fixed-point proof idArrow and Debreu, 1994or [Maskin, 1987 with a minor modification.

Lemma 6.1. If for all i € B, u;(x, p) satisfies the following conditions:
e Continuous with respect 1o,
e Increasing with respect to; : j € Z,
e Strictly decreasing with respect ig

then the market correspondengewill have a fixed point.

Proof. By the conditions in the statement of the lemma, the cormed@acey satisfies all the hypotheses of
the Kakutani’s fixed point theorem [iakutani and others, 19%1and it therefore has a fixed point. [

Due to Lemm&G&]lg has a fixed pointp*, d*), whered* € D(p*) = 3", 4 D;(p*) and

p* € F(d*) = argmaxp.(d* — (1,1,...,1,2)).
peRY

By the definition of D(p*) there exits{d"};c4 such thatd® e D;(p*) = Conv(D;(p*)) andd* =
S ieqd?. For eachi, d?) is a convex combination of vectors of the forfihs, cs], each(ls,as] €
D;(p*) and therefor maximizing the utility of agemntsubject to the budget constraint under prig&sn
the corresponding Arrow-Debreu market . For each agelet {x; s} be the coefficients of this convex
combination. As a result, for each agérg [n] the followings hold.

Z €i, 8 = 17 (10)
SCIM-1]
vielml: Y zis=d. (11)
S:jes

Now, because 1) at every point Ip; (p*) each agent satisfies her budget constraint under pricey each
d") is a convex combination of such points, andi3)= 3", , d?, the following holds.

prdi= > dipf= > > d(’p]<pm+1z +Zp]—p 1,2).

jelm+1] i€fn+1] jelm+1] ien

As aresultp*.(d* — (1,1,...,1,7Z)) < 0. By the definition of7(p*) and due to the fact that at all-zero
price vector the dot product is zero, we conclgded” — (1,1,...,1,Z)) = 0. If p; ., = 0 then the seller

in the market, i.e. agent + 1, will buy infinite amount of money item due to lack of a budgenstraint,
and hencel;  ; > Z. By definition of 7(p*), this impliesp*.(d* — (1,1,...,1,Z)) > 0, a contradiction.
Sopj,4+1 > 0. Now if d > 1 for some;j € [m], again by definition ofF (p*), p*.(d* — (1,1,...,1,2)) >0
which is a contradiction. Sei; < 1 for all j € [m]. Because utilities are strictly increasing with money in
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the marketd;, ., = Z. Note thatcig.”“) = 0 for j € [m], because seller is not interested in buying back
any items. Therefore:
vieml: Y. wms=Y d)=di<1. (12)
i€[n],S:je8 i€[n]

Finally, letp; = pf; (this is possible becausg,, ; > 0). First of all, we know that ifp; > 0, then
m+1

p; > 0. This impliesd; = 1, asp™.(d* — (1,1,...,Z)) = 0andVvj’ € [m] : dj, < 1. As aresult

pi>0: Y wmg=di=1 (13)
i€[n],S:j€S

We know if z; ¢ > 0, then(1g,ag) € D;(p*) for someag > 0. Similar to the proof of Lemma_3.2yg

is s_uch thato,*nﬂas + Zje[m} 1S(j)p3% = % Hence, similar to vyhat hgppens in thgt proqf, we can easily
verify that 15 will be a demanded allocation for agentinder price* in the combinatorial auction, as
(15, as) is a demanded allocation of goods for agéeimt its corresponding market. |.e.

m
1g € argmax u;(2/, ijm;) (14)

So,({%i,s}ies.se2z, {0 }iez) Will be a fractional WE as in Definition 2.2, due to Equatiois[12,[13,
and14. O

6.2 Proof of Theorem5.3.
6.2.1 [Part 1, ‘if’ direction]

Supposép, d) is a fixed point of the correspondengéthis fixed point always exists, due to Lemma 6.1, and
par > 0). Now, following the proof of Theorein 5.2, there exists afianal WE({Z; s }ien,scz, {P;}icz)

as in Definitio 2.2, such thgte [m] : p; = ;’—;j. Now fix p* = p and consider the induced configuration
LP atp*. Note that{Z; 5} is a feasible solution for this LP by the definition of fractad WE. For every
i€ Bletu; = max ui(1s,>;c5pj)- Then(u, p) will form a feasible solution for the dual of induced

configuration LP at price* = p, simply becaus&i € B: u; > 0,Vj € T : pj > 0 and we have:
Vie B,SCT:u;+ ij > u;i(1g, ij) + ij = vﬁp*)(ls) (15)
jES jes jes

We next prove thatu, p) will form an optimal solution for the dual of induced configtion LP at price
p* = p, by supporting this feasible dual solution with the feasiplimal solution{Z; s}. This can be done
by the method of complementary slackness as following:

e if Z; 5 > 0, then by Definition 22 we haves € argmax u;(z', 372 p;a’;). Therefore,

z'e{0,1}™
wit > pi=uwils, Y p)+ Y py =0 (1s). (16)
JjES jeSs jeSs

o if p; > 0, then by Definitio 22 we haVE, . 5 g.ic Ti.s = d; = 1.

e Due to the proof of Theorefn 5.2, there always exists at leastpoint in the convex combination of
demanded vectors of buygrand hence ifi; > 0then) g7 x; s = 1.

12



So(u, p) is an optimal dual solution. Now suppoée; s} be an optimal integral solution to configuration
LP at pricep. Accordingly, {x; s} and(u,p) should satisfy complementary slackness conditions. These
conditions show why{z; s}, p) will form a WE:

o Proof of satisfaction: due to complementary slacknessjyebi gets bundlesS, thenz; s =1 > 0,
and therefore:

(»*)
wit Y py = (Ls) = wills, 3 py) = i = maxui(ls, 3 pj). (17)
jES jES jes’

o Proof of market clearance: due to complementary slacknegs,> 0, then Z r;5 = 1,as
i€B,S:jeS
desired.

So putting all pieces together, we conclude that) is a WE for the combinatorial auction, wheye =

ﬁ , (P, d) is a fixed point of the market correspondenges stated in the Theordm b.3, atﬁ@ =1 <

jes rs=1 O

6.2.2 [Part 2, ‘only if’ direction]

Suppose{z; s }ie,scz, {pj}jez) forms a WE. It is easy to see that; s} will be an optimal solution to
the induced configuration LP at prigé = p. To see this, let;;, = max ui(1g, Zjespj). Similar to the

proof of Part 1,(u,p) forms a feasible solution for the dual LP of the induced camfijon LP at price

p* = p. Now, we claim{z; s} together with(u, p) satisfy complementary slackness conditions, which
shows{z; s} and(u, p) are optimal solutions to the primal and dual of the inducetigaration LP at price

p* = p respectively. To see this, we have the followings:

o If z; 5 > 0, then satisfaction property implies thig € argmax u; (', > p;a}), and therefore:

z'e{0,1}™
wit Y pi=ui(ls,» pi)+ > _pj =" (15). (18)
jes jes jes

e If p; > 0, then market clearance property imple$ z 5. ;s i,s = 1.

e If u; > 0, then this implies biddef gets a non-empty bundle of items under this WE, and hence

which is as desired. Now, for evefyc Z, letd; 2 > icB.s.jes Ti,s andp; 2 p;. Also, letdy = Z and
Py = 1. We next show thafp, d) is a fixed point of the market correspondence mapo this end, for every
i € Blet S; denotes the bundle of items such thag, = 1. Moreover, Ietd%[) =Z_ > jes, bj- We show
(1gz,d(i)) € D;(p). Note thatpMd +de[M 1718, (4)D; = puZ. Moreover ifz’ € {0, 1}M~1 x R,
satisfies the budget constraint of aggrite. zy,par + > jeppr—1) 2P < puZ, the following holds:

~ 7 Z 7
i(1s,, di)) = ui(1s, ——d“) = ui(ls,, Y ;)
]ES

@) VA 5
> uy( {x }]G Z p] > Uj {w }]G E _wM) —u,-(x/),
[m]
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in which (1) holds becauss§; is an optimal bundle for bidder under prices{p};cz and (2) holds be-
cause utilities{u;(.)} are decreasing with respect to money in the combinatorigtiau Thereforel®) =
(1s,,dY)) € D;(p) for i € [n]. Moreover, it is clear that™¥) = (0, S B;) € Dn(p). So,d =
S iead? € D(B) C D(p). Furthermored; < 1 for j € [m], anddys = Z. Hence, for every price vector
pE Rf,p.(d— (1,1,...,1,2)) < 0. Due to the market clearance of the WE, we know thaj if- 0, then

dj = 1. Asaresultp.(d — (1,1,...,1,Z)) = 0. So,p € F(d). Putting pieces togethep, € F(d) and

d € D(p), and hencép, d) is a fixed-point of the market correspondengce O

7 Conclusion

In the study of Walrasian equilibria, it is standard to assuhat bidders have utilities that are quasilinear
in money. Unfortunately, this is a strong assumption that dtéracted little attention. We strive to study

Walrasian equilibria in general combinatorial auctiortiags without assuming utilities are quasilinear, and
our main results shed light on when they exist. Unsurpriginge find that some of the strong results for

guasilinear bidders break when we relax our utility modek $Mow structure that does exist, and how it
connects to a few key results for general quasilinear anddennand non-quasilinear settings; however, we
have only touched a small fraction of what is known about tisijinear setting, and that is one source of
interesting open questions. For example:

e What natural properties of utility functions guarantee théstence of Walrasian equilibriald quasi-
linear settings, it is known that gross substitutes is gefiicin a combinatorial auction.

e When do equilibria have a lattice structurdtds known that in quasilinear settings and in unit-demand
non-quasiliniear ones, Walrasian equilibria have a latsicucture. Does this exist more generally?

Another direction for research surrounds generalizatain&alrasian equilibria:

e When do combinatorial Walrasian equilibria exist in gen@ran quasilinear settings where Wal-
rasian equilibria fail to exist, one line of research shdwat & kind of combinatorial equilibrium does
exist[Feldmanret al, 2014.

A third direction for research is to ask when quasilineaistjustified:

e What kinds of micromarkets naturally lead to quasilinedat®nships with the global marketPak-
ing the view that Walrasian equilibria capture a small stita market, one should be able to identify
conditions under which a micromarket naturally has a qunesil relationship with the other options
available to an agent.
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