Skip to main content

Brain Tumor Segmentation Using Large Receptive Field Deep Convolutional Neural Networks

  • Conference paper
  • First Online:

Part of the book series: Informatik aktuell ((INFORMAT))

Abstract

Glioblastoma segmentation is an important challenge in medical image processing. State of the art methods make use of convolutional neural networks, but generally employ only few layers and small receptive fields, which limits the amount and quality of contextual information available for segmentation. In this publication we use the well known UNet architecture to alleviate these shortcomings. We furthermore show that a sophisticated training scheme that uses dynamic sampling of training data, data augmentation and a class sensitive loss allows training such a complex architecture on relatively few data. A qualitative comparison with the state of the art shows favorable performance of our approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   59.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   74.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabian Isensee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Deutschland

About this paper

Cite this paper

Isensee, F. et al. (2017). Brain Tumor Segmentation Using Large Receptive Field Deep Convolutional Neural Networks. In: Maier-Hein, geb. Fritzsche, K., Deserno, geb. Lehmann, T., Handels, H., Tolxdorff, T. (eds) Bildverarbeitung für die Medizin 2017. Informatik aktuell. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54345-0_24

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54345-0_24

  • Published:

  • Publisher Name: Springer Vieweg, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54344-3

  • Online ISBN: 978-3-662-54345-0

  • eBook Packages: Computer Science and Engineering (German Language)

Publish with us

Policies and ethics