Skip to main content

Particle Swarm Optimization Based Fast Chan-Vese Algorithm for Medical Image Segmentation

  • Chapter
  • First Online:

Part of the book series: Studies in Computational Intelligence ((SCI,volume 704))

Abstract

Image segmentation is a very important part of image pre-processing and its application towards computer vision.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. S. Barnes, (2009), http://en.wikipedia.org/wiki/File:SWI_4Tesla.png

  2. E.S. Brown, T. Chan, X. Bresson, Completely convex formulation of the Chan-Vese image segmentation model. Int. J. Comput. Vis. 98, 103–121 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. V. Caselles, F. Catt, T. Coll, F. Dibos, A geometric model for active contours in image processing. Numer. Math. 66, 1–31 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  4. V. Caselles, R. Kimmel, G. Sapiro, On geodesic active contours. Int. J. Comput. Vis. 22(1), 61–79 (1997)

    Article  MATH  Google Scholar 

  5. T. Chan, B.Y. Sandberg, L. Vese, Active contours without edges for Vector-Valued images. J. Vis. Commun. Image Represent. 11, 130–141 (1999)

    Article  Google Scholar 

  6. T. Chan, L. Vese, Active contours without edges. IEEE Trans. Image Process. 10(2), 266–277 (2001)

    Article  MATH  Google Scholar 

  7. A. Chander, A. Chatterjee, P. Siarry, A new social and momentum component adaptive PSO algorithm for image segmentation. Expert Syst. Appl. 38(5), 4998–5004 (2011)

    Article  Google Scholar 

  8. A. Chatterjee, F. Matsuno, A neuro-fuzzy assisted extended Kalman filter-based approach for Simultaneous Localization and Mapping (SLAM) problems. IEEE Trans. Fuzzy Syst. 15(5), 984–997 (2007)

    Article  Google Scholar 

  9. A. Chatterjee, F. Matsuno, A geese PSO tuned fuzzy supervisor for EKF based solutions of simultaneous localization and mapping (SLAM) problems in mobile robots. Expert Syst. Appl. 37(8), 5542–5548 (2010)

    Article  Google Scholar 

  10. A. Chatterjee, P. Siarry (eds.), Computational Intelligence in Image Processing (Springer, Heidelberg, 2013)

    Google Scholar 

  11. A. Chatterjee, K. Pulasinghe, K. Watanabe, K. Izumi, A particle swarm optimized fuzzy-neural network for voice-controlled robot systems. IEEE Trans. Ind. Electron. 52(6), 1478–1489 (2005)

    Article  Google Scholar 

  12. A. Chatterjee, R. Chatterjee, F. Matsuno, T. Endo, Neuro-fuzzy state modeling of flexible robotic arm employing dynamically varying cognitive and social component based PSO. Measurement 40(6), 628–643 (2007)

    Article  Google Scholar 

  13. A. Chatterjee, M. Dutta, A. Rakshit, An intelligent method of impedance measurement employing PSO-aided neuro fuzzy system with LMS algorithm, in Proceedings of the IEEE International Conference on Fuzzy Systems (FUZZ-IEEE 2007), London, UK, 23–26 July 2007

    Google Scholar 

  14. A. Chatterjee, R. Chatterjee, F. Matsuno, T. Endo, Augmented stable fuzzy control for flexible robotic arm using LMI approach and neuro-fuzzy state space modeling. IEEE Trans. Ind. Electron. 55(3), 1256–1270 (2008)

    Article  Google Scholar 

  15. A. Chatterjee, P. Siarry, A. Nakib, R. Blanc, An improved biogeography based optimization approach for segmentation of human head ct-scan images employing fuzzy entropy. Eng. Appl. Artif. Intell. 25, 1698–1709 (2012)

    Article  Google Scholar 

  16. A. Chatterjee, H. Nobahari, P. Siarry (eds.), Advances in Heuristic Signal Processing and Applications (Springer, Heidelberg, 2013)

    MATH  Google Scholar 

  17. A. Ciscel, (2005), http://commons.wikimedia.org/wiki/File:Head_CT_scan.jpg

  18. M. Clerc, J. Kennedy, The particle swarm: explosion, stability, and convergence in a multi-dimensional complex space, in IEEE Transactions on Evolutionary Computation, Piscataway, NJ, (2002), p. 5873

    Google Scholar 

  19. K. Das Sharma, A. Chatterjee, A. Rakshit, A PSO-Lyapunov hybrid stable adaptive fuzzy tracking control approach for vision based robot navigation. IEEE Trans. Instrum. Measurement 61(7), 908–1914 (2012)

    Article  Google Scholar 

  20. K. Das Sharma, A. Chatterjee, A. Rakshit, A random spatial lbest PSO-based hybrid strategy for designing adaptive fuzzy controllers for a class of nonlinear systems. IEEE Trans. Instrum. Meas. 61(6), 1605–1612 (2012)

    Article  Google Scholar 

  21. R.L. Dice, Measures of the amount of ecologic association between species. Ecology 26, 297–302 (1945)

    Article  Google Scholar 

  22. N. Dilmen, (2005), http://commons.wikimedia.org/wiki/File:NPH_MRI_106.png

  23. N. Dilmen, (2012), http://commons.wikimedia.org/wiki/File:Arm_mri.jpg

  24. N. Dilmen, (2012), http://commons.wikimedia.org/wiki/File:Brain_MRI_112010_rgbca.png

  25. N. Dilmen, (2012), http://commons.wikimedia.org/wiki/File:Brain_MRI_112445_rgbca.png

  26. N. Dilmen, (2012), http://commons.wikimedia.org/wiki/File:Max_contrast_Brain_MRI_131058_rgbcb.png

  27. N. Dilmen, (2012), http://commons.wikimedia.org/wiki/File:RetroOrbita_124440_MRI_FLAIR.png

  28. N. Dilmen, (2012), http://en.wikipedia.org/wiki/File:Brain_MRI_112010_rgbca.png

  29. N. Dilmen, http://commons.wikimedia.org/wiki/User:Nevit

  30. Dr Frank Gaillard, (2008), http://en.wikipedia.org/wiki/File:CPM3.jpg

  31. Hellerhoff, (2011), http://commons.wikimedia.org/wiki/File:CT-Biopsie-Lunge-BC.jpg

  32. Hellerhoff, (2012), http://commons.wikimedia.org/wiki/File:RFA_CT_Leber_001.jpg

  33. J.H. Holland, Adaptation in Natural and Artificial Systems (MIT Press, Cambridge, 1992)

    Google Scholar 

  34. M. Jamalipour et al., Quantum behaved particle swarm optimization with differential mutation operator applied to WWER-1000 in-core fuel management optimization. Ann. Nucl. Energy 54, 134–140 (2013)

    Article  Google Scholar 

  35. M. Kass, A. Witkin, D. Terzopoulos, Snakes: active contour models. Int. J. Comput. Vis. 1, 321–331 (1988)

    Article  MATH  Google Scholar 

  36. J. Kennedy, R. Eberhart, Particle swarm optimization. Proc. IEEE Int. Jt. Conf. Neural Netw. Perth Aust. 4, 1942–1948 (1995)

    Google Scholar 

  37. S. Kichenassamy, A. Kumar, P. Olver, A. Tannenbaum, A. Yezzy, Gradient flows and geometric active contour models, in Proceedings of the International Conference on Computer Vision, Cambridge, MA, (1995), p. 810815

    Google Scholar 

  38. M.-S. Lee, G. Medioni, Inferred descriptions in terms of curves, regions and junctions from sparse, noisy binary data, in Proceedings of the IEEE International Symposium on Computer Vision, Coral Gables, FL, (1995), p. 7378

    Google Scholar 

  39. C. Li, C. Xu, C. Gui, M.D. Fox, Level set evolution without re-initialization: a new variational formulation, in Proceedings of the IEEE Conference Computer Vision and Pattern Recognition, vol. 1, (2005), pp. 430–436

    Google Scholar 

  40. S. Li, Q. Zhang, Fast Image Segmentation Based on Efficient Implementation of the Chan-Vese Model with Discrete Gray Level Sets, on Mathematical Problems in Engineering (2013)

    Google Scholar 

  41. Y. Liu, K.M. Passino, Biomimicry of social foraging Bacteria for distributed optimization: models, principles, and emergent behaviors. J. Optim. Theory Appl. 115, 603–628 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  42. F. Liu, H. Duan, Y. Deng, A chaotic quantum-behaved particle swarm optimization based on lateral inhibition for image matching. Optik - Int. J. Light Electron Optics 123, 1955–1960 (2012)

    Article  Google Scholar 

  43. K. Maher, http://commons.wikimedia.org/wiki/File:PET_Slice_of_Brain.jpg

  44. M. Maitra, A. Chatterjee, A hybrid cooperative comprehensive learning based PSO algorithm for image segmentation using multilevel thresholding. Expert Syst. Appl. 34(2), 1341–1350 (2008)

    Article  Google Scholar 

  45. M. Maitra, A. Chatterjee, A novel technique for multilevel optimal magnetic resonance brain image thresholding using bacterial foraging. Measurement 41(10), 1124–1134 (2008)

    Article  Google Scholar 

  46. R. Malladi, J.A. Sethian, B.C. Vemuri, A topology independent shape modelling scheme, in Proceedings of the Trento Conference Geometric Methods Computer Vision II, San Diego, CA, vol. 2031, (1993), pp. 246–258

    Google Scholar 

  47. R. Malladi, J.A. Sethian, B.C. Vemuri, Shape modeling with front propagation: a level set approach. IEEE Trans. Pattern Anal. Mach. Intell. 17, 158–175 (1995)

    Article  Google Scholar 

  48. L. Monfils, (2008), http://en.wikipedia.org/wiki/File:Hydrocephalus.jpg

  49. D. Mumford, J. Shah, Optimal approximation by piecewise smooth functions and associated variational problems. Commun. Pure Appl. Math. 42, 577–685 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  50. S. Osher, J.A. Sethian, Fronts propagating with curvature-dependent speed: algorithms based on Hamilton–Jacobi formulation. J. Comput. Phys. 79, 12–49 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  51. L. Rudin, S. Osher, E. Fatemi, Nonlinear total variation based noise removal algorithms. Phys. D 60, 259268 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  52. N. Sanyal, A. Chatterjee, S. Munshi, An adaptive bacterial foraging algorithm for fuzzy entropy based image segmentation. Expert Syst. Appl. 38(12), 15489–15498 (2011)

    Article  Google Scholar 

  53. K. Sharma, A. Chatterjee, A. Rakshit, A hybrid approach for design of stable adaptive fuzzy controllers employing Lyapunov theory and particle swarm optimization. IEEE Trans. Fuzzy Syst. 17(2), 329–342 (2009)

    Article  Google Scholar 

  54. Y. Shi, R. Eberhart, A modified particle swarm optimizer, in Proceedings of the IEEE International Conference on Evolutionary Computation, pp. 69–73

    Google Scholar 

  55. J.E. Solem, N.C. Overgaard, A. Heyden, Initialization techniques for segmentation with the Chan Vese model. Proc. Int. Conf. Pattern Recognit. 2, 171–174 (2006)

    Google Scholar 

  56. T. Sorensen, A method of establishing groups of equal amplitude in plant sociology based on similarity of species and its application to analyses of the vegetation on Danish commons, Kongelige Danske Videnskabernes Selskab, vol. 5, (1957), pp. 1–34

    Google Scholar 

  57. J. Sun, B. Feng, W. Xu, Particle swarm optimization with particles having quantum behavior. IEEE Proc. Congr. Evol. Comput. 1, 325331 (2004)

    Google Scholar 

  58. J. Sun, B. Feng, W. Xu, Adaptive parameter control for quantum behaved particle swarm optimization on individual level, in Proceedings of the 2005 IEEE International Conference on Systems, Man, and Cybernetics, vol. 4, (2005), pp. 30493054

    Google Scholar 

  59. M. Sussman, P. Smereka, S. Osher, A level set approach for computing solutions to incompressible two-phase flow. J. Comput. Phys. 119, 146159 (1994)

    MATH  Google Scholar 

  60. L. Vese, T. Chan, A multiphase level set framework for image segmentation using the Mumford and Shah model. Int. J. Comput. Vis. 50, 271–293 (2002)

    Article  MATH  Google Scholar 

  61. C. Xu, J.L. Prince, Snakes, shapes and gradient vector flow. IEEE Trans. Image Proces. 7, 359369 (1998)

    MathSciNet  MATH  Google Scholar 

  62. T.A. Yezzi, A.S. Willsky, Curve evolution implementation of the Mumford-Shah functional for image segmentation, denoising, interpolation, and magnification. IEEE Trans. Image Process. 10(8), 1169–1186 (2001)

    Article  MATH  Google Scholar 

  63. H.K. Zhao, T. Chan, B. Merriman, S. Osher, A variational level set approach to multiphase motion. J. Comput. Phys. 127, 179195 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  64. S.C. Zhu, T.S. Lee, A.L. Yuille, Region competition: unifying snakes, region growing, energy/bayes/MDL for multi-band image segmentation, in Proceedings of the IEEE 5th International Conference on Computer Vision, Cambridge, MA, (1995), p. 416423

    Google Scholar 

  65. (2006), http://en.wikipedia.org/wiki/File:Sagittal_brain_MRI.JPG

  66. (2007), http://en.wikipedia.org/wiki/File:Deviated_septum_MRI.jpg

  67. http://commons.wikimedia.org/wiki/File:MD_de_Fahr1.jpg

  68. http://commons.wikimedia.org/wiki/File:MRI_head_side.jpg

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Amitava Chatterjee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this chapter

Cite this chapter

Mandal, D., Chatterjee, A., Maitra, M. (2017). Particle Swarm Optimization Based Fast Chan-Vese Algorithm for Medical Image Segmentation. In: Nakib, A., Talbi, EG. (eds) Metaheuristics for Medicine and Biology. Studies in Computational Intelligence, vol 704. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-54428-0_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-54428-0_4

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-54426-6

  • Online ISBN: 978-3-662-54428-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics