
ar
X

iv
:1

61
0.

07
04

1v
1

 [
cs

.L
O

]
 2

2
O

ct
 2

01
6

Unified Reasoning about Robustness Properties

of Symbolic-Heap Separation Logic

Christina Jansen1, Jens Katelaan2, Christoph Matheja1,
Thomas Noll1, and Florian Zuleger2

1 Software Modeling and Verification Group,
RWTH Aachen University, Germany

2 TU Wien, Austria

Abstract. We introduce heap automata, a formalism for automatic rea-
soning about robustness properties of the symbolic heap fragment of sep-
aration logic with user-defined inductive predicates. Robustness prop-
erties, such as satisfiability, reachability, and acyclicity, are important
for a wide range of reasoning tasks in automated program analysis and
verification based on separation logic. Previously, such properties have
appeared in many places in the separation logic literature, but have not
been studied in a systematic manner. In this paper, we develop an al-
gorithmic framework based on heap automata that allows us to derive
asymptotically optimal decision procedures for a wide range of robust-
ness properties in a uniform way.

We implemented a protoype of our framework and obtained promising
results for all of the aforementioned robustness properties.

Further, we demonstrate the applicability of heap automata beyond ro-
bustness properties. We apply our algorithmic framework to the model
checking and the entailment problem for symbolic-heap separation logic.

1 Introduction

Separation logic (SL) [40] is a popular formalism for Hoare-style verification
of imperative, heap-manipulating programs. While its symbolic heap fragment
originally emerged as an idiomatic form of assertions that occur naturally in
hand-written proofs [37,5,4], a variety of program analyses based on symbolic-
heap separation logic have been developed [5,2,16,31,36,9,23]. Consequently, it
now serves as formal basis for a multitude of automated verification tools, such
as [6,15,17,21,29,39,32,8], capable of proving complex properties of a program’s
heap, such as memory safety, for large code bases [16,15]. These tools typically
rely on systems of inductive predicate definitions (SID) to specify the shape of
data structures employed by a program, such as trees and linked lists. Origi-
nally, separation logic tools implemented highly-specialized procedures for such
fixed SIDs. As this limits their applicability, there is an ongoing trend to sup-
port custom SIDs that are either defined manually [29,17] or even automatically
generated. The latter may, for example, be obtained from the tool Caber [12].

http://arxiv.org/abs/1610.07041v1

2 Jansen, Katelaan, Matheja, Noll, Zuleger

Robustness properties Allowing for arbitrary SIDs, however, raises various ques-
tions about their robustness. A user-defined or auto-generated SID might, for
example, be inconsistent, introduce unallocated logical variables, specify data
structures that contain undesired cycles, or produce garbage, i.e., parts of the
heap that are unreachable from any program variable. Accidentally introducing
such properties into specifications can have a negative impact on performance,
completeness, and even soundness of the employed verification algorithms:

– Brotherston et al. [11] point out that tools might waste time on inconsistent
scenarios due to unsatisfiability of specifications.

– The absence of unallocated logical variables, also known as establishment, is
required by the approach of Iosif et al. [27,28] to obtain a decidable fragment
of symbolic heaps.

– Other verification approaches, such as the one by Habermehl et al. [24,25],
assume that no garbage is introduced by data structure specifications.

– During program analysis and verification, questions such as reachability,
acyclicity and garbage-freedom arise depending on the properties of inter-
est. For example, as argued by Zanardini and Genaim [41], acyclicity of the
heap is crucial in automated termination proofs.

Being able to check such robustness properties of custom SIDs is thus cru-
cial (1) in debugging of separation-logic specifications prior to program analysis
and (2) in the program analyses themselves. So far, however, all of the above
properties have either been addressed individually or not systematically at all.
For example, satisfiability is studied in detail by Brotherston et al. [11], whereas
establishment is often addressed with ad-hoc solutions [27,24].

Several reasoning tasks arise in the context of robustness properties. As a
motivation, consider the problem of acyclicity. If our program analysis requires
acyclicity, we would like to decide whether all interpretations of a symbolic
heap are acyclic; if not, to find out how cycles can be introduced into the heap
(counterexample generation); and, finally, to be able to generate a new SID that
does guarantee acyclicity (called refinement below). A systematic treatment of
robustness properties should cover these reasoning tasks in general, not just for
the problem of acyclicity.

Problem statement We would like to develop a framework that enables:

1. Decision procedures for robustness properties. In program analysis, we gen-
erally deal with symbolic heaps that reference SIDs specifying unbounded
data structures and thus usually have infinitely many interpretations. We
need to be able to decide whether all, or some, of these infinitely many
interpretations are guaranteed to satisfy a given robustness property.

2. Generation of counterexamples that violate a desired property.
3. Refinement of SIDs to automatically generate a new SID that respects a

given robustness property.
4. Automatic combination of decision procedures to derive decision procedures

for complex robustness properties from simpler ingredients.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 3

Motivating example: Inductive reasoning about robustness properties The key
insight underlying our solution to the above problems is that many properties
of symbolic heaps can be decided iteratively by inductive reasoning. To moti-
vate our approach, we illustrate this reasoning process with a concrete example.
Consider an SID for acyclic singly-linked list segments with head x and tail y:

sll ⇐ emp : {x = y} sll ⇐ ∃u . x 7→ u ∗ sll(u y) : {x 6= y}.

The two rules of the SID define a case distinction: A list is either empty, but then
the first and the last element are the same; or, the first element has a successor
u (specified by the points-to assertion x 7→ u), which in turn is at the head of a
(shorter) singly-linked list segment, sll(u y). The inequality in the second rule
guarantees that there is no cyclic model. Now, consider the following symbolic
heap with predicate calls to sll: ϕ = ∃x y z . sll(x z) ∗ z 7→ y ∗ sll(y x), which
might appear as an assertion during program analysis. Say our program analysis
depends on the acyclicity of ϕ, so we need to determine whether ϕ is acyclic.
We can do so by inductive reasoning as follows.
– We analyze the call sll(x z), the first list segment in the symbolic heap ϕ.

If it is interpreted by the right-hand side of the first rule of the SID from
above, then there is no cycle in sll(x z) and z is reachable from x.

– If we already know for a call sll(u z) that all of its models are acyclic
structures and that z is reachable from u, then z is also reachable from x in
the symbolic heap ∃u . x 7→ u ∗ sll(u z) : {x 6= z} obtained by the second
rule of the SID. Since our SID does not introduce dangling pointers, we also
know that there is still no cycle.

– By induction, sll(x z) is thus acyclic and z is reachable from x.
– Likewise, sll(y x) is acyclic and x is reachable from y.
– Now, based on the information we discovered for sll(x z) and sll(y x), we

examine ϕ and conclude that it is cyclic, as z is reachable from x, y is
reachable from z, and x is reachable from y. Crucially, we reason inductively
and thus do not re-examine the list segments to arrive at our conclusion.

In summary, we examine a symbolic heap and corresponding SID bottom-up,
starting from the non-recursive base case. Moreover, at each stage of this analy-
sis, we remember a fixed amount of information—namely what we discover about
reachability between parameters and acyclicity of every symbolic heap we exam-
ine. Similar inductive constructions are defined explicitly for various robustness
properties throughout the separation logic literature [11,13,27]. Our aim is to
generalize such manual constructions following an automata-theoretic approach:
We introduce automata that operate on symbolic heaps and store the relevant
information of each symbolic heap they examine in their state space. Whenever
such an automaton comes across a predicate that it has already analyzed, it can
simply replace the predicate with the information that is encoded in the corre-
sponding state. In other words, our automata recognize robustness properties in
a compositional way by exploiting the inductive structure inherent in the SIDs.

Systematic reasoning about robustness properties Our novel automaton model,
heap automata, works directly on the structure of symbolic heaps as outlined in

4 Jansen, Katelaan, Matheja, Noll, Zuleger

the example, and can be applied to all the problems introduced before. In par-
ticular, heap automata enable automatic refinement of SIDs and enjoy a variety
of closure properties through which we can derive counterexample generation as
well as decision procedures for various robustness properties—including satisfi-
ability, establishment, reachability, garbage-freedom, and acyclicity.

Our approach can thus be seen as an algorithmic framework for deciding a
wide range of robustness properties of symbolic heaps. Furthermore, we show
asymptotically optimal complexity of our automata-based decision procedures
in a uniform way. By enabling this systematic approach to reasoning about
robustness, our framework generalizes prior work that studied single robustness
properties in isolation, such as the work by Brotherston et al. [11,13].

As a natural byproduct of our automata-based approach, we also derive de-
cision procedures for the model-checking problem, which was recently studied,
and proven to be ExpTime–complete in general, by Brotherston et al. [13]. This
makes it possible to apply our framework to run-time verification—a setting in
which robustness properties are of particular importance [35,29,13].

Entailment checking with heap automata Finally, we also address the entailment
problem. In Hoare-style program analysis, decision procedures for the entail-
ment problem become essential to discharge implications between assertions, as
required, for example, by the rule of consequence [26]. Because of this central
role in verification, there is an extensive body of research on decision procedures
for entailment; see, for example [3,10,14,27,28,33,38,22]. Antonopoulos et al. [1]
study the complexity of the entailment problem and show that it is undecidable
in general, and already ExpTime–hard for SIDs specifying sets of trees.

We use heap automata to check entailment between determined symbolic
heaps. Intuitively, determinedness is a strong form of the establishment prop-
erty guaranteeing that two variables are either equal or unequal in every model.
Unlike other decision procedures [27,28,3], our approach does not impose syn-
tactic restrictions on the symbolic heap under consideration but merely requires
that suitable heap automata for the predicates on the right-hand side of the en-
tailment are provided. In particular, we show how to obtain ExpTime decision
procedures from such heap automata—which exist for highly non-trivial SIDs.
If desired, additional syntactic restrictions can be integrated seamlessly into our
approach to boost our algorithms’ performance.

Contributions Our main contributions can be summarized as follows.

– We introduce heap automata, a novel automaton model operating directly on
symbolic heaps. We prove that heap automata enjoy various useful closure
properties. Besides union, intersection and complement, they are closed under
the conjunction with pure formulas, allowing the construction of complex
heap automata from simple ones.

– We develop a powerful algorithmic framework for automated reasoning about
and debugging of symbolic heaps with inductive predicate definitions based
on heap automata.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 5

– We show that key robustness properties, such as satisfiability, establishment,
reachability, garbage freedom and acyclicity, can naturally be expressed as
heap automata. Moreover, the upper bounds of decision procedures obtained
from our framework are shown to be optimal—i.e., ExpTime–complete—in
each of these cases. Further, they enable automated refinement of SIDs to
filter out (or expose) symbolic heaps with undesired properties.

– Additionally, we apply heap automata to tackle the entailment and themodel
checking problem for symbolic heaps. We show that if each predicate of an
SID can be represented by a heap automaton, then the entailment problem
for the corresponding fragment of symbolic heaps is decidable in 2-ExpTime

in general and ExpTime-complete if the maximal arity of predicates and
points-to assertions is bounded. For example, our framework yields an Ex-

pTime decision procedure for a symbolic heap fragment capable of repre-
senting trees with linked leaves—a fragment that is out of scope of most
ExpTime decision procedures known so far (cf. [3,22,28]).

– We implemented a prototype of our framework that yields promising results
for all robustness properties considered in the paper.

Organization of the paper The fragment of symbolic heaps with inductive pred-
icate definitions is briefly introduced in Section 2. Heap automata and derived
decision procedures are studied in Section 3. Section 4 demonstrates that a va-
riety of robustness properties can be checked by heap automata. We report on a
prototypical implementation of our framework in Section 5. Special attention to
the entailment problem is paid in Section 6. Finally, Section 7 concludes. Most
proofs as well as detailed constructions are provided in the appendix for the
readers convenience.

2 Symbolic Heaps

This section briefly introduces the symbolic heap fragment of separation logic
equipped with inductive predicate definitions.

Basic Notation N is the set of natural numbers and 2S is the powerset of a set
S. (co)dom(f) is the (co)domain of a (partial) function f . We abbreviate tuples
u1 . . . un, n ≥ 0, by u and write u[i], 1 ≤ i ≤ ‖u‖ = n, to denote ui, the i-th
element of u. By slight abuse of notation, the same symbol u is used for the
set of all elements occurring in tuple u. The empty tuple is ε and the set of all
(non-empty) tuples [of length n ≥ 0] over a finite set S is S∗ (S+ [Sn]). The
concatenation of tuples u and v is uv.

Syntax We usually denote variables taken from Var (including a dedicated vari-
able null) by a, b, c, x, y, z, etc. Moreover, let Pred be a set of predicate symbols
and ar : Pred → N be a function assigning each symbol its arity. Spatial formulas
Σ and pure formulas π are given by the following grammar:

Σ ::= emp | x 7→ y | Σ ∗Σ π ::= x = y | x 6= y,

6 Jansen, Katelaan, Matheja, Noll, Zuleger

where y is a non-empty tuple of variables. Here, emp stands for the empty heap,
x 7→ y is a points-to assertion and ∗ is the separating conjunction. Furthermore,
for P ∈ Pred and a tuple of variables y of length ar(P), Py is a predicate call.
A symbolic heap ϕ with variables Var(ϕ) and free variables x0 ⊆ Var(ϕ) is a
formula of the form ϕ = ∃z . Σ ∗ Γ : Π, Γ = P1x1 ∗ . . . ∗ Pmxm, where Σ
is a spatial formula, Γ is a sequence of predicate calls and Π is a finite set of
pure formulas, each with variables from x0 and z. This normal form, in which
predicate calls and points-to assertions are never mixed, is chosen to simplify
formal constructions. If an element of a symbolic heap is empty, we usually
omit it to improve readability. For the same reason, we fix the notation from
above and write zϕ, xϕi , Σ

ϕ etc. to denote the respective component of symbolic
heap ϕ in formal constructions. Hence, ‖xϕ0 ‖ and ‖Γϕ‖ refer to the number of
free variables and the number of predicate calls of ϕ, respectively. We omit the
superscript whenever the symbolic heap under consideration is clear from the
context. If a symbolic heap τ contains no predicate calls, i.e., ‖Γ τ‖ = 0, then
τ is called reduced. Moreover, to simplify the technical development, we tacitly
assume that null is a free variable that is passed to every predicate call. Thus, for
each i ∈ N, we write xi[0] as a shortcut for null and treat xi[0] as if xi[0] ∈ xi.

3

Systems of Inductive Definitions Every predicate symbol is associated with one
or more symbolic heaps by a system of inductive definitions (SID). Formally,
an SID is a finite set of rules of the form P ⇐ ϕ, where ϕ is a symbolic heap
with ar(P) = ‖xϕ0 ‖. The set of all predicate symbols occurring in SID Φ and
their maximal arity are denoted by Pred(Φ) and ar(Φ), respectively.

Example 1. An SID specifying doubly-linked list segments is defined by:

dll ⇐ emp : {a = c, b = d}

dll ⇐ ∃u . a 7→ (u b) ∗ dll(u a c d),

where a corresponds to the head of the list, b and c represent the previous
and the next list element and d represents the tail of the list. For the sake of
readability, we often prefer a, b, c, etc. as free variables in examples instead of
x0[1] ,x0[2] ,x0[3], etc. Further, the following rules specify binary trees with root
a, leftmost leaf b and successor of the rightmost leaf c in which all leaves are
connected by a singly-linked list from left to right.

tll ⇐ a 7→ (null null c) : {a = b}

tll ⇐ ∃ℓ r z . a 7→ (ℓ rnull) ∗ tll(ℓ b z) ∗ tll(r z c).

Definition 1. We write SH for the set of all symbolic heaps and SHΦ for the set
of symbolic heaps restricted to predicate symbols taken from SID Φ. Moreover,
given a computable function C : SH → {0, 1}, the set of symbolic heaps SHC is

3 Since xi[0] is just a shortcut and not a proper variable, ‖xi‖ refers to the number of
variables in xi apart from xi[0].

Unified Reasoning about Robustness Properties of Symbolic-Heaps 7

s, h |=Φ x ∼ y ⇔ s(x) ∼ s(y), where ∼∈ {=, 6= }

s, h |=Φ emp ⇔ dom(h) = ∅

s, h |=Φ x 7→ y ⇔ dom(h) = {s(x)} and h(s(x)) = s(y)

s, h |=Φ Py ⇔ ∃τ ∈ UΦ(Py) . s, h |=∅ τ

s, h |=Φ ϕ ∗ ψ ⇔ ∃h1, h2 . h = h1 ⊎ h2

and s, h1 |=Φ ϕ and s, h2 |=Φ ψ

s, h |=Φ ∃z.Σ ∗ Γ :Π ⇔ ∃v ∈ Val‖z‖ . s [z 7→ v] , h |=Φ Σ ∗ Γ

and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

Fig. 1. Semantics of the symbolic heap fragment of separation logic with respect to an
SID Φ and a state (s, h).

given by SHC , {ϕ ∈ SH | C(ϕ) = 1}. We collect all SIDs in which every right-
hand side belongs to SHC in SIDC. To refer to the set of all reduced symbolic
heaps (belonging to a set defined by C), we write RSH (RSHC).

Example 2. Let α ∈ N and FV≤α(ϕ) ,

{

1, ‖xϕ0 ‖ ≤ α

0, otherwise
.

Clearly, FV≤α is computable. Moreover, SHFV≤α is the set of all symbolic
heaps having at most α ≥ 0 free variables.

Semantics As in a typical RAM model, we assume heaps to consist of records
with a finite number of fields. Let Val denote an infinite set of values and Loc ⊆
Val an infinite set of addressable locations. Moreover, we assume the existence
of a special non-addressable value null ∈ Val \ Loc.

A heap is a finite partial function h : Loc ⇀ Val+ mapping locations to
non-empty tuples of values. We write h1 ⊎ h2 to denote the union of heaps h1
and h2 provided that dom(h1) ∩ dom(h2) = ∅. Otherwise, h1 ⊎ h2 is undefined.
Variables are interpreted by a stack, i.e., a partial function s : Var ⇀ Val
with s(null) = null. Furthermore, stacks are canonically extended to tuples of
variables by componentwise application. We call a stack–heap pair (s, h) a state.
The set of all states is States. The semantics of a symbolic heap with respect to
an SID and a state is shown in Figure 1. Note that the semantics of predicate
calls is explained in detail next.

Unfoldings of Predicate Calls The semantics of predicate calls is defined in terms
of unfolding trees. Intuitively, an unfolding tree specifies how predicate calls are
replaced by symbolic heaps according to a given SID. The resulting reduced sym-
bolic heap obtained from an unfolding tree is consequently called an unfolding.
Formally, let ϕ = ∃z.Σ ∗P1x1∗. . .∗Pmxm : Π . Then a predicate call Pixi may be
replaced by a reduced symbolic heap τ if ‖xi‖ = ‖xτ0‖ and Var(ϕ)∩Var(τ) ⊆ xτ0 .

8 Jansen, Katelaan, Matheja, Noll, Zuleger

The result of such a replacement is

ϕ [Pi/τ] , ∃z zτ . Σ ∗Στ [xτ0/xi] ∗

P1x1 ∗ . . . ∗ Pi−1xi−1 ∗ Pi+1xi+1 ∗ . . . ∗ Pmxm :
(

Π ∪Πτ [xτ0/xi]
)

,

where τ [xτ0/xi] denotes the substitution of each free variable of τ by the corre-
sponding parameter of Pi.

A tree over symbolic heaps SHΦ is a finite partial function t : N∗ ⇀ SHΦ such
that ∅ 6= dom(t) ⊆ N

∗ is prefix-closed and for all u ∈ dom(t) with t(u) = ϕ,
we have {1, . . . , ‖Γϕ‖} = {i ∈ N | u i ∈ dom(t)}. The element ε ∈ dom(t)
is called the root of tree t. Furthermore, the subtree t|u of t with root u is
t|u : {v | uv ∈ dom(t)} → SHΦ with t|u(v) , t(u · v).

Definition 2. Let Φ ∈ SID and ϕ ∈ SHΦ. Then the set of unfolding trees of ϕ
w.r.t. Φ, written TΦ(ϕ), is the least set that contains all trees t that satisfy (1)
t(ε) = ϕ and (2) t|i ∈ TΦ(ψi) for each 1 ≤ i ≤ ‖Γϕ‖, where Pϕi ⇐ ψi ∈ Φ.

Note that for every reduced symbolic heap τ , we have ‖Γ τ‖ = 0. Thus, TΦ(τ) =
{t}, where t : {ε} → {τ} : ε 7→ τ , forms the base case in Definition 2. Every
unfolding tree t specifies a reduced symbolic heap JtK, which is obtained by
recursively replacing predicate calls by reduced symbolic heaps:

Definition 3. The unfolding of an unfolding tree t ∈ TΦ(ϕ) is

JtK ,

{

t(ε) , ‖Γ t(ε)‖ = 0

t(ε) [P1/Jt|1K, . . . , Pm/Jt|mK] , ‖Γ t(ε)‖ = m > 0 ,

where we tacitly assume that the variables zt(ε), i.e., the existentially quantified
variables in t(ε), are substituted by fresh variables.

Example 3. Recall from Example 1 the two symbolic heaps τ (upper) and ϕ
(lower) occurring on the right-hand side of the dll predicate. Then t : {ε, 1} →
{ϕ, τ} : ε 7→ ϕ, 1 7→ τ is an unfolding tree of ϕ. The corresponding unfolding is

JtK = ϕ [Pϕ1 /τ] = ∃z . a 7→ (z b) ∗ emp : {z = c, a = d}.

Definition 4. The set of all unfoldings of a predicate call Pixi w.r.t. an SID
Φ is denoted by UΦ(Pixi). Analogously, the unfoldings of a symbolic heap ϕ are
UΦ(ϕ) , {JtK | t ∈ TΦ(ϕ)}.

Then, as already depicted in Figure 1, the semantics of predicate calls requires
the existence of an unfolding satisfying a given state. This semantics corresponds
to a particular iteration of the frequently used semantics of predicate calls based
on least fixed points (cf. [11]). Further note that applying the SL semantics to a
given symbolic heap coincides with applying them to a suitable unfolding.

Lemma 1. Let ϕ ∈ SHΦ. Then, for every (s, h) ∈ States, we have

s, h |=Φ ϕ iff ∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.

Proof. By induction on the height of unfolding trees of ϕ. ⊓⊔

Unified Reasoning about Robustness Properties of Symbolic-Heaps 9

3 Heap Automata

In this section we develop a procedure to reason about robustness properties of
symbolic heaps. This procedure relies on the notion of heap automata; a device
that assigns one of finitely many states to any given symbolic heap.

Definition 5. A heap automaton over SHC is a tuple A = (Q, SHC , ∆, F),
where Q is a finite set of states and F ⊆ Q is a set of final states, respec-
tively. Moreover, ∆ ⊆ Q∗ × SHC × Q is a decidable transition relation such

that (q, ϕ, p) ∈ ∆ implies that ‖q‖ = ‖Γϕ‖. We often write q
ϕ
−→A p instead of

(q, ϕ, p) ∈ ∆.

A transition q
ϕ
−→A p takes a symbolic heap ϕ and an input state qi for every

predicate call Pi of ϕ—collected in the tuple q—and assigns an output state p
to ϕ. Thus, the intuition behind a transition is that ϕ has a property encoded
by state p if every predicate call Pi of ϕ is replaced by a reduced symbolic heap
τi that has a property encoded by state q[i].

Note that every heap automaton A assigns a state p to a reduced symbolic
heap τ within a single transition of the form ε

τ
−→A p. Alternatively, A may

process a corresponding unfolding tree t with JtK = τ . In this case, A proceeds
similarly to the compositional construction of unfoldings (see Definition 3). How-
ever, instead of replacing every predicate call Pi of the symbolic heap t(ε) at the
root of t by an unfolding Jt|iK of a subtree of t, A uses states to keep track of
the properties of these unfolded subtrees. Consequently, A assigns a state p to

the symbolic heap t(ε) if (q1, . . . , qm)
t(ε)
−−→A p holds, where for each 1 ≤ i ≤ m,

qi is the state assigned to the unfolding of subtree t|i, i.e., there is a transition

ε
Jt|iK
−−−→A qi. It is then natural to require that p should coincide with the state

assigned directly to the unfolding JtK, i.e., ε
JtK
−−→A p. Hence, we require all heap

automata considered in this paper to satisfy a compositionality property.

Definition 6. A heap automaton A = (Q, SHC , ∆, F) is compositional if for
every p ∈ Q, every ϕ ∈ SHC with m ≥ 0 predicate calls Γϕ = P1x1 ∗ . . . ∗Pmxm,
and all reduced symbolic heaps τ1, . . . , τm ∈ RSHC, we have:

∃q ∈ Qm . (q, ϕ, p) ∈ ∆ and
∧

1≤i≤m(ε, τi,q[i]) ∈ ∆

if and only if
(ε, ϕ [P1/τ1, . . . , Pm/τm] , p) ∈ ∆.

Due to the compositionality property, we can safely define the language L(A)
accepted by a heap automaton A as the set of all reduced symbolic heaps that
are assigned a final state, i.e., L(A) , {τ ∈ RSHC | ∃q ∈ F . ε

τ
−→A q}.

Example 4. Given a symbolic heap ϕ, let |Σϕ| denote the number of points-
to assertions in ϕ. As a running example, we consider a heap automaton A =
({0, 1}, SH, ∆, {1}), where ∆ is given by

q
ϕ
−→A p iff p =

{

1, if |Σϕ|+
∑‖q‖
i=1 q[i] > 0

0, otherwise.

10 Jansen, Katelaan, Matheja, Noll, Zuleger

While A is a toy example, it illustrates the compositionality property: Consider
the reduced symbolic heap τ = ∃z.emp ∗ emp : {x = z, z = y}. Since τ contains

no points-to assertions, A rejects τ in a single step, i.e., ε
τ
−→A 0 /∈ {1}. The

compositionality property of A ensures that A yields the same result for every
unfolding tree t whose unfolding JtK is equal to τ . For instance, τ is a possible
unfolding of the symbolic heap ϕ = ∃z.sll(xz)∗sll(zy), where sll is a predicate
specifying singly-linked list segments as in Section 1. More precisely, if both
predicates are replaced according to the rule sll ⇐ emp : {x = y}, we obtain τ
again (up to renaming of parameters as per Definition 3). In this case, A rejects

as before: We have ε
emp:{x=y}
−−−−−−−→A 0 for both base cases and (0, 0)

ϕ
−→A 0 for the

symbolic heap ϕ. By the compositionality property, this is equivalent to ε
τ
−→A 0.

Analogously, if an sll predicate, say the first, is replaced according to the rule

sll ⇐ ψ, where ψ = ∃z.x 7→ z ∗sll(zy), then 0
ψ
−→A 1, 1

ψ
−→A 1 and (1, 0)

ϕ
−→A 1

holds, i.e., A accepts. In general, L(A) is the set of all reduced symbolic heaps
that contain at least one points-to assertion.

While heap automata can be applied to check whether a single reduced sym-
bolic heap has a property of interest, i.e., belongs to the language of a heap
automaton, our main application is directed towards reasoning about infinite
sets of symbolic heaps, such as all unfoldings of a symbolic heap ϕ. Thus, given
a heap automaton A, we would like to answer the following questions:
1. Does there exist an unfolding of ϕ that is accepted by A?
2. Are all unfoldings of ϕ accepted by A?
We start with a special case of the first question in which ϕ is a single predicate
call. The key idea behind our corresponding decision procedure is to transform
the SID Φ to filter out all unfoldings that are not accepted by A. One of our
main results is that such a refinement is always possible.

Theorem 1 (Refinement Theorem). Let A be a heap automaton over SHC

and Φ ∈ SIDC . Then one can effectively construct a refined Ψ ∈ SIDC such that
for each P ∈ Pred(Φ), we have UΨ (Px0) = UΦ(Px0) ∩ L(A).

Proof. We construct Ψ ∈ SIDC over the predicate symbols Pred(Ψ) = (Pred(Φ)×
QA) ∪ Pred(Φ) as follows: If P ⇐ ϕ ∈ Φ with Γϕ = P1x1 ∗ . . . ∗ Pmxm, m ≥ 0,

and q1 . . . qm
ϕ
−→A q0, we add a rule to Ψ in which P is substituted by 〈P, q0〉 and

each predicate call Pixi is substituted by a call 〈Pi, qi〉xi. Furthermore, for each
q ∈ FA, we add a rule P ⇐ 〈P, q〉x0 to Ψ . See Appendix A.7 for details. ⊓⊔

Example 5. Applying the refinement theorem to the heap automaton from Ex-
ample 4 and the SID from Example 1 yields a refined SID given by the rules:

dll ⇐ 〈dll, 1〉(a b c d) 〈dll, 1〉 ⇐ ∃z . a 7→ (z b) ∗ 〈dll, 0〉(z a c d)

〈dll, 0〉 ⇐ emp : {a = c, b = d} 〈dll, 1〉 ⇐ ∃z . a 7→ (z b) ∗ 〈dll, 1〉(z a c d)

Hence, the refined predicate dll specifies all non-empty doubly-linked lists.

To answer question (1) we then check whether the set of unfoldings of a
refined SID is non-empty. This boils down to a simple reachability analysis.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 11

Input : SID Φ, I ∈ Pred(Φ), A = (Q,SHC,∆, F)
Output: yes iff UΦ(Ix) ∩ L(A) = ∅

R ← ∅;
repeat

if R ∩ ({I} × F) 6= ∅ then return no pick a state q in Q; pick a rule
P ⇐ ϕ in Φ;
s ← ε; // list of states of A
for i in 1 to ‖Γϕ‖ do

pick (Pϕi , p) ∈ R; append(s,p) // base case if ‖Γϕ‖ = 0
end
if (s, ϕ, q) ∈ ∆ then R ← R ∪ {(P, q)}

until R reaches a fixed point (w.r.t. all choices of rules);
return yes

Algorithm 1: On-the-fly construction of a refined SID with emptiness check.

Lemma 2. Given an SID Φ and a predicate symbol P ∈ Pred(Φ), it is decidable
in linear time whether the set of unfoldings of P is empty, i.e., UΦ(Px) = ∅.

Proof (sketch). It suffices to check whether the predicate P lies in the least set R
such that (1) I ∈ R if I ⇐ τ ∈ Φ for some τ ∈ RSH, and (2) I ∈ R if I ⇐ ϕ ∈ Φ
and for each Pϕi x

ϕ
i , 1 ≤ i ≤ ‖Γϕ‖, Pϕi ∈ R. The set R is computable in linear

time by a straightforward backward reachability analysis. ⊓⊔

As outlined before, putting the Refinement Theorem and Lemma 2 together
immediately yields a decision procedure for checking whether some unfolding of
a predicate symbol P is accepted by a heap automaton: Construct the refined
SID and subsequently check whether the set of unfoldings of P is non-empty.

To extend this result from unfoldings of single predicates to unfoldings of
arbitrary symbolic heaps ϕ, we just add a rule P ⇐ ϕ, where P is a fresh
predicate symbol, and proceed as before.

Corollary 1. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHΦC , it is decidable whether there exists τ ∈ UΦ(ϕ) such that τ ∈ L(A).

The refinement and emptiness check can also be integrated: Algorithm 1 dis-
plays a simple procedure that constructs the refined SID Ψ from Theorem 1
on-the-fly while checking whether its set of unfoldings is empty for a given pred-
icate symbol. Regarding complexity, the size of a refined SID4 obtained from
an SID Φ and a heap automaton A is bounded by ‖Φ‖ · ‖QA‖M+1, where M
is the maximal number of predicate calls occurring in any rule of Φ. Thus, the
aforementioned algorithm runs in time O

(

‖Φ‖ · ‖QA‖
M+1 · ‖∆A‖

)

, where ‖∆A‖
denotes the complexity of deciding whether the transition relation ∆A holds for
a given tuple of states and a symbolic heap occurring in a rule of Φ.

4 We assume a reasonable function ‖.‖ assigning a size to SIDs, symbolic heaps, un-
folding trees, etc. For instance, the size ‖Φ‖ of an SID Φ is given by the product of
its number of rules and the size of the largest symbolic heap contained in any rule.

12 Jansen, Katelaan, Matheja, Noll, Zuleger

Example 6. Resuming our toy example, we check whether some unfolding of the
doubly-linked list predicate dll (see Example 1) contains points-to assertions.
Formally, we decide whether UΦ(dllx0) ∩ L(A) 6= ∅, where A is the heap au-
tomaton introduced in Example 4. Algorithm 1 first picks the rule that maps
dll to the empty list segment and consequently adds 〈dll, 0〉 to the set R of
reachable predicate–state pairs. In the next iteration, it picks the rule that maps
to the non-empty list. Since 〈dll, 0〉 ∈ R, s is set to 0 in the do-loop. Abbre-
viating the body of the rule to ϕ, we have (0, ϕ, 1) ∈ ∆, so the algorithm adds
〈dll, 1〉 to R. After that, no is returned, because 1 is a final state of A. Hence,
some unfolding of dll is accepted by A and thus contains points-to assertions.

We now revisit question (2) from above–are all unfoldings accepted by a heap
automaton?– and observe that heap automata enjoy several closure properties.

Theorem 2. Let A and B be heap automata over SHC. Then there exist heap
automat C1,C2,C3 over SHC with L(C1) = L(A)∪L(B), L(C2) = L(A) ∩L(B),
and L(C3) = RSHC \ L(A), respectively.5

Then, by the equivalenceX ⊆ Y ⇔ X∩Y = ∅ and Theorem 2, it is also decidable
whether every unfolding of a symbolic heap is accepted by a heap automaton.

Corollary 2. Let A be a heap automaton over SHC and Φ ∈ SIDC. Then, for
each ϕ ∈ SHC, it is decidable whether UΦ(ϕ) ⊆ L(A) holds.

Note that complementation of heap automata in general leads to an exponen-
tially larger state space and exponentially higher complexity of evaluating ∆.
Thus, UΦ(ϕ) ⊆ L(A) is decidable in timeO

(

(‖ϕ‖+ ‖Φ‖) · ‖2QA‖2(M+1) · ‖∆A‖
)

.
In many cases it is, however, possibly to construct smaller automata for the com-
plement directly to obtain more efficient decision procedures. For example, this
is the case for most heap automata considered in Section 4.

Apart from decision procedures, Theorem 1 enables systematic refinement of
SIDs according to heap automata in order to establish desired properties. For
instance, as shown in Section 4, an SID in which every unfolding is satisfiable
can be constructed from any given SID. Another application of Theorem 1 is
counterexample generation for systematic debugging of SIDs that are manually
written as data structure specifications or even automatically generated. Such
counterexamples are obtained by constructing the refined SID of the complement
of a given heap automaton. Further applications are examined in the following.

Remark 1. While we focus on the well-established symbolic heap fragment of
separation logic, we remark that the general reasoning principle underlying heap
automata is also applicable to check robustness properties of richer fragments.
For example, permissions [7] are easily integrated within our framework.

4 A Zoo of Robustness Properties

This section demonstrates the wide applicability of heap automata to decide and
establish robustness properties of SIDs. In particular, the sets of symbolic heaps

5 Formal constructions are found in Appendix A.6.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 13

informally presented in the introduction can be accepted by heap automata over
the set SHFV≤α of symbolic heaps with at most α ≥ 0 free variables (cf. Ex-
ample 2). Furthermore, we analyze the complexity of related decision problems.
Towards a formal presentation, some terminology is needed.

Definition 7. The set of tight models of a symbolic heap ϕ ∈ SHΦ is defined
as Models(ϕ) , {(s, h) ∈ States | dom(s) = xϕ0 , s, h |=Φ ϕ}.

We often consider relationships between variables that hold in every tight model
of a reduced symbolic heap. Formally, let τ , ∃z.Σ : Π ∈ RSH. Moreover, let
strip(τ) be defined as τ except that each of its variables is free, i.e., strip(τ) , Σ :
Π . Then two variables x, y ∈ Var(τ) are definitely (un)equal in τ , written x =τ y
(x 6=τ y), if s(x) = s(y) (s(x) 6= s(y)) holds for every (s, h) ∈ Models(strip(τ)).
Analogously, a variable is definitely allocated if it is definitely equal to a variable
occurring on the left-hand side of a points-to assertion. Thus the set of definitely
allocated variables in τ is given by

alloc(τ) = {x ∈ Var(τ) | ∀(s, h) ∈ Models(strip(τ)) . s(x) ∈ dom(h)}.

Finally, a variable x definitely points-to variable y in τ , written x 7→τ y, if for
every (s, h) ∈ Models(strip(τ)), we have s(y) ∈ h(s(x)).

Example 7. Recall the symbolic heap τ in the first rule of predicate tll from
Example 1. Then alloc(τ) = {a, b} and neither a =τ c nor a 6=τ c holds. Further,

a =τ b is true, a =τ c is false, a 6=τ null is true,

a 6=τ c is false, a 7→τ c is true, c 7→τ a is false.

Remark 2. All definite relationships are decidable in polynomial time. In fact,
each of these relationships boils down to first adding inequalities x 6= null and
x 6= y for every pair x, y of distinct variables occurring on the left-hand side of
points-to assertions to the set of pure formulas and then computing its (reflexive),
symmetric (and transitive) closure with respect to 6= (and =). Furthermore,
if the closure contains a contradiction, e.g., null 6= null, it is set to all pure
formulas over the variables of a given reduced symbolic heap. After that, it is
straightforward to decide in polynomial time whether variables are definitely
allocated, (un)equal or pointing to each other.

4.1 Tracking Equalities and Allocation

Consider the symbolic heap ϕ , ∃x y z.P1(x y) ∗ P2(y z) : {x = z}. Clearly, ϕ
is unsatisfiable if x = y holds for every unfolding of P1(x y) and y 6= z holds
for every unfolding of P2(y z). Analogously, ϕ is unsatisfiable if x is allocated
in every unfolding of P1(x y) and z is allocated in every unfolding of P2(y z),
because x 7→ ∗ z 7→ implies x 6= z. This illustrates that robustness properties,
such as satisfiability, require detailed knowledge about the relationships between
parameters of predicate calls. Consequently, we construct a heap automaton
ATRACK that keeps track of this knowledge. More precisely, ATRACK should accept
those unfoldings in which it is guaranteed that

14 Jansen, Katelaan, Matheja, Noll, Zuleger

– given a set A ⊆ x0, exactly the variables in A are definitely allocated, and
– exactly the (in)equalities in a given set of pure formulas Π hold.

Towards a formal construction, we formalize the desired set of symbolic heaps.

Definition 8. Let α ∈ N>0 and x0 be a tuple of variables with ‖x0‖ = α.
Moreover, let A ⊆ x0 and Π be a finite set of pure formulas over x0. The
tracking property TRACK(α,A,Π) is the set

{τ ∈ RSHFV≤α | ∀i, j . x0[i] ∈ A iff x0[i] ∈ alloc(τ)

and x0[i] ∼ x0[j] ∈ Π iff xτ0 [i] ∼τ xτ0 [j]}.

Intuitively, our heap automaton ATRACK stores in its state space which free vari-
ables are definitely equal, unequal and allocated. Its transition relation then

enforces that these stored information are correct, i.e., a transition q
ϕ
−→ATRACK

p
is only possible if the information stored in p is consistent with ϕ and with the
information stored in the states q for the predicate calls of ϕ.

Formally, let x0 be a tuple of variables with ‖x0‖ = α and Pure(x0) ,
2{x0[i]∼x0[j] | 0≤i,j≤α,∼∈{=, 6= }} be the powerset of all pure formulas over x0. The
information stored by our automaton consists of a set of free variables B ⊆ x0

and a set of pure formulas Λ ∈ Pure(x0). Now, for some unfolding τ of a symbolic
heap ϕ, assume that B is chosen as the set of all definitely allocated free variables
of τ . Moreover, assume Λ is the set of all definite (in)equalities between free
variables in τ . We can then construct a reduced symbolic heap kernel(ϕ, (B,Λ))
from B and Λ that precisely captures these relationships between free variables.

Definition 9. Let ϕ be a symbolic heap, B ⊆ x0 and Λ ∈ Pure(x0). Further-
more, let min(B,Λ) = {xi0 ∈ B | ¬∃xj0 ∈ B.j < i and xi0 =Λ xj0} be the set of
minimal (w.r.t. to occurrence in x0) allocated free variables. Then

kernel(ϕ, (B,Λ)) , ⋆x0[i]∈min(B,Λ) x
ϕ
0 [i] 7→ null : Λ,

where we write ⋆s∈S s 7→ null for s1 7→ null ∗ . . .∗ sk 7→ null, S = {s1, . . . , sk}.

Consequently, the relationships between free variables remain unaffected if a
predicate call of ϕ is replaced by kernel(ϕ, (B,Λ)) instead of τ . Thus, ATRACK has
one state per pair (B,Λ). In the transition relation of ATRACK it suffices to replace
each predicate call Px0 by the corresponding symbolic heap kernel(Px0, (B,Λ)).
and check whether the current state is consistent with the resulting symbolic
heap. Intuitively, a potentially large unfolding of a symbolic heap ϕ with m
predicate calls is “compressed” into a small one that contains all necessary in-
formation about parameters of predicate calls. Here, q is a sequence of pairs
(B,Λ) as explained above. Formally,

Definition 10. ATRACK = (Q, SHFV≤α , ∆, F) is given by:

Q , 2x0 × Pure(x0), F , {(A,Π)},

∆ : q
ϕ
−→ATRACK

(A0, Π0) iff ∀x, y ∈ x0 .

Unified Reasoning about Robustness Properties of Symbolic-Heaps 15

y ∈ A0 ↔ yϕ ∈ alloc(compress(ϕ,q))

and x ∼ y ∈ Π0 ↔ xϕ ∼compress(ϕ,q) y
ϕ ,

compress(ϕ,q) , ϕ [P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] ,

where m = ‖Γϕ‖ = ‖q‖ is the number of predicate calls in ϕ and yϕ denotes the
free variable of ϕ corresponding to y ∈ x0, i.e., if y = x0[i] then y

ϕ = xϕ0 [i].

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward to show that L(ATRACK) = TRACK(α,A,Π). Furthermore, ATRACK satisfies
the compositionality property. A formal proof is found in Appendix A.9.1. Hence,

Lemma 3. For all α ∈ N>0 and all sets A ⊆ x0, Π ∈ Pure(x0), there is a heap
automaton over SHFV≤α accepting TRACK(α,A,Π).

4.2 Satisfiability

Tracking relationships between free variables of symbolic heaps is a useful aux-
iliary construction that serves as a building block in automata for more natural
properties. For instance, the heap automaton ATRACK constructed in Definition 10
can be reused to deal with the
Satisfiability problem (SL-SAT): Given Φ ∈ SID and ϕ ∈ SHΦ, decide
whether ϕ is satisfiable, i.e., there exists (s, h) ∈ States such that s, h |=Φ ϕ.

Theorem 3. For each α ∈ N>0, there is a heap automaton over SHFV≤α accept-

ing the set SAT(α) , {τ ∈ RSHFV≤α | τ is satisfiable} of all satisfiable reduced
symbolic heaps with at most α free variables.

Proof. A heap automaton ASAT accepting SAT(α) is constructed as in Defini-
tion 10 except for the set of final states, which is F , {(A,Π) | null 6= null /∈
Π}. See Appendix A.10 for a correctness proof. ⊓⊔

A heap automaton accepting the complement of SAT(α) is constructed analo-
gously by choosing F , {(A,Π) | null 6= null ∈ Π}. Thus, together with
Corollary 1, we obtain a decision procedure for the satisfiability problem similar
to the one proposed in [11]. Regarding complexity, the heap automaton ASAT

from Definition 10 has 22α
2+α states. By Remark 2, membership in ∆ASAT

is
decidable in polynomial time. Thus, by Corollary 1, our construction yields an
exponential-time decision procedure for SL-SAT. If the number of free variables
α is bounded, an algorithm in NP is easily obtained by guessing a suitable un-
folding tree of height at most ‖QASAT

‖ and running ASAT on it to check whether
its unfolding is decidable (cf. Appendix A.11). This is in line with the results of
Brotherston et al. [11], where the satisfiability problem is shown to be ExpTime–
complete in general and NP–complete if the number of free variables is bounded.
These complexity bounds even hold for the following special case [13]:
Restricted satisfiability problem (SL-RSAT) Given an SID Φ that con-
tains no points-to assertions, and a predicate symbol P , decide whether Px is
satisfiable w.r.t. Φ. The complement of this problem is denoted by SL-RSAT.

16 Jansen, Katelaan, Matheja, Noll, Zuleger

4.3 Establishment

A symbolic heap ϕ is established if every existentially quantified variable of every
unfolding of ϕ is definitely equal to a free variable or definitely allocated.6 This
property is natural for symbolic heaps that specify the shape of data structures;
for example, the SIDs in Example 1 define sets of established symbolic heaps.
Further, establishment is often required to ensure decidability of the entailment
problem [27,28]. Establishment can also be checked by heap automata.

Theorem 4. For all α ∈ N>0, there is a heap automaton over SHFV≤α accepting
the set of all established reduced symbolic heaps with at most α free variables:

EST(α) , {τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y}

Proof. The main idea in the construction of a heap automaton AEST for EST(α) is
to verify that every variable is definitely allocated or equal to a free variable while
running ATRACK (see Definition 10) in parallel to keep track of the relationships
between free variables. An additional flag q ∈ {0, 1} is attached to each state of
ATRACK to store whether the establishment condition is already violated (q = 0)
or holds so far (q = 1). Formally, AEST = (Q, SHFV≤α , ∆, F), where

Q , QATRACK
× {0, 1}, F , QATRACK

× {1},

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→AEST

(p0, q0)

iff p1 . . . pm
ϕ
−→ATRACK

p0 and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)}.

Here, check : SHFV≤α ×Q∗
ATRACK

→ {0, 1} is a predicate given by

check (ϕ,p) ,

1 , if ∀y ∈ Var(ϕ) . y ∈ alloc(compress(ϕ,p))

or ∃x ∈ xϕ0 . x =compress(ϕ,p) y

0 , otherwise ,

where compress(ϕ,p) is the reduced symbolic heap obtained from the tracking
property as in Definition 10. Moreover, unlike in the construction of ATRACK, we
are not interested in a specific set of relationships between the pure formulas, so
any state of ATRACK is chosen as a final state provided that predicate check could
be evaluated to 1. See Appendix A.13 for a correctness proof. ⊓⊔

Again, it suffices to swap the final- and non-final states of AEST to obtain a heap
automaton A

EST
accepting the complement of EST(α). Thus, by Corollary 1 and

Remark 2, we obtain an ExpTime decision procedure for the
Establishment problem (SL-EST): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is established.

Lemma 4. SL-RSAT is polynomial-time reducible to SL-EST. Hence, the es-
tablishment problem SL-EST is ExpTime–hard in general and coNP–hard if
the maximal number of free variables is bounded.

6 Sometimes this property is also defined by requiring that each existentially quantified
variable is ”eventually allocated” [27].

Unified Reasoning about Robustness Properties of Symbolic-Heaps 17

Proof. Let (Φ, P) be an instance of SL-RSAT. Moreover, let ϕ , ∃zy . Pz :
{x0[1] = null, y 6= null}. As y is neither allocated nor occurs in Pz, ϕ is estab-
lished iff x0[1] = y iff null 6= null iff Px is unsatisfiable. Hence, (Φ,ϕ) ∈ SL-EST

iff (Φ, P) ∈ SL-RSAT. A full proof is found in Appendix A.14. ⊓⊔

Lemma 5. SL-EST is in coNP for a bounded number of free variables α.

Proof. Let (Φ,ϕ) be an instance of SL-EST, N = ‖Φ‖+‖ϕ‖, andM ≤ N be the
maximal number of predicate calls occurring in ϕ and any rule of Φ. Moreover,
let A

EST
be a heap automaton accepting EST(α)—the complement of EST(α) (cf.

Theorem 4). Since α is bounded by a constant, so is the number of states of

A
EST

, namely ‖QA
EST
‖ ≤ k = 22α

2+α+1. Now, let TΦ(ϕ)
≤k denote the set of all

unfolding trees t ∈ TΦ(ϕ) of height at most k. Clearly, each of these trees is of
size ‖t‖ ≤ Mk ≤ Nk, i.e., polynomial in N . Moreover, let ω : dom(t) → QA

EST

be a function mapping each node of t to a state of A
EST

. Again, ω is of size
polynomial in N ; as such ‖ω‖ ≤ k · Nk. Let Ωt denote the set of all of these
functions ω for a given unfolding tree t with ω(ε) ∈ FA

EST
. Given an unfolding

tree t ∈ TΦ(ϕ)
≤k and ω ∈ Ωt, we can easily decide whether ε

JtK
−−→A

EST
ω(ε) holds:

For each u, u1, . . . , un ∈ dom(t), u(n + 1) /∈ dom(t), n ≥ 0, it suffices to check

whether ω(u1) . . . ω(un)
t(u)
−−→A

EST
ω(u). Since, by Remark 2, each of these checks

can be performed in time polynomial in N the whole procedure is feasible in
polynomial time. We now show that (Φ,ϕ) ∈ SL-EST if and only if

∀t ∈ TΦ(ϕ)
≤k . ∀ω ∈ Ωt . not ε

JtK
−−→A

EST
ω(ε).

Since each t ∈ TΦ(ϕ) and each ω ∈ Ωt is of size polynomial inN , this is equivalent
to SL-EST being in coNP. To complete the proof, note that UΦ(ϕ) ⊆ EST(α)
holds iff JtK /∈ EST(α) for each t ∈ TΦ(ϕ). Furthermore, by a standard pumping
argument, it suffices to consider trees in TΦ(ϕ)

≤k: If there exists a taller tree t
with JtK ∈ EST(α) then there is some path of length greater k in t on which two
nodes are assigned the same state by a function ω ∈ Ωt proving membership of
t in EST(α). This path can be shortened to obtain a tree of smaller height. ⊓⊔

Putting upper and lower bounds together, we conclude:

Theorem 5. SL-EST is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

4.4 Reachability

Another family of robustness properties is based on reachability questions, e.g.,
“is every location of every model of a symbolic heap reachable from the location
of a program variable?” or “is every model of a symbolic heap acyclic?”. For
established SIDs, heap automata accepting these properties are an extension of
the tracking automaton introduced in Definition 10.

More precisely, a variable y is definitely reachable from x in τ ∈ RSH, written
x τ y, if and only if x 7→τ y or there exists a z ∈ Var(τ) such that x 7→τ z

18 Jansen, Katelaan, Matheja, Noll, Zuleger

and z τ y.
7 Note that we define reachability to be transitive, but not reflexive.

As for the other definite relationships between variables, definite reachability is
computable in polynomial time for reduced symbolic heaps, e.g., by performing
a depth-first search on the definite points-to relation 7→τ . Note that our notion
of reachability does not take variables into account that are only reachable from
one another in some models of a reduced symbolic heap. For example, consider
the symbolic heap τ = x 7→ y ∗ z 7→ null. Then x τ z does not hold, but there
exists a model (s, h) with s(z) = s(y) ∈ h(s(x)). Thus, reachability introduced
by unallocated variables is not detected. However, the existence (or absence) of
such variables can be checked first due to Theorem 4.

Theorem 6. Let α ∈ N>0 and R ⊆ x0 × x0 be a binary relation over the
variables x0 with ‖x0‖ = α. Then the reachability property REACH(α,R), given
by the set {τ ∈ RSHFV≤α | ∀i, j . (x0[i] ,x0[j]) ∈ R iff xτ0 [i] τ xτ0 [j]}, can be
accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AREACH accepting REACH(α,R) is constructed
similarly to the heap automaton ATRACK introduced in Definition 10. The main
difference is that AREACH additionally stores a binary relation S ⊆ x0 × x0 in its
state space to remember which free variables are reachable from one another.
Correspondingly, we adapt Definition 9 as follows:

kernel(ϕ, (B,Λ, S)) , ∃z . ⋆min(B,Λ) x
ϕ
0 [i] 7→ (vi) : Λ ,

where z is a fresh variable and vi[j] , xϕ0 [j] if (i, j) ∈ S and vi[j] , z, otherwise.
The other parameters ϕ,B,Λ are the same as in Definition 10. Note that the
additional variable z is needed to deal with allocated free variables that cannot
reach any other free variable, including null. Moreover, the set of final states is
FAREACH

= QATRACK
× {R}. Correctness of this encoding is verified in the transition

relation. Hence, the transition relation of AREACH extends the transition relation of
ATRACK by the requirement (x, y) ∈ S iff xϕ compress(ϕ,p) y

ϕ for every pair of free
variables x, y ∈ x0. Here, compress(ϕ,p) is defined as in Definition 10 except that
the new encoding kernel(Pixi,q[i]) from above is used. Since compress(τ, ε) = τ
holds for every reduced symbolic heap τ , it is straightforward to verify that
L(AREACH) = REACH(α). Further details are found in Appendix A.15. ⊓⊔

Furthermore, we consider the related
Reachability problem (SL-REACH): Given an SID Φ, ϕ ∈ SHΦ with α =
‖xϕ0 ‖ and variables x, y ∈ xϕ0 , decide whether x τ y holds for all τ ∈ UΦ(ϕ).

Theorem 7. The decision problem SL-REACH is ExpTime–complete in gen-
eral and coNP–complete if the number of free variables is bounded.

Proof. Membership in ExpTime follows from our upper bound derived for Algo-
rithm 1, the size of the state space of AREACH, which is exponential in α, and Re-
mark 2. If α is bounded, membership in coNP is shown analogously to Lemma 5.

7 The definite points-to relation 7→τ was defined at the beginning of Section 4.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 19

Lower bounds are shown by reducing SL-RSAT to SL-REACH. Formally, let
(Φ, P) be an instance of SL-RSAT. Moreover, let ϕ , ∃z . x0[1] 7→ null ∗
Pz : {x0[2] 6= null}. As x0[2] is neither allocated nor null, x0[2] is not definitely
reachable from x0[1] in any model of ϕ. Hence (Φ,ϕ,x0[1] ,x0[2]) ∈ SL-REACH

iff P is unsatisfiable. A detailed proof is found in Appendix A.16. ⊓⊔

4.5 Garbage-Freedom

Like the tracking automaton ATRACK, the automaton AREACH is a useful ingredient
in the construction of more complex heap automata. For instance, such an au-
tomaton can easily be modified to check whether a symbolic heap is garbage-free,
i.e., whether every existentially quantified variable is reachable from some pro-
gram variable. Garbage-freedom is a natural requirement if SIDs represent data
structure specifications. For instance, the SIDs in Example 1 are garbage-free.
Furthermore, this property is needed by the approach of Habermehl et al. [25].

Lemma 6. For each α ∈ N>0, the set GFREE(α), given by

{τ ∈ RSHFV≤α | ∀y ∈ Var(τ) . ∃x ∈ xτ0 . x =τ y or x τ y},

of garbage-free symbolic heaps can be accepted by a heap automaton over SHFV≤α .

Proof (sketch). A heap automaton AGFREE accepting GFREE(α) is constructed sim-
ilarly to the heap automaton AEST introduced in the proof of Theorem 4. The
main difference is that heap automaton AREACH is used instead of ATRACK. Fur-
thermore, the predicate check : SHFV≤α ×Q∗

AREACH
→ {0, 1} is redefined to verify

that every variable of a symbolic heap ϕ is established in compress(ϕ,p), where
compress(ϕ,p) is the same as in the construction of AREACH (see Theorem 6):

check (ϕ,p) ,

1 , if ∀y ∈ Var(ϕ) . ∃x ∈ xϕ0 .

x =compress(ϕ,p) y or x compress(ϕ,p) y

0 , otherwise ,

Since compress(τ, ε) = τ holds for every reduced symbolic heap τ , it is straight-
forward that L(AGFREE) = GFREE(α). A proof is found in Appendix A.17. ⊓⊔

To guarantee that symbolic heaps are garbage-free, we solve the

Garbage-freedom problem (SL-GF): Given an SID Φ and ϕ ∈ SHΦ, decide
whether every τ ∈ UΦ(ϕ) is garbage-free, i.e., τ ∈ GFREE(α) for some α ∈ N.

Theorem 8. SL-GF is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

Proof. Similar to Theorem 5; see Appendix A.18. ⊓⊔

20 Jansen, Katelaan, Matheja, Noll, Zuleger

4.6 Acyclicity

Automatic termination proofs of programs frequently rely on the acyclicity of
the data structures used, i.e., they assume that no variable is reachable from
itself. In fact, Zanardini and Genaim [41] claim that “proving termination needs
acyclicity, unless program-specific or non-automated reasoning is performed.”

Lemma 7. For each α ∈ N>0, the set of all weakly acyclic symbolic heaps

ACYCLIC(α) , {τ ∈ RSHFV≤α | null 6=τ null or ∀x ∈ Var(τ) . not x τ x}

can be accepted by a heap automaton over SHFV≤α .

Here, the condition null 6=τ null ensures that an unsatisfiable reduced symbolic
heap is considered weakly acyclic. Further, note that our notion of acyclicity
is weak in the sense that dangling pointers may introduce cyclic models that
are not considered. For example, ∃z.x 7→ z is weakly acyclic, but contains cyclic
models if x and z are aliases. However, weak acyclicity coincides with the absence
of cyclic models for established SIDs—a property considered in Section 4.3.

Proof (sketch). A heap automaton AACYCLIC for the set of all weakly acyclic re-
duced symbolic heaps is constructed analogously to the heap automaton AGFREE

in the proof of Lemma 6. The main difference is the predicate check : SHFV≤α ×
Q∗

AREACH
→ {0, 1}, which now checks whether a symbolic heap is weakly acyclic:

check (ϕ,p) ,

{

1 , if ∀y ∈ Var(ϕ) . not x compress(ϕ,p) x

0 , otherwise.

Moreover, the set of final states FAACYCLIC
is chosen such that accepted symbolic

heaps are unsatisfiable or check (ϕ,p) = 1. See Appendix A.19 for details. ⊓⊔

For example, the symbolic heap sllx0 is weakly acyclic, but dllx0 (cf. Exam-
ple 1) is not. In general, we are interested in the

Acyclicity problem (SL-AC): Given an SID Φ and ϕ ∈ SHΦ, decide whether
every τ ∈ UΦ(ϕ) is weakly acyclic, i.e., τ ∈ ACYCLIC(α) for some α ∈ N.

Theorem 9. SL-AC is ExpTime–complete in general and coNP–complete if
the number of free variables α is bounded.

Proof. Similar to the proof of Theorem 5. For lower bounds, we show that
SL-RSAT is reducible to SL-AC. Let (Φ, P) be an instance of SL-RSAT.
Moreover, let ϕ = ∃z.x0[1] 7→ (x0[1]) ∗ Pz. Since x0[1] is definitely reachable
from itself, ϕ is weakly acyclic iff P is unsatisfiable. Thus, (Φ,ϕ) ∈ SL-AC iff
(Φ, P) ∈ SL-RSAT. See Appendix A.20 for details. ⊓⊔

Unified Reasoning about Robustness Properties of Symbolic-Heaps 21

5 Implementation

We developed a prototype of our framework—calledHarrsh8—that implements
Algorithm 1 as well as all heap automata constructed in the previous sections.
The code, the tool and our experiments are available online.9

For our experimental results, we first considered common SIDs from the lit-
erature, such as singly- and doubly-linked lists, trees, trees with linked-leaves
etc. For each of these SIDs, we checked all robustness properties presented
throughout this paper, i.e., the existence of points-to assertions (Example 4),
the tracking property TRACK(B,Λ) (Section 4.1), satisfiability (Section 4.2), es-
tablishment (Section 4.3), the reachability property REACH(α,R) (Section 4.4),
garbage-freedom (Section 4.5), and weak acyclicity (Section 4.6). All in all, our
implementation of Algorithm 1 takes 300ms to successfully check these proper-
ties on all 45 problem instances. Since the SIDs under consideration are typically
carefully handcrafted to be robust, the low runtime is to be expected. Moreover,
we ran heap automata on benchmarks of the tool Cyclist [11]. In particular,
our results for the satisfiability problem—the only robustness property checked
by both tools—were within the same order of magnitude.

Further details are found in Appendix A.2.

6 Entailment Checking with Heap Automata

So far, we have constructed heap automata for reasoning about robustness prop-
erties, such as satisfiability, establishment and acyclicity. This section demon-
strates that our approach can also be applied to discharge entailments for certain
fragments of separation logic. Formally, we are concerned with the
Entailment problem (SL-ENTAIL

Φ
C): Given symbolic heaps ϕ, ψ ∈ SHΦC ,

decide whether ϕ |=Φ ψ holds, i.e., ∀(s, h) ∈ States . s, h |=Φ ϕ implies s, h |=Φ ψ.
Note that the symbolic heap fragment of separation logic is not closed under

conjunction and negation. Thus, a decision procedure for satisfiability (cf. The-
orem 3) does not yield a decision procedure for the entailment problem. It is,
however, essential to have a decision procedure for entailment, because this prob-
lem underlies the important rule of consequence in Hoare logic [26]. In the words
of Brotherston et al. [10], “effective procedures for establishing entailments are
at the foundation of automatic verification based on separation logic”.

We show how our approach to decide robustness properties, is applicable to
discharge entailments for certain fragments of symbolic heaps. This results in an
algorithm deciding entailments between so-called determined symbolic heaps for
SIDs whose predicates can be characterized by heap automata.

Definition 11. A reduced symbolic heap τ is determined if all tight models
of τ are isomorphic.10 If τ is also satisfiable then we call τ well-determined.

8 Heap Automata for Reasoning about Robustness of Symbolic Heaps
9 https://bitbucket.org/jkatelaan/harrsh/

10 A formal definition of model isomorphism is found in Appendix A.1.

https://bitbucket.org/jkatelaan/harrsh/

22 Jansen, Katelaan, Matheja, Noll, Zuleger

Moreover, for some SID Φ, a symbolic heap ϕ ∈ SHΦ is (well-)determined if all
of its unfoldings τ ∈ UΦ(ϕ) are (well-)determined. Consequently, an SID Φ is
(well-)determined if Px is (well-)determined for each predicate symbol P in Φ.

We present two sufficient conditions for determinedness of symbolic heaps. First,
a reduced symbolic heap τ is determined if all equalities and inequalities between
variables are explicit, i.e., ∀x, y ∈ Var(τ) . x = y ∈ Πτ or x 6= y ∈ Πτ [30]. Fur-
thermore, a reduced symbolic heap τ is determined if every variable is definitely
allocated or definitely equal to null, i.e., ∀x ∈ Var(τ) . x ∈ alloc(τ) or x =τ null.
These two notions can also be combined: A symbolic heap is determined if every
variable x is definitely allocated or definitely equal to null or there is an explicit
pure formula x ∼ y between x and each other variable y.

Example 8. By the previous remark, the SID generating acyclic singly-linked
lists from Section 1 is well-determined. Furthermore, although the predicate
dll from Example 1 is not determined, the following symbolic heap is well-
determined: x0[4] 7→ null ∗ dllx0 : {x0[1] 6= x0[3]}.

6.1 Entailment between predicate calls

We start by considering entailments between predicate calls of well-determined
SIDs. By definition, an entailment ϕ |=Φ ψ holds if for every stack–heap pair
(s, h) that satisfies an unfolding of ϕ, there exists an unfolding of ψ that is
satisfied by (s, h) as well. Our first observation is that, for well-determined un-
foldings, two quantifiers can be switched: It suffices for each unfolding σ of ϕ to
find one unfolding τ of ψ such that every model of σ is also a model of τ .

Lemma 8. Let Φ ∈ SID and P1, P2 be predicate symbols with ar(P1) = ar(P2).
Moreover, let UΦ(P1x) be well-determined. Then

P1x |=Φ P2x iff ∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . σ |=∅ τ.

Proof. See Appendix A.21 for a detailed proof. ⊓⊔

Note that, even if only well-determined predicate calls are taken into account, it is
undecidable in general whether an entailment P1x0 |=Φ P2x0 holds [1, Theorem
3]. To obtain decidability, we additionally require the set of reduced symbolic
heaps entailing a given predicate call to be accepted by a heap automaton.

Definition 12. Let Φ ∈ SIDC and ϕ ∈ SHΦC . Then

HC
ϕ,Φ , {σ ∈ RSHC | ‖xσ0‖ = ‖xϕ0 ‖ and ∃τ ∈ UΦ(ϕ) . σ |=∅ τ}

is the set of all reduced symbolic heaps in SHC over the same free variables as ϕ
that entail an unfolding of ϕ.

Example 9. Let ϕ = tllx0 : {x0[1] 6= x0[2]}, where tll is a predicate of SID

Φ introduced in Example 1. Then HFV≤3

ϕ,Φ consists of all reduced symbolic heaps
with three free variables representing non-empty trees with linked leaves. In
particular, note that these symbolic heaps do not have to be derived using the
SID Φ. For instance, they might contain additional pure formulas.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 23

In particular, HC
Px,Φ can be accepted by a heap automaton for common predi-

cates specifying data structures such as lists, trees, and trees with linked leaves.
We are now in a position to decide entailments between predicate calls.

Lemma 9. Let Φ ∈ SIDC and P1, P2 ∈ Pred(Φ) be predicate symbols having the
same arity. Moreover, let UΦ(P1x) be well-determined and HC

P2x,Φ
be accepted

by a heap automaton over SHC. Then the entailment P1x |=Φ P2x is decidable.

Proof. Let AP2x be a heap automaton over SHC accepting HC
P2x,Φ

. Then

P1x |=Φ P2x

⇔ ∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . σ |=∅ τ (Lemma 8)

⇔ ∀σ ∈ UΦ(P1x) . σ ∈ HC
P2x,Φ (Definition 12)

⇔ UΦ(P1x) ⊆ L(AP2x). (L(AP2x) = HC
P2x,Φ

)

where the last inclusion is decidable by Corollary 2. ⊓⊔

6.2 Entailment between symbolic heaps

Our next step is to generalize Lemma 9 to arbitrary determined symbolic heaps ϕ
instead of single predicate calls. This requires the construction of heap automata
Aϕ accepting HC

ϕ,Φ. W.l.o.g. we assume SIDs and symbolic heaps to be well -
determined instead of determined only. Otherwise, we apply Theorem 1 with
the heap automaton ASAT (cf. Theorem 3) to obtain a well-determined SID.
Thus, we restrict our attention to the following set.

Definition 13. The set SH〈α〉 is given by 〈α〉 : SH → {0, 1}, where 〈α〉(ϕ) = 1
iff ϕ is well-determined and every predicate call of ϕ has ≤ α ∈ N parameters.

Clearly, 〈α〉 is decidable, because satisfiability is decidable (cf. Theorem 3) and
verifying that a symbolic heap has at most α parameters amounts to a simple
syntactic check. Note that, although the number of parameters in predicate calls
is bounded by α, the number of free variables of a symbolic heap ϕ ∈ SH〈α〉 is
not. We then construct heap automata for well-determined symbolic heaps.

Theorem 10. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for each
predicate symbol P ∈ Pred(Φ), let there be a heap automaton over SH〈α〉 accept-

ing H
〈α〉
Px,Φ. Then, for every well-determined symbolic heap ϕ ∈ SHΦ, there is a

heap automaton over SH〈α〉 accepting H
〈α〉
ϕ,Φ.

Proof. By structural induction on the syntax of symbolic heaps. For each case a
suitable heap automaton has to be constructed. See Appendix A.26 fo details.

⊓⊔

Remark 3. Brotherston et al. [13] studied the model-checking problem for sym-
bolic heaps, i.e., the question whether s, h |=Φ ϕ holds for a given stack–heap pair
(s, h), an SID Φ, and a symbolic heap ϕ ∈ SHΦ. They showed that this problem

24 Jansen, Katelaan, Matheja, Noll, Zuleger

Input : established SID Φ, ϕ, ψ ∈ SHΦ determined,
heap automaton APi for each Pi ∈ Pred(Φ)

Output: yes iff ϕ |=Φ ψ holds

Ω ← {P ⇐ ϕ} ∪ Φ ; // P fresh predicate symbol

Ψ ← removeUnsat(Ω) ; // Theorem 3

Aψ ← automaton(ψ,AP1 ,AP2 , . . .) ; // Theorem 10

Aψ ← complement(Aψ) ; // Lemma 2

return yes iff UΨ (Px) ∩ L(Aψ) = ∅ ; // Algorithm 1

Algorithm 2: Decision procedure for ϕ |=Φ ψ.

is ExpTime–complete in general and NP–complete if the number of free vari-
ables is bounded. We obtain these results for determined symbolic heaps in a
natural way: Observe that every stack–heap pair (s, h) is characterized by an es-
tablished, well-determined, reduced symbolic heap, say τ , that has exactly (s, h)
as a tight model up to isomorphism. Then Theorem 10 yields a heap automaton

Aτ accepting H
〈α〉
τ,Φ , where α is the maximal arity of any predicate in Φ. Thus,

s, h |=Φ ϕ iff L(Aτ)∩UΦ(ϕ) 6= ∅, which is decidable by Corollary 1. Further, note
that the general model-checking problem is within the scope of heap automata.A
suitable statespace is the set of all subformulas of the symbolic heap τ .

Coming back to the entailment problem, it remains to put our results together.
Algorithm 2 depicts a decision procedure for the entailment problem that, given
an entailment ϕ |=Φ ψ, first removes all unsatisfiable unfoldings of ϕ, i.e. ϕ
becomes well-determined. After that, our previous reasoning techniques for heap
automata and SIDs from Section 3 are applied to decide whether ϕ |=Φ ψ holds.
Correctness of Algorithm 2 is formalized in

Theorem 11. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for every

P ∈ Pred(Φ), let H
〈α〉
Px,Φ be accepted by a heap automaton over SH〈α〉. Then

ϕ |=Φ ψ is decidable for determined ϕ, ψ ∈ SHΦ with xϕ0 = xψ0 .

Proof. We define a new SID Ω , Φ ∪ {P ⇐ ϕ}, where P is a fresh predicate
symbol of arity ‖xϕ0 ‖. Clearly, ϕ |=Φ ψ iff Pxϕ0 |=Ω ψ. Furthermore, since ϕ and Φ
are established, so is Ω. Then applying the Refinement Theorem (Theorem 1) to
Ω and ASAT (cf. Theorem 3), we obtain a well-determined SID Ψ ∈ SID〈α〉 where
none of the remaining unfoldings of Ω is changed, i.e., for each P ∈ Pred(Ω), we

have UΨ (Px) ⊆ UΩ(Px). By Theorem 10, the set H
〈α〉
ψ,Φ = H

〈α〉
ψ,Ψ can be accepted

by a heap automaton over SH〈α〉. Then, analogously to the proof of Lemma 9,

ϕ |=Φ ψ iff Pxϕ0 |=Ψ ψ iff UΨ (Px
ϕ
0) ⊆ H

〈α〉
ψ,Ψ ,

where the last inclusion is decidable by Corollary 2. ⊓⊔

Unified Reasoning about Robustness Properties of Symbolic-Heaps 25

6.3 Complexity

Algorithm 2 may be fed with arbitrarily large heap automata. For a meaningful
complexity analysis, we thus consider heap automata of bounded size only.

Definition 14. An SID Φ is α–bounded if for each P ∈ Pred(Φ) there exists a

heap automaton AP over SH〈α〉 accepting H
〈α〉
Px,Φ such that ∆AP is decidable in

O
(

2poly(‖Φ‖)
)

and ‖QAP ‖ ≤ 2poly(α).

The bounds from above are natural for a large class of heap automata. In par-
ticular, all heap automata constructed in Section 4 stay within these bounds.
Then a close analysis of Algorithm 2 for α–bounded SIDs yields the following
complexity results. A detailed analysis is provided in Appendix A.27.

Theorem 12. SL-ENTAIL
Φ
〈α〉 is decidable in 2-ExpTime for every α–bounded

SID Φ. If α ≥ 1 is a constant then SL-ENTAIL
Φ
〈α〉 is ExpTime-complete.

Note that lower complexity bounds depend on the SIDs under consideration.
Antonopoulos et al. [1, Theorem 6] showed that the entailment problem is al-
ready ΠP

2 –complete11 for the base fragment, i.e., Φ = ∅. Thus, under common
complexity assumptions, the exponential time upper bound derived in Theo-
rem 12 is asymptotically optimal for a deterministic algorithm. Since the entail-
ment problem is already ExpTime–hard for points-to assertions of arity 3 and
SIDs specifying regular sets of trees (cf. [1, Theorem 5] and Appendix A.27.2 for
details), exponential time is actually needed for certain SIDs.

6.4 Expressiveness

We conclude this section with a brief remark regarding the expressiveness of
heap automata. In particular, SIDs specifying common data structures, such as
lists, trees, trees with linked leaves and combinations thereof can be encoded by
heap automata.12 In general, the close relationship between established SIDs and
context-free graph languages studied by Dodds [20, Theorem 1] and Courcelle’s
work on recognizable graph languages [19, Theorems 4.34 and 5.68], suggest that
heap automata exist for every set of reduced symbolic heaps that can be specified
in monadic second-order logic over graphs [19].

7 Conclusion

We developed an algorithmic framework for automatic reasoning about and de-
bugging of the symbolic heap fragment of separation logic. Our approach is
centered around a new automaton model, heap automata, that is specifically tai-
lored to symbolic heaps. We show that many common robustness properties as
well as certain types of entailments are naturally covered by our framework—
often with optimal asymptotic complexity. There are several directions for future
work including automated learning of heap automata accepting common data
structures and applying heap automata to the abduction problem [16].

11 ΠP
2 denotes the second level of the polynomial hierarchy.

12 Details on the construction of such automata are provided in Appendix A.28.

26 Jansen, Katelaan, Matheja, Noll, Zuleger

References

1. Antonopoulos, T., Gorogiannis, N., Haase, C., Kanovich, M.I., Ouaknine, J.: Foun-
dations for decision problems in separation logic with general inductive predicates.
In: FOSSACS 2014. LNCS, vol. 8412, pp. 411–425. Springer (2014)

2. Berdine, J., Calcagno, C., Cook, B., Distefano, D., O’Hearn, P.W., Wies, T., Yang,
H.: Shape analysis for composite data structures. In: CAV 2007. LNCS, vol. 4590,
pp. 178–192. Springer (2007)

3. Berdine, J., Calcagno, C., O’Hearn, P.W.: A decidable fragment of separation logic.
In: FSTTCS 2004. LNCS, vol. 3328, pp. 97–109 (2004)

4. Berdine, J., Calcagno, C., Ohearn, P.W.: Smallfoot: Modular automatic assertion
checking with separation logic. In: International Symposium on Formal Methods
for Components and Objects. pp. 115–137. Springer (2005)

5. Berdine, J., Calcagno, C., OHearn, P.W.: Symbolic execution with separation logic.
In: APLAS 2005, LNCS, vol. 3780, pp. 52–68. Springer (2005)

6. Berdine, J., Cook, B., Ishtiaq, S.: SLAyer: Memory safety for systems-level code.
In: CAV 2011. LNCS, vol. 6806, pp. 178–183. Springer (2011)

7. Bornat, R., Calcagno, C., O’Hearn, P., Parkinson, M.: Permission accounting in
separation logic. In: ACM SIGPLAN Notices. vol. 40, pp. 259–270. ACM (2005)

8. Botincan, M., Distefano, D., Dodds, M., Grigore, R., Naudziuniene, D., Parkinson,
M.J.: corestar: The core of jstar. BOOGIE 2011, 65–77 (2011)

9. Brookes, S.: A semantics for concurrent separation logic. Theoretical Computer
Science 375(1), 227–270 (2007)

10. Brotherston, J., Distefano, D., Petersen, R.L.: Automated cyclic entailment proofs
in separation logic. In: CADE-23. LNAI, vol. 6803, pp. 131–146. Springer (2011)

11. Brotherston, J., Fuhs, C., Pérez, J.A.N., Gorogiannis, N.: A decision procedure for
satisfiability in separation logic with inductive predicates. In: CSL-LICS 2014. pp.
25:1–25:10. ACM (2014)

12. Brotherston, J., Gorogiannis, N.: Cyclic abduction of inductively defined safety
and termination preconditions. In: SAS 2014. LNCS, vol. 8723, pp. 68–84. Springer
(2014)

13. Brotherston, J., Gorogiannis, N., Kanovich, M.I., Rowe, R.: Model checking for
symbolic-heap separation logic with inductive predicates. In: POPL 2016. pp. 84–
96. ACM (2016)

14. Brotherston, J., Gorogiannis, N., Petersen, R.L.: A generic cyclic theorem prover.
In: APLAS 2012. pp. 350–367. Springer (2012)

15. Calcagno, C., Distefano, D.: Infer: An automatic program verifier for memory safety
of C programs. In: NFM 2011. LNCS, vol. 6617, pp. 459–465. Springer (2011)

16. Calcagno, C., Distefano, D., O’Hearn, P., Yang, H.: Compositional shape analysis
by means of bi-abduction. In: POPL 2009. pp. 289–300. ACM (2009)

17. Chin, W., David, C., Nguyen, H.H., Qin, S.: Automated verification of shape, size
and bag properties via user-defined predicates in separation logic. Sci. Comput.
Program. 77(9), 1006–1036 (2012)

18. Comon, H., Dauchet, M., Gilleron, R., Löding, C., Jacquemard, F., Lugiez, D., Ti-
son, S., Tommasi, M.: Tree automata techniques and applications (2007), available
at http://www.grappa.univ-lille3.fr/tata

19. Courcelle, B., Engelfriet, J.: Graph structure and monadic second-order logic: a
language-theoretic approach, vol. 138. Cambridge University Press (2012)

20. Dodds, M.: From separation logic to hyperedge replacement and back. In: ICGT
2008. pp. 484–486. Springer (2008)

http://www.grappa.univ-lille3.fr/tata

Unified Reasoning about Robustness Properties of Symbolic-Heaps 27

21. Dudka, K., Peringer, P., Vojnar, T.: Predator: A practical tool for checking manip-
ulation of dynamic data structures using separation logic. In: CAV 2011. LNCS,
vol. 6806, pp. 372–378. Springer (2011)

22. Enea, C., Lengál, O., Sighireanu, M., Vojnar, T.: Compositional entailment check-
ing for a fragment of separation logic. In: APLAS 2014. LNCS, vol. 8837, pp.
314–333. Springer (2014)

23. Gotsman, A., Berdine, J., Cook, B., Sagiv, M.: Thread-modular shape analysis.
In: PLDI 2007. pp. 266–277. ACM (2007)

24. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. In: CAV 2011. LNCS, vol. 6806, pp. 424–440.
Springer (2011)

25. Habermehl, P., Hoĺık, L., Rogalewicz, A., Šimáček, J., Vojnar, T.: Forest automata
for verification of heap manipulation. Formal Methods in System Design 41(1), 83–
106 (2012)

26. Hoare, C.A.R.: An axiomatic basis for computer programming. Communications
of the ACM 12(10), 576–580 (1969)

27. Iosif, R., Rogalewicz, A., Simacek, J.: The tree width of separation logic with
recursive definitions. In: CADE-24. LNCS, vol. 7898, pp. 21–38. Springer (2013)

28. Iosif, R., Rogalewicz, A., Vojnar, T.: Deciding entailments in inductive separation
logic with tree automata. In: ATVA 2014. LNCS, vol. 8837, pp. 201–218. Springer
(2014)

29. Jacobs, B., Smans, J., Philippaerts, P., Vogels, F., Penninckx, W., Piessens, F.:
Verifast: A powerful, sound, predictable, fast verifier for C and Java. In: NFM
2011. LNCS, vol. 6617, pp. 41–55. Springer (2011)

30. Jansen, C., Katelaan, J., Matheja, C., Noll, T., Zuleger, F.: Unified Reasoning
about Robustness Properties of Symbolic-Heap Separation Logic. ArXiv e-prints
(Oct 2016)

31. Le, Q.L., Gherghina, C., Qin, S., Chin, W.N.: Shape analysis via second-order
bi-abduction. In: CAV 2014. LNCS, vol. 8559, pp. 52–68. Springer (2014)

32. Magill, S., Tsai, M.H., Lee, P., Tsay, Y.K.: Thor: A tool for reasoning about shape
and arithmetic. In: CAV 2008. LNCS, vol. 5123, pp. 428–432. Springer (2008)

33. Navarro Pérez, J., Rybalchenko, A.: Separation logic modulo theories. In: APLAS
2013, LNCS, vol. 8301, pp. 90–106. Springer (2013)

34. Nerode, A.: Linear automaton transformations. Proceedings of the American Math-
ematical Society 9(4), 541–544 (1958)

35. Nguyen, H.H., Kuncak, V., Chin, W.N.: Runtime checking for separation logic. In:
VMCAI 2008. LNCS, vol. 4905, pp. 203–217. Springer (2008)

36. O’Hearn, P.W.: Resources, concurrency, and local reasoning. Theor. Comput. Sci.
375(1-3), 271–307 (2007)

37. OHearn, P., Reynolds, J., Yang, H.: Local reasoning about programs that alter
data structures. In: International Workshop on Computer Science Logic. pp. 1–19.
Springer (2001)

38. Piskac, R., Wies, T., Zufferey, D.: Automating separation logic with trees and data.
In: CAV 2014. LNCS, vol. 8559, pp. 711–728. Springer (2014)

39. Qiu, X., Garg, P., Ştefănescu, A., Madhusudan, P.: Natural proofs for structure,
data, and separation. In: PLDI 2013. pp. 231–242. ACM (2013)

40. Reynolds, J.C.: Separation logic: A logic for shared mutable data structures. In:
LICS 2002. pp. 55–74. IEEE (2002)

41. Zanardini, D., Genaim, S.: Inference of field-sensitive reachability and cyclicity.
ACM Trans. Comput. Log. 15(4), 33:1–33:41 (2014)

28 Jansen, Katelaan, Matheja, Noll, Zuleger

A.1 Supplementary Material

Definition 15 (Isomorphic states). Two states (s1, h1), (s2, h2) are isomor-
phic if and only if there exist bijective functions f : dom(s1) → dom(s2) g :
dom(h1) → dom(h2) such that for all ℓ ∈ dom(h1), we have g(h1(ℓ)) = h2(g(ℓ)),
where g is lifted to tuples by componentwise application.

A.2 Implemenation and Experimental Results

Overall, the implementation of our tool Harrsh consists of about 1500 lines
of Scala code, not counting test classes, comments and blank lines. Since our
tool is—to our best knowledge—the first one to systematically reason about
robustness properties, we cannot compare the results of our tool against other
implementations.

A notable exception is Cyclist [11], which is capable of proving satisfiability
of SIDs. We evaluated our tool against the large collection of benchmarks that
is distributed with Cyclist. In particular, this collection includes the following
sets:

1. A set of handwritten standard predicates from the separation logic literature.
2. 45945 problem instances that have been automatically generated by the in-

ference tool Caber [12].
3. A set of particularly hard problem instances that are derived from the SIDs

used to prove lower complexity bounds for satisfiability. These benchmarks
have been used to test the scalability of Cyclist.

Experiments were performed on an Intel Core i5-3317U at 1.70GHz with
4GB of RAM.

For the standard predicates in the first set, our implementation runs in total
approximately 300ms to check all robustness properties on all standard pred-
icates, i.e., a total of 45 problem instances. As already reported in the paper,
this low analysis time is not a surprise, because the standard data structure
predicates are generally very well-behaved.

To evaluate the performance of Harrsh on a realistic set of benchmarks, we
ran both Harrsh and Cyclist on all 45945 benchmarks generated by Caber.
For Cyclist, we only checked satisfiability—the only of the robustness proper-
ties supported by Cyclist; for Harrsh, we checked all robustness properties
introduced in Section 4.

Both tools were capable of proving (un)satisfiability of all of these problem
instances within a set timeout of 30 seconds. All in all, the accumulated anal-
ysis time of Harrsh for these instances was 12460ms, while Cyclist required
44856ms.13 For all other properties, Harrsh also achieved accumulated analysis
time below 20 seconds; see Table 1. These numbers demonstrate the applicability
of our tool to problem instances that occur in practice.

13 For both tools we added up the analysis times of individual tasks, reported with
millisecond precision. Consequently, we expect that rounding errors influence the
accumulated time to a similar degree for both tools.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 29

Robustness Property Analysis Time (ms)

No points-to assertions (Example 4) 7230
Tracking property (Section 4.1) 11459
Satisfiability (Section 4.2) 12460
Complement of Satisfiability (Section 4.2) 11980
Establishment (Section 4.3) 18055
Complement of Establishment (Section 4.3) 17272
Reachability (Section 4.4) 14897
Garbage-Freedom (Section 4.5) 18192
Weak Acyclicity (Section 4.6) 18505

Table 1. Total analysis time for robustness properties presented throughout the paper
on the second set of benchmarks, i.e., 45945 automatically inferred SIDs.

Moreover, we ran Harrsh and Cyclist to check satisfiability of the third
set and additional handwritten benchmarks distributed with Cyclist. For both
tools, we chose a timeout of 5 minutes. The measured analysis times for this set
are shown in Table 2.

Notably, the tools yield different results for the SID contained in the file
inconsistent-ls-of-ls.def. While Harrsh states that this SID is satisfi-
able, Cyclist states that it is not. Despite the benchmark’s name, however, the
underlying SID

P ⇐ x = null

P ⇐ Q(xx) : {x 6= null}

Q⇐ ∃c, d.x 7→ (d, c) ∗ P (d) : {y = null, x 6= null}

Q⇐ ∃c, d.x 7→ (d, c) : {y 6= null}

is satisfiable: Clearly x = null is a satisfiable unfolding of Px. Using this un-
folding to replace the predicate call P (d) in the third rule, we also obtain a a
satisfiable unfolding of Q(x, y):

∃c, d.x 7→ (d, c) : {d = null, y = null, x 6= null}

A.3 Proof of Lemma 1

By induction on the height k of unfolding trees of ϕ.

I.B. If k = 0 then ‖Γϕ‖ = 0, i.e., ϕ contains no predicate calls. Thus JtK = ϕ.
Then, for each (s, h) ∈ States, we have

s, h |=Φ ϕ

⇔ [‖Γϕ‖ = 0]

s, h |=∅ ϕ

30 Jansen, Katelaan, Matheja, Noll, Zuleger

Benchmark Harrsh Cyclist

inconsistent-ls-of-ls.defs 1 4 (not correct)
succ-rec01.defs 3 0
succ-rec02.defs 10 8
succ-rec03.defs 24 12
succ-rec04.defs 106 20
succ-rec05.defs 496 128
succ-rec06.defs 2175 792
succ-rec07.defs 9692 4900
succ-rec08.defs 39408 31144
succ-rec09.defs 169129 164464
succ-rec10.defs TO TO
succ-circuit01.defs 80 4
succ-circuit02.defs 142 8
succ-circuit03.defs 699 48
succ-circuit04.defs 4059 832
succ-circuit05.defs 75110 28800
succ-circuit06.defs TO TO

Table 2. Comparison of Harrsh and Cyclist for hard instances of the satisfiability
problem. Provided times are in milliseconds. Timeouts (TO) are set to 5 minutes.

⇔ [UΦ(ϕ) = {ϕ}]

∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.

I.H. Assume for an arbitrary, but fixed, natural number k that for each Φ ∈
SID, ϕ ∈ SHΦ, where each t ∈ TΦ(ϕ) is of height at most k, it holds for each
(s, h) ∈ States that

s, h |=Φ ϕ iff ∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.

I.S. Let Φ ∈ SID and ϕ ∈ SHΦ such that each t ∈ TΦ(ϕ) is of height at most
k + 1. We proceed by structural induction on the syntax of ϕ. For ϕ = emp,
ϕ = x 7→ (a), ϕ = (a = b), ϕ = (a 6= b), the height of all unfolding trees is
0 < k + 1, i.e., there is nothing to show. If ϕ = Pa then JtK = Jt|1K holds for
each unfolding of ϕ. Since t is of height at most k+1, t|1 is of height at most k.
By I.H. we obtain for each (s, h) ∈ States that

s, h |=Φ Pa iff ∃τ ∈ UΦ(Pa) . s, h |=∅ τ.

If ϕ = ϕ1 ∗ ϕ2, we have for each (s, h) ∈ States:

s, h |=Φ ϕ1 ∗ ϕ2

⇔ [Semantics of ∗]

∃h1, h2.h = h1 ⊎ h2 and s, h1 |=Φ ϕ1 and s, h2 |=Φ ϕ2

⇔ [I.H. on ϕ1]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 31

∃h1, h2.h = h1 ⊎ h2

and ∃τ1 ∈ UΦ(ϕ1).s, h1 |=Φ τ1

and s, h2 |=Φ ϕ2

⇔ [I.H. on ϕ2]

∃h1, h2.h = h1 ⊎ h2

and ∃τ1 ∈ UΦ(ϕ1).s, h1 |=∅ τ1

and ∃τ2 ∈ UΦ(ϕ2).s, h2 |=∅ τ2

⇔
[

UΦ(ϕ1 ∗ ϕ2) = {(ϕ1 ∗ ϕ2)[Γ
ϕ1/τ1, Γ

ϕ2/τ2] | τ1 ∈ UΦ(ϕ1),

τ2 ∈ UΦ(ϕ2)}
]

∃τ ∈ UΦ(ϕ1 ∗ ϕ2) . s, h |=∅ τ

Finally, we consider the case ϕ = ∃z . Σ ∗ Γ : Π . The crux of the proof relies
on the observation that for each t ∈ TΦ(ϕ) and each t′ ∈ TΦ(Σ ∗ Γ), we have
t(ε) = ∃z.t′(ε) : Π . Thus

UΦ(ϕ) = {∃z.τ ′ : Π | τ ′ ∈ UΦ(Σ ∗ Γ)}. (†)

Then we have for each (s, h) ∈ States:

s, h |=Φ ∃z.Σ ∗ Γ : Π

⇔ [SL semantics]

∃v ∈ Val‖z‖ . s [z 7→ v] , h |=Φ Σ ∗ Γ

and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

⇔ [I.H. on Σ ∗ Γ]

∃v ∈ Val‖z‖ . ∃τ ′ ∈ UΦ(Σ ∗ Γ) . s [z 7→ v] , h |=∅ τ
′

and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

⇔ [∃x∃y ≡ ∃y∃x]

∃τ ′ ∈ UΦ(Σ ∗ Γ) . ∃v ∈ Val‖z‖ . s [z 7→ v] , h |=∅ τ
′

and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

⇔ [apply (†)]

∃τ ∈ UΦ(ϕ) . s, h |=∅ τ.

⊓⊔

A.4 Coincidence Lemma for Symbolic Heaps

Lemma 10. Let Φ ∈ SID and ϕ ∈ SHΦ. Moreover, let (s, h) ∈ States. Then
s, h |=Φ ϕ iff (s ↾xϕ0), h |=Φ ϕ, where s ↾xϕ0 denotes the restriction of the domain
of s to the free variables of ϕ.

Proof. By structural induction on the syntax of symbolic heaps ϕ.

32 Jansen, Katelaan, Matheja, Noll, Zuleger

ϕ = emp

s, h |=Φ emp

⇔ [SL semantics]

dom(h) = ∅

⇔ [xemp
0 = ∅]

(s ↾xemp
0

), h |=Φ emp.

ϕ = x 7→ (a)

s, h |=Φ x 7→ (a)

⇔ [SL semantics]

dom(h) = {s(x)} and h(s(x)) = s(a)

⇔
[

x
x 7→(a)
0 = {x} ∪ a

]

(s ↾
x
x 7→(a)
0

), h |=Φ x 7→ (a).

ϕ = (a ∼ b), ∼∈ {=, 6=}

s, h |=Φ a ∼ b

⇔ [SL semantics]

s(a) ∼ s(b)

⇔
[

xa∼b0 = {a, b}
]

(s ↾xa∼b0
), h |=Φ a ∼ b.

ϕ = σ ∗ τ

s, h |=Φ σ ∗ τ

⇔ [SL semantics]

∃h1, h2 . h = h1 ⊎ h2 and s, h1 |=Φ σ and s, h2 |=Φ τ

⇔ [I.H.]

∃h1, h2 . h = h1 ⊎ h2

and (s ↾xσ0 , h1) |=Φ σ and (s ↾xτ0 , h2) |=Φ τ

⇔ [xτ0 ,x
σ
0 ⊆ dom(s), I.H.]

∃h1, h2 . h = h1 ⊎ h2

and (s ↾xσ0∪xτ0
, h1) |=Φ σ and (s ↾xσ0∪xτ0

, h2) |=Φ τ

⇔ [xσ∗τ0 = xσ0 ∪ xτ0 , SL semantics]

(s ↾xσ∗τ0
), h |=Φ σ ∗ τ.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 33

ϕ = Pa

s, h |=Φ Pa

⇔ [SL semantics]

∃τ ∈ UΦ(Pa) s, h |=∅ τ

⇔ [I.H.]

∃τ ∈ UΦ(Pa) (s ↾xτ0), h |=Φ τ

⇔
[

xPa
0 = xτ0

]

(s ↾xPa

0
), h |=Φ Pa.

ϕ = ∃z . Σ ∗ Γ : Π

s, h |=Φ ∃z . Σ ∗ Γ : Π

⇔ [SL semantics]

∃v ∈ Val‖z‖ . s [z 7→ v] , h |=Φ Σ ∗ Γ

and ∀π ∈ Π . s [z 7→ v] , h |=Φ π

⇔ [I.H. on Σ ∗ Γ and π]

∃v ∈ Val‖z‖ . (s [z 7→ v] ↾xΣ∗Γ
0

), h |=Φ Σ ∗ Γ

and ∀π ∈ Π . (s [z 7→ v] ↾xπ0), h |=Φ π

⇔
[

dom(s [z 7→ v] ↾xπ0) ⊆ dom((s ↾xπ0)[z 7→ v])
]

∃v ∈ Val‖z‖ . (s ↾xΣ∗Γ
0

[z 7→ v]), h |=Φ Σ ∗ Γ

and ∀π ∈ Π . (s ↾xπ0 [z 7→ v]), h |=Φ π

⇔

[

xϕ0 =

(

xΣ∗Γ
0 ∪

⋃

π∈Π

xπ0

)

\ z

]

∃v ∈ Val‖z‖ . (s ↾xϕ0 [z 7→ v]), h |=Φ Σ ∗ Γ

and ∀π ∈ Π . (s ↾xϕ0 [z 7→ v]), h |=Φ π

⇔ [SL semantics]

(s ↾xϕ0), h |=Φ ∃z . Σ ∗ Γ : Π.

⊓⊔

A.5 The emptiness problem for sets of unfolding trees

The set of unfolding trees of a given symbolic heap ϕ with predicates taken from
an SID Φ can be accepted by a bottom-up tree automaton A. Then, the set of
unfolding trees of ϕ is empty if and only if A accepts the empty language (of
trees). Since the emptiness problem of tree automata is PTime–complete (cf.
[18, Theorem 1.7.4]), so is the question whether the set of unfolding trees of a
given symbolic heap is empty.

34 Jansen, Katelaan, Matheja, Noll, Zuleger

Formally, let Φ ∈ SID and ϕ ∈ SHΦ. Then the set of unfolding trees of ϕ
w.r.t. Φ is the set of all trees accepted by the tree automaton A = (Q,A,∆, F),
where

Q = {P | P ⇐ ψ ∈ Φ} ⊎ {S}, F = {S},

A = {ψ | P ⇐ ψ ∈ Φ} ∪ {ϕ},

P1 . . . Pm
ψ
−→ P0 iff P0 ⇐ ψ ∈ Φ or ψ = ϕ and P0 = S,

where Γψ = P1x1 ∗ . . . ∗ Pmxm.

A.6 Proof of Theorem 2

Theorem 2. Let A and B be heap automata over SHC. Then there exists a heap
automata C1,C2,C3 over SHC with L(C1) = L(A)∪L(B), L(C2) = L(A)∩L(B),
and L(C3) = RSHC \ L(A), respectively.

Proof. We split the proof across three lemmas that are proven subsequently.
Closure under union and intersection are shown in Lemma 11 and Lemma 12,
respectively. Finally, closure under complement with respect to RSHC is proven
in Lemma 13. ⊓⊔

Lemma 11. Let A,B be heap automata over SHC. Then there exists a heap
automaton C over SHC such that L(C) = L(A) ∪ L(B).

Proof. We construct a heap automaton C = (Q, SHC , ∆, F) as follows:

Q , (QA ∪ {⊥})× (QB ∪ {⊥})

F , FA × {⊥} ∪ {⊥} × FB

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→C (p0, q0) ⇔

p1 . . . pm
ϕ
−→A p0 and p2 = ⊥ or

q1 . . . qm
ϕ
−→B q0 and p1 = ⊥ ,

where ϕ ∈ SHC with ‖Γϕ‖ = m. Moreover, ⊥ is assumed to be a fresh state.
Clearly, ∆ is decidable, because ∆A and ∆B are. Assuming C satisfies the

compositionality property, we first show that the language of C in fact accepts
L(A) ∪ L(B):

τ ∈ L(A) ∪ L(B)

⇔ [Definition of ∪]

τ ∈ L(A) or τ ∈ L(B)

⇔ [Definition of L(A), L(B)]

∃p ∈ FA . ε
τ
−→A p or ∃q ∈ FB . ε

τ
−→B q

⇔ [construction of C]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 35

∃p ∈ FA . ε
τ
−→C (p,⊥) or ∃q ∈ FB . ε

τ
−→C (⊥, q)

⇔ [Definition of F]

∃(p, q) ∈ F . ε
τ
−→C (p, q).

It remains to show the compositionality property, i.e., for each p ∈ Q, ϕ ∈ SHC

with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHC with σ = ϕ[P1/τ1, . . . , Pm/τm], we have

ε
σ
−→C p ⇔ ∃q ∈ Qm .q

ϕ
−→C p and ∀1 ≤ i ≤ m. ε

τi−→C q[i] .

In the following proof, we write p1, p2 to denote the first and second component
of p ∈ Q, respectively.

ε
σ
−→C p

⇔ [construction of C]

p2 = ⊥ and ε
σ
−→A p1 or p1 = ⊥ and ε

σ
−→B p2

⇔ [compositionality of A,B]

p2 = ⊥ and ∃q1 ∈ QmA .q1
ϕ
−→A p1 and

∀1 ≤ i ≤ m. ε
τi−→A q1[i]

or

p1 = ⊥ and ∃q2 ∈ QmB .q2
ϕ
−→B p2 and

∀1 ≤ i ≤ m. ε
τi−→B q2[i]

⇔
[

setting q = (q1[1] ,q2[1]) . . . (q1[m] ,q2[m]), construction of C
]

∃q ∈ Qm .q
ϕ
−→C p and ∀1 ≤ i ≤ m. ε

τi−→C q[i] .

⊓⊔

Lemma 12. Let A,B be heap automata over SHC. Then there exists a heap
automaton C over SHC such that L(C) = L(A) ∩ L(B).

Proof. Let A,B be heap automata over SHC accepting H and K. We construct
a heap automaton C = (Q, SHC , ∆, F) as follows:

Q , QA ×QB F , FA × FB

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→C (p0, q0) ⇔

p1 . . . pm
ϕ
−→A p0 and q1 . . . qm

ϕ
−→B q0 ,

where ϕ ∈ SHC with ‖Γϕ‖ = m. Decidability of ∆ follows immediately from
decidability of ∆A and ∆B. Assuming C satisfies the compositionality property,
we first show that L(C) = L(A) ∩ L(B):

τ ∈ L(A) ∩ L(B)

⇔ [Definition of ∩]

36 Jansen, Katelaan, Matheja, Noll, Zuleger

τ ∈ L(A) and τ ∈ L(B)

⇔ [Definition of L(A), L(B)]

∃p ∈ FA . ε
τ
−→A p and ∃q ∈ FB . ε

τ
−→B q

⇔ [construction of C]

∃(p, q) ∈ F . ε
τ
−→C (p, q)

It remains to show the compositionality property, i.e., for each p ∈ Q, ϕ ∈ SHC

with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHC with σ = ϕ[P1/τ1, . . . , Pm/τm], we have

ε
σ
−→C p ⇔ ∃q ∈ Qm .q

ϕ
−→C p and ∀1 ≤ i ≤ m. ε

τi−→C q[i] .

In the following proof, we write p1, p2 to denote the first and second component
of p ∈ Q, respectively.

ε
σ
−→C p

⇔ [construction of C]

ε
σ
−→A p1 and ε

σ
−→B p2

⇔ [compositionality of A,B]

∃q1 ∈ QmA .q1
ϕ
−→A p1 and

∀1 ≤ i ≤ m. ε
τi−→A q1[i]

and

∃q2 ∈ QmB .q2
ϕ
−→B p2 and

∀1 ≤ i ≤ m. ε
τi−→B q2[i]

⇔
[

setting q = (q1[1] ,q2[1]) . . . (q1[m] ,q2[m]),

construction of C
]

∃q ∈ Qm .q
ϕ
−→C p and ∀1 ≤ i ≤ m. ε

τi−→C q[i] .⊓⊔

Lemma 13. Let A be a heap automaton over SHC. Then there exists a heap
automaton C over SHC such that L(C) = RSHC \ L(A).

Proof. We construct a heap automaton C = (Q, SHC , ∆, F) accepting RSHC \
L(A) as follows:

Q , 2QA F , {X ⊆ QA | X ∩ FA = ∅}

∆ : X1 . . .Xm
ϕ
−→C X0 ⇔

∀q0 ∈ X0.∀1 ≤ i ≤ m.∃qi ∈ Xi . q1 . . . qm
ϕ
−→A q0

and

∀q0 /∈ X0.∀1 ≤ i ≤ m.∀qi ∈ Xi . not q1 . . . qm
ϕ
−→A q0 ,

where ϕ ∈ SHC with ‖Γϕ‖ = m. Decidability of ∆ follows immediately from
decidability of ∆A. Assuming C satisfies the compositionality property, we first

Unified Reasoning about Robustness Properties of Symbolic-Heaps 37

show that L(C) = RSHC \ L(A):

τ ∈ RSHC \ L(A)

⇔ [Definition of RSHC \ L(A)]

∀p ∈ FA . not ε
τ
−→A p

⇔ [Definition of F]

⇔ ∃X ∈ F . ∀p ∈ X . ε
τ
−→A p and ∀p /∈ X . and ε

τ
−→A p

⇔ [construction of C]

⇔ ∃X ∈ F . ε
τ
−→C X

It remains to show the compositionality property, i.e., for each X ∈ Q, ϕ ∈ SHC

with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHC with σ = ϕ[P1/τ1, . . . , Pm/τm], we have

ε
σ
−→C p ⇔ ∃Y ∈ Qm .Y

ϕ
−→C X and ∀1 ≤ i ≤ m. ε

τi−→C Y[i]

Assume ε
σ
−→C X . We choose Y such that for each 1 ≤ i ≤ m, we have

Y[i] , {q ∈ Q | ε
τi−→A q}.

Then ε
τi−→C Y[i] and Y

ϕ
−→C X hold immediately by construction and our choice

of Y.
For the converse direction assume there exists Y ∈ Qm such that Y

ϕ
−→C X

and for each 1 ≤ i ≤ m, we have ε
τi−→C Y[i]. Two cases arise for each p ∈ QA.

First, assume p ∈ X . By construction, there exists a qi ∈ Y[i] for each 1 ≤ i ≤ m

such that q1 . . . qm
ϕ
−→A p and ε

τi−→A qi, 1 ≤ i ≤ m. Since A is a heap automaton
this implies ε

σ
−→A p.

Second, assume p /∈ X . Then for each choice of qi ∈ qi ∈ Y[i], 1 ≤ i ≤ m, we

know by construction of ∆ that q1 . . . qm
ϕ
−→A p as well as ε

τi−→A qk do not hold.
Since A is a heap automaton this implies that ε

σ
−→A p does not hold.

Putting both cases together yields ε
σ
−→C X . ⊓⊔

A.7 Proof of Theorem 1

The following lemma is essential to show that our construction of Ψ is correct.

Lemma 14. Let Φ, Ψ and A be as in Theorem 1. Then, for each P ∈ Pred(Φ)
and q ∈ QA, we have

τ ∈ UΨ ((P, q)x0) iff τ ∈ UΦ(Px0) and ε
τ
−→A q.

Proof. Let P ∈ Pred(Φ) and q ∈ QA. By induction on the height k of unfolding
trees t, we show

t ∈ TΨ ((P, q)x0) ⇔ ∃t′ ∈ TΦ(Px0) . Jt′K = JtK

and ε
JtK
−−→A q.

38 Jansen, Katelaan, Matheja, Noll, Zuleger

I.B. Note that, by Definition of unfolding trees, t(ε) = (P, q)x0. If k = 0 there
is nothing to show.Thus assume k = 1. Then

JtK

= [Definition of JtK]

(P, q)x0 [(P, q)/Jt|1K]

= [Definition of predicate replacement]

= Jt|1K

= [k = 1 implies Jt|1K = t(1) ∈ RSH]

= t(1).

Hence

t ∈ TΨ ((P, q)x0)

⇔ [Definition 2, k = 1]

(P, q) ⇐ t(1) ∈ Ψ

⇔ [Construction of Ψ]

P ⇐ t(1) ∈ Φ and ε
q
−→A t(1)

⇔ [Definition 2]

∃t′ ∈ TΦ(Px0) . JtK = t(1) and ε
q
−→A t(1)

⇔ [JtK = t(1)]

∃t′ ∈ TΦ(Px0) . Jt
′K = JtK and ε

q
−→A JtK.

I.H. Assume for an arbitrary, but fixed natural number k that for each predicate
symbol P ∈ Pred(Φ), each state q ∈ A and each unfolding tree t ∈ TΨ ((P, q)x0)
of height at most k, we have

t ∈ TΨ ((P, q)x0) ⇔ ∃t′ ∈ TΦ(Px0) . Jt′K = JtK

and ε
JtK
−−→A q.

I.S. Let t ∈ TΨ ((P, q)x0) be an unfolding tree of height k+1. Then t(1) is not a
reduced symbolic heap (otherwise the height of t would be 1). Thus, given some
m ≥ 1, we may assume that

t(1) = ∃z.Σ ∗ (P1, q1)x1 ∗ . . . ∗ (Pm, qm)xm : Π

Then

JtK

= [Definition of JtK]

t(ε)[(P, q)/Jt|1K]

= [t(ε) = (P, q)x0, definition of predicate replacement]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 39

Jt|1K

= [Definition of JtK]

t(1)[(P1, q1)/Jt|1·1K, . . . (Pm, qm)/Jt|1·mK]. (♠)

Now, for each 1 ≤ i ≤ m, t|1·i is an unfolding tree of (Pi, qi)x0 of height at most
k. Thus, by I.H. we know that

t|1·i ∈ TΨ ((Pi, qi)x0) ⇔ ∃ti ∈ TΦ(Pix0) . JtiK = Jt|1·iK

and ε
Jt|1·iK
−−−−→A qi.

Then

t ∈ TΨ ((P, q)x0)

⇔ [Definition 2, k > 1]

(P, q) ⇐ t(1) ∈ Ψ

and ∀1 ≤ i ≤ m . t|i ∈ TΨ ((Pi, qi)x0)

⇔ [Construction of Ψ]

P ⇐ (∃z.Σ ∗ P1x1 ∗ . . . ∗ Pmxm : Π) ∈ Φ

and q1 . . . qm
t(1)
−−→A q

and ∀1 ≤ i ≤ m . t|i ∈ TΨ ((Pi, qi)x0)

⇔ [I.H.]

P ⇐ (∃z.Σ ∗ P1x1 ∗ . . . ∗ Pmxm : Π) ∈ Φ

and q1 . . . qm
t(1)
−−→A q

and ∀1 ≤ i ≤ m . ∃ti ∈ TΦ(Pix0) . JtiK = Jt|1·iK

and ε
Jt|1·iK
−−−−→A qi.

⇔
[

Definition 2, t′(1) , ∃z.Σ ∗ P1x1 ∗ . . . ∗ Pmxm : Π
]

∃t′ ∈ TΦ(Px0) . Jt′K = t′(1)[P1/Jt|1·1K, . . . , Pm/Jt|1·mK]

and q1 . . . qm
t(1)
−−→A q

and ∀1 ≤ i ≤ m . ε
Jt|1·iK
−−−−→A qi

⇔ [Definition 6]

∃t′ ∈ TΦ(Px0) . Jt′K = t′(1)[P1/Jt|1·1K, . . . , Pm/Jt|1·mK]

and ε
Jt|1K
−−−→A q

⇔ [applying (♠)]

∃t′ ∈ TΦ(Px0) . Jt′K = JtK and ε
JtK
−−→A q.

To finish the proof, note that

τ ∈ UΨ ((P, q)x0)

40 Jansen, Katelaan, Matheja, Noll, Zuleger

⇔ [Definition 4]

∃t ∈ TΨ ((P, q)x0) . JtK = τ

⇔ [previously shown proposition]

∃t′ ∈ TΦ(Px0) . Jt′K = τ and ε
τ
−→A q

⇔ [Definition 4]

τ ∈ UΦ(Px0) and ε
τ
−→A q.⊓⊔

We are now in a position to prove Theorem 1.

Proof (Proof of Theorem 1). It remains to show that for each P ∈ Pred(Φ),
we have UΨ (Px0) = UΦ(Px0) ∩ L(A). By Lemma 14, we know that for each
P ∈ Pred(Φ) and q ∈ QA, we have

τ ∈ UΨ ((P, q)x0) iff τ ∈ UΦ(Px0) and ε
τ
−→A q. (⋆)

Then

τ ∈ UΨ (Px0)

⇔ [Definition 4]

∃t ∈ TΨ (Px0) . JtK = τ

⇔ [JtK = Px0[Px0/Jt|1K] = Jt|1K]

∃t ∈ TΨ (Px0) . Jt|1K = τ

⇔
[

P ⇐ (P, q) ∈ Ψ ⇔ q ∈ FA and t(ε) = Px0

implies ∃q ∈ FA.t(1) = (P, q)x0

]

∃q ∈ FA.∃t
′ ∈ TΨ ((P, q)x0) . Jt′K = τ

⇔ [Definition 4]

∃q ∈ FA . τ ∈ UΨ ((P, q)x0)

⇔ [applying (⋆)]

∃q ∈ FA . τ ∈ UΦ(Px0) and ε
τ
−→A q.

⇔
[

τ ∈ L(A) ⇔ ∃q ∈ FA . ε
τ
−→A q

]

τ ∈ UΦ(Px0) and τ ∈ L(A)

⇔ [x ∈ A ∧ x ∈ B ⇔ x ∈ A ∩B]

τ ∈ UΦ(Px0) ∩ τ ∈ L(A).

⊓⊔

A.8 Details on definite relationships

This section briefly shows how to compute the definite relationships =τ , 6=τ ,
alloc(τ) and x 7→τ y introduced at the beginning of Section 4.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 41

Definition 16. Let τ = ∃z . Σ : Π ∈ RSH. Then the completion of τ is given
by the symbolic heap complete(τ) , ∃z . Σ : closure(Λ), where closure(Λ) de-
notes the reflexive, symmetric, and transitive closure w.r.t. = and the symmetric
closure w.r.t. 6= of the set of pure formulas Λ given by

Π ∪ {x 6= null | x 7→ () occurs in Σ}

∪ {x 6= y | x 7→ (), y 7→ () distinct points-to assertions in Σ}.

Moreover, if closure(Λ) is inconsistent, i.e., x 6= x or null 6= null is contained in
closure(Λ), we define closure(Λ) to be the set of all pure formulas over Var(τ).

Clearly, Λ is computable in at most quadratic time. Then computing closure(Λ)
is possible in at most cubic time. Finally, checking for inconsistencies can be
performed in linear time. Hence, the completion of a reduced symbolic heap is
computable in polynomial time. The following lemma provides a characterization
of each of the definite relationships between variables introduced in Section 4.

Lemma 15. Let τ ∈ RSH and x, y ∈ Var(τ). Moreover, let σ = complete(τ).
Then

– x =τ y iff x = y ∈ Πσ,
– x 6=τ y iff x 6= y ∈ Πσ,
– x ∈ alloc(τ) iff x 6= x ∈ Πσ or there exists z 7→ () in Σσ such that
x = z ∈ Πσ,

– x 7→τ y iff x 6= x ∈ Πσ or there exists z1 7→ ((, z2,)) in Σσ such that
x = z1 ∈ Πσ and y = z2 ∈ Πσ. ⊓⊔

In particular, the right-hand side of each of these characterizations is easily
computable in polynomial time once a completion of a symbolic heap has been
computed.

Proof. Let τ = ∃z . Σ : Π . Then, for each (s, h) ∈ Models(τ), we know by

the SL semantics (cf. Figure 1) that there exists v ∈ Val‖z‖ such that s′ =
s[z 7→ v], dom(h) = {s′(x) | x 7→ (y) in Σ}, h(s′(x)) = s′(y) for each x 7→ (y)
in Σ , and for each x ∼ y ∈ Π , s′(x) ∼ s′(y). The same holds for σ except
that Π is substituted by closure(Λ) (although each additional pure formula is
already implied by the conditions from above). Thus, Models(τ) = Models(σ).
Furthermore, by construction ofΠσ = closure(Λ), we have x =σ y iff x = y ∈ Πσ

and x 6=σ iff x 6= y ∈ Πσ. Then, each of the properties in Lemma 15 is easy to
verify. ⊓⊔

A.9 Appendix to Section 4

A.9.1 Proof of Lemma 3

Note that some statements are broken down into separate lemmas which are
shown immediately afterwards.

42 Jansen, Katelaan, Matheja, Noll, Zuleger

Lemma 3. For all α ∈ N>0 and all sets A ⊆ x0, Π ∈ Pure(x0), there is a heap
automaton over SHFV≤α accepting TRACK(α,A,Π).

Proof. It suffices to show that the heap automaton ATRACK constructed in Defini-
tion 10 satisfies the compositionality property and accepts TRACK(α,A,Π). We
first show the latter, i.e., L(ATRACK) = TRACK(α,A,Π). Let τ ∈ RSHFV≤α . Then

τ ∈ L(ATRACK)

⇔ [Definition L(ATRACK)]

∃(A′, Π ′) ∈ FATRACK
. ε

τ
−→ATRACK

(A′, Π ′)

⇔ [FATRACK
= {(A,Π)}]

ε
τ
−→ATRACK

(A,Π)

⇔ [Definition ∆]

∀x, y ∈ xτ0 . x ∈ A↔ x ∈ alloc(compress(τ, ε))

and (x ∼ y) ∈ Π ↔ x ∼compress(τ,ε) y

⇔ [Definition 10 : compress(τ, ε) = τ]

∀x, y ∈ xτ0 . x ∈ A↔ x ∈ alloc(τ)

and (x ∼ y) ∈ Π ↔ x ∼τ y

⇔ [Definition TRACK(α,A,Π)]

τ ∈ TRACK(α,A,Π).

The compositionality property of ATRACK is verified separately in Lemma 17, which
is proven in the remainder of this section. ⊓⊔

Lemma 17. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m ≥ 0. Moreover, for each 1 ≤ i ≤
m, let τi ∈ RSHFV≤α with ‖xτi0 ‖ = ‖xϕi ‖. Then, for τ = ϕ[P1/τ1, . . . Pm/τm],

we have ε
τ
−→ATRACK

(A0, Π0) if and only if there exist (A1, Π1), . . . , (Am, Πm) ∈
QATRACK

such that

(A1, Π1) . . . (Am, Πm)
ϕ
−→ATRACK

(A0, Π0)

and, for each 1 ≤ i ≤ m, we have ε
τi−→ATRACK

(Ai, Πi).

Proof. Recall from Definition 10 that

compress(ϕ,q) , ϕ [P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] .

Moreover, for each 1 ≤ i ≤ m, let

Ai , {x0[ℓ] | xτi0 [ℓ] ∈ alloc(τi)}, and

Πi , {x0[ℓ] ∼ x0[k] | xτi0 [ℓ] ∼τi x
τi
0 [k]}.

Then

ε
τ
−→ATRACK

(A0, Π0)

Unified Reasoning about Robustness Properties of Symbolic-Heaps 43

⇔ [Definition of ∆ and ‖Γ τ‖ = 0]

∀x, y ∈ x0. x ∈ A0 iff xϕ ∈ alloc(τ)

and x ∼ y ∈ Π0 iff xϕ ∼τ y
ϕ

⇔ [choice of Ai and Πi for each 1 ≤ i ≤ m]

∃q = (A1, Π1) . . . (Am, Πm) ∈ QmATRACK
. ∀x, y ∈ x0.

x ∈ A0 iff xϕ ∈ alloc(τ)

and x ∼ y ∈ Π0 iff xϕ ∼τ y
ϕ

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

(Ai, Πi)

⇔
[

Lemma 19
]

∃q = (A1, Π1) . . . (Am, Πm) ∈ QmATRACK
. ∀x, y ∈ x0.

x ∈ A0 iff xϕ ∈ alloc(compress(ϕ,q))

and x ∼ y ∈ Π0 iff xϕ ∼compress(ϕ,q) y
ϕ

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

(Ai, Πi)

⇔ [Definition of ∆]

∃q = (A1, Π1) . . . (Am, Πm) ∈ QmATRACK
.

(A1, Π1) . . . (Am, Πm)
ϕ
−→A (A0, Π0)

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

(Ai, Πi).

⊓⊔

It remains to show that Lemma 19. The crux of the proof of Lemma 19 is the
following observation.

Lemma 18. Let ϕ = ∃z.Σ ∗ P1x1 : Π ∈ SHFV≤α . Moreover, let τ ∈ RSH with
‖xτ0‖ = ‖xϕ1 ‖, A = {y ∈ x0 | yτ ∈ alloc(τ)} and Λ = {x ∼ y | xτ ∼τ yτ}. Then,
for each x, y ∈ Var(ϕ), we have

x ∼ϕ[P1/τ] y iff x ∼ϕ[P1/kernel(P1x1,(A,Λ))]
y, and

x ∈ alloc(ϕ[P1/τ]) iff x ∈ alloc(ϕ [P1/kernel(P1x1, (A,Λ))]) ,

where kernel(P1x1, (A,Λ)) is defined in Section 4 (above Definition 10).

Proving this lemma in turn relies on some auxiliary results, in particular, we
need Lemma 22 and Lemma 23, which are proven at the end of this section.

Proof.

x ∼ϕ[P1/τ] y

⇔
[

Definition of ∼ϕ[P1/τ]

]

∀(s, h) . s, h |=∅ ϕ[P1/τ] implies s(x) ∼ s(y)

⇔ [logic]

∀(s, h) . (∃h′ . s, h′ |=∅ ϕ[P1/τ]) implies s(x) ∼ s(y)

44 Jansen, Katelaan, Matheja, Noll, Zuleger

⇒ [Lemma 20]

∀(s, h) . (∃h′ . s, h′ |=∅ ϕ[P1/τ]) implies s(x) ∼ s(y)

and s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]

implies (∃h′ . s, h′ |=∅ ϕ[P1/τ])

⇒ [B → C ∧ A→ B implies A→ C]

∀(s, h) . s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))] implies s(x) ∼ s(y)

⇔
[

Definition of ∼ϕ[P1/kernel(P1x1,(A,Λ))]

]

x ∼ϕ[P1/kernel(P1x1,(A,Λ))]
y.

Furthermore, we obtain

x ∈ alloc(ϕ[P1/τ])

⇔ [Definition of alloc(ϕ[P1/τ])]

∀(s, h) . s, h |=∅ ϕ[P1/τ] implies s(x) ∈ dom(h)

⇔ [logic]

∀(s, h) . (∃h′ . s, h′ |=∅ ϕ[P1/τ]

and ∀y ∈ dom(s) . s(y) ∈ dom(h) iff s(y) ∈ dom(h′))

implies s(x) ∈ dom(h)

⇒ [Lemma 20]

∀(s, h) . (∃h′ . s, h′ |=∅ ϕ[P1/τ]

and ∀y ∈ dom(s) . s(y) ∈ dom(h) iff s(y) ∈ dom(h′))

implies s(x) ∈ dom(h)

and s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]

implies (∃h′ . s, h′ |=∅ ϕ[P1/τ]

and ∀y ∈ dom(s) . s(y) ∈ dom(h) iff s(y) ∈ dom(h′))

⇒ [Y → Z ∧ X → Y implies X → Z]

∀(s, h) . s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]

implies s(x) ∈ dom(h)

⇔ [Definition of alloc(ϕ [P1/kernel(P1x1, (A,Λ))])]

x ∈ alloc(ϕ [P1/kernel(P1x1, (A,Λ))]).

The proof of the converse direction is analogous, where the main difference is
consists of using the property

s, h |=∅ ϕ[P1/τ] implies ∃h′ . s, h′ |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]

and ∀y ∈ dom(s) . s(y) ∈ dom(h) iff s(y) ∈ dom(h′)

instead of Lemma 20. This property is shown analogous to Lemma 20 except
that we apply Lemma 23 instead of Lemma 22. ⊓⊔

Unified Reasoning about Robustness Properties of Symbolic-Heaps 45

Lemma 19. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m ≥ 0. For each 1 ≤ i ≤ m,
let τi ∈ RSHFV≤α with ‖xτi0 ‖ = ‖xϕi ‖, Ai = {y ∈ x0| y

τi ∈ alloc(τi)} and
Πi = {x ∼ y | xτi ∼τi y

τi}. Moreover, let

q , (A1, Π1) . . . (Am, Πm),

τ , ϕ [P1/τ1, . . . , Pm/τm] , and

compress(ϕ,q) , ϕ [P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] .

Then, for each x, y ∈ Var(ϕ), we have

x ∈ alloc(τ) iff x ∈ alloc(compress(ϕ,q)), and

x ∼τ y iff x ∼compress(ϕ,q) y.

Proof. We apply Lemma 18 iteratively to

ψ0 = ϕ[P1/τ1, P2/τ2, . . . , Pm/τm] = τ

ψ1 = ϕ[P1/kernel(P1x1,q[1]),P2/τ2, . . . , Pm/τm]

ψ2 = ϕ[P1/kernel(P1x1,q[1]), P2/kernel(P2x2,q[2]),P3/τ3, . . . , Pm/τm]

. . .

ψi = ϕ[P1/kernel(P1x1,q[1]), . . . , Pi/kernel(Pixi,q[i]),

Pi+1/τi+1, . . . Pm/τm]
]

. . .

ψm = ϕ[P1/kernel(P1x1,q[1]), . . . , Pm/kernel(Pmxm,q[m])] = compress(ϕ,q).

Here, the replacement written in bold is the single predicate call to which
Lemma 18 is applied. As a result, we obtain for each 0 ≤ i, j ≤ m and each
pair of variables x, y ∈ Var(ϕ) that

x ∼ψi y iff x ∼ψj y and x ∈ alloc(ψi) iff x ∈ alloc(ψj).

In particular, for i = 0 and j = m, this yields

x ∈ alloc(τ) iff x ∈ alloc(compress(ϕ,q)), and

x ∼τ y iff x ∼compress(ϕ,q) y.

⊓⊔

It remains to prove the missing Lemmas.

Lemma 20. Given the setting of Lemma 18, it holds that

s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))] implies

∃h′ . s, h′ |=∅ ϕ[P1/τ] and ∀y ∈ dom(s) .

s(y) ∈ dom(h) iff s(y) ∈ dom(h′).

46 Jansen, Katelaan, Matheja, Noll, Zuleger

Proof. Assume s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]. Then

s, h |=∅ ϕ [P1/kernel(P1x1, (A,Λ))]

⇔ [SL semantics]

∃v ∈ Val‖z‖ . ∃h1, h2 . h = h1 ⊎ h2

and s[z 7→ v], h1 |=∅ Σ

and s[z 7→ v], h2 |=∅ kernel(P1x1, (A,Λ))

and ∀a ∼ b ∈ Π . s[z 7→ v](a) ∼ s[z 7→ v](b)

⇔ [Lemma 10]

∃v ∈ Val‖z‖ . ∃h1, h2 . h = h1 ⊎ h2

and s[z 7→ v], h1 |=∅ Σ

and (s[z 7→ v] ↾ x
kernel(P1x1,(A,Λ))
0), h2 |=∅ kernel(P1x1, (A,Λ))

and ∀a ∼ b ∈ Π . s[z 7→ v](a) ∼ s[z 7→ v](b)

⇒
[

Lemma 22, x
kernel(P1x1,(A,Λ))
0 = xτ0

]

∃v ∈ Val‖z‖ . ∃h1, h2 . h = h1 ⊎ h2

and s[z 7→ v], h1 |=∅ Σ

and ∃h′2.(s[z 7→ v] ↾ xτ0), h
′
2 |=∅ τ

and ∀y ∈ dom(s[z 7→ v] ↾ xτ0) .

s(y) ∈ dom(h2) iff s(y) ∈ dom(h′2)

and ∀a ∼ b ∈ Π . s[z 7→ v](a) ∼ s[z 7→ v](b)

⇒
[

SL semantics , dom(h2) ⊆ (s[z 7→ v] ↾ xτ0) ,

set h′ = h1 ⊎ h
′
2

]

∃h′ . s, h′ |=∅ ϕ[P1/τ] and ∀y ∈ dom(s) .

s(y) ∈ dom(h) iff s(y) ∈ dom(h′).

⊓⊔

Lemma 21. Let τ ∈ RSH, A = {x ∈ x0| x
τ ∈ alloc(τ)} and Λ = {x ∼

y | xτ ∼τ yτ}. Moreover, let kernel(P1x1, (A,Λ)) be defined as in Section 4.
Then, for each (s, h) ∈ States with dom(s) = xτ0 , s, h |=∅ kernel(P1x1, (A,Λ))
holds if and only if 14

h = {s(x) 7→ null | x ∈ A} and
∧

x∼y∈Λ

s(x) ∼ s(y)

and
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y).

14 to be strict: h = {. . .} is a shortcut for dom(h) = {s(x) | x ∈ A}, h(s(x)) = null for
each x ∈ A

Unified Reasoning about Robustness Properties of Symbolic-Heaps 47

Proof. Follows immediately from the SL semantics (cf. Figure 1).

Lemma 22. Let τ ∈ RSH, A = {x ∈ x0| x
τ ∈ alloc(τ)} and Λ = {x ∼

y | xτ ∼τ yτ}. Moreover, let kernel(P1x1, (A,Λ)) be defined as in Section 4.
Then, for each (s, h) ∈ States with dom(s) = xτ0 , we have

s, h |=∅ kernel(P1x1, (A,Λ)) implies ∃h′ . s, h′ |=∅ τ.

Furthermore, for each x ∈ dom(s), we have s(x) ∈ dom(h) iff s(x) ∈ dom(h′).

Proof. By structural induction on τ . For readability, we omit equalities of the
form x = x in pure formulas although they are contained in pure formulas of
kernel(P1x1, (A,Λ)) by definition.

The case τ = a ∼ b is trivial, because kernel(P1x1, (A,Λ)) contains a ∼ b.

The case τ = emp is trivial, because A = Λ = ∅ and kernel(P1x1, (A,Λ)) = emp.

The case τ = x 7→ (y) Then A = {x}, Λ = {x 6= null}. Moreover, we know that
kernel(P1x1, (A,Λ)) = x 7→ (null) : {x 6= null}. Hence,

s, h |=∅ kernel(P1x1, (A,Λ))

⇒ [Definition of kernel(P1x1, (A,Λ))]

s, h |=∅ x 7→ (null) : {x 6= null}

⇒ [SL semantics]

s(x) 6= null and h = {s(x) 7→ null}

⇒ [choose h′ = {s(x) 7→ s(y)}]

s(x) 6= null and dom(h′) = {s(x)} and h(s(x)) = s(y)

⇒ [SL semantics]

s, h′ |=∅ x 7→ (y).

Moreover, by our choice of h′, we have dom(h) = dom(h′).

The case τ = Σ1 ∗ Σ2 Let A1, A2 and Λ1, Λ2 denote the sets corresponding to
Σ1 and Σ2, respectively.

s, h |=∅ kernel(P1x1, (A,Λ))

⇒ [Definition kernel(P1x1, (A,Λ))]

s, h |=∅ kernel(P1x1, (A,Λ)) and h = {s(x) 7→ null | x ∈ A}

⇔ [Lemma 21]
∧

x∼y∈Λ

s(x) ∼ s(y) ∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y)

and h = {s(x) 7→ null | x ∈ A}

⇒ [A = A1 ⊎A2]

48 Jansen, Katelaan, Matheja, Noll, Zuleger

∧

x∼y∈Λ

s(x) ∼ s(y) ∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y)

∧ h = {s(x) 7→ null | x ∈ A1} ⊎ {s(x) 7→ null | x ∈ A1}

⇒ [for i = 1, 2 choose hi = {s(x) 7→ null | x 7→ (y) ∈ Σi}]
∧

x∼y∈Λ

s(x) ∼ s(y) ∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y)

∧ h = h1 ⊎ h2

⇒ [Λ1, Λ2 ⊆ Λ]
∧

x∼y∈Λ1

s(x) ∼ s(y) ∧
∧

x∼y∈Λ2

s(x) ∼ s(y)

∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y) ∧ h = h1 ⊎ h2

⇒ [Lemma 21]

s, h1 |=∅ kernel(P1x1, (A1, Λ1)) and s, h2 |=∅ kernel(P1x1, (A2, Λ2))

∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y) ∧ h = h1 ⊎ h2

⇒ [I.H.]

∃h′1, h
′
2 . s, h

′
1 |=∅ Σ1 and s, h′2 |=∅ Σ2

∧ ∀x ∈ dom(s) . s(x) ∈ dom(h1) iff s(x) ∈ dom(h′1)

∧ ∀x ∈ dom(s) . s(x) ∈ dom(h2) iff s(x) ∈ dom(h′2)

∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y) ∧ h = h1 ⊎ h2

⇒ [dom(h1) ∩ dom(h2) = ∅, h′ = h′1 ⊎ h
′
2]

∃h′ = h′1 ⊎ h
′
2 . s, h

′
1 |=∅ Σ1 and s, h′2 |=∅ Σ2

and ∀x ∈ dom(s) . s(x) ∈ dom(h) iff s(x) ∈ dom(h′)

⇒ [SL semantics]

s, h′ |=∅ Σ1 ∗Σ2

and ∀x ∈ dom(s) . s(x) ∈ dom(h) iff s(x) ∈ dom(h′)

The case τ = ∃z .Σ : Π Let τ ′ = strip(τ) = Σ : Π be as τ except that z is
a free variable. Moreover, let A′ and Λ′ be the corresponding sets of allocated
variables and pure formulas between free variables of τ ′. Then

s, h |=∅ kernel(P1x1, (A,Λ))

⇒ [Lemma 21]

h = {s(x) 7→ null | x ∈ A} and
∧

x∼y∈Λ

s(x) ∼ s(y) ∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y)

Unified Reasoning about Robustness Properties of Symbolic-Heaps 49

⇒ [alloc(τ) = alloc(τ ′), x ∼τ y ⇔ x ∼τ ′ y, dom(s) = xτ0]

h = {s(x) 7→ null | x ∈ A} and

∃a ∈ Val .
∧

x∼y∈Λ′

s[z 7→ a](x) ∼ s[z 7→ a](y)

∧
∧

x∈A′,y∈(A′\{x})∪{null}

s[z 7→ a](x) 6= s[z 7→ a](y)

⇒
[

Lemma 21,

set h′ = h ⊎ {s(z) 7→ null} if z ∈ alloc(τ)}
]

∃a ∈ Val . s[z 7→ a], h′ |=∅ kernel(P1x1, (A
′, Λ′))

⇒ [I.H.]

∃a ∈ Val . ∃h′′ . s[z 7→ a], h′′ |=∅ τ
′

and ∀x ∈ dom(s[z 7→ a]) . s[z 7→ a](x) ∈ dom(h′)

iff s[z 7→ a](x) ∈ dom(h′′)

⇒ [∃x∃y ∼= ∃y∃x]

∃h′′ . ∃a ∈ Val . s[z 7→ a], h′′ |=∅ τ
′

and ∀x ∈ dom(s[z 7→ a]) . s[z 7→ a](x) ∈ dom(h′)

iff s[z 7→ a](x) ∈ dom(h′′)

⇒ [SL semantics]

∃h′′ . s, h′′ |=∅ τ

and ∀x ∈ dom(s) . s(x) ∈ dom(h)

iff s(x) ∈ dom(h′′).

⊓⊔

We also need the (simpler) converse direction.

Lemma 23. Let τ ∈ RSH, A = {x ∈ x0| x
τ ∈ alloc(τ)} and Λ = {x ∼

y | xτ ∼τ yτ}. Moreover, let kernel(P1x1, (A,Λ)) be defined as in Section 4.
Then, for each (s, h) ∈ States with dom(s) = xτ0 , we have

s, h |=∅ τ implies ∃h′ . s, h′ |=∅ kernel(P1x1, (A,Λ)).

Furthermore, for each x ∈ dom(s), we have s(x) ∈ dom(h) iff s(x) ∈ dom(h′).

Proof. Assume s, h |=∅ τ and dom(s) = xτ0 . By definition of ∼τ we know that
for each x, y ∈ dom(s) with x ∼τ y, we have s(x) ∼ s(y). Moreover, by definition
of alloc(τ), s(x) ∈ dom(h) iff x ∈ dom(s) ∩ alloc(τ). By definition of A and Λ
this means

∧

x∼y∈Λ

s(x) ∼ s(y) ∧
∧

x∈A,y∈(A\{x})∪{null}

s(x) 6= s(y).

Thus, by Lemma 21, we obtain

s, {s(x) 7→ null | x ∈ A} |=∅ kernel(P1x1, (A,Λ)).⊓⊔

⊓⊔

50 Jansen, Katelaan, Matheja, Noll, Zuleger

A.10 Proof of Theorem 3

A heap automaton ASAT accepting SAT(α) is constructed as presented in Defini-
tion 10 except for the set of final states being set to FASAT

, {(A,Π) | null 6=
null /∈ Π}. Since we already now that ATRACK and thus also ASAT satisfies the
compositionality property (cf. Lemma 17), it suffices to show L(ASAT) = SAT(α).
Let τ ∈ RSHFV≤α . Then

τ satisfiable

⇔ [Definition of satisfiability]

∃(s, h) . s, h |=∅ τ

⇔ [Lemma 10]

Models(τ) 6= ∅

⇔
[(

∀(s, h) ∈ Models(τ) . s(null) 6= s(null)
)

iff Models(τ) = ∅]

∃Π . ∀x, y ∈ xτ0 . null 6= null /∈ Π

and (x ∼ y) ∈ Π

↔ (∀(s, h) ∈ Models(τ) . s(xτ) ∼ s(yτ))

⇔ [Definition x ∼τ y]

∃Π . ∀x, y ∈ xτ0 . null 6= null /∈ Π

and (x ∼ y) ∈ Π ↔ xτ ∼τ y
τ

⇔ [Definition of FASAT
]

∃(A,Π) ∈ FASAT
. ∀x, y ∈ xτ0 . x ∈ A↔ xτ ∈ alloc(τ)

and (x ∼ y) ∈ Π ↔ xτ ∼τ y
τ

⇔ [Definition 10 : compress(τ, ε) = τ]

∃(A,Π) ∈ FASAT
. ∀x, y ∈ x

compress(τ,ε)
0 .

x ∈ A↔ xτ ∈ alloc(compress(τ, ε))

and (x ∼ y) ∈ Π ↔ xτ ∼compress(τ,ε) y
τ

⇔ [Definition ∆ASAT
]

∃(A,Π) ∈ F . ε
τ
−→ASAT

(A,Π)

⇔ [Definition L(ASAT)]

τ ∈ L(ASAT).

Thus, τ is satisfiable if and only if τ ∈ L(ASAT). ⊓⊔

A.11 Satisfiability is in NP

Brotherston et al. [11] already showed that the satisfiability problem is decidable
in NP if the maximal number of free variables α is bounded. In this section we

Unified Reasoning about Robustness Properties of Symbolic-Heaps 51

briefly show that such an NP–decision procedure naturally emerged from our
heap automaton ASAT accepting SAT(α) (see Theorem 3).

Lemma 24. SL-SAT is in NP if the maximal number α of free variables is
bounded.

Proof. Let (Φ,ϕ) ∈ SL-SAT and N = ‖Φ‖ + ‖ϕ‖. Moreover, let n ≤ N be
the maximal number of predicate calls occurring in ϕ and any rule of Φ. Since
α is a constant, the number of states of heap automaton ASAT (cf. the proof of

Theorem 3) is a constant, namely k = 22α
2+α. Now, let TΦ(ϕ)

≤k denote the set of
all unfolding trees t ∈ TΦ(ϕ) of height at most k. Clearly, each of these trees is of
size ‖t‖ ≤ nk ≤ Nk, i.e., polynomial in N . Moreover, let ω : dom(t) → QASAT

be a
function mapping each node of t to a state of ASAT. Again, ω is of size polynomial
in N ; as such ‖ω‖ ≤ k · Nk. Let Ωt denote the set of all of these functions ω
for a given unfolding tree t with ω(ε) ∈ FASAT

. Now, given an unfolding tree

t ∈ TΦ(ϕ)
≤k and ω ∈ Ωt, we can easily decide whether ε

JtK
−−→A ω(ε) holds:

For each u, u1, . . . , un ∈ dom(t), u(n + 1) /∈ dom(t), n ≥ 0 it suffices to check

whether ω(u1) . . . ω(un)
t(u)
−−→A ω(u). Since, by Remark 2, each of these checks

can be performed in time polynomial in N , the whole procedure is feasible in
polynomial time.

Then, our decision procedure for SL-SAT answers yes on input (Φ,ϕ) if and
only if

∃t ∈ TΦ(ϕ)
≤k . ∀ω ∈ Ωt . not ε

JtK
−−→A ω(ε).

Since t and ω are both of size polynomial in N , this procedure is in NP. Re-
garding correctness, we first note that UΦ(ϕ)∩SAT(α) 6= ∅ holds iff JtK ∈ SAT(α)
for some t ∈ TΦ(ϕ). Furthermore, by a standard pumping argument, it suffices
to consider trees in TΦ(ϕ)

≤k: If there exists a taller tree t with JtK ∈ SAT(α)
then there is some path of length greater k in t on which two nodes are assigned
the same state by a function ω ∈ Ωt proving membership of t in SAT(α). Thus,
this path can be shortened to obtain a tree of smaller height whose unfolding is
satisfiable. ⊓⊔

A.12 Compositionality of AEST, AGFREE, AACYCLIC

Some of our heap automata presented in Section 4 follow a common construction
scheme. In particular this holds for

– AEST (cf. Lemma 4 and Appendix A.13),
– AGFREE (cf. Lemma 6 and Appendix A.17), and
– AACYCLIC (cf. Lemma 7 and Appendix A.19).

Intuitively, each of these automata evaluates a predicate check : SHFV≤α×Q∗
A
→

{0, 1} while running a heap automaton A – which is either ATRACK (cf. Defini-
tion 10) or AREACH (cf. Lemma 6) – in parallel to collect required knowledge about
the relationships (equalities, allocation, reachability) between free variables.

52 Jansen, Katelaan, Matheja, Noll, Zuleger

Due to these similarities, we prove the compositionality property for a general
construction scheme as described above. More formally,

Definition 17. Let A ∈ {ASAT,AREACH} be either the tracking automaton ATRACK

(cf. Definition 10) or the reachability automaton AREACH (cf. Lemma 6). More-
over, let F ⊆ QA × {0, 1}. Further, let check : SHFV≤α × Q⋆

A
→ {0, 1} be a

Boolean predicate such that for each ϕ ∈ SHFV≤α with ‖Γϕ‖ = m τ1, . . . , τm ∈

RSHFV≤α , p1 . . . pm
ϕ
−→A p0, and ε

τi−→A pi, we have

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

if and only if such that

check (ϕ, p1 . . . pm) = check (τ1, ε) = . . . = check (τm, ε) = 1.

Then the heap automaton ASCHEME(A, check , F) is given by

ASCHEME(A, check , F) = (Q,FV≤α, ∆, F) ,where

Q , QA × {0, 1}

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→B (p0, q0)

iff p1 . . . pm
ϕ
−→A p0

and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)} ,

where ‖Γϕ‖ = m ≥ 0.

Lemma 25. The heap automaton B = ASCHEME(A, check , F) satisfies the compo-
sitionality property.

Proof. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHFV≤α . Moreover,
let τ = ϕ[Pϕ1 /τ1, . . . , P

ϕ
m/τm]. We have to show that for each (p0, q0) ∈ QB it

holds that

ε
τ
−→B (p0, q0) iff ∃(p1, q1), . . . , (pm, qm) ∈ QB .

(p1, q1) . . . (pm, qm)
ϕ
−→B (p0, q0)

and ∀1 ≤ i ≤ m . ε
τi−→B (pi, qi).

Assume ε
τ
−→B (p0, q0). By definition of ∆B this is the case if and only if

ε
τ
−→A p0 and q0 = check (τ, ε). For each 1 ≤ i ≤ m, we set qi = check (τi, ε) ∈

{0, 1}. Moreover, since A is known to satisfy the compositionality property by
Lemma 3 (or Lemma 6), this is equivalent to

q0 = check (τ, ε) and ∀1 ≤ i ≤ m . qi = check (τi, ε)

and ∃p1, . . . , pm ∈ QA . p1 . . . pm
ϕ
−→A p0

and ∀1 ≤ i ≤ m . ε
τi−→A p0.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 53

By construction of B and since each τi contains no predicate calls this is equiv-
alent to

q0 = check (τ, ε) (†)

and ∃(p1, q1), . . . , (pm, qm) ∈ QB . p1 . . . pm
ϕ
−→A p0

and ∀1 ≤ i ≤ m . ε
τi−→B (p0, q0).

Now, by Definition 17, check (τ, ε) = 1 if and only if check (ϕ, p1 . . . pm) = 1 and
check (τ1, ε) = . . . = check (τm, ε) = 1. Thus

q0 = check (τ, ε) = min{check(ϕ, p1 . . . pm),

check (τ1, ε), . . . check (τm, ε)}

= min{check(ϕ, p1 . . . pm), q1, . . . , qm}.

Putting this equation into (†), we obtain the equivalent statement

∃(p1, q1), . . . , (pm, qm) ∈ QB . p1 . . . pm
ϕ
−→A p0

and q0 = min{check (ϕ, p1 . . . pm), q1, . . . , qm}

and ∀1 ≤ i ≤ m . ε
τi−→B (p0, q0).

By definition of ∆B, this is equivalent to

∃(p1, q1), . . . , (pm, qm) ∈ QB .

(p1, q1) . . . (pm, qm)
ϕ
−→B (p0, q0)

and ∀1 ≤ i ≤ m . ε
τi−→B (p0, q0).

Hence, B = ASCHEME(A, check , F) satisfies the compositionality property. ⊓⊔

A.13 Proof of Theorem 4

We have to construct a heap automaton AEST over SHFV≤α that satisfies the
compositionality property and accepts EST(α). In order to highlight the necessary
proof obligations, the actual construction of AEST and its correctness proof are
splitted into several definitions and lemmas that are provided afterwards.

The construction of AEST was already sketched in the paper. A fully formal
construction of AEST is found in Definition 18. It then remains to show the cor-
rectness of our construction of AEST:

– Lemma 26 establishes that AEST indeed accepts EST(α), i.e., L(AEST) =
EST(α).

– To prove the compositionality property, we show that AEST is an instance
of a more general construction scheme whose compositionality property is
shown in Lemma 25. In order to apply Lemma 25, we have to show that

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

54 Jansen, Katelaan, Matheja, Noll, Zuleger

iff check (ϕ, p1 . . . pm) = 1

and check (τ1, ε) = . . . = check (τm, ε) = 1.

This is verified in Lemma 27. Then, by Lemma 25, we know that AEST =
ASCHEME(ATRACK, check , F) satisfies the compositionality property.

Putting both together, we obtain a heap automaton AEST over SHFV≤α that
satisfies the compositionality property and accepts EST(α). ⊓⊔

The remainder of this section fills the gaps in the proof from above.

Definition 18. AEST = (Q, SHFV≤α , ∆, F) is given by

Q , QATRACK
× {0, 1}, F , QATRACK

× {1},

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→AEST

(p0, q0)

iff p1 . . . pm
ϕ
−→ATRACK

p0

and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)}.

Here, check : SHFV≤α ×Q∗
ATRACK

→ {0, 1} is a predicate given by

check (ϕ,p) ,

1 , if ∀y ∈ Var(ϕ) . y ∈ alloc(compress(ϕ,p))

or ∃x ∈ xϕ0 . x =compress(ϕ,p) y

0 , otherwise ,

where compress(ϕ,p) is the reduced symbolic heap obtained from the tracking
property as in Definition 10.

Lemma 26. L(AEST) = EST(α).

Proof. Let τ ∈ RSHFV≤α . Then:

τ ∈ L(AEST)

⇔ [Definition of L(AEST)]

∃q ∈ FAEST
. ε

τ
−→AEST

q

⇔ [Definition of FAEST
, q = (p, 1)]

∃p ∈ QATRACK
. ε

τ
−→AEST

(p, 1)

⇔ [Definition of ∆AEST
]

∃p ∈ QATRACK
. ε

τ
−→ATRACK

p and check (τ, ε) = 1

⇔ [Definition of check (τ, ε)]

∃p ∈ QATRACK
. ε

τ
−→ATRACK

p

and ∀y ∈ Var(τ) . y ∈ alloc(compress(τ, ε))

or ∃x ∈ xτ0 . x =compress(τ,ε) y

⇔ [‖Γ τ‖ = 0 implies τ = compress(τ, ε)]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 55

∀y ∈ Var(τ) . y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

⇔ [Definition of EST(α)]

τ ∈ EST(α).

⊓⊔

Lemma 27. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHFV≤α .
Then

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

iff check (ϕ,p)

and check (τ1, ε) = . . . = check (τm, ε) = 1.

The proof of Lemma 27 relies on a technical observation, which intuitively states
that equalities between variables belonging to different nodes of an unfolding tree
have to be propagated through parameters. Formally,

Lemma 28. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m, τ1, . . . , τm ∈ RSHFV≤α and τ =
ϕ[Pϕ1 /τ1, . . . , P

ϕ
m/τm]. Moreover, for some 1 ≤ i ≤ m, let x ∈ Var(τi[x

τi
0 /x

ϕ
i])

and y ∈ Var(τ) \ Var(τi[x
τi
0 /x

ϕ
i]). Then x =τ y iff ∃z ∈ xϕi . x =τi[x

τi
0 /x

ϕ

i]

z and z =τ y.

Proof (sketch). The direction from right to left is straightforward. For the con-
verse direction, observe that, by Lemma 15, a pure formula x = y is an element
of the closure of pure formulas of τ . However, such an equality cannot be an ele-
ment of the closures of Πϕ, Πτ1 , . . . , Πτm , because, by assumption, x and y are
not both contained in the set of variables of these symbolic heaps. Thus, since
the only variables shared by ϕ and τ1, . . . , τm are the parameters of the predicate
calls of ϕ, there exists a parameter z of a suitable predicate call such that x = z
is contained in one of the aforementioned closures of pure formulas. ⊓⊔

Note that null is always assumed to be a free variable and no other constants
occur in our fragment of symbolic heaps. Otherwise, the observation from above
would be wrong.

Proof (of Lemma 27). Let τ = ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]. Recall that compress(τ, ε)

denotes the reduced symbolic heap introduced in Definition 10. Then:

check (τ, ε) = 1

⇔ [Definition of check , compress(τ, ε) = τ]

∀y ∈ Var(τ) . y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

⇔

Var(τ) = Var(ϕ) ∪
⋃

1≤i≤m

Var(τi [x
τi
0 /x

ϕ
i])

∀y ∈ Var(ϕ) . y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi [x
τi
0 /x

ϕ
i]) .

56 Jansen, Katelaan, Matheja, Noll, Zuleger

y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

⇔ [Lemma 19 applied to y ∈ Var(ϕ)and x ∈ Var(xτ0)]

∀y ∈ Var(ϕ) . y ∈ alloc(compress(ϕ,p))

or ∃x ∈ xϕ0 . x =compress(ϕ,p) y

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi [x
τi
0 /x

ϕ
i]) .

y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

⇔ [Definition of check]

check (compress(ϕ,p)) = 1

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi [x
τi
0 /x

ϕ
i]) .

y ∈ alloc(τ) or ∃x ∈ xτ0 . x =τ y

⇔
[

y ∈ alloc(τ) iff y ∈ alloc(τi [x
τi
0 /x

ϕ
i])

or ∃x ∈ alloc(τ) . y =τ x
]

check (compress(ϕ,p)) = 1

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi [x
τi
0 /x

ϕ
i]) .

(y ∈ alloc(τi [x
τi
0 /x

ϕ
i]) or ∃x ∈ alloc(τ) . y =τ x)

or ∃x ∈ xτ0 . x =τ y

⇔ [Lemma 28]

check (compress(ϕ,p)) = 1

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi [x
τi
0 /x

ϕ
i]) .

y ∈ alloc(τi)

or ∃z ∈ xϕi .∃x ∈ alloc(τ) . y =τi z and z =τ x

or ∃x ∈ xϕi .∃z ∈ xτ0 . y =τi x and x =τ z

⇔
[

xτi0 is substituted by xϕi ∈ Var(ϕ) in τ

which are all established due to check(compress(ϕ,p)) = 1
]

check (compress(ϕ,p)) = 1

and ∀1 ≤ i ≤ m . ∀y ∈ Var(τi) .

y ∈ alloc(τi) or ∃z ∈ xτi0 . y =τi z

⇔ [Definition of check]

check (compress(ϕ,p)) = 1

and check(τ1, ε) = . . . = check (τm, ε) = 1.

⊓⊔

A.14 Proof of Lemma 4

Let (Φ, P) ∈ SL-RSAT be an instance of the complement of the reduced sat-
isfiability problem. Moreover, consider the instance (Φ,ϕ) of the establishment

Unified Reasoning about Robustness Properties of Symbolic-Heaps 57

problem, where

ϕ , ∃zz′ . Pz : {x = null, z′ 6= null}

and x is the single free variable (other than null) of ϕ. Then

UΦ(ϕ) ⊆ EST(α)

⇔ [A ⊆ B iff ∀x ∈ A.x ∈ B]

∀τ ∈ UΦ(ϕ) . τ ∈ EST(α)

⇔ [Definition of EST(α)]

∀τ ∈ UΦ(ϕ) . ∀y ∈ Var(τ) .

y ∈ alloc(τ) or ∃x ∈ xτ0 . y =τ x

⇔ [Φ contains no points-to assertions]

∀τ ∈ UΦ(ϕ) . ∀y ∈ Var(τ) . ∃x ∈ xτ0 . y =τ x

⇔ [xτ0 [1] =τ null]

∀τ ∈ UΦ(ϕ) . ∀y ∈ Var(τ) . y =τ null

⇔ [z′ 6=τ null]

∀τ ∈ UΦ(ϕ) . null 6=τ null

⇔ [null 6=τ null iff τ unsatisfiable]

∀τ ∈ UΦ(ϕ) . τ is unsatisfiable

⇔ [∀x.¬A ≡ ¬∃x.A]

not ∃τ ∈ UΦ(ϕ) . τ if satisfiable

⇔ [Definition of satisfiability]

ϕ is unsatisfiable.

Then it remains to show that ϕ is unsatisfiable if and only if P is unsatisfiable:

∃(s, h) ∈ States . (s, h) |=Φ ϕ

⇔ [Applying (♠) see below]

∃(s, h) ∈ States . ∃u ∈ Val‖z‖ .

(s[z 7→ u] ↾z, h) |=Φ Pz

and s(x) = null and s(z′) 6= null

⇔ [dom(s[z 7→ z] ↾z) = z]

∃(s, h) ∈ States . (s, h) |=Φ Pz.

Here, the missing step marked with (♠) corresponds to the following property:

s, h |=Φ ϕ

⇔ ∃u ∈ Val‖z‖ . (♠)

(s[z 7→ u] ↾z), h |=Φ Pz

and s(x) = null and s(z′) 6= null.

58 Jansen, Katelaan, Matheja, Noll, Zuleger

To complete the proof, let (s, h) ∈ States. Then:

s, h |=Φ ϕ

⇔ [Construction of ϕ]

s, h |=Φ ∃zz′ . Pz : {x = null, z′ 6= null}

⇔ [SL semantics]

∃u ∈ Val‖z‖.∃v ∈ Val .

s[z 7→ u, z′ 7→ v], h |=Φ Pz

and s[z 7→ u, z′ 7→ v], h |=Φ x = null

and s[z 7→ u, z′ 7→ v], h |=Φ z
′ 6= null

⇔ [Lemma 10]

∃u ∈ Val‖z‖.∃v ∈ Val .

(s[z 7→ u, z′ 7→ v] ↾z), h |=Φ Pz

and (s[z 7→ u, z′ 7→ v] ↾x), h |=Φ x = null

and (s[z 7→ u, z′ 7→ v] ↾z′), h |=Φ z
′ 6= null

⇔ [SL semantics]

∃u ∈ Val‖z‖ .

(s[z 7→ u] ↾z), h |=Φ Pz

and s(x) = null and s(z′) 6= null,

which coincides with (♠). ⊓⊔

A.15 Proof of Theorem 6

We have to construct a heap automaton AREACH over SHFV≤α that satisfies the
compositionality property and accepts REACH(α,R). In order to highlight the
necessary proof obligations, the actual construction of AREACH and its correct-
ness proof are splitted into several definitions and lemmas that are provided
afterwards.

The construction of AREACH was already sketched in the paper. A formal con-
struction is provided in Definition 19. It then remains to show the correctness
of our construction of AREACH:

– Lemma 29 shows that AREACH indeed accepts REACH(α,R), i.e., L(AREACH) =
REACH(α,R).

– In order to prove that AREACH satisfies the compositionality property, we lift
Lemma 19 to cover reachability as well. After that the compositionality
property of AREACH is verified analogously to the compositionality property of
ATRACK (cf. Lemma 17).
The lifting of Lemma 19 is presented in Lemma 31. Similar to the proof of
Lemma 18, the proof of Lemma 31 relies on an auxiliary property showing

Unified Reasoning about Robustness Properties of Symbolic-Heaps 59

that
x ϕ[P1/τ] y iff x ϕ[P1/kernel(P1x1,(B,Λ,S))]

y

holds for all x, y ∈ Var(ϕ) and symbolic heaps ϕ containing a single predicate
call P1. This is formalized in Lemma 30.

Putting both together, we obtain a heap automaton AREACH over SHFV≤α accept-
ing REACH(α,R). ⊓⊔

Definition 19. Let x0 be a tuple of variables with ‖x0‖ = α ∈ N>0. Then
AREACH = (Q,FV≤α, ∆, F) is given by

Q , QAREACH
× 2x0×x0 , F , QATRACK

× {R}

∆ : p
ϕ
−→AREACH

(q0, S0), p = (q1, S1) . . . (qm, Sm)

iff q1 . . . qm
ϕ
−→ATRACK

q0

and ∀u, v ∈ x0 . (u, v) ∈ S0 ↔ uϕ compress(ϕ,p) v
ϕ ,

where

compress(ϕ,p) , ϕ [P1/kernel(P1x1,p[1]), . . . , Pm/kernel(Pmxm,p[m])] .

Here, m = ‖Γϕ‖ stands for the number of predicate calls occurring in ϕ and
uϕ denotes the free variable of ϕ corresponding to u ∈ x0.

15 Moreover, qi =
(Ai, Πi) ∈ QATRACK

for each 0 ≤ i ≤ m.

Lemma 29. L(AREACH) = REACH(α,R).

Proof. Let τ ∈ RSHFV≤α . Then

τ ∈ L(AREACH)

⇔ [Definition of L(AREACH)]

∃q ∈ FAREACH
. ε

τ
−→AREACH

q

⇔ [Definition of FAREACH
]

∃p ∈ QATRACK
. ε

τ
−→AREACH

(p,R)

⇔ [Definition of ∆AREACH
]

∃p ∈ QATRACK
. ε

τ
−→ATRACK

p

and ∀u, v ∈ x0 . (u, v) ∈ R ↔ uτ compress(τ,ε) v
τ

⇔ [Definition 19 : compress(τ, ε) = τ]

∀u, v ∈ x0 . (u, v) ∈ R↔ uτ τ v
τ

⇔ [Definition of REACH(α,R)]

τ ∈ REACH(α,R).

⊓⊔
15 formally if u = x0[i] then u

ϕ = xϕ0 [i]

60 Jansen, Katelaan, Matheja, Noll, Zuleger

Lemma 30. Let ϕ = ∃z.Σ ∗ P1x1 : Π ∈ SHFV≤α . Moreover, let τ ∈ RSH with
‖xτ0‖ = ‖xϕ1 ‖, B = {y ∈ x0 | yτ ∈ alloc(τ)}, Λ = {x ∼ y | xτ ∼τ yτ}, and
S = {(x, y) ∈ x0 × x0 | xτ τ y

τ}. Then, for each x, y ∈ Var(ϕ), we have

x ∼ϕ[P1/τ] y iff x ∼ϕ[P1/kernel(P1x1,(B,Λ,S))]
y, and

x ∈ alloc(ϕ[P1/τ]) iff x ∈ alloc(ϕ [P1/kernel(P1x1, (B,Λ, S))]), and

x ϕ[P1/τ] y iff x ϕ[P1/kernel(P1x1,(B,Λ,S))]
y ,

where σP1x1,(B,Λ,S)
has been defined at the beginning of this section.

Proof. The proof of the first two equivalences is completely analogous to the
proof of Lemma 18. Hence, it remains to prove that for each pair of variables
x, y ∈ Var(ϕ), we have

x ϕ[P1/τ] y iff x ϕ[P1/kernel(P1x1,(B,Λ,S))]
y.

Since definite reachability always holds for unsatisfiable reduced symbolic heaps
and, by the first equivalence, either both symbolic heaps are satisfiable or both
are unsatisfiable, assume without loss of generality that ϕ[P1/τ] is satisfiable.
Both directions of the proposition from above are shown by induction on the
number n of definite points-to assertions 7→τ needed to reach y from x in
x ϕ[P1/τ] y and x ϕ[P1/kernel(P1x1,(B,Λ,S))]

y, respectively.

We first show that x ϕ[P1/τ] y implies x ϕ[P1/kernel(P1x1,(B,Λ,S))]
y.

I.B. For the base case assume that x ϕ[P1/τ] y holds and y is reach-
able by taking n = 1 definite points-to assertions, i.e., x 7→ϕ[P1/τ] y holds. By
Lemma 15, this is equivalent to

∃z1, z2 . x =ϕ[P1/τ] z1 and y =ϕ[P1/τ] z2

and z1 7→ ((, z2,)) ∈ Σϕ[P1/τ].

Then, by definition of predicate replacement, two cases arise:

1. Case: z1 7→ ((, z2,)) ∈ Σϕ. Then z1, z2 ∈ Var(ϕ) and thus, by the already
known first property of Lemma 30, we have x =ϕ[P1/kernel(P1x1,(B,Λ,S))]

z1

and y =ϕ[P1/kernel(P1x1,(B,Λ,S))]
z2. Since Σ

ϕ is contained in the symbolic

heap Σϕ[P1/kernel(P1x1,(B,Λ,S))], this is means that

x 7→ϕ[P1/kernel(P1x1,(B,Λ,S))]
y.

2. Case: z1 7→ ((, z2,)) ∈ Στ . Then z1, z2 ∈ Var(τ). By Lemma 28, there exist
two variables u, v ∈ xϕ1 such that x =ϕ[P1/τ] u, u =τ z, y =ϕ[P1/τ] v, and
v =τ z

′. Thus, u 7→τ v holds. In particular, this means that (u, v) ∈ S and
thus u 7→ ((, v,)) ∈ Σϕ[P1/kernel(P1x1,(B,Λ,S))]. Now, by the already known
first property of Lemma 30, we also have x =ϕ[P1/kernel(P1x1,(B,Λ,S))]

u and

y =ϕ[P1/kernel(P1x1,(B,Λ,S))]
v. Hence, x 7→ϕ[P1/kernel(P1x1,(B,Λ,S))]

y.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 61

Thus, x ϕ[P1/kernel(P1x1,(B,Λ,S))]
y holds in both cases.

I.H. Assume for an arbitrary, but fixed, natural number n that x ϕ[P1/τ]

y, where at most n points-to assertions are used to reach y from x, implies
x ϕ[P1/kernel(P1x1,(B,Λ,S))]

y.

I.S. Assume n+1 definite points-to assertions are needed to reach y from x in
ϕ[P1/τ]. By Lemma 15, there exists z ∈ Var(ϕ[P1/τ]) such that x 7→ϕ[P1/τ] z and
z ϕ[P1/τ y, where at most n definite points-to assertions are needed to reach y
from z. Thus, by I.H. we know that z ϕ[P1/kernel(P1x1,(B,Λ,S))]

y. Furthermore,

by the same argument as in the base case, we obtain x 7→ϕ[P1/kernel(P1x1,(B,Λ,S))]
z. Putting both together yields x ϕ[P1/kernel(P1x1,(B,Λ,S))]

y.

The proof of the converse direction is analogous. The only difference is that
we obtain x ϕ[P1/τ] y instead of x 7→ϕ[P1/τ] y in the case analysis of the base

case, because u 7→ ((, v ,)) ∈ Σkernel(P1x1,(B,Λ,S)) implies u τ v only. ⊓⊔

Lemma 31. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m ≥ 0. For each 1 ≤ i ≤ m, let
τi ∈ RSHFV≤α with ‖xτi0 ‖ = ‖xϕi ‖, Ai = {y ∈ x0| y

τi ∈ alloc(τi)}, Πi = {x ∼
y | xτi ∼τi y

τi} and Si = {(x, y) ∈ x0 × x0 | xτi τi y
τi}. Moreover, let

τ , ϕ [P1/τ1, . . . , Pm/τm] ,

p , (A1, Π1, S1) . . . (Am, Πm, Sm), and

compress(ϕ,p) , ϕ [P1/kernel(P1x1,p[1]), . . . , Pm/kernel(Pmxm,p[m])] .

Then, for each x, y ∈ Var(ϕ), we have

x ∼τ y iff x ∼compress(ϕ,p) y,

x ∈ alloc(τ) iff x ∈ alloc(compress(ϕ,p)),

x τ y iff x compress(ϕ,p) y.

Proof. Analogous to the proof of Lemma 19 except for the use of Lemma 30
instead of Lemma 18. ⊓⊔

A.16 Proof of Theorem 7

Upper bounds are obtained as in the proof of Theorem 5. Thus, we only show that
the reduction provided in the paper proving the lower bounds is correct. We first
briefly recall how SL-RSAT is reduced to SL-REACH. Let (Φ, P) be an instance
of SL-RSAT. Then an instance of SL-REACH is given by (Φ,ϕ,x0[1] ,x0[2]),
where

ϕ , ∃z . x0[1] 7→ (null) ∗ Pz : {x0[2] 6= null}. Now,

∀τ ∈ UΦ(ϕ) . x0[1] τ x0[2]

⇔ [Construction of ϕ, (τ contains one points-to assertion)]

∀τ ∈ UΦ(ϕ) . x0[1] 7→τ x0[2]

62 Jansen, Katelaan, Matheja, Noll, Zuleger

⇔ [Definition of 7→τ]

∀τ ∈ UΦ(ϕ) . ∀(s, h) ∈ Models(τ) . s(x0[2]) ∈ h(s(x0[1]))

⇔ [∀(s, h) ∈ Models(τ) . h(s(x0[1])) = null]

∀τ ∈ UΦ(ϕ) . ∀(s, h) ∈ Models(τ) .

s(x0[2]) ∈ h(s(x0[1])) and s(x0[2]) = null

⇔ [x0[2] 6= null ∈ Πϕ]

∀τ ∈ UΦ(ϕ) . ∀(s, h) ∈ Models(τ) .

s(x0[2]) ∈ h(s(x0[1])) and s(x0[2]) = null

and s(x0[2]) 6= null

⇔ [null = s(x0[2]) 6= null iff Models(τ) = ∅]

∀τ ∈ UΦ(ϕ) . Models(τ) = ∅

⇔ [Lemma 10]

Models(ϕ) = ∅

⇔ [Definition of satisfiability]

ϕ unsatisfiable.

Since ϕ is satisfiable if and only if P is satisfiable by an analogous argument as
in the proof of Lemma 4, it follows that x0[1] ϕ x0[2] holds for each τ ∈ UΦ(ϕ)
if and only if P is unsatisfiable. ⊓⊔

A.17 Proof of Lemma 6

We have to construct a heap automaton AGFREE over SHFV≤α that satisfies the
compositionality property and accepts GFREE(α). In order to highlight the neces-
sary proof obligations, the actual construction of AGFREE and its correctness proof
are splitted into several definitions and lemmas that are provided afterwards.

The construction of AGFREE is similar to the construction of AEST as presented
in Theorem 4. The main difference is that the reachability automaton AREACH,
formally introduced in Definition 19, is used instead of the tracking automaton
ATRACK and that the predicate check is adapted. A fully formal construction of
AGFREE is found in Definition 20. It then remains to show the correctness of our
construction of AGFREE:

– Lemma 32 establishes that AGFREE indeed accepts GFREE(α), i.e., L(AGFREE) =
GFREE(α).

– To prove the compositionality property, we show that AGFREE is an instance
of a more general construction scheme whose compositionality property is
shown in Lemma 25. In order to apply Lemma 25, we have to show that

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

iff check (ϕ, p1 . . . pm) = 1

and check (τ1, ε) = . . . = check (τm, ε) = 1.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 63

This is verified in Lemma 33. Then, by Lemma 25, we know that AGFREE =
ASCHEME(AREACH, check , F) satisfies the compositionality property.

Putting both together, we obtain a heap automaton AGFREE over SHFV≤α that
satisfies the compositionality property and accepts GFREE(α). ⊓⊔

Definition 20. AGFREE = (Q, SHFV≤α , ∆, F) is given by

Q , QAREACH
× {0, 1} F , QAREACH

× {1}

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→AGFREE

(p0, q0)

iff p1 . . . pm
ϕ
−→AREACH

p0

and q0 = min{q1, . . . , qm, check (ϕ, p1 . . . pm)} ,

where AREACH is as in Definition 19. Furthermore, the predicate check : SHFV≤α×
Q∗

AREACH
→ {0, 1} verifies that each variable of a symbolic heap ϕ is established

in compress(ϕ,p), where compress(ϕ,p) is the same as in the construction of
AREACH. Hence,

check (ϕ,p) ,

1 , if ∀y ∈ Var(ϕ) . ∃x ∈ xϕ0 .

x =compress(ϕ,p) y or x compress(ϕ,p) y

0 , otherwise ,

Lemma 32. L(AGFREE) = GFREE(α).

Proof. Let τ ∈ RSHFV≤α . Then:

τ ∈ L(AGFREE)

⇔ [Definition of L(AGFREE)]

∃q ∈ FAGFREE
. ε

τ
−→AGFREE

q

⇔ [Definition of FAGFREE
, q = (p, 1)]

∃p ∈ QAREACH
. ε

τ
−→AGFREE

(p, 1)

⇔ [Definition of ∆AGFREE
]

∃p ∈ QAREACH
. ε

τ
−→AREACH

p and check (compress(τ, ε)) = 1

⇔ [Definition of check (compress(τ, ε))]

∃p ∈ QAREACH
. ε

τ
−→AREACH

p

and ∀y ∈ Var(τ) . ∃x ∈ xτ0 . x =compress(τ,ε) y

or x compress(τ,ε) y

⇔ [‖Γ τ‖ = 0 implies τ = compress(τ, ε)]

∀y ∈ Var(τ) . ∃x ∈ xτ0 . x =τ y or x τ y

⇔ [Definition of GFREE(α)]

τ ∈ GFREE(α).

⊓⊔

64 Jansen, Katelaan, Matheja, Noll, Zuleger

Lemma 33. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHFV≤α .
Then

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

iff check (ϕ,p)

and check (τ1, ε) = . . . = check (τm, ε) = 1.

The following technical observation, similar to Lemma 28, is essential. Intuitively,
it states that a variable in one part of an unfolding is definitely reachable by a
variable in a different part of an unfolding only through a parameter (including
null) of one or more suitable predicate calls. This is illustrated in Figure 2.

ϕ = ∃z . Σ ∗P1x1 ∗ . . . ∗Pmxm

τ1 τm

u v

Fig. 2. Propagation of reachability through parameters in a symbolic heap τ =
ϕ[P1/τ1, . . . , Pm/τm]. Here, u τ v holds (thick arrow). Since u ∈ Var(τ1) and
v ∈ Var(τm), there exist parameters x, y of P1 and Pm that u τ1 x, x τ y, and
y τm v (thin arrows).

Lemma 34. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m, τ1, . . . , τm ∈ RSHFV≤α and τ =
ϕ[Pϕ1 /τ1, . . . , P

ϕ
m/τm]. Moreover, for some 1 ≤ i ≤ m, let x ∈ Var(τi[x

τi
0 /x

ϕ
i])

and y ∈ Var(τ) \Var(τi[x
τi
0 /x

ϕ
i]). Then x τ y holds if and only if there exists

z ∈ xϕi such that

– x =τi[xτi0 /x
ϕ
i]
z and and z τ y, or

– x τi[x
τi
0 /x

ϕ
i]
z and z =τ y, or

– x τi[x
τi
0 /x

ϕ
i]
z and z τ y.

The same holds for the converse direction, i.e., if y ∈ Var(τi[x
τi
0 /x

ϕ
i]) and x ∈

Var(τ) \Var(τi[x
τi
0 /x

ϕ
i]).

Proof (sketch). The implication from right to left is straightforward. The impli-
cation from left to right is shown by a lengthy complete induction on the number
of definitive points-to assertions to reach y from x. ⊓⊔

Note that this observation relies on the fact that the reachability relation ϕ

is defined with respect to all models of ϕ, not just a single one. Otherwise, the
observation is wrong for symbolic heaps that are not established.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 65

Proof (of Lemma 33). Let τ = check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]). Then:

check (τ, ε) = 1

⇔ [Definition of check , compress(τ, ε) = τ]

∀y ∈ Var(τ) . ∃x ∈ xτ0 . x =τ y or x τ y

⇔

Var(τ) = Var(ϕ) ∪
⋃

1≤i≤m

Var(τi [x
τi
0 /x

ϕ
i])

∀y ∈ Var(ϕ).∃x ∈ xτ0 . x =τ y or x τ y

and ∀1 ≤ i ≤ m . ∀y ∈ Var (τi [x
τi
0 /x

ϕ
i]) .

∃x ∈ xτ0 . x =τ y or x τ y

⇔ [y ∈ Var(ϕ), Lemma 31]

∀y ∈ Var(ϕ) . ∃x ∈ xϕ0 . x =compress(ϕ,p) y

or x compress(ϕ,p) y

and ∀1 ≤ i ≤ m . ∀y ∈ Var (τi [x
τi
0 /x

ϕ
i]) .

∃x ∈ xτ0 . x =τ y or x τ y

⇔ [Lemma 28, Lemma 34]

∀y ∈ Var(ϕ) . ∃x ∈ xϕ0 . x =compress(ϕ,p) y or x compress(ϕ,p) y

and ∀1 ≤ i ≤ m . ∀y ∈ Var (τi [x
τi
0 /x

ϕ
i]) .

∃x ∈ xτ0 . ∃z ∈ xϕi . (x =τ z or x τ z)

and
(

z τi[xτi0 /x
ϕ
i]
y or z =τi[xτi0 /x

ϕ
i]
y
)

⇔ [∃a∃b ≡ ∃b∃a, x, y ∈ Var(ϕ)]

∀y ∈ Var(ϕ).∃x ∈ xϕ0 . x compress(ϕ,p) y

and ∀1 ≤ i ≤ m . ∀y ∈ Var (τi [x
τi
0 /x

ϕ
i]) .

∃z ∈ xϕi .
(

z τi[xτi0 /x
ϕ
i]
y or z =τi[xτi0 /x

ϕ
i]
y
)

⇔ [Definition of check]

check (ϕ,p) = 1 and ∀1 ≤ i ≤ m . check(τi[x
τi
0 /x

ϕ
i], ε) = 1

⇔ [check(τi[x
τi
0 /x

ϕ
i], ε) = 1 iff check (τi, ε) = 1]

check (ϕ,p) = 1 and ∀1 ≤ i ≤ m . check(τi, ε) = 1.⊓⊔

⊓⊔

A.18 Proof of Theorem 8

Since upper bounds are obtained analogously to Theorem 5, we only show that
the reduction provided in the paper proving the lower bounds is correct. We first
briefly recall how SL-RSAT is reduced to SL-GF. Let (Φ, P) be an instance of
SL-RSAT. Then a corresponding instance of SL-GF is given by (Φ,ϕ), where

66 Jansen, Katelaan, Matheja, Noll, Zuleger

xϕ0 = x and ϕ , ∃zz′ . ∗ Pz : {x = null, z′ 6= null}. Now,

UΦ(ϕ) ⊆ GFREE(α)

⇔ [A ⊆ B iff ∀x ∈ A . x ∈ B]

∀τ ∈ UΦ(ϕ) . τ ∈ GFREE(α)

⇔ [Definition of GFREE(α,R)]

∀τ ∈ UΦ(ϕ) . ∀u ∈ Var(τ) . ∃v ∈ xτ0 . u =τ v or u τ v

⇔ [ϕ contains no points-to assertions]

∀τ ∈ UΦ(ϕ) . ∀u ∈ Var(τ) . ∃v ∈ xτ0 . u =τ v

⇔ [xτ0 = x]

∀τ ∈ UΦ(ϕ) . ∀u ∈ Var(τ) . u =τ null

⇔ [z′ 6= null ∈ Πτ]

ϕ unsatisfiable.

Since ϕ is satisfiable if and only if P is satisfiable by an analogous argument as
in the proof of Lemma 4, it follows that UΦ(ϕ) ⊆ GFREE(α) holds if and only if
P is unsatisfiable. ⊓⊔

A.19 Proof of Lemma 7

We have to construct a heap automaton AACYCLIC over SHFV≤α that satisfies the
compositionality property and accepts ACYCLIC(α). In order to highlight the
necessary proof obligations, the actual construction of AACYCLIC and its correct-
ness proof are splitted into several definitions and lemmas that are provided
afterwards.

The construction of AACYCLIC is similar to the construction of AEST as presented
in Theorem 4. The main difference is that the reachability automaton AREACH,
formally introduced in Definition 19, is used instead of the tracking automaton
ATRACK and that the predicate check is adapted. A fully formal construction of
AACYCLIC is found in Definition 21. It then remains to show the correctness of our
construction of AACYCLIC:

– Lemma 35 establishes that AACYCLIC indeed accepts ACYCLIC(α), i.e., we have
L(AACYCLIC) = ACYCLIC(α).

– To prove the compositionality property, we show that AACYCLIC is an instance
of a more general construction scheme whose compositionality property is
shown in Lemma 25. In order to apply Lemma 25, we have to show that

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

iff check (ϕ, p1 . . . pm) = 1

and check (τ1, ε) = . . . = check (τm, ε) = 1.

This is verified in Lemma 36. Then, by Lemma 25, we know that AACYCLIC =
ASCHEME(AREACH, check , F) satisfies the compositionality property.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 67

Putting both together, we obtain a heap automaton AACYCLIC over SHFV≤α that
satisfies the compositionality property and accepts ACYCLIC(α). ⊓⊔

Definition 21. AACYCLIC = (Q, SHFV≤α , ∆, F) is given by

Q , QAREACH
× {0, 1}

F , QAREACH
× {1}

∪ {(A,Π, S) ∈ QAREACH
| null 6= null ∈ Π} × {0}

∆ : (p1, q1) . . . (pm, qm)
ϕ
−→AACYCLIC

(p0, q0)

iff p1 . . . pm
ϕ
−→AREACH

p0

and q0 = min{q1, . . . , qm, check(ϕ, p1 . . . pm)} ,

where AREACH is is as in Definition 19. Furthermore, the predicate check :
SHFV≤α ×Q∗

AREACH
→ {0, 1} verifies that each variable of a symbolic heap ϕ is not

reachable from itself in compress(ϕ,p), where compress(ϕ,p) is the same as in
the construction of AREACH. Hence,

check (ϕ,p) ,

{

1 , if ∀y ∈ Var(ϕ) . not x compress(ϕ,p) x

0 , otherwise.

Lemma 35. L(AACYCLIC) = ACYCLIC(α).

Proof. Let τ ∈ RSHFV≤α . Then:

τ ∈ L(AACYCLIC)

⇔ [Definition of L(AACYCLIC)]

∃q ∈ FAACYCLIC
. ε

τ
−→AACYCLIC

q

⇔ [Definition of FAACYCLIC
,]

∃p ∈ QAREACH
. ε

τ
−→AACYCLIC

(p, 1)

or ∃p = (A,Π, S) ∈ QAREACH
. ∃r ∈ {0, 1} .

null 6= null ∈ Π and ε
τ
−→AACYCLIC

(p, r)

⇔ [Definition of ∆AACYCLIC
]

∃p ∈ QAREACH
. ε

τ
−→AREACH

p and check(τ, ε) = 1

or ∃p = (A,Π, S) ∈ QAREACH
. ∃r ∈ {0, 1} .

null 6= null ∈ Π and ε
τ
−→AREACH

p and check (τ, ε) = r

⇔ [check (τ, ε) ∈ {0, 1}]

∃p ∈ QAREACH
. ε

τ
−→AREACH

p and check(τ, ε) = 1

or ∃p = (A,Π, S) ∈ QAREACH
. null 6= null ∈ Π and ε

τ
−→AREACH

p

⇔ [Definition of check]

∃p ∈ QAREACH
. ε

τ
−→AREACH

p

68 Jansen, Katelaan, Matheja, Noll, Zuleger

and ∀x ∈ Var(τ) . not x compress(τ,ε) x

or ∃p = (A,Π, S) ∈ QAREACH
. null 6= null ∈ Π and ε

τ
−→AREACH

p

⇔ [‖Γ τ‖ = 0 implies τ = compress(τ, ε)]

∀x ∈ Var(τ) . not x τ x

or ∃p = (A,Π, S) ∈ QAREACH
. null 6= null ∈ Π and ε

τ
−→AREACH

p

⇔ [Definition of ∆AREACH
]

∀x ∈ Var(τ) . not x τ x or null 6=τ null

⇔ [Definition of ACYCLIC(α)]

τ ∈ ACYCLIC(α).

⊓⊔

Lemma 36. Let ϕ ∈ SHFV≤α with ‖Γϕ‖ = m and τ1, . . . , τm ∈ RSHFV≤α .
Then

check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm], ε) = 1

iff check (ϕ,p)

and check (τ1, ε) = . . . = check (τm, ε) = 1.

Proof. Let τ = check (ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]). Then

check (τ, ε) = 1

⇔ [Definition of check , τ = compress(τ, ε)]

∀x ∈ Var(τ) . not x τ x

⇔

Var(τ) = Var(ϕ) ∪
⋃

1≤i≤m

Var(τi [x
τi
0 /x

ϕ
i])

∀x ∈ Var(ϕ) . not x τ x

and ∀1 ≤ i ≤ m . ∀x ∈ Var(τi [x
τi
0 /x

ϕ
i]) . not x τ x

⇔ [Lemma 30]

∀x ∈ Var(ϕ) . not x compress(ϕ,p) x

and ∀1 ≤ i ≤ m . ∀x ∈ Var(τi [x
τi
0 /x

ϕ
i]) . not x τ x.

Assume towards a contradiction that check (τi, ε) = 0 for some 1 ≤ i ≤ m. By
definition and compress(τi, ε) = τi, this means that x τi x. However, since τi
is contained in τ , this means that x τ x and thus check (τ, ε) = 0.

Conversely, assume check (τ, ε) = 0, but check(ϕ,p) = 1 and check (τi, ε) = 1
for each 1 ≤ i ≤ m. Thus,

∀x ∈ Var(ϕ) . not x compress(ϕ,p) x (♣)

and ∀1 ≤ i ≤ m . ∀x ∈ Var(τi [x
τi
0 /x

ϕ
i]) . not x τi x (♠)

Then, there exists x ∈ Var(τ) such that x τ x. We proceed by case distinction:

Unified Reasoning about Robustness Properties of Symbolic-Heaps 69

1. Case: x ∈ Var(ϕ). Then we immediately obtain a contradiction due to (♣).

2. Case: x τi[xτi0 /x
ϕ
i]
x holds. Since x τi[xτi0 /x

ϕ
i]
x holds if and only if x τi x

holds, we immediately obtain a contradiction due to (♠).

3. Case: For some 1 ≤ i ≤ m, x ∈ Var(τi [x
τi
0 /x

ϕ
i]) and x τi[xτi0 /x

ϕ
i]
x does

not hold. Then there exists y ∈ Var(τ) \ Var(τi [x
τi
0 /x

ϕ
i]) such that one of

the following two cases holds:

(a) x =τ y and y τ y. Then, by Lemma 28, there exists z ∈ xϕi such that
x =τi[x

τi
0 /x

ϕ
i]
z and z =τ y. However, by construction of compress(ϕ,p),

this means that z compress(ϕ,p) z holds, which contradicts (♣).

(b) x τ y and y τ x. Then, by Lemma 34, there exist u, v ∈ xϕi such
that u τ v and v τ u. However, by construction of compress(ϕ,p),
this means that u compress(ϕ,p) u holds. Thus check (ϕ,p) = 0, which
contradicts (♣).

Since each case leads to a contradiction, we conclude check (τ,p) = 1. ⊓⊔

A.20 Proof of Theorem 9

Upper bounds are obtained analogously to Theorem 5. Thus, we only show that
the reduction provided in the paper proving the lower bounds is correct. We first
briefly recall how SL-RSAT is reduced to SL-AC. Let (Φ, P) be an instance of
SL-RSAT. Then an instance of SL-AC is given by (Φ,ϕ), where xϕ0 = x and
ϕ = ∃z.x 7→ (x) ∗ Pz. Then

UΦ(ϕ) ⊆ ACYCLIC(α)

⇔ [A ⊆ B iff ∀x ∈ A . x ∈ B]

∀τ ∈ UΦ(ϕ) . τ ∈ ACYCLIC(α)

⇔ [Definition of ACYCLIC(α)]

∀τ ∈ UΦ(ϕ) . null 6=τ null or ∀y ∈ Var(τ) . not y τ y

⇔ [ϕ contains exactly one points-to assertion]

∀τ ∈ UΦ(ϕ) . null 6=τ null or not x τ x

⇔ [x τ x always hold by construction of ϕ]

∀τ ∈ UΦ(ϕ) . null 6=τ null

⇔ [null 6=τ null iff Models(τ) = ∅]

∀τ ∈ UΦ(ϕ) . Models(τ) = ∅

⇔ [Definition 7]

ϕ unsatisfiable.

Now, by an analogous argument as in the proof of Theorem 5, we obtain that
ϕ is satisfiable iff P is satisfiable. Then UΦ(ϕ) ⊆ ACYCLIC(α) holds iff P is
unsatisfiable. Hence, SL-AC holds for (Φ,ϕ) iff SL-RSAT holds for (Φ, P). ⊓⊔

70 Jansen, Katelaan, Matheja, Noll, Zuleger

A.21 Proof of Lemma 8

The crux of the proof relies on the fact that each unfolding of P1x has exactly
one canonical model up to isomorphism, i.e.,

∀σ ∈ UΦ(P1x) . ‖Models(σ)‖ = 1. (⋆)

This property is a direct consequence of two properties: By Definition 11, σ
has at most one canonical model up to isomorphism, because Φ is determined.
Furthermore, each symbolic heap σ ∈ UΦ(P1x) has at least one canonical model,
because Φ is well–determined. Then

P1x |=Φ P2x

⇔ [Definition of entailments]

∀(s, h) ∈ States . s, h |=Φ P1x implies s, h |=Φ P2x

⇔
[

Lemma 10, Statesx , {(s, h) ∈ States | dom(s) = x}
]

∀(s, h) ∈ Statesx . s, h |=Φ P1x implies s, h |=Φ P2x

⇔ [Lemma 1]

∀(s, h) ∈ Statesx .

∃σ ∈ UΦ(P1x) . s, h |=∅ σ

implies ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [A → B ≡ ¬A ∨B]

∀(s, h) ∈ Statesx .

¬ (∃σ ∈ UΦ(P1x) . s, h |=∅ σ)

or ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [¬∃x.A ≡ ∀x.¬A]

∀(s, h) ∈ Statesx .

∀σ ∈ UΦ(P1x) . s, h 6|=∅ σ

or ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [∀x∀y.A ≡ ∀y∀x.A]

∀σ ∈ UΦ(P1x) . ∀(s, h) ∈ Statesx .

s, h 6|=∅ σ or ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [A → B ≡ ¬A ∨B]

∀σ ∈ UΦ(P1x) . ∀(s, h) ∈ Statesx .

s, h |=∅ σ implies ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [∀x.A→ B ≡ ∀x ∈ A.B, Def. 7]

∀σ ∈ UΦ(P1x) . ∀(s, h) ∈ Models(σ) . ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

⇔ [‖Models(σ)‖ = 1 by (⋆) and ∀x ∈ {y}.A ≡ ∃x ∈ {y}.A]

∀σ ∈ UΦ(P1x) . ∃(s, h) ∈ Models(σ) . ∃τ ∈ UΦ(P2x) . s, h |=∅ τ

Unified Reasoning about Robustness Properties of Symbolic-Heaps 71

⇔ [∃x∃y.A ≡ ∃y∃x.A]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∃(s, h) ∈ Models(σ) . s, h |=∅ τ

⇔ [‖Models(σ)‖ = 1 by (⋆) and ∀x ∈ {y}.A ≡ ∃x ∈ {y}.A]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∀(s, h) ∈ Models(σ) . s, h |=∅ τ

⇔ [∀x.A→ B ≡ ∀x ∈ A.B]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∀(s, h) ∈ States .

(s, h) ∈ Models(σ) implies s, h |=∅ τ

⇔ [Def. 7 : (s, h) ∈ Models(σ) ⇔ dom(s) = x and s, h |=∅ σ]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∀(s, h) ∈ States .

dom(s) = x and s, h |=∅ σ implies s, h |=∅ τ

⇔ [∀x.(A ∧B) → C ≡ ∀x ∈ A.B → C]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∀(s, h) ∈ Statesx .

s, h |=∅ σ implies s, h |=∅ τ

⇔ [Lemma 10]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . ∀(s, h) ∈ States .

s, h |=∅ σ implies s, h |=∅ τ

⇔ [Definition of entailments]

∀σ ∈ UΦ(P1x) . ∃τ ∈ UΦ(P2x) . σ |=∅ τ.

⊓⊔

A.21.1 Proof of Lemma 48

Our previous complexity analysis of Algorithm 1 reveals that UΨ (Px)∩L(Aψ) =
∅ is decidable in

O
(

‖Ψ‖ · ‖Q
Aψ

‖M+1 · ‖∆
Aψ

‖
)

. (♣)

Regarding ‖Ψ‖, applying the Refinement Theorem (Theorem 1) to Φ∪{P ⇐ ϕ}
and ASAT (cf. Theorem 3) yields an SID Ψ of size

‖Ψ‖ ≤ c · ‖Φ‖ · 2‖ϕ‖
2

· 22α
2+α ≤ 2poly(k) ,

for some positive constant c. Then Ψ is computable in O
(

2poly(k)
)

. Further-

more, Aψ is obtained from complementation of Aψ. Thus, by the construction

to prove Lemma 2, we obtain that ‖Q
Aψ

‖ ≤ 2‖QAψ
‖ and that ∆

Aψ
is decidable

in
(

2‖QAψ
‖
)M+1

· ‖∆Aψ‖. Putting both into (♣) yields the result. ⊓⊔

A.21.2 Proof of Lemma 49

By induction on the structure of symbolic heaps. The base cases are:

72 Jansen, Katelaan, Matheja, Noll, Zuleger

The empty heap emp: In Section A.26, we construct a heap automaton Aemp

accepting H
〈α〉
emp,Φ with

‖Qemp‖ ≤ 1 + (1 + α)0 = 2 ≤ 2poly(α).

Moreover, ∆Aemp is decidable in polynomial time by Remark 2.
The points-to assertion x 7→ (y): In Section A.26, we construct a heap au-

tomaton Ax 7→ (y) accepting H
〈α〉
x 7→(y),Φ with

‖QAx 7→ (y)
‖ ≤ 1 + (1 + α)‖y‖ ≤ 1 + (1 + α)γ ≤ 2poly(α) ,

because ‖y‖ ≤ γ is considered to be a constant. Moreover, ∆Ax 7→ (y)
is decidable

in polynomial time by Remark 2.
The predicate call Px: By assumption, there is nothing to show. Thus, it

remains to consider the composite cases:
The separating conjunction ψ1 ∗ ψ2: By I.H. there exist heap automata Aψ1 ,

Aψ2 H
〈α〉
ψ1,Φ

and H
〈α〉
ψ2,Φ

such that ∆Aψ1
and ∆Aψ2

are decidable in O
(

2poly(k1)
)

and O
(

2poly(k2)
)

, where k1 = ‖Φ‖ + ‖ψ1‖ and k2 = ‖Φ‖ + ‖ψ2‖. Moreover,

‖QAψ1
‖ ≤ 2poly(α) and ‖QAψ2

‖ ≤ 2poly(α), respectively.

In Section A.26, we construct a heap automaton Aψ1 ∗ ψ2 accepting H
〈α〉
ψ1∗ψ2,Φ

with

‖Qψ1∗ψ2
‖ ≤ 2α · ‖Qψ1

‖ · ‖Qψ2
‖

≤ 2α · 2poly(α) · 2poly(α)

= 2α+poly(α)+poly(α)

≤ 2poly(α).

Moreover, the time to decide ∆Aψ1 ∗ ψ2
depends on two factors: First, the number

of subformulas occurring in ψ1, ψ2 and Φ, which is bounded by 2‖Φ‖+‖ψ1‖+‖ψ2‖ ≤
2poly(k). Second, each of these subformulas is applied to ∆Aψ1

and ∆Aψ2
. Thus,

∆Aψ1 ∗ ψ2
is decidable in O

(

2poly(k) ·
(

‖∆Aψ1
‖+ ‖∆Aψ2

‖
))

. By I.H. this means
that ∆Aψ1 ∗ ψ2

is decidable in

O
(

2poly(k) · (2poly(k1) + 2poly(k2))
)

= O
(

2poly(k)
)

.

The pure formula ϕ : Π : By I.H. there exists a heap automaton Aϕ accepting

H
〈α〉
ϕ,Φ such that ∆ϕ is decidable in O

(

2poly(k1)
)

, where k1 = ‖Φ‖ + ‖ϕ‖. More-

over, ‖QAϕ‖ ≤ 2poly(α). In Section A.26, we construct a heap automaton Aϕ : Π

accepting H
〈α〉
ϕ:Π,Φ with

‖QAϕ : Π‖ ≤ 2 · ‖QAϕ‖ ≤ 2 · 2poly(α) ≤ 2poly(α).

Moreover, ∆Aϕ : Π boils down to deciding ∆Aϕ plus some at most polynomial

overhead. Thus, by I.H., ∆Aϕ : Π is decidable in O
(

2poly(k)
)

.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 73

The existential quantification ∃z.ϕ: By I.H. there exists a heap automaton

Aϕ accepting H
〈α〉
∃x.ϕ,Φ such that ∆Aϕ is decidable in O

(

2poly(k1)
)

, where k1 =

‖Φ‖+ ‖ϕ‖. Moreover, ‖QAϕ‖ ≤ 2poly(α).

In Section A.26, we construct a heap automaton A∃z.ϕ accepting H
〈α〉
∃x.ϕ,Φ

with

‖QA∃z.ϕ
‖ ≤ (α+ 1) · ‖QAϕ‖ · 2

2α2+α

≤ (α+ 1) · 2poly(α) · 22α
2+α

≤ 2poly(α).

Moreover, ∆A∃z.ϕ
boils down to deciding ∆Aϕ plus some overhead which is

at most polynomial due to Remark 2. Thus, by I.H., ∆A∃z.ϕ
is decidable in

O
(

2poly(k)
)

. ⊓⊔

A.22 Omitted calculations in proof of Theorem 50

O
(

‖Ψ‖ · ‖Q
Aψ

‖M+1 · ‖∆
Aψ

‖
)

=
[

‖Ψ‖ ≤ 2poly(k), ‖Q
Aψ

‖ ≤ 2‖QAψ
‖,M ≤ 2k

]

O

(

2poly(k) ·
(

2‖QAψ
‖
)2k

· ‖∆
Aψ

‖

)

=

[

‖∆
Aψ

‖ ≤
(

2‖QAψ
‖
)M+1

· ‖∆Aψ‖

]

O

(

2poly(k) ·
(

2‖QAψ
‖
)4k

· ‖∆Aψ‖

)

=
[

‖QAψ‖ ≤ 2poly(k)
]

O

(

2poly(k) ·
(

22
poly(k)

)4k

· ‖∆Aψ‖

)

=
[

(ab)c = abc, ‖∆Aψ‖ ∈ O
(

2poly(k)
)]

O
(

2poly(k) · 24k·2
poly(k)

· 2poly(k)
)

= O
(

22
poly(k)

)

A.23 Proof of Lemma 51

By Lemma 49, ‖QAψ‖ ≤ 2poly(α) and ∆Aψ is decidable in O
(

2poly(k)
)

. Since α

is bounded by a constant, so is ‖QAψ‖. Then, by Lemma 48, SL-ENTAIL
Φ
〈α〉 is

decidable in

O

(

2poly(k) ·
(

2‖QAψ
‖
)2(M+1)

· 2poly(k)
)

= O
(

2poly(k)
)

,

74 Jansen, Katelaan, Matheja, Noll, Zuleger

which clearly is in ExpTime. ⊓⊔

A.24 Lower bound for entailments

The proof of the ExpTime–lower bound in [1] is by reducing the inclusion prob-
lem for nondeterministic finite tree automata (NFTA, cf. [18]) to the entailment
problem. Their proof requires a constant (or free variable) for each symbol in
the tree automatons alphabet. In contrast, we prove their result by encoding
the alphabet in a null-terminated singly-linked list. Thus, a tree a(b, a(b, b) is
encoded by a reduced symbolic heap

∃z1z2z3z4z5z6z7 .

x 7→ (z1 z2 null)

∗ z1 7→ (null null z3) ∗ z3 7→ (null null null)

∗ z2 7→ (z4 z5 null)

∗ z4 7→ (null null z6) ∗ z6 7→ (null null null)

∗ z5 7→ (null null z7) ∗ z7 7→ (null null null),

where the symbol a is encoded by having null as third component in a points-to
assertion and symbol b by a null terminated list of length one.

Now, given some NFTA T = (Q,Σ,∆, F) with Σ = {a1, . . . , an}, we con-
struct a corresponding Φ. Without less of generality, we assume that T contains
no unreachable or unproductive states. We set Pred(Φ) , Q ∪ Σ ∪ {I}, where
each predicate symbol is of arity one. Then, for each symbol ai ∈ Σ one rule of
the form a1 ⇐ x0[1] = null or, for 1 < i ≤ n,

ai ⇐ ∃z1 z2 . . . zi−1 . x01[7→] (null null z1)

∗⋆1≤j<izj 7→ (null null zj+1) : {zi−1 = null}

is added to Φ. Furthermore, for each (p1 . . . pm, ai, p0) ∈ ∆, 1 ≤ i ≤ n, we add a
rule

p0 ⇐ ∃z1 . . . zm+1 . x0[1] 7→ (z1 . . . zm+1)

∗ ai(zm+1) ∗ ⋆1≤i≤mpi(zi).

Finally, we add rules I ⇐ px0 [1] : {x0[1] 6= null} for each p ∈ F . Clearly Φ
is established. Moreover, it is easy to verify that, given two NFTAs T1 and T2

with distinct sets of states, we have

I1x |=Φ1∪Φ2 I2x iff L(T1) ⊆ L(T2).

Thus, following [1], ifH
〈1〉
Ix,Φ can be accepted by a heap automaton, the entailment

problem SL-ENTAIL
〈α〉
Φ is ExpTime–hard for certain SIDs Φ fixed α = 1,

and a fixed arity of points-to assertions γ = 3. Such a heap automaton can

Unified Reasoning about Robustness Properties of Symbolic-Heaps 75

easily be constructed. Formally, let T = (Q,Σ,∆, F) be an NFTA as above and
Q = {p1, . . . , pk} for some k > 0. Furthermore, for each state pi, let ti be some
fixed finite tree that is accepted by the tree automaton Ti = (Q,Σ,∆, {pi}) and
τi be the corresponding encoding as a reduced symbolic heap. One possible (not
necessarily efficient) heap automaton A = (QA, SH〈1〉, ∆A, FA) is given by:

QA , {τi | 1 ≤ i ≤ k} ∪ {ai | 1 ≤ i ≤ n}

FA , F

q0
ϕ
−→A q1 . . . qm iff ϕ [P1/q1, . . . , Pm/qm] |=Φ Px0[1] ,

where each ai corresponds to the reduced symbolic heap encoding symbol ai and
P is the predicate pi corresponding to reduced symbolic heap τi as previously
described.

A.25 Constructing Well-Determined SIDs

In this section, we show that an established SID – and analogously an established
symbolic heap – can be automatically transformed into a well-determined one.
Intuitively, the main difference between an established symbolic heap ϕ and a
determined one ψ lies in their free variables: Since each existentially quantified
variable of ϕ is eventually allocated or equal to a free variable, all variables apart
from free variables are definitely unequal in ϕ. The same holds for ψ, but each
free variable is additionally either definitely equal or definitely unequal to any
other variable of ψ (cf. Section 6). Thus, the main idea to transform ϕ into a
determined symbolic heap is to add explicit pure formulas between each free
variable and each other variable.

More formally, let Cmp(y, ϕ) be the set of all sets Π consisting of exactly
one pure formula x ∼ y for each x ∈ Var(ϕ) and each y ∈ y, where ϕ ∈ SH
and y is some tuple of variables. Then, the following construction is essential to
transform symbolic heaps into determined ones.

Definition 22. Let ϕ = ∃z . Σ ∗ Γ : Π be an established symbolic heap with
‖Γϕ‖ = m . Moreover, let y be a tuple of variables of length k ≥ 0 and Λ ∈
Cmp(y, ϕ). Then,

det(ϕ,y, Λ) , ∃z . Σ ∗ propagate(ϕ,y) : Π ∪ Λ,

propagate(ϕ,y) , (P1, k)x1y ∗ . . . (Pm, k)xmy,

where (Pϕi , β) is a predicate symbol of arity ar(Pϕi) + β.

Example 10. Let ϕ denote the symbolic heap in the lower rule of predicate sll
in Example 1. Then det(ϕ,xϕ0 , ∅) is given by

∃z . x0[1] 7→ (z) ∗ (sll, 2) z x0[2] x
ϕ
0 : {x0[1] 6= x0[2]}.

Lemma 37. Let Φ ∈ SID be established. Then one can construct an SID Ψ with
Pred(Φ) ⊆ Pred(Ψ) such that for each P ∈ Pred(Φ), we have:

76 Jansen, Katelaan, Matheja, Noll, Zuleger

– τ is well-determined for each τ ∈ UΨ (Px0),
– τ |=Φ Px0 holds for each τ ∈ UΨ (Px0), and
– τ |=Ψ Px0 holds for each τ ∈ UΦ(Px0).

Here, the last two points ensure that models of predicate calls remain unchanged,
although their actual unfoldings might differ.

Proof. We first construct a determined SID Ω. For each Y, Z ∈ Pred(Φ), we
introduce a fresh predicate symbol (Y, ar(Z)), i.e.

Pred(Ω) , Pred(Φ) ∪ {(Y, ar(Z)) | Y, Z ∈ Pred(Φ)}.

Furthermore, for each arity k of some predicate symbol in Φ,Ω contains two kinds
of rules: First, there is a rule that propagates the free variables of a symbolic heap
through all of its predicate calls while comparing it to every variable. Formally,
we add a rule P ⇐ det(ϕ,xϕ0 , Λ) for each P ⇐ ϕ ∈ Φ and each Λ ∈ Cmp(xϕ0 , ϕ).
The second kind of rule continues the propagation and comparison of a selected
tuple of variables initiated by the first rule. Formally, we add a rule (P, k) ⇐
det(ϕ,y, Λ), where y is a tuple of k fresh variables, for each P ⇐ ϕ ∈ Φ and
each Λ ∈ Cmp(y, ϕ). Then Ω is determined.

To obtain a well -determined SID, we apply the Refinement Theorem (Theo-
rem 1) toΩ and the heap automaton ASAT (cf. Theorem 3) accepting all satisfiable
reduced symbolic heaps. This yields the desired SID Ψ in which every unfolding
of each predicate call is satisfiable and determined.

It remains to prove that our construction of Ψ is correct.

τ is well–determined for each τ ∈ UΨ (Px0). Let τ ∈ UΨ (Px0). Since each rule
in Ψ is obtained from Φ by adding pure formulas and free variables only and Φ is
established, Ψ is established as well. Then models of τ differ in the interpretation
of free variables only. By construction of Ψ we know that for each free variable
x ∈ x0 and each variable y ∈ Var(τ) there exists either an equality x = y or
an inequality x 6= y in Πτ . Hence, each variable is either allocated or definitely
equal or unequal to each other variable by a pure formula. Then τ is determined
(cf. Section 6). Furthermore, by Theorem 3, the Refinement Theorem ensures
that every unfolding of each predicate symbol is satisfiable without changing the
unfoldings themselves. Thus Ψ is well-determined.

τ |=Ψ Px0 for each τ ∈ UΦ(Px0). Let τ ∈ UΦ(Px0). By construction of Ω,
we have σ = det(τ,xτ0 , Λ) ∈ UΨ (Px0) for each Λ ∈ Cmp(xτ0 , τ) such that σ is
satisfiable. Then, for each stack-heap pair s, h, we have

s, h |=∅ τ

⇒
[

set Λ , {y ∼ xτ0 | s(y) ∼ s(xτ0)}
]

s, h |=∅ τ ∧ s, h |=∅ Λ

⇒ [Definition of σ = det(τ,xτ0 , Λ) ∈ UΨ (Px0)]

∃σ ∈ UΨ (Px0) . s, h |=∅ σ

Unified Reasoning about Robustness Properties of Symbolic-Heaps 77

⇒ [SL semantics]

s, h |=Ψ Px0.

Hence, τ |=Ψ Px0.

τ |=Φ Px0 for each τ ∈ UΨ (Px0). Let τ ∈ UΨ (Px0). By construction of Ψ , there
exists σ ∈ UΦ(Px0) and Λ ∈ Cmp(xσ0 , σ) such that τ = det(σ,xσ0 , Λ). Then, for
each stack-heap pair s, h, we have

s, h |=∅ τ

⇒ [Definition of τ = det(σ,xσ0 , Λ)]

s, h |=∅ σ and s, h |=∅ Λ

⇒ [A ∧B → A]

s, h |=∅ σ

⇒ [σ ∈ UΦ(Px0)]

∃σ ∈ UΦ(Px0) . s, h |=∅ σ

⇒ [SL semantics]

s, h |=Φ Px0.

Hence, τ |=Φ Px0 ⊓⊔

A.26 Proof of Theorem 10

Recall from Definition 12 the set of all reduced symbolic heaps in C (over the
same free variables as ϕ) entailing an unfolding of ϕ:

HC
ϕ,Φ , {σ ∈ RSHC | ‖xσ0‖ = ‖xϕ0 ‖ and∃τ ∈ UΦ(ϕ) . σ |=∅ τ}

Theorem 10. Let α ∈ N and Φ ∈ SIDFV≤α be established. Moreover, for each
predicate symbol P ∈ Pred(Φ), let there be a heap automaton over SH〈α〉 accept-

ing H
〈α〉
Px,Φ. Then, for every well-determined symbolic heap ϕ ∈ SHΦ, there is a

heap automaton over SH〈α〉 accepting H
〈α〉
ϕ,Φ.

The proof is by induction on the syntax of symbolic heaps. Since each case
requires the construction of a suitable heap automaton and a corresponding
correctness proof, we split the proof across multiple lemmas, which are shown
subsequently in the remainder of this section. Furthermore, we make some pre-
liminary remarks to reduce the technical effort.

Remark 4. We assume without loss of generality that every predicate call oc-
curring in a symbolic heap ϕ ∈ SH〈α〉 is annotated with a state of the tracking
automaton ATRACK introduced in Definition 10. Thus, for every predicate call
Pϕi x

ϕ
i , we assume the availability of

78 Jansen, Katelaan, Matheja, Noll, Zuleger

– a set Ai ⊆ xϕi capturing all allocated variables in a (fixed) unfolding of
Pϕi x

ϕ
i , and

– a finite set of pure formulas Πi over x
ϕ
i capturing all definite equalities and

inequalities between variables in xϕi .

This assumption is an optimization that prevents us from applying Lemma 3
again and again to keep track of the aforementioned relationships between pa-
rameters of predicate calls.

Remark 5. Furthermore, by Definition 13, every predicate call has at most α
parameters. However, the number of free variables of the symbolic heap itself, i.e.
the formula at the root of an unfolding tree, is not necessarily bounded by α. To
avoid additional case distinctions in correctness proofs, we present constructions
where the number of free variables is bounded by α as well. In each of our
constructions, this corner case can be dealt with by adding one dedicated final
state q>α such that (ε, τ, q>α) ∈ ∆ if and only if the number of free variables
‖xτ0‖ is greater than α and the property in question is satisfied by τ . General
symbolic heaps with more than α free variables are treated analogously. Once
the final state q>α has been reached no further transition is possible. Thus, only
symbolic heaps at the root of an unfolding tree may enter q>α.

Proof (Proof of Theorem 10).
The remainder of the proof is summarized as follows:

– The base cases x 7→ (y) and emp are shown in Section A.26 and Section A.26,
respectively.

– For predicate calls Px0, we already know by assumption that H
〈α〉
Px,Φ is ac-

cepted by a heap automaton over SH〈α〉.

– Section A.26 shows that H
〈α〉
ϕ∗ψ,Φ is accepted by a heap automaton over SH〈α〉

if ϕ, ψ are defined over the same set of free variables. This is sufficient, be-
cause we do not require that these variables actually occur in both symbolic
heaps.

– Section A.26 shows that H
〈α〉
ϕ:Π,Φ is accepted by a heap automaton over SH〈α〉,

where Π is a finite set of pure formulas over the free variables of ϕ.

– Section A.26 shows that H
〈α〉
∃z . ϕ,Φ is accepted by a heap automaton over

SH〈α〉, where z is a single variable. Repeated application then completes the
proof.

Hence, for each symbolic heap ϕ ∈ SHΦ〈α〉, a corresponding heap automaton over

〈α〉 accepting H
〈α〉
ϕ,Φ can be constructed. ⊓⊔

The Points-to Assertion Let u ∈ Un = {1, . . . , α}×{0, 1, . . . , α}n−1 for some
fixed natural number n ≥ 1. Moreover, we associate the points-to assertion

σu , x0[u[1]] 7→ (x0[u[2]] . . .x0[u[n]])

Unified Reasoning about Robustness Properties of Symbolic-Heaps 79

with each tuple u ∈ Un.
16 We construct a heap automaton Aσv

= (Q, SH〈α〉, ∆, F)

accepting H
〈α〉
σv,Φ

for some fixed tuple v ∈ Un as follows:

Q , {σu | u ∈ Un} ∪ {emp} F , {σv}

Moreover, for ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m, the transition relation ∆ is given by:

q1 . . . qm
ϕ
−→Aσv

q0 iff reduce(ϕ, q1 . . . qm) |=∅ q0

where reduce(ϕ, q1 . . . qm) , ϕ[P1/q1 : Πi, . . . , Pm/qm : Πm] and each set Πi

denotes the set of pure formulas obtained from the tracking automaton (see
Definition 8), which is assumed to be readily available by Remark 4.

Lemma 38. Aσv
satisfies the compositionality property.

Proof. Let ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Moreover, for each 1 ≤ i ≤ m, let

τi ∈ RSH〈α〉 and τ , ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]. Assume ε

τ
−→Aσv

q0. Three cases
arise depending on the value of q0 ∈ Q.
Case 1: q0 = emp

ε
τ
−→Aσv

emp

⇔ [Definition of ∆, ‖Γ τ‖ = 0]

τ |=Φ emp

⇔ [choose q1 = . . . = qm = emp]
∧

1≤i≤m

qi = emp and τ |=Φ emp

⇔ [τ = ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm] contains no points-to assertion]

∧

1≤i≤m

qi = emp and ϕ |=Φ emp

and ∀1 ≤ i ≤ m . τi |=Φ emp

⇔ [Definition of ∆]

∃q1, . . . , qm ∈ Q . q1 . . . qm
ϕ
−→Aσv

q0

and ∀1 ≤ i ≤ m . ε
τi−→Aσv

qi.

Case 2: q0 = σu

ε
τ
−→Aσv

σu

⇔ [Definition of ∆, ‖Γ τ‖ = 0]

τ |=Φ σu (†)

Now, τ |=Φ σu holds if and only if τ contains at most one points-to assertion σw,
w ∈ Un, where each variable is free. If this points-to assertion is contained in ϕ

16 Recall that x0[0] = null.

80 Jansen, Katelaan, Matheja, Noll, Zuleger

then choose q1 = . . . = qm = emp. Otherwise, if exactly τk, 1 ≤ k ≤ m contains
a points-to assertion, choose qk = σw and qi = emp for each i 6= k. With these
choices, our computation continues as follows:

(†) ⇔ [choice of q1, . . . , qm]

∃q1, . . . , qm ∈ Q . τ |=Φ σu

and ∀1 ≤ i ≤ m . τi |=Φ qi

⇔ [Definition of ∆]

∃q1, . . . , qm ∈ Q . τ |=Φ σu

and ∀1 ≤ i ≤ m . ε
τi−→Aσv

qi

Since each variable of points-to assertion σw is equal to a free variable and,
by Lemma 3, two free variables are equal in τ if and only if they are equal in
reduce(ϕ, q1 . . . qm), we have reduce(ϕ, q1 . . . qm) |=Φ σu if and only if τ |=ϕ σu.
Thus:

⇔ [reduce(ϕ, q1 . . . qm) |=Φ σu iff τ |=ϕ σu]

∃q1, . . . , qm ∈ Q . reduce(ϕ, q1 . . . qm) |=Φ σu

and ∀1 ≤ i ≤ m . ε
τi−→Aσv

qi

⇔ [Definition of ∆]

∃q1, . . . , qm ∈ Q . q1 . . . qm
ϕ
−→Aσv

q0

and ∀1 ≤ i ≤ m . ε
τi−→Aσv

qi.

⊓⊔

Lemma 39. L(Aσv
) = H

〈α〉
σv,Φ

.

Proof. Let τ ∈ RSH〈α〉. Then

τ ∈ L(Aσv
)

⇔ [Definition of L(Aσv
)]

∃q ∈ F . ε
τ
−→Aσv

q

⇔ [Definition of F]

ε
τ
−→Aσv

σv

⇔ [Definition of ∆]

reduce(ϕ, ε) |=∅ σv

⇔ [‖Γ τ‖ = 0 implies τ = reduce(ϕ, ε)]

τ |=∅ σv

⇔
[

Definition of H
〈α〉
σv,Φ

]

τ ∈ H
〈α〉
σv,Φ

.

⊓⊔

Unified Reasoning about Robustness Properties of Symbolic-Heaps 81

The Empty Heap A heap automaton Aemp accepting H
〈α〉
emp,Φ is constructed

analogously to Aσv
, the heap automaton constructed for the points-to assertion

in Section A.26. The only exception is that FAemp , {emp} is chosen as set of
final states.17 Since the compositionality property for this automaton already
has been shown in Lemma 38, it suffices to show that Aemp accepts the correct
language.

Lemma 40. L(Aemp) = H
〈α〉
emp,Φ.

Proof. Let τ ∈ RSH〈α〉. Then

τ ∈ L(Aemp)

⇔ [Definition of L(Aemp)]

∃q0 ∈ F . ε
τ
−→Aemp q0

⇔ [Definition of F]

ε
τ
−→Aemp emp

⇔ [Definition of ∆, reduce(ϕ, ε) = τ]

τ |=∅ emp

⇔
[

τ ∈ RSH〈α〉

]

τ |=Φ emp

⇔
[

Definition of H
〈α〉
emp,Φ

]

τ ∈ H
〈α〉
emp,Φ.

⊓⊔

The Separating Conjunction Some additional notation is needed. First, we
write ϕ ≡ ψ if two symbolic heaps ϕ, ψ are identical up to the ordering of spatial
formulas. Given symbolic heaps ϕ,ψ and some variable x, we define

[x]ϕ,ψ ,

{

x if x ∈ Var(ϕ) ∪ Var(ψ)

ε otherwise.

Moreover, given two tuples x,y taken from a finite set of variables {z1, . . . , zn},
let x⊎y , [z1]ϕ,ψ [zn]ϕ,ψ. Similar to splitting a heap h = h1 ⊎ h2 into two
heaps, we define an operation to split symbolic heaps.

Definition 23. Let ϕ, ψ ∈ SH with free variables xϕ0 , x
ψ
0 and

Γϕ = P1x
ϕ
1 ∗ . . . ∗ Pmxϕm and Γψ = P1x

ψ
1 ∗ . . . ∗ Pmxψm.

17 The set of points-to assertions Un in this construction can even be chosen to be the
empty set.

82 Jansen, Katelaan, Matheja, Noll, Zuleger

Moreover, let zϕ, zψ ⊆ {z1, . . . , zn} for some n ∈ N and for each 0 ≤ i ≤ m, let
xϕi ,x

ϕ
i ⊆ xi, where xi is some finite set of variables. Then ϕ ⊎ ψ is defined as

ϕ ⊎ ψ , ∃(zϕ ⊎ zψ) . Σϕ ∗Σψ ∗ Γ : Πϕ ∪Πψ,where

Γ , P1(x
ϕ
1 ⊎ xψ1) ∗ . . . ∗ Pm(xϕm ⊎ xψm)

with free variables xϕ0 ⊎ xψ0 .
18 Otherwise, ϕ ⊎ ψ is undefined.

Since inequalities between allocated variables of a symbolic heap ϕ are redun-
dant, let core(ϕ) denote the corresponding symbolic heap in which such inequal-
ities are removed. Formally, core(ϕ) is given by:

∃zϕ . Σϕ ∗ Γϕ : Πϕ \ {a 6= b | a, b ∈ alloc(ϕ) ∪ {null}}.

Note that core(ϕ) is computable in polynomial time if ϕ is reduced or each
predicate is attached with variable tracking information (see Definition 10).

We are now in a position to deal with the separating conjunction of two sym-
bolic heaps. Let ψ1, ψ2 ∈ SH〈α〉 with Var(ψ1) = Var(ψ2) = xψ1

0 = xψ2

0 . Moreover,

let Aψ1 , Aψ2 be heap automata over SH〈α〉 accepting H
〈α〉
ψ1,Φ

and H
〈α〉
ψ2,Φ

, respec-
tively. We construct a heap automaton Aψ1 ∗ ψ2 = (Q, SH〈α〉, ∆, F) accepting

H
〈α〉
ψ1∗ψ2,Φ

as follows:

Q , 2u ×QAψ1
× 2u ×QAψ2

× 2u

F , 2u × FAψ1
× 2u × FAψ2

× 2u,

where u denotes a tuple of α variables. The main idea of choosing this state space
is that each state (U, p, V, q,H) stores the current states p, q of heap automata
Aψ1 and Aψ2 running on two separated symbolic heaps that are obtained from
splitting the originally given symbolic heap into two parts. These splitted sym-
bolic heaps require some synchronization information encoded in sets U, V,K.
More precisely, U, V store which free variables of the original symbolic heap be-
long to the symbolic heap fed into Aψ1 and Aψ2 , respectively. Finally, H stores
which variables are allocated in the symbolic heap fed into Aψ1 . Correspond-
ingly, all other allocated variables must be allocated in the symbolic heap fed
into Aψ2 . These sets are checked in the transition relation to ensure composi-
tionality. Formally, for ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m, the transition relation ∆ is
given by:

(U1, p1, V1, q1, H1) . . . (Um, pm, Vm, qm, Hm)
ϕ
−→Aψ1 ∗ ψ2

(U0, p0, V0, q0, H0)

iff ∃ψp, ψq . core(ϕ) ≡ ψp ⊎ ψq

18 Note that technically, the predicate symbols Pi may have different arities for each
of the aforementioned symbolic heaps due to different numbers of parameters. This
can easily be fixed by renaming predicate symbols. However, we chose to ignore the
arity here to improve readability.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 83

and p1 . . . pm
ψp
−−→Aψ1

p0 and q1 . . . qm
ψq
−−→Aψ2

q0

and ∀0 ≤ i ≤ m. ∀1 ≤ j ≤ α .
(

u[j] ∈ Ui iff xϕi [j] ∈ x
ψp
i

)

and
(

u[j] ∈ Vi iff xϕi [j] ∈ x
ψq
i

)

and (u[j] ∈ Hi iff xϕi [j] ∈ alloc(ψp)) .

Lemma 41. Aψ1 ∗ ψ2 satisfies the compositionality property.

Proof. Let ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Moreover, for each 1 ≤ i ≤ m, let

τi ∈ RSH〈α〉 and τ , ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]. To improve readability, we write

Ui, pi, Vi, qi, Hi to denote the respective component of an automaton state Si =
(Ui, pi, Vi, qi, Hi) ∈ Q. Let S0 ∈ Q. Then:

∃S1, . . . , Sm ∈ Q .

S1 . . . Sm
ϕ
−→Aψ1 ∗ ψ2

S0 and ∀1 ≤ k ≤ m . ε
τi−→Aψ1 ∗ ψ2

Sk

⇔ [Definition of ∆]

∃S1, . . . , Sm ∈ Q .

∃ψp, ψq . core(ϕ) ≡ ψp ⊎ ψq

and p1 . . . pm
ψp
−−→Aψ1

p0 and q1 . . . qm
ψq
−−→Aψ2

q0

and ∀0 ≤ i ≤ m. ∀1 ≤ j ≤ α .
(

u[j] ∈ Ui iff xϕi [j] ∈ x
ψp
i

)

and
(

u[j] ∈ Vi iff xϕi [j] ∈ x
ψq
i

)

and (u[j] ∈ Hi iff xϕi [j] ∈ alloc(ψp))

and ∀1 ≤ k ≤ m. ∃τk,p, τk,q .

core(τk) ≡ τk,p ⊎ τk,q

and ε
τk,p
−−→Aψ1

p0 and ε
τk,q
−−→Aψ2

q0

and ∀1 ≤ j ≤ α .
(

u[j] ∈ Uk iff xτk0 [j] ∈ x
τk,p
0

)

and
(

u[j] ∈ Vk iff xτk0 [j] ∈ x
τk,q
0

)

and (u[j] ∈ Hk iff xτk0 [j] ∈ alloc(τk,p))

To avoid introducing further notation, we do not distinguish between core(τ)
and τ in the following.19 Now, for each 1 ≤ k ≤ m, the conditions on Uk and Vk

19 recall that core just removes inequalities that are contained implicitly in a symbolic
heap due to points-to assertions

84 Jansen, Katelaan, Matheja, Noll, Zuleger

guarantee that the free variables of each τk,p and τk,q, 1 ≤ k ≤ m match with

the parameters of each predicate call P
ψp
k x

ψp
k and P

ψq
k x

ψq
k , respectively. Hence,

the symbolic heaps

τp , ψp[P1/τ1,p, . . . , Pm/τm,p],

τq , ψq[P1/τ1,q, . . . , Pm/τm,q]

exist. Assume, for the moment, that τp ⊎ τq ≡ τ holds under the conditions on
sets Uk, Vk, Hk. Then, the calculations from above continue as follows:

⇔ [Compositionality of Aψ1 ,Aψ2]

∃S1, . . . , Sm ∈ Q .

∃ψp, ψq . core(ϕ) ≡ ψp ⊎ ψq

and ε
τp
−→Aψ1

p0 and ε
τq
−→Aψ2

q0

and ∀0 ≤ i ≤ m. ∀1 ≤ j ≤ α .
(

u[j] ∈ Ui iff xϕi [j] ∈ x
ψp
i

)

and
(

u[j] ∈ Vi iff xϕi [j] ∈ x
ψq
i

)

and (u[j] ∈ Hi iff xϕi [j] ∈ alloc(ψp))

and ∀1 ≤ k ≤ m. ∃τk,p, τk,q .

core(τk) ≡ τk,p ⊎ τk,q

and ∀1 ≤ j ≤ α .
(

u[j] ∈ Uk iff xτk0 [j] ∈ x
τk,p
0

)

and
(

u[j] ∈ Vk iff xτk0 [j] ∈ x
τk,q
0

)

and (u[j] ∈ Hk iff xτk0 [j] ∈ alloc(τk,p))

⇔ [Assumption: τp ⊎ τq ≡ τ]

∃τp, τq . core(ϕ) ≡ τp ⊎ τq

and ε
τp
−→Aψ1

p0 and ε
τq
−→Aψ2

q0

and ∀1 ≤ j ≤ α .
(

u[j] ∈ U0 iff xϕ0 [j] ∈ x
τp
0

)

and
(

u[j] ∈ V0 iff xϕ0 [j] ∈ x
τq
0

)

and (u[j] ∈ H0 iff xϕ0 [j] ∈ alloc(τp))

⇔ [Definition of ∆]

ε
τ
−→Aψ1 ∗ ψ2

S0.

It remains to prove the assumption τp ⊎ τq ≡ τ . Since both symbolic heaps are
subformulas of τ and, by the condition on sets Hk, no variable is allocated twice,
we have:

τp ⊎ τq

Unified Reasoning about Robustness Properties of Symbolic-Heaps 85

= [Definition τp, τq]

ψp[P1/τ1,p, . . . , Pm/τm,p] ⊎ ψq[P1/τ1,q, . . . , Pm/τm,q]

= [Definition of predicate replacement]

∃zψp · zτ1,p · . . . · zτm,p .

Σψp ∗Στ1,p [x
τ1,p
0 /x

ψp
1] ∗Στm,p [x

τm,p
0 /xψpm]

: Πψp ∪Πτ1,p [x
τ1,p
0 /x

ψp
1] ∪ τm,p[x

τm,p
0 /xψpm]

⊎

∃zψq · zτ1,q · . . . · zτm,q .

Σψq ∗Στ1,q [x
τ1,q
0 /x

ψq
1] ∗Στm,q [x

τm,q
0 /xψqm]

: Πψq ∪Πτ1,q [x
τ1,q
0 /x

ψq
1] ∪ τm,q[x

τm,q
0 /xψqm]

= [Definition 23]

∃
(

zψp · zτ1,p · . . . · zτm,p ⊎ zψq · zτ1,q · . . . · zτm,q
)

.

Σψp ∗Στ1,p [x
τ1,p
0 /x

ψp
1] ∗Στm,p [x

τm,p
0 /xψpm]

∗Σψq ∗Στ1,q [x
τ1,q
0 /x

ψq
1] ∗Στm,q [x

τm,q
0 /xψqm]

: Πψp ∪Πτ1,p [x
τ1,p
0 /x

ψp
1] ∪ τm,p[x

τm,p
0 /xψpm]

∪Πψq ∪Πτ1,q [x
τ1,q
0 /x

ψq
1] ∪ τm,q[x

τm,q
0 /xψqm]

Now, by definition, we know that zτk,p⊎τk,q = zτk and zψp⊎ψq = zϕ, i.e., the
existentially quantified variables reduce to zϕ · zτ1 · . . . · zτm . Analogously, for
each 1 ≤ k ≤ m, we have

Στk [xτk0 /x
ϕ
k] ≡ Στk,p [x

τk,p
0 /x

ψp
k] ∗Στk,q [x

τk,q
0 /x

ψq
k], and

Πτk [xτk0 /x
ϕ
k] = Πτk,q [x

τk,q
0 /x

ψq
k].

Thus

≡ [comment from above]

∃zϕ · zτ1 · . . . · zτm .

Σψp ∗Σψq

∗Στ1[xτ10 /x
ϕ
1] ∗ . . . ∗Σ

τm [xτm0 /xϕm]

: Πψp ∪Πψq

∪Πτ1 [xτ10 /x
ϕ
1] ∪ . . . ∪Π

τm [xτm0 /xϕm]

≡
[

Σϕ ≡ Σψp ∗Σψq , Πϕ = Πψp ∪Πψq
]

∃zϕ · zτ1 · . . . · zτm .

Σϕ ∗Στ1 [xτ10 /x
ϕ
1] ∗ . . . ∗Σ

τm [xτm0 /xϕm]

: Πϕ ∪Πτ1 [xτ10 /x
ϕ
1] ∪ . . . ∪Π

τm [xτm0 /xϕm]

≡ [Definition of predicate replacement]

86 Jansen, Katelaan, Matheja, Noll, Zuleger

ϕ [Pϕ1 xϕ1 /τ1, . . . P
ϕ
mxϕm/τm]

≡ [Definition of τ]

τ.

Hence, Aψ1 ∗ ψ2 satisfies the compositionality property. ⊓⊔

Lemma 42. L(Aψ1 ∗ ψ2) = H
〈α〉
ψ1∗ψ2,Φ

.

Proof. Let τ ∈ RSH〈α〉. Then

τ ∈ L(Aψ1 ∗ ψ2)

⇔ [Definition of L(Aψ1 ∗ ψ2)]

∃S0 = (U0, p0, V0, q0, H0) ∈ F . ε
τ
−→Aψ1 ∗ ψ2

S0

⇔ [Definition of ∆]

∃S0 = (U0, p0, V0, q0, H0) ∈ F .

∃ψp, ψq . core(τ) ≡ ψp ⊎ ψq

and ε
ψp
−−→Aψ1

p0 and ε
ψq
−−→Aψ2

q0

and ∀1 ≤ j ≤ α .
(

u[j] ∈ U0 iff xτ0 [j] ∈ x
ψp
0

)

and
(

u[j] ∈ V0 iff xτ0 [j] ∈ x
ψq
0

)

and (u[j] ∈ H0 iff xτ0 [j] ∈ alloc(ψp))

⇔
[

p0 ∈ FAψ1
, q0 ∈ FAψ2

,Definition of L(Aψ1), L(Aψ2)
]

∃ψp, ψq . core(τ) ≡ ψp ⊎ ψq

and ψp |=Φ ψ1 and ψq |=Φ ψ2

⇔ [core(τ) |=∅ τ and τ |=∅ core(τ)]

∃ψp, ψq . ψp ⊎ ψq |=∅ τ and τ |=∅ ψp ⊎ ψq

and ψp |=Φ ψ1 and ψq |=Φ ψ2.

To complete the proof we show

∃ψp, ψq . ψp ⊎ ψq |=∅ τ and τ |=∅ ψp ⊎ ψq

and ψp |=Φ ψ1 and ψq |=Φ ψ2

iff τ |=Φ ψ1 ∗ ψ2.

This, together with the previously shown equivalences, immediately yields

τ ∈ L(Aψ1 ∗ ψ2) iff τ |=Φ ψ1 ∗ ψ2 iff τ ∈ HΦ
ψ1∗ψ2

.

For the first direction, we have

s, h |=∅ τ

Unified Reasoning about Robustness Properties of Symbolic-Heaps 87

⇒ [τ |=∅ ψp ⊎ ψq]

s, h |=∅ ψp ⊎ ψq

⇒
[

Definition 23, zτ = zψp ⊎ zψq
]

s, h |=∅ ∃zτ . Σψp ∗Σψq : Πψp ∪Πψq

and s, h |=Φ ψ1 ∗ ψ2

⇒ [SL semantics]

∃v ∈ Val‖z
τ‖ . ∃h1, h2 . h = h1 ⊎ h2

and s[zτ 7→ v], h1 |=∅ Σ
ψp and s[zτ 7→ v], h2 |=∅ Σ

ψq

and s[zτ 7→ v], h |=∅ Π
ψp ∪Πψq

⇒ [elementary logic, SL semantics]

∃h1, h2 . h = h1 ⊎ h2

and s, h1 |=∅ ψp and s, h2 |=∅ ψq

⇒ [ψp |=Φ ψ1, ψq |=Φ ψ2]

∃h1, h2 . h = h1 ⊎ h2

and s, h1 |=Φ ψ1 and s, h2 |=Φ ψ2

⇒ [SL semantics]

s, h |=Φ ψ1 ∗ ψ2.

Hence, τ |=Φ ψ1 ∗ ψ2. For the converse direction, we have

τ |=Φ ψ1 ∗ ψ2

⇒ [Definition entailment]

∀(s, h) . s, h |=Φ τ implies s, h |=Φ ψ1 ∗ ψ2

⇒ [τ reduced and well-determined]

∃(s, h) . s, h |=∅ τ and s, h |=Φ ψ1 ∗ ψ2

⇒ [τ = ∃z.Σ : Π, SL semantics]

∃(s, h).∃h1, h2 . h = h1 ⊎ h2

and ∃z ∈ Val‖z‖ . s[z 7→ v], h |=∅ Σ

and s[z 7→ v], h |=∅ Π

and s, h1 |=Φ ψ1 and s, h2 |=Φ ψ2

⇒ [SL semantics]

∃(s, h).∃h1, h2 . h = h1 ⊎ h2 and ∃z ∈ Val‖z‖ .

h = {s[z 7→ v](x) 7→ s[z 7→ v](y) | x 7→ (y) in Σ}

and s[z 7→ v], h |=∅ Π

and s, h1 |=Φ ψ1 and s, h2 |=Φ ψ2.

Now, we choose ψp, ψq such that core(τ) = ψp ⊎ ψq by adding exactly those
points-to assertions x 7→ (y) to Σψp , where s[z 7→ v](x) ∈ dom(h1). All other

88 Jansen, Katelaan, Matheja, Noll, Zuleger

points-to assertions are added to ψq. The existentially quantified variables and
pure formulas are chosen such that both symbolic heaps are well-determined.
This is always possible, because ψ1 and ψ2 are well-determined on their own.
Then s, h1 |=∅ ψp and s, h2 |=∅ ψq. Since both ψp and ψq are well-determined,
this implies ψp |=Φ ψ1 and ψq |=Φ ψq. Moreover, since each points-to assertion
and each pure formula in the core occurs in ψp or ψq, we have core(τ) = ψp⊎ψq.
Hence, τ |=Φ ψ1 ∗ ψ2 implies

∃ψp, ψq . ψp ⊎ ψq |=∅ τ and τ |=∅ ψp ⊎ ψq

and ψp |=Φ ψ1 and ψq |=Φ ψ2.

⊓⊔

The Pure Formula Dealing with pure formulas is rather straightforward, be-
cause we already know how to track equalities and inequalities using the con-
struction from Definition 10.

Let ϑ ∈ SH〈α〉 such that H
〈α〉
ϑ,Φ there exists a heap automaton, say Aϑ, ac-

cepting H
〈α〉
ϑ,Φ. Moreover, let Π be some finite set of pure formulas over the set

of free variables of ϑ. We construct a heap automaton Aϑ : Π = (Q, SH〈α〉, ∆, F)

accepting H
〈α〉
ψ,Φ, where ψ , ∃zϑ . Σϑ ∗ Γϑ : Πϑ ∪Π , as follows:

Q , QAϑ × {0, 1} F , FAϑ × {1}.

Moreover, for ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m, the transition relation ∆ is given by:

(p1, q1) . . . (pm, qm)
ϕ
−→Aϑ : Π

(p0, q0)

iff p1 . . . pm
ϕ
−→Aϑ p0 and

∧

0≤i≤m

qi = 1 iff Π ⊆ Πi,

where Πi is the set of pure formulas obtained from the tracking automaton (see
Definition 10) that is available by Remark 4.

Lemma 43. Aϑ : Π satisfies the compositionality property.

Proof. Let ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Moreover, for each 1 ≤ i ≤ m, let

τi ∈ RSH〈α〉 and τ , ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]. For each 1 ≤ i ≤ m, let Πi be the

set of pure formulas obtained by the tracking automaton (cf. Definition 10) for
τi. Note that this information is available without running the full automaton
again due to Remark 4. Then, for each (p0, q0) ∈ Q, we have

ε
τ
−→Aϑ : Π

(p0, q0)

⇔ [Definition of ∆]

ε
τ
−→Aϑ p0 and q0 = 1 iff Π ⊆ Π0

[for each 1 ≤ i ≤ m set qi = 1 iff Π ⊆ Πi]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 89

∃q1, . . . , qm ∈ {0, 1} .

ε
τ
−→Aϑ p0 and

∧

0≤i≤m

qi = 1 iff Π ⊆ Πi

⇔ [Compositionality of Aϑ]

∃q1, . . . , qm ∈ {0, 1} . ∃p1, . . . , pm ∈ QAϑ .

p1 . . . pm
ϕ
−→Aϑ p0 and

∧

0≤i≤m

qi = 1 iff Π ⊆ Πi

and ∀1 ≤ i ≤ m . ε
τi−→Aϑ pi

⇔ [Definition of Q, regrouping]

∃(p1, q1), . . . , (pm, qm) ∈ Q .

p1 . . . pm
ϕ
−→Aϑ p0 and

∧

0≤i≤m

qi = 1 iff Π ⊆ Πi

and ∀1 ≤ i ≤ m . ε
τi−→Aϑ pi and qi = 1 iff Π ⊆ Πi

⇔ [Definition of ∆]

∃(p1, q1), . . . , (pm, qm) ∈ Q .

(p1, q1) . . . (pm, qm)
ϕ
−→Aϑ : Π

(p0, q0)

and ∀1 ≤ i ≤ m . ε
τi−→Aϑ : Π

(pi, qi).

⊓⊔

Lemma 44. L(Aϑ : Π) = H
〈α〉
ψ,Φ, where ψ , ∃zϑ . Σϑ ∗ Γϑ : Πϑ ∪ Π and ϑ ∈

SHΦ〈α〉.

Proof. Let τ ∈ RSH〈α〉. Then

τ ∈ L(Aϑ : Π)

⇔ [Definition of L(Aϑ : Π)]

∃(p0, q0) ∈ F . ε
τ
−→Aϑ : Π

(p0, q0)

⇔ [Definition of F]

∃p0 ∈ FAϑ . ε
τ
−→Aϑ : Π

(p0, 1)

⇔ [Definition of ∆, q0 = 1]

∃p0 ∈ FAϑ . ε
τ
−→Aϑ p0

and
∧

0≤i≤‖Γ τ‖

qi = 1 iff Π ⊆ Πi

⇔ [‖Γ τ‖ = 0, q0 = 1]

∃p0 ∈ FAϑ . ε
τ
−→Aϑ p0 and Π ⊆ Π0

⇔ [Definition of L(Aϑ)]

τ ∈ L(Aϑ) and Π ⊆ Π0

90 Jansen, Katelaan, Matheja, Noll, Zuleger

⇔
[

L(Aϑ) = H
〈α〉
ϑ,Φ

]

τ ∈ H
〈α〉
ϑ,Φ and Π ⊆ Π0

⇔ [Definition of Π0 (see Definition 8)]

τ ∈ H
〈α〉
ϑ,Φ and Π ⊆ {x ∼ y | x ∼τ y}

⇔
[

Definition H
〈α〉
ϑ,Φ, ∼τ

]

τ |=Φ ϑ and τ |=∅ Π

⇔
[

ψ , ∃zϑ . Σϑ ∗ Γϑ : Πϑ ∪Π
]

τ |=Φ ψ

⇔
[

Definition H
〈α〉
ψ,Φ

]

τ ∈ H
〈α〉
ψ,Φ.

⊓⊔

The Existential Quantification In order to deal with existential quantifiers,
we exploit the following structural property.

Lemma 45. For Φ ∈ SID, let τ ∈ RSHα be a well–determined symbolic heap

and ψ ∈ SHΦα. Moreover, let x /∈ Var(τ) and xψ0 = xτ0 ·x. Then τ |=Φ ∃x . ψ holds
if and only if there exists y ∈ Var(τ) such that ∃zτ .Στ : Πτ ∪ {x = y} |=Φ ψ.

Proof. To improve readability, we write τy as a shortcut for ∃zτ .Στ : Πτ ∪{x =
y}.
“only-if” Towards a contradiction, assume that τ |=Φ ∃x.ψ holds, but for
each y ∈ Var(τ), we have τy 6|=Φ ψ. Since τ is established and well–determined
and x /∈ Var(τ), we know that τy is established and well–determined as well.
Thus, let (s, h) ∈ Models(τy) be the unique model of τy up to isomorphism.
Clearly, s(x) = s(y) due to the pure formula x = y. Then, by assumption,
s, h 6|=Φ ψ.

Now, let (s′, h′) ∈ Models(τ) be the unique model of τ up to isomorphism.
Since τ |=Φ ∃x.ψ, applying the SL semantics yields that there exists v ∈ Val such
that s′[x 7→ v], h′ |=Φ ψ. Moreover, v is drawn from the image (or codomain)
of s′ and dom(h′), because ψ is established. By Lemma 10 and x /∈ Var(τ), we
know that s′[x 7→ v], h′ |=∅ τ . Observe that for each of these values v there exists
at least one variable y ∈ Var(τ) such that y is evaluated to v.20 Then s′[x 7→
v], h′ |=∅ τy holds for some y ∈ Var(τ) that is evaluated to v. However, since

20 For v ∈ codom(s′) this is clear, because there exists y ∈ dom(s′) with s′(y) = v.
Otherwise, if v ∈ dom(h′), applying the SL semantics yields that there exists u ∈
codom(s′) ∪ dom(h′) such that s′[zτ 7→ u], h′ |=∅ Σ

τ : Πτ . Then, since dom(h′) =
{s′[zτ 7→ u](z) | z 7→ () occurs in Στ}, v is contained in codom(s′[zτ 7→ u]). Thus
there exists some variable y ∈ dom(s′[zτ 7→ u]) = Var(τ) with s′[zτ 7→ u](y) = v.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 91

s′[x 7→ v], h′ |=Φ ψ, this means that τy |=Φ ψ. This contradicts our assumption
τy 6|=Φ ψ for each y ∈ Var(τ).21

“if” Assume there exists y ∈ Var(τ) such that τy |=Φ ψ. Thus, for each
s, h |=∅ τy , we have s, h |=Φ ψ. Furthermore, since τ is established and x occurs
in τy in the pure formula x = y only, we know that

s(x) ∈ s(xτ0) ∪ dom(h). (†)

In particular, s, h |=∅ τ holds, because only one pure formula is added by τy.
Moreover, since x /∈ Var(τ), s ↾xτ0 , h |=∅ τ holds by Lemma 10. Then

s, h |=∅ τy

⇒ [Assumption: τy |=Φ ψ]

s, h |=∅ ψ

⇒ [applying (†), v = s(x)]

∃v ∈ s(xτ0) ∪ dom(h) . (s ↾xτ0)[x 7→ v] = s and s, h |=∅ ψ

⇒
[

(s ↾xτ0)[x 7→ v] = s
]

∃v ∈ s(xτ0) ∪ dom(h) . (s ↾xτ0)[x 7→ v], h |=∅ ψ

⇒ [s(xτ0) ∪ dom(h) ⊆ Val]

∃v ∈ Val . (s ↾xτ0)[x 7→ v], h |=∅ ψ

⇒ [SL semantics]

(s ↾xτ0), h |=∅ ∃x.ψ.

Hence, each model of τ is also a model of ∃x.ψ, i.e., τ |=Φ ∃x . ψ. ⊓⊔

Note that the proof of the lemma from above works analogously if the additional
free variable x occurs at a different position in the tuple of free variables.

Following the previous lemma, the main idea is to nondeterministically guess

some variable y of an unfolding τ and verify that τ : {x = y} belongs to H
〈α〉
ψ,Φ.

Since this construction increases the number of free variables, we remark that
y has to be chosen carefully such that a symbolic heap in SHα is obtained.
In particular, if y does not belong to the root node of an unfolding tree, the
corresponding predicate must either have an arity smaller than α, or y is equal
to some other free variable. However, each y occurring in the root node of an
unfolding tree may be chosen.

Before we present a formal construction, we first define how a symbolic heap
ϕ is modified in the following.

Definition 24. Let x be a tuple of variables with ‖x‖ = n. Moreover, let 1 ≤
k ≤ n + 1. Then, the tuple of variables in which a fresh variable x is placed at

21 Note that τy is well–determined. Thus, one common model between ψ and τy is
sufficient to prove the entailment τy |=Φ ψ.

92 Jansen, Katelaan, Matheja, Noll, Zuleger

position k is given by:

x [x ↓ k] , x[1] . . . x[k − 1] x x[k + 1] . . . x[n] .

Now, let ϕ be a symbolic heap with ‖xϕ0 ‖ = β < α. Then, the symbolic heap
ϕ [x ↓ k] is defined as ϕ except for the tuple of free variables being xϕ0 [x ↓ k].
Furthermore, for some 1 ≤ i ≤ ‖Γϕ‖ and 1 ≤ ℓ ≤ ‖xϕi ‖ + 1, the symbolic heap
ϕ [x ↓ i, ℓ] is defined as ϕ except for the tuple of parameters of the i-th predicate

call being x
ϕ[x↓i,ℓ]
i = xϕi [x ↓ ℓ]. Otherwise, ϕ [x ↓ k] as well as ϕ [x ↓ i, k] are

undefined.

Now, let Aψ be a heap automaton accepting H
〈α〉
ψ,Φ and ATRACK be the tracking

automaton introduced in Definition 10. We construct a heap automaton A∃z.ψ =

(Q, SH〈α〉, ∆, F) accepting H
〈α〉
∃x.ψ,Φ, where x is the k-th free variable of ψ, as

follows:

Q , QAψ × {0, 1, . . . , α} ×QATRACK
F , FAψ × {k} ×QATRACK

Moreover, for ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m, the transition relation ∆ is given by:

(p1, q1, rm) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q0, r0)

iff p1 . . . pm
ϑ
−→Aψ p0 and r1 . . . rm

ϑ
−→ATRACK

r0 ,

where ϑ adheres to one of the following cases:

1. q0 = q1 = . . . = qm = 0 and ϑ = ϕ, or
2. q0 = ℓ > 0 and there exists exactly one 1 ≤ j ≤ m such that qj = ℓ′ > 0 and
ϑ = (ϕ [x ↓ ℓ]) [x ↓ j, ℓ′], or

3. q0 = ℓ > 0 and
∑

1≤i≤m qi = 0 and ϑ = (ϕ [x ↓ ℓ]) : {x = y} for some
y ∈ Var(ϕ).

Here, ϕ : {y = x} is a shortcut for the symbolic heap ∃zϕ . Σϕ ∗Γϕ : Πϕ∪{x =
y}. Moreover, the annotations of each predicate call Pϑi x

ϑ
i are set to the sets

contained in ri = (Ai, Πi) instead of using existing annotations. We remark
that this construction is highly non-deterministic. Furthermore, note that the
automata rejects a symbolic heap if some ϑ does not belong to SH〈α〉, because
it is not a top-level formula and has more than α free variables.

Lemma 46. A∃z.ψ satisfies the compositionality property.

Proof. Let ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Moreover, for each 1 ≤ i ≤ m, let

τi ∈ RSH〈α〉 and τ , ϕ[Pϕ1 /τ1, . . . , P
ϕ
m/τm]. Assume ε

τ
−→ATRACK

(p0, q0, r0). By
definition of ∆, we either have q0 = 0 or q0 > 0. We proceed by case distinction.

The case q0 = 0

ε
τ
−→ATRACK

(p0, 0, r0)

⇔ [Definition of ∆ (only first case applicable)]

Unified Reasoning about Robustness Properties of Symbolic-Heaps 93

ε
τ
−→Aψ p0 and ε

τ
−→ATRACK

r0

⇔ [Compositionality of Aψ,ATRACK]

∃p1, . . . , pm ∈ QAψ . ∃r1, . . . , rm ∈ QATRACK
.

p1 . . . pm
ϕ
−→Aψ p0 and ∀1 ≤ i ≤ m . ε

τi−→Aψ pi

and r1 . . . rm
ϕ
−→ATRACK

r0 and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

ri

⇔ [choose q1 = . . . = qm = 0]

∃p1, . . . , pm ∈ QAψ . ∃r1, . . . , rm ∈ QATRACK
.

p1 . . . pm
ϕ
−→Aψ p0 and ∀1 ≤ i ≤ m . ε

τi−→Aψ pi

and r1 . . . rm
ϕ
−→ATRACK

r0 and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

ri

and q0 = q1 = . . . = qm = 0

⇔ [Definition of ∆]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q .

and (p1, q1, r1) . . . (pm, qm, r1)
ϕ
−→A∃z.ψ

(p0, q0, r0)

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

(pi, qi, ri).

The case q0 = ℓ > 0

ε
τ
−→A∃z.ψ

(p0, ℓ, r0)

⇔ [Definition of ∆ (only third case applicable)]

∃y ∈ Var(τ) . ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0 (†)

and ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

Now, since Var(τ) can be partitioned into Var(ϕ) and, for each 1 ≤ k ≤ m,
Var(τk) \ Var(ϕ), variable y occurs in exactly one of these sets. First, assume
y ∈ Var(ϕ). Then

(†) ⇔ [y ∈ Var(ϕ)]

∃y ∈ Var(ϕ) . ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0

and ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

⇔ [Compositionality of Aψ,ATRACK]

∃y ∈ Var(ϕ) . ∃p1, . . . , pm ∈ QAψ . ∃r1, . . . , rm ∈ QATRACK
.

p1 . . . pm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0

and ∀1 ≤ i ≤ m . ε
τi−→Aψ pi

and r1 . . . rm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

ri

94 Jansen, Katelaan, Matheja, Noll, Zuleger

⇔ [choose q1 = . . . = qm = 0]

∃y ∈ Var(ϕ) . ∃p1, . . . , pm ∈ QAψ . ∃r1, . . . , rm ∈ QATRACK
.

p1 . . . pm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0

and ∀1 ≤ i ≤ m . ε
τi−→Aψ pi

and r1 . . . rm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

ri

and q1 = . . . = qm = 0

⇔ [∃x∃y ≡ ∃y∃x, Definition of Q]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q . ∃y ∈ Var(ϕ) .

p1 . . . pm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0

and ∀1 ≤ i ≤ m . ε
τi−→Aψ pi

and r1 . . . rm
(ϕ[x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . ε
τi−→ATRACK

ri

and q1 = . . . = qm = 0

⇔ [Definition ∆, y ∈ Var(ϕ)]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q . (♣)

(p1, q1, r1) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q0, r0)

and ∀1 ≤ i ≤ m . ε
τi−→A∃z.ψ

(pi, ri, qi)

and q1 = . . . = qm = 0

⇒ [A ∧B → A]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q .

(p1, q1, r1) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q0, r0)

and ∀1 ≤ i ≤ m . ε
τi−→A∃z.ψ

(pi, ri, qi)

and q1 = . . . = qm = 0.

Note that equivalence holds up to the step marked with (♣) only. The last
step works is only in one direction. We deal with the backwards direction after
considering the second case. Thus assume y ∈ Var(τj)\Var(ϕ) for some 1 ≤ j ≤
m. Then

(†) ⇔ [y ∈ Var(τj) \Var(ϕ)]

∃y ∈ Var(τj) \Var(ϕ) . ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→Aψ p0

and ε
(τ [x↓ℓ]):{x=y}
−−−−−−−−−→ATRACK

r0

⇔ [Compositionality of Aψ,ATRACK]

∃ℓ′.∃y ∈ Var(τj) \Var(ϕ) . ∃p1, . . . , pm ∈ QAψ .

Unified Reasoning about Robustness Properties of Symbolic-Heaps 95

∃r1, . . . , rm ∈ QATRACK
.

p1 . . . pm
(ϕ[x↓ℓ])[x↓j,ℓ′]
−−−−−−−−−−→Aψ p0

and r1 . . . rm
(ϕ[x↓ℓ])[x↓j,ℓ′]
−−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . i 6= j implies

ε
τi−→Aψ pi and ε

τi−→ATRACK
ri

and ε
τj[x↓ℓ′]
−−−−−→Aψ pj and ε

τj[x↓ℓ′]
−−−−−→Aψ rj

⇔ [choose qj and for each i 6= j choose qi = 0]

∃y ∈ Var(τj) \Var(ϕ) . ∃p1, . . . , pm ∈ QAψ .

∃r1, . . . , rm ∈ QATRACK
. ∃q1, . . . , qm ∈ {0, . . . , α}

p1 . . . pm
(ϕ[x↓ℓ])[x↓j,qj]
−−−−−−−−−−→Aψ p0

and r1 . . . rm
(ϕ[x↓ℓ])[x↓j,qj]
−−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . i 6= j implies

ε
τi−→Aψ pi and ε

τi−→ATRACK
ri

and ε
τj [x↓qj]
−−−−−→Aψ pj and ε

τj [x↓qj]
−−−−−→Aψ rj

and qj > 0 and ∀i 6= j . qi = 0

⇔ [∃x∃y ≡ ∃y∃x, Definition of Q]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q .

∃y ∈ Var(τj) \Var(ϕ) .

p1 . . . pm
(ϕ[x↓ℓ])[x↓j,qj]
−−−−−−−−−−→Aψ p0

and r1 . . . rm
(ϕ[x↓ℓ])[x↓j,qj]
−−−−−−−−−−→ATRACK

r0

and ∀1 ≤ i ≤ m . i 6= j implies

ε
τi−→Aψ pi and ε

τi−→ATRACK
ri

and ε
τj [x↓qj]
−−−−−→Aψ pj and ε

τj [x↓qj]
−−−−−→Aψ rj

and qj > 0 and ∀i 6= j . qi = 0

⇔ [Definition of ∆ (second case for ϕ)]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q . (♠)

(p1, q1, r1) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q1, r1)

and ∀1 ≤ i ≤ m . ε
τi−→A∃z.ψ

(pi, qi, ri)

and qj > 0 and ∀i 6= j . qi = 0

⇒ [A ∧B → A]

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q .

(p1, q1, r1) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q1, r1)

96 Jansen, Katelaan, Matheja, Noll, Zuleger

and ∀1 ≤ i ≤ m . ε
τi−→A∃z.ψ

(pi, qi, ri).

Again, the last step is in one direction only. It remains to show the converse
direction. Assume, for q0 = ℓ > 0,

∃(p1, q1, r1), . . . , (pm, qm, rm) ∈ Q .

(p1, q1, r1) . . . (pm, qm, rm)
ϕ
−→A∃z.ψ

(p0, q1, r1)

and ∀1 ≤ i ≤ m . ε
τi−→A∃z.ψ

(pi, qi, ri).

Then, by construction of ∆ either q1 = q2 = . . . = qm = 0 or exactly one qj > 0,
for some 1 ≤ j ≤ m. If q1 = q2 = . . . = qm = 0 then only the third case of ∆ is
applicable to ϕ (and there exists some suitable y ∈ Var(ϕ)). Thus, (♣) holds. As

shown before, this is equivalent to ε
τ
−→ATRACK

q0. If there exists exactly one qj with

qj > 0 then (♠) holds. As shown above, this case is equivalent to ε
τ
−→ATRACK

q0.
Hence, in each case, A∃z.ψ satisfies the compositionality property. ⊓⊔

Lemma 47. L(A∃z.ψ) = H
〈α〉
∃x.ψ,Φ, where x = xψ0 [k] for some fixed position k.

Proof. Let τ ∈ RSH〈α〉. Then

τ ∈ L(A∃z.ψ)

⇔ [Definition L(A∃z.ψ)]

∃(p0, q0, r0) ∈ F . ε
τ
−→A∃z.ψ

(p0, q0, r0)

⇔ [Definition of F]

∃p0 ∈ FAψ .∃r0 ∈ QATRACK
. ε

τ
−→ATRACK

(p0, k, r0)

⇔ [Definition of ∆ (only third case is applicable)]

∃p0 ∈ FAψ . ∃r0 ∈ QATRACK
. ∃y ∈ Var(τ) .

ε
τ [x↓k]:{y=x}
−−−−−−−−→Aψ p0 and ε

τ [x↓k]:{y=x}
−−−−−−−−→ATRACK

r0

⇔ [∃x∃y ≡ ∃y∃x]

∃y ∈ Var(τ) . ∃p0 ∈ FAψ . ∃r0 ∈ QATRACK
.

ε
τ [x↓k]:{y=x}
−−−−−−−−→Aψ p0 and ε

τ [x↓k]:{y=x}
−−−−−−−−→ATRACK

r0

⇔ [for each σ there exists a r0 ∈ QATRACK
]

∃y ∈ Var(τ) . ∃p0 ∈ FAψ . ε
τ [x↓k]:{y=x}
−−−−−−−−→Aψ p0

⇔ [Definition of L(Aψ)]

∃y ∈ Var(τ) . (τ [x ↓ k] : {y = x}) ∈ L(Aψ)

⇔
[

L(Aψ) = H
〈α〉
ψ,Φ

]

∃y ∈ Var(τ) . τ [x ↓ k] : {y = x} |=Φ ψ

⇔ [Lemma 45]

τ |=Φ ∃x.ψ

Unified Reasoning about Robustness Properties of Symbolic-Heaps 97

⇔
[

Definition of H
〈α〉
∃x.ψ,Φ

]

τ ∈ H
〈α〉
∃x.ψ,Φ.

⊓⊔

A.27 Complexity of Entailment

This section provides a detailed complexity analysis of Algorithm 2. In particular,
this includes a proof of Theorem 12

A.27.1 Upper Complexity Bound for Entailments

For the remainder of this section, we fix some notation used in Algorithm 2:
Let ϕ, Aψ, etc., be as in Algorithm 2. Further, let Φ be an SID such that the
unfoldings of each predicate call can be accepted by a heap automaton over 〈α〉.
Moreover, let k , ‖Φ‖ + ‖ϕ‖ + ‖ψ‖ and M ≤ k denote the maximal number of
predicate calls in ϕ and any symbolic heap in Φ.

We first analyze run-time of Algorithm 2 for arbitrary SIDs.

Lemma 48. Algorithm 2 decides whether ϕ |=Φ ψ holds in

O

(

2poly(k) ·
(

2‖QAψ
‖
)2(M+1)

· ‖∆Aψ‖

)

,

where poly(k) denotes some polynomial function in k.

Proof. Our previous complexity analysis of Algorithm 1 reveals that UΨ (Px) ∩
L(Aψ) = ∅ is decidable in

O
(

‖Ψ‖ · ‖Q
Aψ

‖M+1 · ‖∆
Aψ

‖
)

. (♣)

Regarding ‖Ψ‖, applying the Refinement Theorem (Theorem 1) to Φ∪{P ⇐ ϕ}
and ASAT (cf. Theorem 3) yields an SID Ψ of size

‖Ψ‖ ≤ c · ‖Φ‖ · 2‖ϕ‖
2

· 22α
2+α ≤ 2poly(k) ,

for some positive constant c. Then Ψ is computable in O
(

2poly(k)
)

. Further-

more, Aψ is obtained from complementation of Aψ. Thus, by the construction

to prove Lemma 2, we obtain that ‖Q
Aψ

‖ ≤ 2‖QAψ
‖ and that ∆

Aψ
is decidable

in
(

2‖QAψ
‖
)M+1

· ‖∆Aψ‖. Putting both into (♣) yields the result. ⊓⊔

Towards a more fine-grained analysis, recall from Definition 14 our assumption
that SIDs are α–bounded. Further, we assume the arity of points-to assertions
x 7→ y, i.e., ‖y‖, to be bounded by some γ ≥ 0. Our next observation is that
heap automata constructed for arbitrary determined symbolic heaps according
to Theorem 10 satisfy the same constraints. Formally,

98 Jansen, Katelaan, Matheja, Noll, Zuleger

Lemma 49. Let Φ be an α–bounded SID and ψ ∈ SHΦ〈α〉. Then a heap au-

tomaton Aψ accepting H
〈α〉
ψ,Φ can be constructed such that ∆Aψ is decidable in

O
(

2poly(k)
)

and ‖QAψ‖ ≤ 2poly(α).

Proof. By induction on the structure of symbolic heaps, we show α–boundedness
for the heap automata constructed in the proof of Theorem 10. ⊓⊔

We are now in a position to derive an upper complexity bound on the entail-
ment problem for a permissive symbolic heap fragment of separation logic with
inductive predicate definitions.

Lemma 50. SL-ENTAIL
Φ
〈α〉 is decidable in 2-ExpTime for each α–bounded

SID Φ.

Proof. By Lemma 48, we know that an entailment ϕ |=Φ ψ can be discharged

in O

(

2poly(k) ·
(

2‖QAψ
‖
)2(M+1)

· ‖∆Aψ‖

)

.By Lemma 49, ∆Aψ is decidable in

O
(

2poly(k)
)

and ‖QAψ‖ ≤ 2poly(α). Then it is easy to verify that ϕ |=Φ ψ is

decidable in O
(

22
poly(k)

)

:

O
(

‖Ψ‖ · ‖Q
Aψ

‖M+1 · ‖∆
Aψ

‖
)

=
[

‖Ψ‖ ≤ 2poly(k), ‖Q
Aψ

‖ ≤ 2‖QAψ
‖,M ≤ 2k

]

O

(

2poly(k) ·
(

2‖QAψ
‖
)2k

· ‖∆
Aψ

‖

)

=

[

‖∆
Aψ

‖ ≤
(

2‖QAψ
‖
)M+1

· ‖∆Aψ‖

]

O

(

2poly(k) ·
(

2‖QAψ
‖
)4k

· ‖∆Aψ‖

)

=
[

‖QAψ‖ ≤ 2poly(k)
]

O

(

2poly(k) ·
(

22
poly(k)

)4k

· ‖∆Aψ‖

)

=
[

(ab)c = abc, ‖∆Aψ‖ ∈ O
(

2poly(k)
)]

O
(

2poly(k) · 24k·2
poly(k)

· 2poly(k)
)

= O
(

22
poly(k)

)

Hence, SL-ENTAIL
Φ
〈α〉 is in 2–ExpTime. ⊓⊔

Since the maximal arity α of predicate symbols is fixed for any given SID, we also
analyze Algorithm 2 under the assumption that α is bounded by a constant. This
is a common assumption (cf. [11,13]) that was considered in Section 4 already.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 99

Lemma 51. Let Φ be an α–bounded SID for some constant α ≥ 1. Then the
entailment problem SL-ENTAIL

Φ
〈α〉 is in ExpTime.

Proof. By Lemma 49, ‖QAψ‖ ≤ 2poly(α) and ∆Aψ is decidable in O
(

2poly(k)
)

.
Since α is bounded by a constant, so is ‖QAψ‖. Then, by Lemma 48, we know

that SL-ENTAIL
Φ
〈α〉 is decidable in

O

(

2poly(k) ·
(

2‖QAψ
‖
)2(M+1)

· 2poly(k)
)

= O
(

2poly(k)
)

,

which clearly is in ExpTime. ⊓⊔

Then, the upper complexity bounds provided in Theorem 12 hold by Lemma 50
and Lemma 51. Further, ExpTime–completeness follows directly from[1, Theo-
rem 5] and Appendix A.27.2.

A.27.2 Lower Complexity Bound for Entailments

The proof of the ExpTime–lower bound in [1] is by reducing the inclusion prob-
lem for nondeterministic finite tree automata (NFTA, cf. [18]) to the entailment
problem. Their proof requires a constant (or free variable) for each symbol in
the tree automatons alphabet. In contrast, we prove their result by encoding
the alphabet in a null-terminated singly-linked list. Thus, a tree a(b, a(b, b) is
encoded by a reduced symbolic heap

∃z1z2z3z4z5z6z7 .

x 7→ (z1 z2 null)

∗ z1 7→ (null null z3) ∗ z3 7→ (null null null)

∗ z2 7→ (z4 z5 null)

∗ z4 7→ (null null z6) ∗ z6 7→ (null null null)

∗ z5 7→ (null null z7) ∗ z7 7→ (null null null),

where the symbol a is encoded by having null as third component in a points-to
assertion and symbol b by a null terminated list of length one.

Now, given some NFTA T = (Q,Σ,∆, F) with Σ = {a1, . . . , an}, we con-
struct a corresponding Φ. Without less of generality, we assume that T contains
no unreachable or unproductive states. We set Pred(Φ) , Q ∪ Σ ∪ {I}, where
each predicate symbol is of arity one. Then, for each symbol ai ∈ Σ one rule of
the form a1 ⇐ x0[1] = null or, for 1 < i ≤ n,

ai ⇐ ∃z1 z2 . . . zi−1 . x01[7→] (null null z1)

∗⋆1≤j<izj 7→ (null null zj+1) : {zi−1 = null}

is added to Φ. Furthermore, for each (p1 . . . pm, ai, p0) ∈ ∆, 1 ≤ i ≤ n, we add a
rule

p0 ⇐ ∃z1 . . . zm+1 . x0[1] 7→ (z1 . . . zm+1)

100 Jansen, Katelaan, Matheja, Noll, Zuleger

∗ ai(zm+1) ∗ ⋆1≤i≤mpi(zi).

Finally, we add rules I ⇐ px0 [1] : {x0[1] 6= null} for each p ∈ F . Clearly Φ
is established. Moreover, it is easy to verify that, given two NFTAs T1 and T2

with distinct sets of states, we have

I1x |=Φ1∪Φ2 I2x iff L(T1) ⊆ L(T2).

Thus, following [1], ifH
〈1〉
Ix,Φ can be accepted by a heap automaton, the entailment

problem SL-ENTAIL
〈α〉
Φ is ExpTime–hard for certain SIDs Φ fixed α = 1,

and a fixed arity of points-to assertions γ = 3. Such a heap automaton can
easily be constructed. Formally, let T = (Q,Σ,∆, F) be an NFTA as above and
Q = {p1, . . . , pk} for some k > 0. Furthermore, for each state pi, let ti be some
fixed finite tree that is accepted by the tree automaton Ti = (Q,Σ,∆, {pi}) and
τi be the corresponding encoding as a reduced symbolic heap. One possible (not
necessarily efficient) heap automaton A = (QA, SH〈1〉, ∆A, FA) is given by:

QA , {τi | 1 ≤ i ≤ k} ∪ {ai | 1 ≤ i ≤ n}

FA , F

q0
ϕ
−→A q1 . . . qm iff ϕ [P1/q1, . . . , Pm/qm] |=Φ Px0[1] ,

where each ai corresponds to the reduced symbolic heap encoding symbol ai and
P is the predicate pi corresponding to reduced symbolic heap τi as previously
described.

A.28 Construction of Heap Automata for Entailment

This section presents a systematic way to construct heap automata to discharge
entailments. Further, we provide two example constructions.

A.28.1 Systematic Construction of H
〈α〉
ϕ,Φ

Using heap automata to discharge entailments as presented in Theorem 11 re-
quires the construction of suitable heap automata for each predicate symbol of
an SID. We briefly present a systematic construction of such heap automata
that is similar to the well-known Myhill–Nerode Theorem for regular (tree) lan-
guages [18,34]: We partition the set of all reduced symbolic heaps into equivalence
classes, where two formulas belong to the same equivalence class if they can be
extended in the same way to formulas entailing a predicate P of interest.

Definition 25. Let P ∈ Pred(Φ), Φ ∈ SID. Then two symbolic heaps τ, σ ∈
RSH〈α〉 with ‖xτ0‖ = ‖xσ0‖ = β are P–equivalent, written τ ∼=P σ, if for all
ϕ ∈ SH with exactly one predicate call I of arity β, we have ϕ[I/τ] |=∅ Px0 iff
ϕ[I/σ] |=∅ Px0.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 101

For example, all non-empty singly linked list segments of the sll predicate from
Section 1 with x0[1] as head and x0[2] as tail are sll–equivalent.

Theorem 13. Let P be a predicate symbol of an SID Φ. Then there exists a

heap automaton AP with L(AP) = H
〈α〉
Px0,Φ

iff the number of equivalence classes

of ∼=P is finite.

Proof. Assume there are only finitely many equivalence classes of ∼=P . Further-
more, let [τ]∼=P denote the equivalence class containing formula τ . Then a heap

automaton AP = (Q, SH〈α〉, ∆, F) acceptingH
〈α〉
Px0,Φ

is given by Q = {[τ]∼=P | τ ∈

RSH〈α〉}, F = {[τ]∼=P | τ ∈ RSH〈α〉, τ |=Φ Px0} and

[τ1]∼=P . . . [τm]∼=P
ϕ
−→AP [ϕ[P1x1/τ1, Pmxm/τm]]∼=P ,

for each symbolic heap ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Then it is easy to verify that

A satisfies the compositionality property and L(AP) = H
〈α〉
Px0,Φ

. The converse

direction is straightforward. A full proof is found in [30]. ⊓⊔

Note that it suffices to represent each equivalence class by a single reduced sym-
bolic heap, e.g. the smallest one. While the construction principle from above is
generally applicable, it is, however, often preferable to exploit other properties of
the predicates of interest, e.g., acyclicity (see Section 4.6), to reduce the number
of equivalence classes.

A.28.2 Example: Singly-linked List Segments

Recall the SID for acyclic singly-linked list segments from Example 1. A heap
automaton A for sll is defined in Fig. 5.

Observe that ∆ is compositional. Note further that we have defined ∆ in

such way that (ε, τ, q) ∈ ∆ for q ∈ F iff τ |= sllx0, i.e., L(A) = H
〈α〉
sllx,Φ.

Figure 5 also shows the canonical representations of each state, i.e., the min-
imal unfoldings of each state’s formula. These are the symbolic heaps that are
substituted into the predicate calls in symbolic heaps ϕ to obtain simple entail-
ment problems for deciding transitions (q, ϕ, q).

A.28.3 Example: Trees with Linked Leaves

We consider an example of the systematic construction of heap automata: We
determine the equivalence classes ∼=tll, where the SID tll is defined as in Ex-
ample 1, to obtain a heap automaton for the set of well-determined reduced
symbolic heaps that entail some tree with linked leaves (TLL). Note that this
SID is outside the scope of previous decision procedures for entailment with (at
most) exponential-time complexity [3,28].

102 Jansen, Katelaan, Matheja, Noll, Zuleger

Q , {qeq, qdiff , qrev, qfst, qsnd, q⊥} F , {qeq, qdiff , qfst}

Transitions:

(ε, τ, qeq) ∈ ∆ iff τ |= emp : {x0[1] = x0[2])}

or τ |= emp ∧ ‖xϕ0 ‖ = 2

(ε, τ, qdiff) ∈ ∆ iff τ |= sllx0[1]x0[2] : {x0[2] 6= null}

(ε, τ, qrev) ∈ ∆ iff τ |= sllx0[2]x0[1] : {x0[1] 6= null}

(ε, τ, qfst) ∈ ∆ iff τ |= sllx0[1]null

(ε, τ, qsnd) ∈ ∆ iff τ |= sllx0[2]null

(ε, τ, q⊥) ∈ ∆ iff τ 6|= sllx0

(q, ϕ, q) ∈ ∆ iff (ε, ϕ[P1/ρq[1], . . . , Pm/ρq[m]], q) ∈ ∆

Representations:
ρqeq , emp : {x0[1] = x0[2]}

ρqdiff , x0[1] 7→ (x0[2]) : {x0[2] 6= null,x0[2] 6= x0[1]}

ρqrev , x0[2] 7→ (x0[1]) : {x0[1] 6= null,x0[2] 6= x0[1]}

ρqfst , x0[1] 7→ (null)

ρqsnd , x0[2] 7→ (null)

ρq⊥ , x0[1] 6= x0[1]

Fig. 3. A heap automaton A = (Q, 〈α〉,∆, F) with L(A) = H
〈α〉
sll x,Φ, for acyclic singly-

linked list fragments sll as defined in Ex. 1; plus canonical representations ρq for each
state q.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 103

For simplicity of presentation, we assume that all parameters of the tll

predicate are different from null and consider only acyclic TLLs.22 Recall that
we can always check whether these conditions are satisfied (see Sections 4.1, 4.6).

We will represent each ∼=tll–equivalence class by an SID whose unfoldings
are exactly the reduced symbolic heaps contained in the respective class. To this
end, let core be a predicate specifying TLLs that lack the outgoing pointer of
the right-most leaf:

core ⇐ emp : {x0[1] = x0[2]}
core ⇐ ∃ℓ r z . x0[1] 7→ (ℓ r null)

∗ tll (ℓx0[2] z) ∗ core (r z x0[3])

Here, the omitted pointer is reflected by the missing points-to assertion in the
base case. In the following, let Sx be the set of all permutations of x0.

Example 11. For each ρ ∈ Sx , the relation ∼=tll has 8 equivalence classes that
can be extended to entail an unfolding of tll:

1. P ρ1 ⇐ y0[1] 7→ (y0[2] y0[3] null)
2. P ρ2 ⇐ y0[1] 7→ (null null y0[3]) : {y0[1] = y0[2]}
3. P ρ3 ⇐ y0[1] 7→ (null null y0[3]) : {y0[2] = y0[3]}
4. P ρ4 ⇐ y0[1] 7→ (null null y0[3]) : Λ

where Λ , {y0[1] 6= y0[2] ,y0[2] 6= y0[3]}
5. P ρ5 ⇐ corey0

6. P ρ6 ⇐ ∃ℓ r z . y0[1] 7→ (ℓ rnull)
∗ tll (ℓy0[2] z) ∗ tll (r z y0[3])

7. P ρ7 ⇐ ∃u ℓ r z . y0[2] 7→ u ∗ y0[1] 7→ (ℓ rnull)
∗ tll (ℓ u z) ∗ core (r z y0[3])

8. P ρ8 ⇐ ∃u . y0[2] 7→ ((null nullu)) ∗ tll (y0[1] uy0[3])

We refer the reader to Figure 4 for an illustration of the unfoldings covered
by each predicate. Due to lack of space, this figure is found in the appendix.
In addition, ∼=tll has one equivalence class of symbolic heaps that cannot be
extended to entail tll unfoldings, defined as the complement of the other classes:
RSHFV≤α \

⋃

1≤i≤8,ρ∈Sx
P ρi

For example, P ρ7 specifies all trees with linked leaves that consist of more
than one pointer, lack the successor of the rightmost leaf, but have an additional
element at the head of the list of linked leaves. All such symbolic heaps can
be extended to heaps that entail an unfolding of tllx0 in the same way; for
example by adding the missing pointer from the last leaf to its successor and
adding a new root node that points to the additional leaf at the head of the list

22 The only parameter that can actually be null is x0[3], as the other two parameters are
always equal to a variable that appears on the left-hand side of a points-to assertion.
Likewise, x0[3] is the only parameter that can introduce a cycle—it can be equal to
x0[1] or x0[2].

104 Jansen, Katelaan, Matheja, Noll, Zuleger

P ρ1 ⇐ y0[1] 7→ (y0[2] y0[3] null)

1

2 3

P ρ2 ⇐ y0[1] 7→ (nullnull y0[3]) : {y0[1] = y0[2]} 1, 2 3

P ρ3 ⇐ y0[1] 7→ (nullnull y0[3]) : {y0[2] = y0[3]} 1 2, 3

P ρ4 ⇐ y0[1] 7→ (nullnull y0[3]) : Λ 1 3 2

P ρ5 ⇐ corey0

1

2 3

P ρ6 ⇐ ∃ℓ r z . y0[1] 7→ (ℓ r null)
1

2, ℓ r, z 3

P ρ7 ⇐ ∃u ℓ r z . y0[2] 7→ (u) ∗ y0[1] 7→ (ℓ r null)
1

u, ℓ r, 32

P ρ8 ⇐ ∃u . y0[2] 7→ (nullnullu) ∗ tlly0[1] uy0[3] 1, u2 3

Fig. 4. Equivalence classes with graphical representatives of small unfoldings of each
predicate. Here, numbers correspond to the index of tuple y and letters to the respective
variables in the predicates.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 105

as well as to the root of the P ρ7 –unfolding. Formally, for the identity permutation
id ∈ Sx , let

ϕid , ∃u v . x0[1] 7→ (x0[2] unull) ∗ P id
7 (ux0[2] v) ∗ v 7→ (null null x0[3]).

Then ϕid x0 |= tllx0. Note that if we change the predicate call from P id
7 to

P ρ7 for a different ρ, the parameters in the predicate call have to be reordered
in accordance with ρ to obtain a valid entailment ϕρ |= tllx0; hence different
permutations induce different equivalence classes. Further details are provided
in [30]. As there are six permutations of x0, we conclude

Corollary 3. Let Φ be the SID defining tll from Example 1. There is a heap

automaton Atll with 8 · 6 + 1 = 49 states that accepts the set H
〈3〉
tllx,Φ.

Remark 6. One might be tempted to think that we have only moved the com-
plexity into the transition relation and thus gained nothing: Instead of checking
entailment w.r.t. tll, we now have to verify entailments w.r.t. several new SIDs.
However, the states of our heap automaton coincide with the ∼=tll-equivalence
classes. Thus, it always suffices to evaluate the transition relation w.r.t. to small
canonical representations of each equivalence class. Hence, instead of solving en-
tailments of the form P x |= tllx it suffices to consider entailments τ |= P ρi x,
where τ is a reduced symbolic heap. Moreover, since we assume well-determined
symbolic heaps, each such τ has a single tight model up to isomorphism. Then
verifying τ |= P ρi x boils down to the model-checking problem for fixed SIDs
P ρi . It follows by Remark 3 that ∆Atll

is decidable in time O
(

2poly(‖Φ‖)
)

(where
Φ is the SID for tll from Example 1). We thus apply Lemma 51 to conclude
that Algorithm 2 – if fed with Atll – is an ExpTime decision procedure for
entailments containing tll predicates.

Remark 7. Heap automata allow for easy integration of additional syntactic con-
ditions in order to obtain more compact state spaces. For instance, one observa-
tion is that many states of Atll collapse if reordering of parameters is restricted.

Another approach is to fix the SID in advance and construct an automaton
AΦ = (Q, SHΦ〈α〉, F,∆) that is only defined on symbolic heaps in SHΦ〈α〉. Depend-

ing on Φ, there may be many ∼=P –equivalence classes [τ]∼=P with [τ]∼=P ∩SHΦ〈α〉 =
∅. Dropping such classes can lead to significantly smaller automata. By restrict-
ing heap automata in this way, we obtain decision procedures for (established)
symbolic heaps with fixed (as opposed to user-defined) SIDs, such as the original
decidable symbolic heap fragment introduced by Berdine et al. [3].

A.28.4 Proof of Theorem 13

Theorem 13 (Myhill–Nerode [34]). Let P be a predicate symbol of an SID

Φ. Then there exists a heap automaton AP with L(AP) = H
〈α〉
Px0,Φ

iff the number

of equivalence classes of ∼=P is finite.

106 Jansen, Katelaan, Matheja, Noll, Zuleger

Proof. Assume there are only finitely many equivalence classes of ∼=P . Further-
more, let [τ]∼=P denote the equivalence class containing formula τ . Then a heap

automaton AP = (Q, SH〈α〉, ∆, F) acceptingH
〈α〉
Px0,Φ

is given by Q = {[τ]∼=P | τ ∈

RSH〈α〉}, F = {[τ]∼=P | τ ∈ RSH〈α〉, τ |=Φ Px0} and

[τ1]∼=P . . . [τm]∼=P
ϕ
−→AP [ϕ[P1x1/τ1, Pmxm/τm]]∼=P ,

for each symbolic heap ϕ ∈ SH〈α〉 with ‖Γϕ‖ = m. Now, a straightforward
induction on the height of unfolding trees reveals for each unfolding tree t and
each q ∈ Q, we have

ε
JtK
−−→AP q iff JtK ∈ q.

Then, by definition of F , we have

τ |=Φ Px0 iff
∨

q∈F

τ ∈ q iff
∨

q∈F

ε
τ
−→AP q iff τ ∈ L(AP).

For the converse direction, let AP be a heap automaton with L(AP) =

H
〈α〉
Px0,Φ

. Without loss of generality, we assume that AP is deterministic, i.e.,

for each τ ∈ RSH〈α〉 there exists exactly one q ∈ QAP such that ε
τ
−→AP q

holds. Otherwise, we may apply the (subset) construction similar to the proof
of Lemma 13 to obtain such an automaton (with an exponentially larger state
space). Now, for each q ∈ QAP let

Lq , {τ ∈ RSH〈α〉 | ε
τ
−→AP q}.

Then, by assumption, we have Lp ∩ Lq = ∅ for each p, q ∈ QAP with p 6= q.
Moreover,

RSH〈α〉 ,
⋃

q∈Q

Lq.

Hence, Part(AP) , {Lq | q ∈ Q} is a partition of RSH〈α〉. Further, τ, σ ∈
Lq clearly implies τ ∼=P σ, i.e., our partition Part(AP) refines the partition
induced by ∼=P . Thus, ‖Part(AP ‖) ≤ ‖QAP ‖ is an upper bound on the number
of equivalence class of ∼=P . Since QAP is a finite set, this means that ∼=P has
only finitely many equivalence classes. ⊓⊔

A.29 Details on Heap Automata for Entailment

Correctness Proof for the Construction in Example 11

Induced automata. Recall that formulas can only be P -equivalent if they have the
same number of free variables β. A heap automaton based on the Myhill–Nerode
construction (cf. Theorem 13) for SHFV≤α therefore has states for the equivalence

Unified Reasoning about Robustness Properties of Symbolic-Heaps 107

classes for each β ≤ α. In Example 11 we, however, restricted ourselves to the
classes with exactly α = 3 free variables. We first justify this choice by noting
that the equivalence classes of formulas with exactly α free variables induce all
classes for β < α. This is true in general, not only for the tll case study.

Remark 8. Let A=α be a heap automaton obtained by the Myhill–Nerode con-
struction of Theorem 13 restricted to symbolic heaps with exactly α parameters
and restricted to acyclic models. Moreover, let each equivalence class be rep-
resented by an SID. Then A

=α induces an automaton A
=β for symbolic heaps

with exactly β variables for each β < α.

Proof (Proof sketch). A=β is obtained by

1. removing all classes that are defined by SIDs that use more than β parame-
ters23 in points-to assertions, and

2. for the remaining classes, defining new SIDs by adding the closure of the
pure formulas, dropping those parts of the pure formulas that do not re-
fer to variables that occur in points-to assertions, and then projecting the
remaining parameters onto the first β free variables.24

⊓⊔

Example 12. The automaton derived from Example 11 is the automaton A=3
tll

for acyclic symbolic heaps with exactly 3 free variables. The only classes of A=3
tll

that do not use all 3 parameters in points-to assertions are the classes P ρ2 , P
ρ
3 ,

and P ρ4 .
For each of these classes, the projection yields the same new classes, defined

by the SIDs
R1 x0[1] x0[2] ⇐ x0[1] 7→ (null null x0[2])
R2 x0[1] x0[2] ⇐ x0[2] 7→ (null null x0[1]).

Thus, A=2
tll has only three states: The two states defined by R1 and R2 and

one state for all other RSHs with two free variables.
The automaton A=1

tll has only a single state, because all SIDs in the definition
of A=3

tll use at least two variables in points-to assertions.

As A=α
tll

induces A=β
tll

for β < α, it is sufficient to prove the correctness of the
automaton A=3

tll
, which we will do in the following.

Overview of the correctness proof. We first recall the definition of tll from
Section 1.

tll ⇐ x0[1] 7→ (null null x0[3]) : {x0[1] = x0[2]}

tll ⇐ ∃ℓ r z . x0[1] 7→ (ℓ rnull)

23 Or, more precisely, more than β parameters that are pairwise not definitely equal
24 Note that this is only sufficient when we assume acyclicity. Otherwise, variables that

only occur on the right-hand side of points-to assertions can also be identified with
variables on the left-hand side, thus also reducing the number of free variables in
the symbolic heap.

108 Jansen, Katelaan, Matheja, Noll, Zuleger

∗ tll ℓx0[2] z ∗ tll r z x0[3] .

Towards a correctness proof for Example 11, we have to show that the
predicates defined there (and repeated below) correspond exactly to the ∼=tll-
equivalence classes that contain all reduced symbolic heaps τ that can be ex-
tended to reduced symbolic heaps τ ′ that entail a tll unfolding, i.e., τ ′ |= tllx.
For brevity, we will henceforth call such symbolic heaps partial models of the
tll predicate.25 In the following, recall that y0[i] , ρ(x0[i]).

1. P ρ1 ⇐ y0[1] 7→ (y0[2] y0[3] null)
2. P ρ2 ⇐ y0[1] 7→ (null null y0[3]) : {y0[1] = y0[2]}
3. P ρ3 ⇐ y0[1] 7→ (null null y0[3]) : {y0[2] = y0[3]}
4. P ρ4 ⇐ y0[1] 7→ (null null y0[3]) : Λ

where Λ , {y0[1] 6= y0[2] ,y0[2] 6= y0[3]}
5. P ρ5 ⇐ corey0

6. P ρ6 ⇐ ∃ℓ r z . y0[1] 7→ (ℓ rnull)
∗ tll (ℓy0[2] z) ∗ tll (r z y0[3])

7. P ρ7 ⇐ ∃u ℓ r z . y0[2] 7→ u ∗ y0[1] 7→ (ℓ rnull)
∗ tll (ℓ u z) ∗ core (r z y0[3])

8. P ρ8 ⇐ ∃u . y0[2] 7→ ((null nullu)) ∗ tll (y0[1] uy0[3])

An illustration of each predicate, together with a graphical representation of
a corresponding unfolding, is found in Figure 4.

The correctness proof consists of the following steps.

1. Partition. For each pair of predicates P ρi , P
ρ̃
j , 1 ≤ i, j ≤ 8, ρ, ρ̃ ∈ Sx , we show

that the sets U(P ρi x) and U(P ρ̃j x) are disjoint.
2. Equivalence. We prove for each ρ and each predicate P ρi , 1 ≤ i ≤ 8, that for

all τ, σ ∈ U(P ρi x), τ ∼=tll σ holds.
3. Completeness. We show that the predicates P ρi define all equivalence classes

of partial models, i.e., for each partial model τ of a tll unfolding there exist
an i and a ρ ∈ Sx such that τ ∈ P ρi .

Once we have established these properties, we immediately obtain a heap au-
tomaton for tll-entailment due to Theorem 13.

Partition. We first show that the sets U(P ρi) partition the set of all partial
models of tll. To this end, we define for each 1 ≤ i ≤ 8 and ρ ∈ Sx a set of

formulas {ϕi,ρ1 , . . . ϕi,ρni } with a single predicate call I of arity 3 such that

1. For all 1 ≤ k ≤ ni and for all τ ∈ U(P ρi x), ϕi,ρk [I/τ] |= tllx0,

25 As we are in a well-determined setting, there is a one-to-one correspondence between
reduced symbolic heap and model, so we sometimes use these terms interchangeably.
Further, let τ ∈ RSH with ‖xτ0‖ = β and P ∈ Pred(Φ). τ is a partial model of P
if there exists a ϕ ∈ SHΦ with exactly one predicate call I of arity β, such that
ϕ[I/τ] |=Φ Px0.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 109

2. For all elements σ ∈ U(P ρ̃j x) with ar(P ρ̃j) = ‖x
ϕi,ρ
k

0 ‖, where j 6= i and/or

ρ 6= ρ̃, there exists a 1 ≤ k ≤ ni such that ϕi,ρk [I/σ] 6|= tllx0.

In other words, we provide a distinguishing context for each P ρi . Permuting the
free variables according to ρ will lead to a permutation of the parameters of the
parameter calls in the distinguishing context. To express this in a uniform way,
we write liftρ(I u1 u2 u3) to denote a call to I where the parameters u1 u2 u3 are
reordered in accordance with ρ.26

– The (single) member of U(P ρ1 x) is a binary tree with three nodes27 and
without linked leaves. The smallest formula yielding a valid tll thus needs
to add the two link edges from the left child and the right child and from
the right child to its successor.
ϕ1,ρ
1 x , ∃u . y0[2] 7→ (null null u)∗u 7→ (null null y0[3])∗lift

ρ(I y0[1] y0[2] u)
– The (single) member of U(P ρ2 x) is the smallest valid tll, consisting only

of a root (which is thus the leftmost leaf) and its successor. The smallest
context yielding a tll is thus the symbolic heap that contains nothing but
the predicate call. To distinguish P ρ2 from P ρ3 and P ρ4 , we add the pure
formula y0[1] = y0[2].
ϕ2,ρ
1 x , liftρ(I x) : {y0[1] = y0[2]}

Alternatively, we obtain a tll by using the pointer allocated in P ρ3 as the
pointer from the leftmost source to an inner leaf.
ϕ2,ρ
2 x , ∃u v . y0[1] 7→ (y0[2] v null)∗lift

ρ(I y0[2] u v)∗v 7→ (null null y0[3])
Note that the pure formula in the definition of P ρ2 enforces u = y0[2]. The
only reason to quantify over u (rather than just writing y0[2]) is reusability
of the formula in the treatment of P3 and P4 below

– We get the context for U(P ρ3 x) and U(P ρ4 x) in the same way as for U(P ρ2 x),
i.e.,
ϕ3,ρ
1 x = liftρ(I x) : {y0[2] = y0[3]}
ϕ4,ρ
1 x = liftρ(I x) : {y0[1] 6= y0[2] ,y0[2] 6= y0[3]}
ϕ3,ρ
2 = ϕ4,ρ

2 , ϕ2,ρ
2

– The partial models generated by P ρ5 differ from tlls only in the absent
pointer from the rightmost leaf to its successor.
ϕ5,ρ
1 x , ∃u . liftρ(I y0[1] y0[2] u) ∗ u 7→ (null null y0[3])

– P ρ6 describes all tlls that are obtained by applying the second rule of the
tll-SID at least once. All τ ∈ U(P ρ6 x) thus already entail a tll unfolding
without extension.
ϕ6,ρ
1 x , liftρ(I x)

– P ρ7 describes all tll-like heaps that consist of more than one pointer, lack
the successor of the rightmost leaf, but have an additional predecessor of the
leftmost leaf. To get a tll, we thus have to both add that last pointer and
add a tree-structure that points to the additional leaf at the left as well as
the P ρ7 -root.
ϕ7,ρ
1 x , ∃u v . y0[1] 7→ (y0[2] unull)∗lift

ρ(I uy0[2] v)∗v 7→ (null null y0[3])

26 E.g., if ρ(x0[i]) = 3− i, then liftρ(I u1u2u3) , I u3 u2 u1.
27 Because we assume acyclicity, the three nodes are definitely different.

110 Jansen, Katelaan, Matheja, Noll, Zuleger

– P ρ8 describes tll-like graphs with an additional predecessor of the leftmost
leaf.
ϕ8,ρ
1 x , ∃y . y0[1] 7→ (y0[2] y null) ∗ lift

ρ(I y y0[2] y0[3])

First observe that for a fixed permutation ρ, each pair of classes is separated
by at least one formula. Indeed, this separation already occurs for the minimal
models of each P ρi and can thus easily be verified by hand; we omit these tedious
constructions. For fixed ρ, this shows the pairwise disjointness of the P ρi classes.

Now let σ ∈ U(P ρi x), ζ ∈ U(P ρ̃i x), for ρ 6= ρ̃ ∈ Sx . We have ϕi,ρ1 [I/σ] |=

tll ρ(x0), and ϕ
i,ρ̃
1 [I/ζ] |= tll ρ̃(x0), but U(tll ρ(x)) ∩ U(tll ρ̃(x)) = ∅. Thus

we also have that, for fixed i and ρ 6= ρ̃ ∈ Sx , U(P ρi x) ∩ U(P ρ̃i x) = ∅:
Putting this together with the arguments above, we obtain a proof for each

i, j ∈ {1, . . . , 8}, ρ, ρ̃ ∈ Sx , that if i 6= j or ρ 6= ρ̃, then U(P ρi x) ∩ U(P ρ̃j x) = ∅.

∼=tll-Equivalence. For 1 ≤ i ≤ 4, the set U(P ρi) is a singleton, i.e. there is nothing
to show. Thus, let i > 4. Formally, the remaining cases are proven individually
by coinduction: We assume for each 1 ≤ i ≤ 8 that all reduced symbolic heaps in
U(P ρi) are already known to be equivalent and then, for each rule with left-hand
side P ρi , show that the unfolding obtained from replacing each predicate call by
one of these reduced symbolic heaps is again equivalent.

We omit these tedious calculations and only provide a rough intuition for
each case. Let τ ∈ U(P ρi) and ϕ be a symbolic heap with one predicate call Ix
such that ϕ[I/τ] |=Φ tllx0. Such a symbolic heap always exists, because each
unfolding can be extended to a TLL. We proceed by case distinction to see that
ϕ and τ are always of the same form – except for the size of the respective TLL.

– For i = 5, it is easy to verify that exactly one pointer – the one to the
rightmost leaf – is missing in τ . Thus, ϕ is always a TLL with an additional
pointer to the rightmost leaf in which the rightmost subtree, τ , is missing
(except for the additional pointer), e.g. ϕi,ρ5 .

– For i = 6, τ is a non-empty TLL. Thus, ϕ always corresponds to one of the
tll rules with the single predicate being tllx, e.g. ϕi,ρ6 .

– For i = 7, τ is a TLL that lacks the pointer to the rightmost leaf and has
an additional pointer to the leftmost leaf. Thus, ϕ always corresponds to
a tree-structure lacking a pointer to the rightmost leaf and an additional
isolated pointer, e.g. ϕi,ρ7 .

– For i = 8, τ is a TLL with an additional incoming pointer at the leftmost
leaf. Thus, ϕ always corresponds to a TLL lacking the rightmost subtree,
e.g. ϕi,ρ8 .

Completeness. We now show that the 8 · 6 predicates P ρ1 . . . P
ρ
8 , ρ ∈ Sx , cover

all partial models of tll unfoldings.
The basic idea is to show that every partial model of tll is either in one of

the sets U(P ρi x) or has at least four free variables.28 To this end, we first develop
a sufficient condition for concluding that a partial model needs at least four free

28 Where, as before, we do not count x0[0] as free variable.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 111

variables. Recall that we assume reduced symbolic heaps under consideration to
be well-determined. Since there exists exactly one tight model, i.e. a stack-heap
pair, up to isomorphism for each such symbolic heap, we will argue about the
structure of such a stack-heap pair instead.

Intuitively, a location that occurs in two separated heaps, i.e. h⊎h′, is called
a shared location. Formally, for a heap h, we write Loc(h) to denote all locations
allocated or referenced – pointed to – to in h, i.e. Loc(h) = dom(h)∪ codom(h).

Definition 26 (Shared Location). Let (s, h) ∈ States be a stack-heap pair
and h′ be a heap such that h ⊎ h′ is well-defined. Then, a location ℓ ∈ Loc(h) is
a shared location of h w.r.t. h′ if ℓ ∈ Loc(h′) or ℓ ∈ codom(s).

Lemma 52. Let (s, h1 ⊎ h2) be the unique tight model up to isomorphism of
ϕ[I/τ] for some partial model τ of P such that (s, h1) is a model of τ . If h1 has
α shared locations w.r.t. h2 then τ has at least α free variables.

Proof (Proof sketch). Since τ is established, equalities and reachability between
symbolic heaps and unfoldings of their predicate calls have to be propagated
through predicate calls (cf. Lemma 28 and Lemma 34). Thus, if h1 has α shared
locations w.r.t. h2, τ has at least α free variables.

To show the completeness of the equivalence classes U(P ρi x), it thus suffices
to show that every well-determined partial model is either in one of the classes
or its unique tight model has at least four shared locations.

Lemma 53. Every τ ∈ RSH \
⋃

1≤i≤8,ρ∈Sx
P ρi that is a partial model of tll

has a unique tight model with at least four shared locations.

Proof. Note that tll-unfoldings contain only two types of points-to assertions:
x 7→ (y z null) and x 7→ (null null y) (for some variables x, y, z). Let (s, h) be
the unique tight model of some partial model τ of tll. Due to the one-to-one
correspondence between τ and (s, h), we will not distinguish between (s, h) and
τ in the remainder of the proof.

We refer to heap entries corresponding to the first kind of points-to assertion,
i.e. h(u) = (, ,null), as i-pointers (short for inner pointers). Moreover, we
refer to heap entries corresponding to the second kind of points-to assertion, i.e.
h(u) = (null,null,), as ℓ-pointers (short for leaf pointers). In both cases, given
h(u) = (v1, v2, v3), we refer to u as i-source and ℓ-source and to v1, v2, v3 as
i-target and ℓ-target, respectively.

Recall that we restricted our attention to those calls of tllx whose param-
eters are non-null and pairwise definitely unequal, where the latter point is a
consequence of the assumption of acyclicity.29

We make several observations regarding the shared locations of partial tll
models τ based on the properties of tll unfoldings.

29 Unless we are dealing with the base case, the tll that consists of a single pointer,
where x0[1] = x0[2] holds.

112 Jansen, Katelaan, Matheja, Noll, Zuleger

1. In a tll, there is at most one i-source that is no i-target (the root). Thus,
if τ contains n distinct i-sources that are not i-targets, this requires n − 1
distinct shared locations.

2. In a tll, every i-target that is not an i-source is an ℓ-source. Thus, if τ
contains n distinct i-targets that are neither i-sources nor ℓ-sources, this
requires n shared locations.

3. In a tll, if there is at least one i-location, then all ℓ-locations are i-targets.
Thus, in such τ , all ℓ-sources that are not i-targets are shared locations.

4. In a tll, there is only one ℓ-source that is no ℓ-target (the leftmost leaf),
and there is only one ℓ-target that is no ℓ-location (the successor of the
rightmost leaf) Thus, if τ contains n distinct ℓ-sources that are not ℓ-targets,
this requires n−1 distinct shared locations. Likewise, if τ contains n distinct
ℓ-targets that are not ℓ-sources, this requires n− 1 distinct shared locations.
(Note that we have to take care not to count these shared locations twice,
because of possible overlap with the previous point.)

5. In a tll, all roots of the trees induced by considering only i-sources must be
referenced by free variables (the locations in the corresponding model belong
to codom(s)). Thus, τ has one shared location per such i-tree.

6. In a tll, in a sequence of linked ℓ-sources, both the first ℓ-source and the
last ℓ-target must be referenced by free variables.
Thus, the leftmost ℓ-source and the successor of the rightmost ℓ-source are
shared locations for every maximal linked list of ℓ-sources in τ .

Based on these observations, we make a case distinction over the possible
structure the unique tight model of a partial model τ interpreted as a graph
and show that each graph either corresponds to a τ ∈ U(P ρi x) for some i, ρ or
corresponds only to τ with at least four shared locations .

– τ contains only ℓ-sources.
• If it contains only a single source, then τ ∈ U(Pi) for i ∈ {2, 3, 4}.
• If it consists of two sources, then τ ∈ U(P7).
• If it contains n ≥ 3 sources, then τ has n shared locations plus the one
for the successor of the last leaf, i.e, at least four.

– τ contains only i-sources
• If it contains only a single source, τ ∈ U(P1)
• If it contains at least two sources, then it contains at least three i-targets
that are neither i-sources nor ℓ-sources; in addition, it contains at least
one root, which also has to be a shared location; yielding a total of at
least four shared locations

– If it contains both i- and ℓ-sources, it needs one shared location per root and
two shared locations per maximal list of linked leaves.30

• If it contains two roots, it thus has at least four shared locations
• If it contains two unconnected lists of linked ℓ-sources, it has at least five
shared locations

30 This is only true because we assumed the last node in a TLL must not be equal to
null nor create a cycle.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 113

• If it contains only one list of linked leaves, but one of the inner nodes of
these leaves is no i-target, it has at least four shared locations

• If it has at most three shared locations, it thus has exactly one root, and
at most its first and its last ℓ-source are not i-targets (but each of them
can be). Thus, τ ∈ U(Pi) for some 5 ≤ i ≤ 8.

⊓⊔

Corollary 4. The set
⋃

1≤≤8,ρ∈Sx
U(P ρi) contains all well-determined partial

tll models that can be expressed with at most three free variables.

Corollary 5. The set {P ρi | 1 ≤ i ≤ 8, ρ ∈ Sx , Λ ∈ Pure(x0)} of equivalence
classes of well-determined partial tll models is complete.

Heap Automata for Singly-linked List Segments

Recall the SID for acyclic singly-linked list segments from Example 1. A heap
automaton A for sll is defined in Fig. 5.

Q , {qeq, qdiff , qrev, qfst, qsnd, q⊥} F , {qeq, qdiff , qfst}

Transitions:

(ε, τ, qeq) ∈ ∆ iff τ |= emp : {x0[1] = x0[2])}

or τ |= emp ∧ ‖xϕ0 ‖ = 2

(ε, τ, qdiff) ∈ ∆ iff τ |= sllx0[1]x0[2] : {x0[2] 6= null}

(ε, τ, qrev) ∈ ∆ iff τ |= sllx0[2]x0[1] : {x0[1] 6= null}

(ε, τ, qfst) ∈ ∆ iff τ |= sllx0[1]null

(ε, τ, qsnd) ∈ ∆ iff τ |= sllx0[2]null

(ε, τ, q⊥) ∈ ∆ iff τ 6|= sllx0

(q, ϕ, q) ∈ ∆ iff (ε, ϕ[P1/ρq[1], . . . , Pm/ρq[m]], q) ∈ ∆

Representations:
ρqeq , emp : {x0[1] = x0[2]}

ρqdiff , x0[1] 7→ (x0[2]) : {x0[2] 6= null,x0[2] 6= x0[1]}

ρqrev , x0[2] 7→ (x0[1]) : {x0[1] 6= null,x0[2] 6= x0[1]}
ρqfst , x0[1] 7→ (null)

ρqsnd , x0[2] 7→ (null)

ρq⊥ , x0[1] 6= x0[1]

Fig. 5. A heap automaton A = (Q, 〈α〉,∆, F) with L(A) = H
〈α〉
sll x,Φ, for acyclic singly-

linked list fragments sll as defined in Ex. 1; plus canonical representations ρq for each
state q.

Observe that ∆ is compositional. Note further that we have defined ∆ in

such way that (ε, τ, q) ∈ ∆ for q ∈ F iff τ |= sllx0, i.e., L(A) = H
〈α〉
sllx,Φ.

114 Jansen, Katelaan, Matheja, Noll, Zuleger

Figure 5 also shows the canonical representations of each state, i.e., the min-
imal unfoldings of each state’s formula. These are the symbolic heaps that are
substituted into the predicate calls in symbolic heaps ϕ to obtain simple entail-
ment problems for deciding transitions (q, ϕ, q).

Optimizations when the Left-Hand Sides of Entailments are
Restricted

Restrictions on parameter reordering. First of all, recall why the automaton
from Corollary 3 had 8 · 6 + 1 states:

– For a fixed parameter ordering, there are 8 equivalence classes of partial
models

– For each class, we have to differentiate between all 3 · 2 · 1 = 6 permutations
of the three free variables x0[1], x0[2], x0[3]: While the permutation of free
variables does not change that a symbolic heap can be extended to entail
a tll unfolding, it changes how it can be extended, because the extension
may need to reorder parameters based on the permutation.

– Hence there are 8 ·6 ∼=tll-equivalence classes (and thus 48 states in Atll) for
partial models.

– There is one ∼=tll equivalence class for symbolic heaps that cannot be ex-
tended to entail a tll unfolding, which corresponds to a sink state.

It will, however, often not be necessary to deal with all such permutations in
practice. For example, just by requiring that all predicates used in the program
that define tree-like structures use their first parameter to identify the root,
merely two possible permutations remain. We can thus specify a tll automaton
with just 8 · 2 + 1 = 17 states that guarantees a sound analysis as long as the
predicates used in the program satisfy the aforementioned assumption.

Fixing SIDs in advance. In practice, the fact that heap automata are indepen-
dent of specific SIDs may also lead to a needless blow-up of the state space. On
the one hand, this independence is a useful feature that enables reusability of
automata across analyses. On the other hand, every program analysis on a fixed
program will usually be performed w.r.t. a fixed SID Φ. It may thus make sense
to perform SID-specific reductions of heap automata to boost the performance
of the analysis on specific programs of interest.

Such optimizations are based on the observation that the set of reduced sym-
bolic heaps that can be derived from a fixed SRD Φ will often not intersect every
single ∼=P equivalence class. Formally, given an equivalence class [τ]∼=P , where
we write [τ]∼=P to denote the equivalence class that contains τ (cf. Theorem 13),

it may turn out that [τ]∼=P ∩ SH
[Φ]
C = ∅.

If we know that all formulas that occur on the left-hand side of entailments
only contain predicates from Φ, we can drop all the states that correspond to

equivalence classes [τ]∼=P with [τ]∼=P ∩SH
[Φ]
C = ∅. A heap automaton will therefore

often be much smaller if we build it for entailment w.r.t. a fixed SID Φ rather
than for arbitrary formulas in SH〈α〉.

Unified Reasoning about Robustness Properties of Symbolic-Heaps 115

This becomes particularly clear if we want to reimplement decision proce-
dures for fixed SIDs such as the one by Berdine et al. [3] within our framework.
If, for example, formulas on the left-hand side of the entailment may only refer
to the sll predicate (as is the case in the work by Berdine et al. [3]), we can
simplify the automaton A from Figure 5 as follows. We can drop the states qrev
and qsnd, because we know in advance that there is no predicate in our SID that
defines singly-linked lists in reverse order. Even in this simple case, we can thus
reduce the size of the state space by a third. In more complex cases, even larger
reductions are possible.

	Unified Reasoning about Robustness Properties of Symbolic-Heap Separation Logic

