
The essence of functional programming on
semantic data

Martin Leinberger1, Ralf Lämmel2, Steffen Staab1,3

1Institute for Web Science and Technologies, University of Koblenz-Landau, Germany
2 The Software Languages Team, University of Koblenz-Landau, Germany

3 Web and Internet Science Research Group, University of Southampton, England

Abstract. Semantic data fuels many different applications, but is still
lacking proper integration into programming languages. Untyped access
is error-prone. Mapping approaches cannot fully capture the conceptu-
alization of semantic data. In this paper, we present λDL, a typed λ-
calculus with constructs for operating on semantic data. This is achieved
by the integration of description logics into the λ-calculus for both typing
and data access or querying. The language is centered around several key
design principles, in particular: (1) the usage of semantic conceptualiza-
tions as types, (2) subtype inference for these types, and (3) type-checked
query access to the data by both ensuring the satisfiability of queries as
well as typing query results precisely. The paper motivates the use of a
designated type system for semantic data and it provides the theoretic
foundation for the integration of description logics as well as the core
formal definition of λDL including a proof of type safety.

1 Introduction
Semantic data allows for capturing knowledge in a natural manner. Its char-
acteristics include the representation of conceptualizations inside the data and
an entity-relation or graph-like description of data. Both, on their own and to-
gether, they allow for precisely specifying the knowledge represented within se-
mantic data. A knowledge system manages semantic data and may infer new
facts by logic inference. Different use cases are fueled by the semantic-data ap-
proach. The knowledge graphs of Google and Microsoft enhance Internet search.
Wikidata [36] is an open source knowledge graph that stores structured data for
Wikipedia. It consists of one billion statements and contains 1,148,230 differ-
ent concepts and 2515 relations. The ontology defined by Schema.org1 provides
structure for data. This data is then used in search as well as personal assistants
such as Google Now and Cortana. Google stores more than 3 trillion semantic
statements crawled from the web. In the field of Life Sciences, semantic data
was applied in the form of Bio2RDF2, providing 11 billion triples. Semantic
data has also interlinked large, varied data sources, such as provided by Fokus3

1 https://schema.org/
2 http://bio2rdf.org/
3 https://www.fokus.fraunhofer.de/en

containing more than 200,000 different data sets. These examples demonstrate
that semantic data models (e.g., RDF or OWL) are important for representing
knowledge in complex use cases. In order to fully exploit the advantages of these
data models, it is also necessary to facilitate programmatic access and operating
over such data in programs.

As the running example, consider semantic data about music artists formal-
ized in the description logic ALCOI(D). Listing 1 shows that everyone, or rather
every object, for which a recorded relation that connects the object to another
entity of type Song, exists is considered to be a MusicArtist (Line 2). The ob-
ject beatles is of type MusicArtist (Line 4) and machineGun is a Song (Line
5). The object hendrix has recorded the song machineGun (Line 6) and was
influenced by the object beatles (Line 7).

1 // Conceptualization
2 ∃recorded.Song v MusicArtist
3 // Graph data
4 beatles : MusicArtist
5 machineGun : Song
6 (hendrix, machineGun) : recorded
7 (hendrix,beatles) : influencedBy

Listing 1: Initial example of semantic data.

The example shows several challenges we need to deal with when working with
semantic data in a programming language. (1) Conceptualizations rely on a
mixture of nominal (MusicArtist) and structural typing (∃recorded.Song).
(2) It is also not uncommon to have a very general or no conceptualization at all,
as exemplified by the influencedBy role that expresses that hendrix has been
influenced by the beatles. (3) Additional, implicit statements may be derived
by logical reasoning, e.g., in our running example hendrix:MusicArtist can
be inferred. Another challenge is not illustrated: (4) In real data sources, the
sheer size of potential types may become a problem. It is practically infeasible
to explicitly convert all 1,148,230 different concepts of Wikidata into types of a
programming language.

Integration of data models into programming languages can be achieved in
different ways. The three most important are (1) via generic types, (2) via a
mapping to the type system of a programming language, or (3) by using a
custom type system. A generic approach (1) can represent semantic data using
types such as GraphNode or Axiom (cf. [19]). While this approach can represent
anything the data can model, it does not leverage static typing: such generic
representations are not error-checked. Mapping approaches (2) such as [21] aim
at mapping the data model to the type system of the programming language so
that static typing is leveraged. However, the mixing of structural and nominal
typing, inferred statements, and a high number of concepts worth mapping are
problematic. We therefore propose a third, a novel approach: A type system
designed for semantic data (3).

In this paper, we present λDL, a functional language for working with knowl-
edge systems. λDL uses concept expressions such as ∃recorded.Song as types.
This ensures that every conceptualization can be represented in the language
and allows for typing values precisely. It avoids pitfalls of other approaches by
forwarding typing and subtyping judgments to the knowledge system, thereby
allowing facts to be considered only if required. Lastly, the language contains
a simple querying mechanism based on description logics. The querying mech-
anism allows for checking of satisfiability of queries as well as for typing the
query results in the programming language. As a result, λDL provides a type-
safe method of working with semantic data.

To highlight a simple kind of error that type checking can catch, consider a
function f that takes ∃influencedBy.> as input. In other words, the functions
accepts all entities for which an influencedBy relation exists.Using a query-
operator that searches for entities in the data, a developer might simply query
for music artists because he has seen that hendrix has an influence. Applying
any value of the result set to the function f can cause runtime errors, as not all
music artists have a known influence. Typing in λDL is precise enough to detect
such errors (see Listing 2).

1 let f = λ(x:∃influencedBy.>) . x.influencedBy in
2 f (head (query MusicArtist))

Listing 2: Rejected code—music artist is not a subtype of ∃influencedBy.>.

In summary, the main contributions of the paper are as follows:

1. We motivate and describe λDL, a language containing constructs for working
with semantic data. In particular, we provide typing, querying constructs
and a typecase. Semantics of these constructs rely on description logics, the
theoretical foundations of semantic data.

2. We present a formal proof of type safety for λDL. We highlight how design
decisions in λDL solve many of the problems that occur when dealing with
semantic data and allow for a straightforward proof.

As we extend a standard λ-calculus, large parts of the semantics and proof of
type safety are routine. We therefore focus on cases particular to our language.
The full rules and complete proof can be found in the technical report4. Along
with the technical report, we also provide a prototypical implementation to show
the feasibility of the presented theories in practice.

Road-map of the paper The remaining paper is organized as follows. In Section 2,
we introduce description logics as the theoretic foundation of semantic data. In
Section 3, we illustrate λDL with an extension of the running example and an
informal view on the calculus. In Section 4, we describe the core language and
its evaluation rules. In Section 5, we describe the type system. In Section 6, we
provide a proof of type soundness. In Section 7, we examine related work. In
Section 8, we conclude the paper including a discussion of future work.
4 https://west.uni-koblenz.de/lambda-dl

2 Description Logics

Semantic data is often formalized in the RDF data model or in the more ex-
pressive Web Ontology Language (OWL5). Formal theories about the latter are
grounded in research on description logics. Description logics is a family of logical
languages for describing conceptual knowledge and graph data. All description
logic languages are sub-languages of first-order predicate logic. They are defined
to allow for decidable or even PTIME decision procedures. Their usefulness for
modeling semantic data has been shown with such diverse use cases as reason-
ing on UML class diagrams [6], semantic query optimization on object-oriented
database systems [4], or improving database access through abstraction [10].

Syntax and Semantics Semantic data, also called a knowledge base, comprises
of a set of description logics axioms that are composed using a signature Sig(K)
and a set of logical and concept operators and comparisons. A signature Sig of
a knowledge base K is a triple Sig(K) = (A,Q,O) where A is a set of concept
names, Q is a set of role names, and O is a set of object names. DL uses Tarskian-
style, interpretation-based semantics. An interpretation I is a pair consisting of a
non-empty universe ∆I and an interpretation function ·I that maps each object
a, b ∈ O to an element of the universe. Furthermore, it assigns each concept
name A ∈ A a set AI ⊆ ∆I and each role name Q ∈ Q to a binary relation
QI ⊆ ∆I × ∆I . In our running example, the signature of Listing 1 contains
the concepts6 MusicArtist and Song, the roles recorded and influencedBy
as well as the objects beatles, hendrix, and machineGun. An interpretation
I could map objects like hendrix to their real-life counterparts, e.g., the artist
Jimi Hendrix. Furthermore, the interpretation of concept MusicArtist might
be MusicArtistI = {hendrix, beatles}, and the interpretation of Song might
be SongI = {machineGun}. The interpretation of the recorded role might
be recordedI = {(hendrix, machineGun)} and influencedByI = {(hendrix,
beatles)}.

Given these element names, complex expressions, e.g. as highlighted by List-
ing 1, can be built. For the course of the paper, the specific description logics
dialect needed to cover all necessary constructs is ALCOI, consisting of the
most commonly used Attributive Language with Complements plus the addition
of nominal concept expressions and inverse role expressions. Table 1 summarizes
syntax and semantics of role expressions represented through the metavariable
R. A role expression is either an atomic role or the inverse of a role expression.

Concept expressions are composed from other concept expressions and may
also include role expressions. Concept expressions, represented through the metavari-
ables C and D, are either atomic concepts, >, ⊥ or the negation of a concept.

5 https://www.w3.org/OWL/
6 As common in description logics research, we use “concept C” to refer to both the
concept name C and the interpretation of this concept name CI , unless the distinc-
tion between the two is explicitly required. Likewise, we do for role names and object
names.

Role Expression Syntax Semantics

Atomic Role Q QI ⊆ ∆I ×∆I

Inverse R− {(b, a) ∈ ∆I ×∆I |(a, b) ∈ RI}
Table 1: Role expressions and associated semantics.

Concept Expression Syntax Semantics

Nominal concept { a } {aI}
Atomic concept A AI ⊆ ∆I

Top > ∆I

Bottom ⊥ ∅
Negation ¬C ∆I \ C
Intersection C uD CI ∩DI

Union C tD CI ∪DI

Existential Quantification ∃R.C {aI ∈ ∆I |∃bI : (aI , bI)
∈ RI ∧ bI ∈ CI}

Universal Quantification ∀R.C {aI ∈ ∆I |∀bI : (aI , bI)
∈ RI ∧ bI ∈ CI}

Table 2: Concept expressions and associated semantics.

Concept expressions can also be composed from intersection or through exis-
tential and universal quantification on a role expression. An example of such a
concept expression from Listing 1 is the concept ∃recorded.Song that describes
the set of objects, which have recorded at least one song. Lastly, it is also possible
to define a concept by enumerating its objects. This constitutes a nominal type in
description logics and allows the description of sets such as the one only contain-
ing hendrix and the beatles through the expression {hendrix} t {beatles}.
Table 2 summarizes the syntax and semantics of concept expressions.

Furthermore, in the context of programming with semantic data, it makes
sense to add additional data types such as string or integer. We then arrive at the
language ALCIO(D), the language ALCIO plus the addition of data types for
constructing knowledge bases. In the OWL standard, the use of XSD7 data types
is common. We therefore also include XSD data types wherever it is appropri-
ate. As an example, consider the concept expression ∃artistName.xsd:string
describing the set of all objects having an artist name that is a string. As the in-
tegration of such smaller, closed set of data types can be achieved via mappings
to appropriate types in the programming language, we do not go into details
about them in the remainder of the paper.

Given such concept (and datatype) expressions, we may now define semantic
statements, also called a knowledge base, as pointed out before. A knowledge
base K is a pair K = (T ,A) consisting of the set of terminological axioms T ,
7 https://www.w3.org/TR/xmlschema-2/

Name Syntax Semantics

Concept inclusion C v D CI ⊆ DI

Concept equality C ≡ D CI = DI

Concept assertion a : C aI ∈ CI

Role assertion (a, b) : R (aI , bI) ∈ RI

Object equivalence a ≡ b aI = bI

Table 3: Terminological and assertional axioms.

Domain(R,C)
def
= ∃R.> v C

Range(R,C) def= > v ∀R.C

Fig. 1: Syntactical abbreviations for DL.

the conceptualization of the data and the set of assertional axioms A, the actual
data. Schematically, a knowledge base can express that two concepts are either
equivalent or that two concepts are in a subsumptive relationship. In terms
of actual data, objects can either express that belong to a certain concept or
that they are related to another object via a role. Furthermore, it is possible
to axiomatize that two objects are equivalent. Table 3 summarizes syntax and
semantics of possible axioms in the knowledge base.

Even weak axiomatizations such as RDFS8 allow for the definition of domains
and ranges of roles used in the ontology. As shown in Fig. 1, Domain and Range
definition can be defined as abbreviations of axioms built according to Table 3.

Using our running example, we can now define a more sophisticated knowl-
edge base (Listing 3). We assume everyone who has recorded a song to be a
music artist, but not all music artists have recorded one (Line 2). Music artists
who have been played at a radio station however must have recorded a song
(Line 3–4). Music groups are a special kind of music artists (Line 5). Every
music artist has an artist name, which is always of type xsd:string (Line 6 and
7). As might happen when semantic data is crawled from the Web, a role like
influenceBy might not be defined in the schema. Thus, it remains a role that
is not restricted by any terminological axiom. The actual data includes descrip-
tions of the beatles which are a music group (Line 9), machineGun which is
a song (Line 10) coolFm which is a radio station (Line 11). machineGun has
been recorded by hendrix (Line 12), who has been influencedBy the beatles
(Line 13). Lastly, we know that both, hendrix and beatles have been played
by coolFm (Line 14–15). It is not explicitly stated that hendrix is a music
artist. Furthermore, even though we know that the music group beatles has
been played at coolFm, we do not know any song that they recorded.

1 // Conceptualization

8 RDF Schema, one of the weakest forms of terminological axioms.

2 ∃recorded.Song v MusicArtist
3 MusicArtist u ∃playedAt.RadioStation v
4 ∃recorded.Song
5 MusicGroup v MusicArtist
6 MusicArtist v ∃artistName.>
7 Range(artistName, xsd:String)
8 // Graph data
9 beatles : MusicGroup

10 machineGun : Song
11 coolFm : RadioStation
12 (hendrix, machineGun) : recorded
13 (hendrix, beatles) : influencedBy
14 (hendrix, coolFm) : playedAt
15 (beatles, coolFm) : playedAt
16 (hendrix, "Jimmy Hendrix") : artistName
17 (beatles, "The Beatles") : artistName

Listing 3: Advanced example of semantic data.

As illustrated by the example, ALCIO(D) is a description logics language
which is already rather expressive to describe complex concept and object rela-
tionships. As we want to focus on the “essence of programming with semantic
data”, we refrain from using more powerful languages, such as OWL2DL, as this
would distract from the core contributions of this paper without significantly
changing its methods.

Inference In terms of inference, interpretations have to be reconsidered. Axioms
built according to Table 3 may or may not be true in a given interpretation. An
interpretation I is said to satisfy an axiom F , if its considered to be true in the
interpretation. The notation I |= F is used to indicate this. An interpretation I
satisfies a set of axioms F , if ∀F ∈ F : I |= F . An interpretation that satisfies a
knowledge base K = (T ,A), written I |= K if I |= T and I |= A, is also called a
model. For an axiom to be inferred from the given facts, the axiom needs to be
true in all models of the knowledge base (see Def. 1).

Definition 1 (Inference). Let K = (T ,A) be a knowledge base, F an axiom
and I the set of all interpretations. F is inferred, written K |= F , if ∀I ∈ I :
I |= K then I |= F .

An example of this is the axiom hendrix:MusicArtist. hendrix has recorded a
song and must therefore be element of ∃recorded.Song. As ∃recorded.Song v
MusicArtist must be true in all models, hendrix must also be element of
MusicArtist. A knowledge system might introduce anonymous objects to fulfill
the explicitly given axioms. Take the object beatles as an example. The object
is a music artist and has been played in the radio. Therefore, according to lines
3–4 in the example, they must have recorded a song. However, the knowledge
system does not know any song recorded by them. It will therefore introduce at
least one anonymous object representing this song in order to satisfy the axioms.

Queries Interaction between the programming language and the knowledge sys-
tem can be realized via querying. Two basic forms of queries can be distinguished.
Queries that check whether an axiom is true have already been introduced in
the previous paragraph (K |= F). A more expressive form of querying introduces
variables, to which the knowledge system responds with unifications for which
the axiom is true. Querying introduces variables, to which the knowledge system
responds with unifications for which the axiom is known to be true (see Def. 2).

Definition 2 (Querying with variables). Let K be a knowledge base and
C a concept expression. The set of all objects a such that a : C is true is then
{?X |K |= ?X : C}, where ?X represents a variable being unified with said objects.

As an example, consider the query K |= ?X : MusicArtist, the variable ?X
is unified with all objects that belong to the concept MusicArtist. However,
this form of query can be problematic as, depending on the knowledge system,
an infinite number of unifications might exist. Consider the knowledge base in
Listing 4. A person is someone who has a father who is again a person (Line 1).
An object someone is defined to be a person (Line 2).

1 Person v ∃hasFather.Person
2 someone : Person

Listing 4: Infinitely large knowledge system.

If someone is a person, then he or she must have an father which is a anonymous
object and a person himself, again implying that this anonymous object has
a father. A query K |= ?X : Person therefore yields an infinite number of
unifications. We therefore use a simple form of so called DL-safe queries (cf. [27]),
which restrict unifications to objects defined in the signature (see Def. 3).

Definition 3 (DL-safe queries). Let K be a knowledge base, Sig(K) = (A,Q,O)
its signature and C a concept expression. The set of all objects for which a : C is
true and that are not anonymous can be queried by {?X |K |= ?X : C∧?X ∈ O}.

In case of the example shown in Listing 4, only the object someone would be
returned, even though anonymous objects are considered for inferencing.

Open World and No Unique Name assumption Semantic data employs an open
world semantics. Axioms are true if they are true in all models of the knowledge
base. Likewise, an axiom is false if they are false in all models of the knowledge.
Contrary to a closed world, axioms that are true in some models, but false in
others are not false but rather unknown. This allows the modeling of incomplete
data without inconsistencies. Furthermore, there is no unique name assumption.
Two syntactically different objects might be equivalent. As an example, consider
the two objects prince and theArtistFormerlyKnownAsPrince. While they
are syntactically different, they might be semantically equivalent.

3 λDL in a nutshell
Developing applications for knowledge systems, as introduced in the previous
section, is difficult and error-prone. λDL has been created to achieve a type-safe
way of programming with such data sources.

3.1 Key design principles

Concepts as types Type safety can only be achieved if terms are typed precisely.
This is only possible if the conceptualizations of semantic data are usable in the
programming language. Therefore, concept expressions must be seen as types in
the language.

Subtype inferences The facts about subsumptive relationships between concepts
must be added to the system during the type checking process by forwarding
these checks to the knowledge system. This allows for taking inferred statements
into account and avoids problems with large number of conceptualizations.

Typing of queries To avoid runtime errors, queries must be properly type-
checked. Queries can be checked in two ways: First, unsatisfiable queries must be
rejected. This means that queries for which no possible A-Box instance can pro-
duce a result are detected and treated as an error. Second, usage of queries must
be type-safe, meaning that the query result must be properly typed. Queries
always return lists in λDL.

DL-safe queries A knowledge system might introduce anonymous objects to
satisfy axioms. In the worst case, this can lead to infinitely large query results.
However, very little information can be gained of such objects aside from their
existence. As shown in Def. 3, λDL relies on a simplified form of DL-safe queries.
Queries are enforced to be finite by only allowing unifications with known objects,
even though this might lead to empty result sets in some cases.

Open-world querying When looking at inferencing, axioms may be true, false
or unkown. For simplicity, λDL considers axioms to be true only if the axiom is
true in all models. In other cases, the axiom is considered false. While this view
is close to a developers expectation, it also introduces the side effect that union
of two queries such as query C and query ¬C does not yield all objects. For
some objects, it is simply unknown whether they belong to either C or ¬C.

3.2 Example use case

Consider an application that works on the knowledge system defined in Listing 3.
Four necessary functions should be implemented: First, the application should
query for all music artists that have recorded a song. Second, the application
should provide a mapping from a music artist to the list of their songs. Third,
a mapping from a music artist to his artist name must be created. Fourth, the

application should display all influences of an artist—therefore a mapping from
a music artist to his influences is needed. However, these influences should also
be human-readable, meaning that they should also be mapped to their name.

The first requirement is implemented by the querying mechanism in λDL.
The necessary list of music artists that have recorded at least one song can be
queried using MusicArtist u ∃recorded.Song (see Listing 5). Applied to a
knowledge system working on the facts in Listing 3, this yields a list containing
both hendrix and beatles. This expression is typed by the concept expression
used in the querying, assigning a type of (MusicArtistu∃recorded.Song) list
to the evaluation result.

1 query MusicArtist u ∃recorded.Song
Listing 5: Querying for music artists that have recorded a song.

Mapping a member of this list to his or her recorded songs can be done using
role projections. The input type for such a mapping function is ∃recorded.Song
which is a super type of MusicArtist u ∃recorded.Song. Listing 6 shows the
code for the mapping function. As mentioned before, for the object beatles, the
semantic data does not contain any recorded songs, even though such a song must
exist. The anonymous object introduced by the knowledge system is removed and
an empty list is returned. Yet, the developer knows that an anonymous object
must exist and that the knowledge system might know this song at some point
in the future—otherwise typing would have rejected the function application.

1 let getRecordings = λ(a:∃recorded.Song).
2 a.recorded

Listing 6: Mapping to the recordings.

A function mapping a music artist to his name is again built by role projections.
As our knowledge systems claims that every music artist has an artist name
(Listing 3, line 5), the input type for this function can be the music artist concept.
Additionally, the knowledge system states that the returned list of values are
all of type string. We can therefore simply take the head of the returned list.
Listing 7 shows the code of the mapping function. However, this code also shows
a problem λDL still faces—if the knowledge system would not know the name
of an artist, the resulting list would be empty and the code would still produce
a runtime error.

1 let getArtistName = λ(a:∃artistName.xsd:string).
2 head (a.artistName)

Listing 7: Mapping a artist to his name.

The last requirement, mapping a music artist to his influences introduces casting,
as music artists are not in a direct subtype relation to influencedBy.>. This
casting is important, as simply allowing the projection could cause runtime errors
if, e.g., used on the object beatles. λDL provides a typecase for this use case.
Listing 8 shows the code for such a mapping from a MusicArtist to an influence.

In case that the argument of the function is of type influencedBy.>, the actual
mapping function is applied to the value—otherwise, an empty list is returned.

1 let getArtistInfluences = λ(artist:MusicArtist).
2 case artist of
3 type ∃influencedBy.> as x -> getInfluences x
4 default nil[∃influencedBy−.MusicArtist]

Listing 8: Casting a music artist to influencedBy.>.

The function computing the actual influences can use a projection and then
apply a function that converts influences to their human-readable name However,
this getting the name of an influence is problematic due to the weak schematic
restrictions of the influencedBy role. The code must therefore proceed on a
case by case basis. If the influence is a music artist, the projection to the human-
readable string is known. Otherwise, the influence cannot be converted. Listing 9
shows the complete code for the function.

1 let getInfluences = λ(obj:∃influencedBy.>).
2 let toName = λ(x:∃influencedBy−.>).
3 case x of
4 type MusicArtist as y -> getName y
5 default "cannot convert to name"
6 in letrec getNames:(∃influencedBy−.> list -> string list) =
7 λ(source:∃influencedBy−.> list) .
8 if (null source)
9 then nil[string]

10 else cons (toName (head source)) (getNames (tail source))
11 in
12 getNames obj.influencedBy

Listing 9: Mapping influences to their human-readable representations.

4 Core language

Syntax Our core language λDL (Fig. 2) is a simply typed call-by-value λ-calculus.
Terms of the language include let-statements, a fixed point operator for recur-
sion, function application and if-then-else expressions. Constructs for lists are
included in the language: cons, nil including a type parameter, null, head and
tail. Specific to our language is the querying construct for selecting data in
the knowledge system based on a concept expression and projections from an
object to a set of objects using role expressions. We use a typecase constructs
that provides branch control based on types. It contains an arbitrary number of
cases plus a default case. If a branch matches, the object is considered to be of
the matched type inside the case itself. It therefore acts as a type-safe casting
construct.

t ::= (terms)
let x = t in t (let binding)
| fix t (fixed point of t)
| t t (application)
| if t then t else t (if-then-else)
| cons t t (list constructor)
| null t (test for empty list)
| head t (head of a list)
| tail t (tail of a list)
| query C (query)
| t.R (projection)
| case t of (typecase)
case (typecases)
default t (default case)

| t = t (equivalence)
| x (identifier)
| v (value)

v ::= (values)
a (object)
| nil[T] (empty list)
| cons v v (list constructor)
| λ(x : T).t (abstraction)
| p (primitive value)

p ::= (primitive values)
true (true)
| false (false)

case ::= type C as x -> t (typecase)

T ::= (types)
C (concept type)
| T → T (function type)
| T list (list type)
| Π (primitive types)

Π ::= (primitive types)
bool (boolean)

Γ ::= (context)
∅ (empty context)
| Γ, x : T (type binding)

Fig. 2: Syntax (terms, values, types) of λDL.

letrec x : T1 = t1 in t2
def
= let x = fix (λx : T1.t1) in t2

Fig. 3: Syntactical abbreviations of λDL.

We use an overbar notation to represent sequences of syntactical elements.
That is, a stands for a1, a2, ..., an. As DL has no unique name assumption, ob-
jects can be syntactically different but semantically equivalent. Therefore, we
also included the equality operator in our representation. Values (v) include ob-
jects defined in the knowledge base, nil and cons to represent lists, λ-abstractions
and primitive values. λ-abstractions indicate the type of their variable. In terms
of primitive values, we assume data types such as integers and strings, but omit
routine details. To illustrate them, we usually just include booleans in our syn-
tax. Types (T) consist of concept expressions built according to Table 3, type
constructors for function and list types and primitive types. Additionally, we use
a typing context to store type bindings for λ-abstractions. To simplify recursion,
we also define a letrec as an abbreviation of the fixpoint operator (see Fig. 3).

Semantics The operational semantics is defined using a reduction relation, which
extends the standard ones. Reduction of lists and terms not related to the knowl-
edge bears no significant difference from rules as, e.g., defined in [32]. We there-

query C → σ({?X | ?X ∈ O ∧ K |= ?X : C}) [E-QUERY]

a.R→ σ({?X | ?X ∈ O ∧ K |= (a, ?X) : R}) [E-PROJV]

t1 → t′1

t1.R→ t′1.R
[E-PROJ]

K |= a ≡ b

a=b→ true
[EQ-NOMINAL-TRUE]

K 6|= a ≡ b

a=b→ false
[EQ-NOMINAL-FALSE]

p1=p1 → true [EQ-PRIM-TRUE]

p1 6= p2

p1=p2 → false
[EQ-PRIM-FALSE]

t1 → t′1

t1 = t2 → t′1 = t2
[E-EQ1]

t2 → t′2

v1 = t2 → v1 = t′2
[E-EQ2]

Fig. 4: Reduction rules related to KB.

fore omit these rules and focus on the constructs specific to λDL (see Fig. 4 and
5). The full semantics can be found in the technical report.

A term representing a query can be directly evaluated to a list of objects
(E-QUERY). The query reduction rule queries the knowledge system for all ?X
for which the axiom K |= ?X : C is true. As λDL relies on DL-safe queries, only
objects actually defined in the signature are allowed. For simplicity’s sake, we
consider the result to be a list and introduce a σ-operator that takes care of
communication between the knowledge system and λDL. As queries yield sets
of objects, this operator essentially works by concatenating every object of the
query result into a list. Projections (E-PROJ and E-PROJV) behave similarly.
Once the term has been reduced to a object a, the knowledge system is queried for
all ?X for which K |= (a, ?X) : R. Again, anonymous objects are not considered
and the result is converted into a list by the σ-operator.

In case of equivalence, both terms must first be reduced to values (E-EQ1 and
E-EQ2). Once both terms are values, equivalence can be computed. Equivalence
is distinguished into equivalence for objects (EQ-NOMINAL-TRUE and EQ-
NOMINAL-FALSE) and equivalence for primitive values (EQ-PRIM-TRUE and
EQ-PRIM-FALSE). λDL considers two primitive values only equivalent if they

case a of default t0 → t0 [E-TYPECASE-DEF]

K |= a : C1

case a of

type C1 as x1 -> t1

... → [x1 7→ a]t1

default tn+1

[E-TYPECASE-SUCC]

K 6|= a : C1

case a of case a of

type C1 as x1 -> t1 type C2 as x2 -> t2

type C2 as x2 -> t2 → ...

... default tn+1

default tn+1

[E-TYPECASE-FAIL]

t1 → t′1

case t1 of case t′1 of

case → case

default tn+1 default tn+1

[E-TYPECASE]

Fig. 5: Reduction rules for typecase terms.

are syntactically equal. In case of objects, the knowledge base is queried. If the
knowledge system can unambiguously prove that a is equivalent to b, the two
objects are considered to be equal. Due to the open-world querying, objects are
considered to be different if the knowledge system is unsure or if it can actually
prove that the two objects are not equivalent. We do not consider equivalence
for lists or λ-abstractions.

Evaluation of typecase terms (see Fig. 5) is somewhat special. The terms
are first reduced to an object (E-TYPECASE). The semantics can then test
the object, case by case, until one of them matches (E-TYPECASE-SUCC and
E-TYPECASE-FAIL). For each case the knowledge system is queried whether
the axiom K |= a : C is true. Due to the open-world querying, it might happen
that the knowledge system cannot compute such a membership. In this case, the
typecase is reduced to its default.

5 Type system
The most distinguishing feature of the type system for λDL is the addition of
concept expressions, built according to the rules of Table 2, as types in the lan-
guage. For constructs unrelated to the knowledge system, this has little impact.

lub(π1, π1)⇒ π1 [LUB-PRIMITIVE]

lub(C,D)⇒ C tD [LUB-CONCEPT]

lub(S, T)⇒W

lub(S list, T list)⇒W list
[LUB-LIST]

glb(S1, T1)⇒W1 lub(S2, T2)⇒W2

lub(S1 → S2, T1 → T2)⇒W1 →W2

[LUB-FUNC]

Fig. 6: Least upper bound of types.

Least Upper Bound and Greatest Lower Bound In the typing rules for a few
constructs, e.g., for for typing if-then-else expressions, the least upper bound of
two types S and T has to be determined; see the designated judgment lub in
Fig. 6. In case of a least upper bound for primitive types, we simply assume
the types to be equal (LUB-PRIMITIVE). For two concepts C and D, a new
concept C tD is constructed (LUB-CONCEPT). For lists of the form S list and
T list, we compute the least upper bound of S and T as a new element type
for the list. For two functions, S1 → S2 and T1 → T2, the greatest-lower bound
of the argument types S1 and T1 (‘contra-variance’) as well as the least upper
bound of S2 and T2 (‘co-variance’) are computed.

The greatest-lower bound of two types S and T is defined analogously. For
instance, the greatest lower bound of two concepts C and D is the concept
C uD. The complete definition of the designated judgment glb can be found in
the technical report.

Typing knowledge-base unrelated constructs The typing rules for constructs unre-
lated to the knowledge base are mainly the standard ones as in common simple
(applied) lambda calculi. We only include rules here for constructs that need
special attention due to λDL.

The typing rule for if-then-else expressions needs to be adjusted in a manner
similar to type systems with subtyping; see the use of the lub-judgment in Fig. 7.

Γ ` t1 : bool Γ ` t2 : S Γ ` t3 : T lub(S, T)⇒W

Γ ` if t1 then t2 else t3 :W
[T-IF]

Fig. 7: Typing rules for constructs unrelated to the KB.

Fig. 8 shows the typing rules for list-related forms of terms. The empty list
constructor has a type parameter (T-NIL). A cons function (T-CONS) is typed
using the least upper bound judgment. The remaining typing rules for functions
on lists are the standard ones. For instance, a null function takes a well-typed
list and returns a boolean value.

Γ ` nil[T1] : T1 list [T-NIL]

Γ ` t1 : T1 Γ ` t2 : T2 list lub(T1, T2)⇒ T3

Γ ` cons t1 t2 : T3 list
[T-CONS]

Γ ` t1 : T list

Γ ` null t1 : Bool
[T-NULL]

Γ ` t1 : T list

Γ ` head t1 : T
[T-HEAD]

Γ ` t1 : T list

Γ ` tail t1 : T list
[T-TAIL]

Fig. 8: Typing rules for lists

K 6|= C ≡ ⊥

Γ ` query C : C list
[T-QUERY]

Γ ` t1 : C

Γ ` t1.R : (∃R−.C) list
[T-PROJ]

Γ ` t1 : C Γ ` t2 : D K 6|= C uD ≡ ⊥

Γ ` t1 = t2 : bool
[T-EQN]

Γ ` t1 : Π1 Γ ` t2 : Π1

Γ ` t1 = t2 : bool
[T-EQP]

Γ ` a : { a } [T-OBJECT]

Fig. 9: Typing rules for constructs related to the KB.

Typing of knowledge-base related constructs Typing of terms related to the
knowledge base is summarized in Fig. 9. Queries (T-QUERY) have a concept
C; thus, the result is of type C list. Unsatisfiable queries are rejected by the
type system on the grounds of querying the knowledge system on whether C
is equivalent to ⊥. Projections (T-PROJ) require a term of type C and can
then be typed by the inverse of the relation used for the projection. This may
seem suprising at first sight, but it is actually the most precise type that can
be assigned to this term. Range-definitions of roles may be very general (e.g.,
the range definition for influencedBy in the running example). Equivalence
requires two well-typed operands with either a non-empty intersection of the

Γ ` t0 : D Γ, xi : Ci ` ti : Ti for i=1, ..n

K 6|= Ci v Cj for i < j K 6|= Ci uD ≡ ⊥ for i = 1, .., n

Γ ` tn+1 : Tn+1 lub(T1, ..., Tn+1)⇒W

Γ ` case t0 of

type C1 as x1 -> t1

... : W

type Cn as xn -> tn

default tn+1

[T-TYPECASE]

Fig. 10: Typing rule for typecase

associated concepts (T-EQN) or the same primitive type (T-EQ-P); the result
is of type bool. Lastly, single objects can be typed using a nominal concept—a
concept expression created through enumerating its members.

Consider the typing rule for typecase in Fig. 10. The term to be dispatched
on, t0, is of type D, i.e., a concept. The types of the non-default cases are
determined in a context where the variable xi for each case is bound to the type
Ci of the case. The idea is here that t0 is casted to Ci type-safely and to be
accessed as xi within ti. The result type of typecase is the least upper bound
of the types of all cases including the default case. (We use lub as a shortcut
for the repeated application of the lub-judgment.) There are additional premises
to ensure meaningful cases. That is, the intersection between all the Ci and D
should not be equivalent to ⊥, as it would then be impossible for a case to ever
match. Also, a case should never be subsumed by a preceding case, as cases are
tried sequentially.

Subtyping Subtyping rules are summarized in Fig. 11. We rely on a standard
subtyping relation. A term t of type S is also of type T , if S <: T is true (T-
SUB). Any type is always a subtype of itself (S-RELF). Subtyping for concepts is
handled by the knowledge system. A concept C is a subtype of concept D if the
knowledge base can infer that K |= C v D (S-CONCEPT). The forwarding of
this decision to the knowledge system is important because the knowledge system
can take inferred facts into account before making the conclusion. Subtyping for
list and function types is reduced to subtyping checks for their associated types.
A list S list is a subtype of T list if S <: T is true (S-LIST). Function types
are in a subtyping relationship (S-FUNC) if their domains are in a flipped sub-
typing relationship (‘contra-variance’) and their co-domains are in a subtyping
relationship (‘co-variance’).

Algorithmic type checking We mention in passing that the type system is more
or less directly suited for algorithmic type checking. That is, the rules are com-
pletely syntax driven with the routine exception of the rule for adding subtyping

Γ ` t : S S <: T

Γ ` t : T
[T-SUB]

S <: S [S− RELF]

K |= C v D

C <: D
[S− CONCEPT]

S <: T

S list <: T list
[S− LIST]

T1 <: S1 S2 <: T2

S1 → S2 <: T1 → T2

[S− FUNC]

Fig. 11: Subtyping rules.

for terms (T-SUB). There is no problematic rule like transitivity of subtyping,
as concept subtyping is taken care of by the knowledge systems.

6 Type soundness
We show the soundness of λDL by proving that, given the design choices of λDL,
well-typed programs do not get stuck. As with many other languages, there are
exceptions to this rule, e.g., down-casting in object-oriented languages, cf. [2].
One may expect that typecases of λDL may constitute an exception, but the
default case avoids this problem. Thus, the only exception concerns lists.

We show that if a program is well-typed, then the only way it can get stuck
is by reaching a point where it tries to compute head nil or tail nil. We proceed
in two steps, by showing that a well-typed term is either a value or it can take a
step (progress) and by showing that if that term takes a step, the result is also
well-typed (preservation). We start by providing some forms about the possible
well-typed values (canonical forms) for each type.

Lemma 1 (Canonical Forms Lemma). Let v be a well-typed value. Then the
following observations can be made:

1. If v is a value of type C, then v is of the form a.
2. If v is a value of type T1 → T2, then v is of the form λ(x : S1).t2 with

T1 <: S1.
3. If v is a value of type C list, then v is either of the form (cons v1...) or nil.
4. If v is a value of type bool, then either v is either true or false.

Proof. Immediate from the typing relation.

Given Lemma 1, we can show show that a well-typed term is either a value
or it can take a step. Given the design decisions of λDL, this is straightforward.

In particular, we rely on the interpretation of unknown facts as false (open-world
querying). We also foresee that no case of typecase fits to the runtime value and
thus insist on default case. Further, progress for querying relies on the restriction
to DL-safe queries, as this leads to finite query results that can be transformed
into lists of objects in one step.

Theorem 1 (Progress). Let t be a well-typed closed term. If t is not a value,
then there exists a term t′ such that t → t′. If Γ ` t : T , then t is either a
value, a term containing the forms head nil and tail nil, or there is some t′
with t→ t′.

Proof. By induction on the derivation of Γ ` t : T . As large parts of the proof
are standard cases, we focus on the part specific to our language. The remaining
standard cases can be found in the technical report.

(T-QUERY) t = query C, Γ ` t : C list. Immediate since rule E-QUERY
applies (see Fig. 4).

(T-PROJ) t = t1.R, Γ ` t1 : C, Γ ` t : (∃R−.C). By hypothesis, either t1 is a
value or it can take a step. If it can take a step, rule E-PROJ applies. If its
a value, then by Lemma 1 t1 = a, therefore rule E-PROJV applies.

(T-TYPECASE)
t = case t0 of

case
default tn+1

Γ ` t0 : D, Γ ` t :W
By hypothesis, t0 is either a value or it can take a step. If it can take a step,
rule E-TYPECASE applies. If its a value, by Lemma 1, t0 = a. If case is
non-empty, either rules E-TYPECASE-SUCC or E-TYPECASE-FAIL ap-
ply. Otherwise, rule E-TYPECASE-DEF applies (see Fig. 5).

(T-EQN) t1 = t2, Γ ` t1 : C, Γ ` t2 : D. Either t1 and t2 are values or they
can take a step. If they can take a step, rules E-EQ1 and E-EQ2 apply. If
both are values, by Lemma 1, t1 = a, t2 = b. Therefore, either rule EQ-
NOMINAL-TRUE or EQ-NOMINAL-FALSE applies.

(T-EQP) t1 = t2, Γ ` t1 : Π1, Γ ` t2 : Π1. Either t1 and t2 are values or they
can take a step. If they can take a step, rules E-EQ1 and E-EQ2 apply. If
both are values, them they are either syntactically equal or not. Therefore
either EQ-PRIM-TRUE or EQ-PRIM-FALSE applies.

(T-OBJ) Immediate, since t = a is a value.

For proving preservation, two additional Lemmas are required. One, that
substitution preserves the type and two, that the least upper bound judgment
computes a type that is really a supertype of its two input types.

Lemma 2 (Substitution). If Γ, x : S ` t : T and Γ ` s : S, then Γ ` [x 7→
s]t : T .

Proof. Substitution in λDL does not differ from standard approaches, e.g., as
described in [32]. Therefore, the proof is omitted.

Lemma 3 (Least Upper Bound). Let S, T and W be types. If lub(S, T) ⇒
W , then S <:W and T <:W .

Proof. Four cases must be considered: S and T are either primitives, concepts,
lists or functions.

Primitives: Result is immediate since S = T =W . By subtyping rule S-REFL,
S <:W and T <:W holds.

Concepts: S = C, T = D, W = C tD. Since K |= C v C tD and K |= D v
C tD, S <:W and T <:W hold via subtyping rule S-CONCEPT.

Lists Immediate through the induction hypothesis and subtyping rules for lists.
Functions Immediate through induction hypothesis and subtyping rules for

functions.

Given these lemmas, we can now continue to show that if a term takes a step
by the evaluation rules, its type is preserved. A problematic case for preservation
are projections. Existing approaches have problems assigning the most specific
type to such terms (e.g., projections involving influencedBy). They resolve this
by using assigning rather general types, which is ultimately not very helpful. The
usage of concept expressions as types on the other hand allows for assigning the
most specific type.

Theorem 2 (Preservation). Let t be a term and T a type. If Γ ` t : T and
t→ t′, then Γ ` t′ : T .

Proof. By induction on the derivation of Γ ` t : T . Again, we examine only the
specific cases while the full proof can be found in the technical report.

(T-QUERY) t = query C, Γ ` t : C list. By applying rule E-QUERY,
t′ = cons a1 However, for each a, it is known that K |= a : C, therefore
{ a } <: C holds for each a and { a1 } t ... <: C list.

(T-PROJ) t = t1.R, Γ ` t1 : C, Γ ` t : (∃R−.C). There are two rules by
which t′ can be computed: E-PROJ and E-PROJV:
(1) t′ = t′1.R. By induction hypothesis, typing is preserved for t1. Therefore,

by T-PROJ, t′ : (∃R−.C) list.
(2) t′ = σ({?X | ?X ∈ O ∧ K |= (a, ?X) : R}) = cons b1 For a, it is

known that K |= a : C and for each b is known that K |= (a, b) : R holds.
Therefore, K |= b : (∃R−.C) must hold for each b. Thereby, { b1 }t ... <:
(∃R−.C) and by S-LIST ({ b1 } t ...) list <: (∃R−.C) list

(T-TYPECASE)
t = case t0 of

type C1 as x1 -> t1
...
type Cn as xn -> tn
default tn+1

Γ ` t0 : D, Γ ` t1 : T1, ..., Γ ` tn : Tn, Γ ` tn+1 : Tn+1,

lub(T1, ..., Tn+1)⇒W, Γ ` t :W

There are four rules by which t′ can be computed: E-TYPECASE, E-TYPECASE-
SUCC, E-TYPECASE-FAIL and E-TYPECASE-DEF.
(1)

t′ = case t′0 of
type C1 as x1 -> t1
...
type Cn as xn -> tn
default tn+1

By induction hypothesis, t1 → t′1 preserves the type. Therefore, by T-
TYPECASE, t′ :W .

(2) t′ = [x1 7→ a]t1, Γ ` t1 : T1. By Lemma 2, substitution does not change
the type of t1. By Lemma 3, T1 <: W and therefore by rule T-SUB
t1 :W .

(3)
t′ = case a of

type C2 asx2 -> t2
...
type Cn asxn -> tn
default tn+1

Γ ` t2 : T1, ..., Γ ` tn : Tn, Γ ` tn+1 : Tn+1,

lub(T2, ..., Tn+1)⇒W ′, Γ ` t′ :W ′
The removal of the first case causes T-TYPECASE to assign type t′ :W ′.
Removal of T1 makes W ′ more specific then W , but W ′ <: W holds.
Therefore by, T-SUB t′ :W .

(4) t′ = tn+1 Γ ` tn+1 : Tn+1. By Lemma 3, Tn+1 <: W , therefore by
T-SUB t′ :W .

(T-EQN) t1 = t2, Γ ` t1 : C, Γ ` t2 : D, Γ ` t : bool. There are 6 different
rules by which t′ can be computed: E-NOMINAL-TRUE, E-NOMINAL-
FALSE, E-PRIM-TRUE, E-PRIM-FALSE, E-EQ1 and E-EQ2.
(1) t′ = true. Immediate by rule T-TRUE.
(2) t′ = false. Immediate by rule T-FALSE.
(3) t′ = true. Immediate by rule T-TRUE.
(4) t′ = false. Immediate by rule T-FALSE.
(5) t′ = t′1=t2. By induction hypothesis, t1 → t′1. preserves the type. There-

fore, by rule T-EQN, t′ : bool.
(6) t′ = v1=t′2. By induction hypothesis, t2 → t′2. preserves the type. There-

fore, by rule T-EQN, t′ : bool.
(T-EQP) t1 = t2, Γ ` t1 : Π1, Γ ` t2 : Π1. Same as T-EQN.
(T-OBJ) Vacuously fulfilled since t = a is a value.

As a direct consequence of Theorem 1 and 2, a well-typed closed term does
not get stuck during evaluation. The only exception concerns the handling of
lists, which can get stuck if head or tail is applied to an empty list. Empty lists
might be produced by queries with empty result sets.

To a certain degree, type safety holds even when the knowledge system is
evolving. Additional axioms are unproblematic, as DL is a monotonous logic—
they do not invalidate existing inferences. Deletion and modification of the actual

data (A-Box) is unproblematic unless the program contains statements explicitly
referencing the objects under modification. Of course, type safety cannot be
guaranteed if schematic parts (T-Box) of the knowledge system are altered.

7 Related work
λDL is generally related to the integration of data models into programming
languages. We consider four different ways of integrating a data model: by using
generic representations, by mappings into the target language, through a pre-
processing step before compilation, or through language extensions or custom
languages.

Generic representations Generic representations offer easy integration into pro-
gramming languages and have the advantage that they can represent anything
the data can model, e.g., generic representations (such as DOM9) for XML [37].
This approach has also been applied to semantic data. Representations can
vary, however the most popular ones include axiom-based approaches (e.g., [19]),
graph-based ones (e.g., [11]) or statement-based ones (e.g., RDF4J10). All these
approaches are error-prone in so far that code on the generic representations is
not type-checked in terms of the involved conceptualizations.

Mappings Mapping approaches on the other hand use schematic information of
the data model to create types in the target language. Type checking can be
used thus to check the valid use of the derived types in programs. This approach
has been successfully used for SQL [28], XML [37, 25, 3], and more generally [24,
35]. Naturally, mappings have been studied in a semantic data context, too. The
focus is on transforming conceptual statements into types of the programming
language. Frameworks include ActiveRDF [29], Alibaba11, Owl2Java [21], Jas-
tor12, RDFReactor13, OntologyBeanGenerator14, Àgogo [31] and LITEQ [26].
However, mapping approaches are problematic for semantic data. For one, the
transformation of statements such as those shown in line 1 of Listing 3 is not
trivial due to the mixture of nominal and structural typing. Extremely general
information on domains and ranges of roles such as influencedBy occurs fre-
quently. The question arises what types support such a role. Frameworks usually
resolve the situation by assigning the role to every type they create. In terms
of the range of the role, they usually assign the most general available type and
leave it to the developer to cast the values to their correct types—this is an
error-prone approach. Lastly, all mapping frameworks have problems with the
large number of potential types in semantic data sources.

9 https://www.w3.org/DOM/
10 http://rdf4j.org/
11 https://bitbucket.org/openrdf/alibaba
12 http://jastor.sourceforge.net/
13 http://semanticweb.org/wiki/RDFReactor
14 http://protege.cim3.net/cgi-bin/wiki.pl?OntologyBeanGenerator

Precompilation A separate precompilation step, where the source code is stat-
ically analyzed and then transformed is another way to solve the problem of
integrating data models into programming languages. Especially queries embed-
ded in programming languages can be verified in this manner. This approach has
been applied to, for example, SQL queries [38]. The approach has been applied
to semantic data in a limited manner [16]—for queries that can be typed with
primitive types such as integer.

Language extensions and custom type systems The most powerful approaches ex-
tend existing languages or create new type systems to accommodate the specific
requirements of the data model. Examples for such extensions are concerned with
relationships between objects [7] and easy data access to relational and XML
data [8]. Another example concerns programming language support for the XML
data model specifically in terms of regular expression type, as in the languages
CDuce [5] and XDuce [20]. While semantic data can be seen as somewhat semi-
structured and is often serialized in XML, the XML-focused approaches do not
address the logics-based challenges regarding semantic data. Another related
approach is the idea of functional logic programming [17]. However, λDL em-
phasizes type-checking on data axiomatized in logic over the integration of the
logic programming paradigm into a language.

The typecase construct of λDL is inspired by other other forms of typecase
such as those in the context of dynamic typing [1], intensional polymorphism [13],
and generic functional programming [23]. None of these forms are concerned with
semantic data or description logics.

Language extensions and custom approaches have also been implemented for
semantic data. In one approach [30], the C# compiler was extended to allow for
OWL and XSD types in C#. The main technical difference to λDL is that λDL

makes use of the knowledge system for typing and subtyping judgments. λDL can
therefore make use of inferred data and has a strong typing mechanism. There
is also work on custom languages that use static type-checking for querying and
light scripting in order to avoid runtime errors [12, 14]. However, the types are
again limited in these cases, as they only consider explicitly given statements.
Furthermore, they face the same difficulties as mapping approaches when it
comes to schema information—they rely on domain and range specifications for
predicates to assign types.

8 Summary and future work

In this paper, we have motivated, introduced, and studied λDL: a typed λ-
calculus for semantic data that is built around concept expressions as types as
well as queries. We have shown that by using conceptualizations as they are
defined in the knowledge system itself, type safety can be achieved. This helps
in writing less error-prone programs, even when facing knowledge systems that
evolve or lack role definitions. There are these directions for future work.

Fixed-Domain Reasoning While description logics usually employs an open-
world assumption that allows for the modeling of unknown facts, in some cases, a
closed-world assumption might be preferable. The semantics as presented in Sec-
tion 2 could be replaced by a fixed-domain semantics, e.g., as described by [15].
Future work aims to examine how expressiveness and the type safety property
of λDL are affected by such a semantics.

Contracts Type-safety has been achieved in λDL by some rather harsh restric-
tions, e.g., by requiring a default case in typecase constructs. Additionally, it
is still possible to get stuck, e.g., when taking the head of an empty query re-
sponse. A possible improvement could be the introduction of contracts, as they
are applicable to functional programming [18]. Contracts have been applied al-
ready to semantic data [22] while focusing on constraints regarding existence and
cardinality. We envision a form of contracts that also covers anonymous objects.

λDL and System F The presented calculus essentially combines ‘simple’ types
and concepts with subtyping. Parametric polymorphism à la System F would
be needed to arrive at a sufficiently expressive language for purposes of actual
programming. Further, the subtyping aspects of λDL may also call for a com-
prehensive integration of description logics and polymorphism with subtyping à
la System F<: [34]. Such an integration is not straightforward.

Modification of the semantic data It is clearly desirable that semantic data can
also be modified. A corresponding extension of λDL is non-trivial because of
the aspect that facts are inferred by the knowledge system. Consider the facts
about music artists in Listing 3 and let us assume that we want to remove the
(implicit) fact that the beatles have made a song. The fact cannot be removed
directly. Instead, either the fact that the beatles are of type MusicArtist or
the fact that they have been played by coolFm must be removed. In order to
integrate modification of knowledge systems into λDL, the theory of knowledge
revision based on the AGM theory [33] can be considered and integrated into
the language.

Enhanced querying Queries, as they are currently implemented, are limited
in their expressive power. A simple extension are queries for roles, such as
influencedBy that result in sets of pairs. Typing such queries is possible via the
addition of tuples to λDL. The addition of query languages closer to the power
of SQL is also possible. The biggest challenge in this regard is query subsump-
tion. When such queries are typed in the programming language, subsumption
checks are necessary to determine whether a function can be applied to query
results. Therefore only query languages with decidable query subsumption are
to be considered, e.g., [9].

References

1. M. Abadi, L. Cardelli, B. C. Pierce, and D. Rémy. Dynamic typing in polymorphic
languages. J. Funct. Program., 5(1):111–130, 1995.

2. A.Igarashi, B. C. Pierce, and P. Wadler. Featherweight java: a minimal core cal-
culus for java and GJ. ACM Trans. Program. Lang. Syst., 23(3):396–450, 2001.

3. S. Alagic and P. A. Bernstein. Mapping XSD to OO schemas. In Proc. of Object
Databases, volume 5936 of LNCS, pages 149–166. Springer, 2009.

4. D. Beneventano, S. Bergamaschi, and C. Sartori. Description logics for semantic
query optimization in object-oriented database systems. Trans. Database Syst.,
28(1):1–50, 2003.

5. V. Benzaken, G. Castagna, and A. Frisch. Cduce: an xml-centric general-purpose
language. SIGPLAN Notices, 38(9):51–63, 2003.

6. D. Berardi, D. Calvanese, and G. De Giacomo. Reasoning on UML class diagrams.
Artif. Intell., 168(1-2):70–118, 2005.

7. G. Bierman and A. Wren. First-Class Relationships in an Object-Oriented Lan-
guage. In Proc. of ECOOP, pages 262–286. Springer, 2005.

8. G. M. Bierman, E. Meijer, and W. Schulte. The Essence of Data Access in Comega.
In Proc. of ECOOP, LNCS, pages 287–311. Springer, 2005.

9. P. Bourhis, M. Krötzsch, and S. Rudolph. Reasonable highly expressive query
languages. In Proc. of International Joint Conference on Artificial Intelligence,
pages 2826–2832. AAAI Press, 2015.

10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, A. Poggi, and R. Rosati.
Ontology-based database access. In Proc. of Advanced Database Systems, pages
324–331, 2007.

11. J. J. Carroll, I. Dickinson, C. Dollin, D. Reynolds, A. Seaborne, and K. Wilkinson.
Jena: implementing the semantic web recommendations. In Proc. of WWW -
Alternate Track Papers & Posters, pages 74–83. ACM, 2004.

12. G. Ciobanu, R. Horne, and V. Sassone. Descriptive types for linked data resources.
In Perspectives of System Informatics, LNCS, pages 1–25. Springer, 2014.

13. K. Crary, S. Weirich, and J. G. Morrisett. Intensional polymorphism in type-
erasure semantics. J. Funct. Program., 12(6):567–600, 2002.

14. Ciobanu G, R. Horne, and V. Sassone. Minimal type inference for linked data
consumers. J. Log. Algebr. Meth. Program., 84(4):485–504, 2015.

15. S. A. Gaggl, S. Rudolph, and L. Schweizer. Fixed-domain reasoning for descrip-
tion logics. In ECAI 2016, volume 285 of Frontiers in Artificial Intelligence and
Applications, pages 819–827. IOS Press, 2016.

16. S. Groppe, J. Neumann, and V. Linnemann. SWOBE - embedding the semantic
web languages rdf, SPARQL and SPARUL into java for guaranteeing type safety,
for checking the satisfiability of queries and for the determination of query result
types. In Proc. of Symposium on Applied Computing, pages 1239–1246. ACM,
2009.

17. M. Hanus. The integration of functions into logic programming: From theory to
practice. Journal of Logic Programming, 19&20:583–628, 1994.

18. R. Hinze, J. Jeuring, and A. Löh. Typed contracts for functional programming.
In Proc. of Functional and Logic Programming, LNCS, pages 208–225. Springer,
2006.

19. M. Horridge and S. Bechhofer. The OWL API: A java API for OWL ontologies.
Semantic Web, 2(1):11–21, 2011.

20. H. Hosoya and B. C. Pierce. Xduce: A statically typed XML processing language.
ACM Trans. Internet Techn., 3(2):117–148, 2003.

21. A. Kalyanpur, D. J. Pastor, S. Battle, and J. A. Padget. Automatic mapping
of OWL ontologies into java. In Proc. of International Conference on Software
Engineering & Knowledge Engineering, pages 98–103, 2004.

22. Petr Kremen and Zdenek Kouba. Ontology-driven information system design.
IEEE Trans. Systems, Man, and Cybernetics, Part C, 42(3):334–344, 2012.

23. R. Lämmel and S. L. Peyton Jones. Scrap your boilerplate: a practical design
pattern for generic programming. In Proc. of TLDI’03, pages 26–37. ACM, 2003.

24. R. Lämmel and E. Meijer. Mappings make data processing go ’round. In R. Läm-
mel, J. Saraiva, and J. Visser, editors, Generative and Transformational Techniques
in Software Engineering, International Summer School (GTTSE), LNCS, pages
169–218. Springer, 2005.

25. R. Lämmel and E. Meijer. Revealing the X/O impedance mismatch - (changing
lead into gold). In Datatype-Generic Programming - International Spring School,
SSDGP, LNCS, pages 285–367. Springer, 2006.

26. M. Leinberger, S. Scheglmann, R. Lämmel, S. Staab, M. Thimm, and E. Viegas.
Semantic web application development with LITEQ. In Proc. of ISWC, LNCS,
pages 212–227. Springer, 2014.

27. B. Motik, U. Sattler, and R. Studer. Query answering for OWL-DL with rules. J.
Web Sem., 3(1):41–60, 2005.

28. E. J. O’Neil. Object/relational mapping 2008: hibernate and the entity data model
(edm). In Proc. of International Conference on Management of Data, pages 1351–
1356. ACM, 2008.

29. E. Oren, B. Heitmann, and S. Decker. Activerdf: Embedding semantic web data
into object-oriented languages. Web Semant., 6(3):191–202, 2008.

30. A. Paar and D. Vrandecic. Zhi# - OWL aware compilation. In G. Antoniou,
M. Grobelnik, E. P. Bontas Simperl, B. Parsia, D. Plexousakis, P. De Leenheer,
and J. Z. Pan, editors, Proc. of Extended Semantic Web Conference, LNCS, pages
315–329. Springer, 2011.

31. F. S. Parreiras, C. Saathoff, T. Walter, T. Franz, and S. Staab. ‘a gogo: Automatic
Generation of Ontology APIs. In ICSC2009. IEEE, 2009.

32. B. C. Pierce. Types and Programming Languages. The MIT Press, 2002.
33. G. Qi, W. Liu, and D. A. Bell. Knowledge base revision in description logics. In

Proc. of Logics in Artificial Intelligence, pages 386–398. Springer, 2006.
34. J. C. Reynolds. Types, abstraction and parametric polymorphism. In IFIP

Congress, pages 513–523, 1983.
35. D. Syme, K. Battocchi, K. Takeda, D. Malayeri, and T. Petricek. Themes in

information-rich functional programming for internet-scale data sources. In Proc.
of DDFP, pages 1–4. ACM, 2013.

36. D. Vrandecic and M. Krötzsch. Wikidata: a free collaborative knowledgebase.
Commun. ACM, 57(10):78–85, 2014.

37. M. Wallace and C. Runciman. Haskell and XML: Generic Combinators or Type-
Based Translation? In Proc. of International Conference on Functional Program-
ming, pages 148–159. ACM, 1999.

38. G. Wassermann, C. Gould, Z. Su, and P. T. Devanbu. Static checking of dy-
namically generated queries in database applications. ACM Trans. Softw. Eng.
Methodol., 16(4), 2007.

