
19 March 2024

AperTO - Archivio Istituzionale Open Access dell'Università di Torino

Original Citation:

Context-Free Session Type Inference

Published version:

DOI:10.1145/3229062

Terms of use:

Open Access

(Article begins on next page)

Anyone can freely access the full text of works made available as "Open Access". Works made available
under a Creative Commons license can be used according to the terms and conditions of said license. Use
of all other works requires consent of the right holder (author or publisher) if not exempted from copyright
protection by the applicable law.

Availability:

This is the author's manuscript

This version is available http://hdl.handle.net/2318/1695221 since 2019-04-03T12:09:42Z

1

Context-Free Session Type Inference

LUCA PADOVANI, Dipartimento di Informatica, Università di Torino, ITALY

Some interesting communication protocols can be precisely described only by context-free session types, an

extension of conventional session types supporting a general form of sequential composition. The complex

metatheory of context-free session types, however, hinders the definition of corresponding checking and

inference algorithms. In this work we study a new syntax-directed type system for context-free session types

that is easy to embed into a host programming language. We also detail two OCaml embeddings which allow

us to piggyback on OCaml’s type system to check and infer context-free session types.

CCS Concepts: • Theory of computation → Type structures; Distributed computing models; • Software
and its engineering → Automated static analysis; Concurrent programming structures; Functional
languages;

Additional Key Words and Phrases: context-free session types, existential types, OCaml, session type inference

ACM Reference Format:
Luca Padovani. 2017. Context-Free Session Type Inference. ACM Trans. Program. Lang. Syst. 1, 1, Article 1
(January 2017), 36 pages. https://doi.org/0000001.0000001

1 INTRODUCTION
Session types [11, 12, 14] are an established formalism for the enforcement of communication

protocols through static analysis. Recently, Thiemann and Vasconcelos [31] have proposed context-
free session types to enhance the expressiveness of conventional session types. The distinguishing

feature of context-free session types is a general form of sequential composition T;S to compose

arbitrary sub-protocols T and S instead of restricting T to a single input/output action as is com-

monly the case. Protocols that benefit from such enhancement include the serialization of tree-like

data structures and XML documents [31], interactions with non-uniform objects such as stacks

and reentrant locks [6, 24], and recursive protocols for trust management [30]. Thiemann and

Vasconcelos [31] study the metatheory of context-free session types, leaving the definition of a

type checking algorithm for future work. In this paper we point out additional issues that afflict

context-free session type checking and inference and we describe a practical solution to their

implementation in OCaml and other general-purpose programming languages.

We illustrate a concrete case where context-free session types are useful by means of the OCaml
code shown in Figure 1, which uses the FuSe library for binary sessions [26]. The stack function

models a stack as a non-uniform object [24, 28] offering different interfaces through a session

endpoint u depending on its internal state. An empty stack (lines 2–6) accepts either a Push or an

End message. In the first case, the stack receives the element x to be pushed and moves into the

non-empty state with the recursive application some x u. In the second case, it just returns the

endpoint u. Note that the element pushed into the stack is stored in the frame of some rather than

Author’s address: Luca Padovani, Dipartimento di Informatica, Università di Torino, Corso Svizzera 185, Torino, 10149,

ITALY, luca.padovani@unito.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and

the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2017 Association for Computing Machinery.

0164-0925/2017/1-ART1 $15.00

https://doi.org/0000001.0000001

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/0000001.0000001
https://doi.org/0000001.0000001

1:2 Luca Padovani

1 let stack =
2 let rec none u =
3 match branch u with
4 | `Push u → let x, u = receive u
5 in none (some x u)
6 | `End u → u
7 and some y u =
8 match branch u with
9 | `Push u → let x, u = receive u
10 in some y (some x u)
11 | `Pop u → send y u
12 in none

Fig. 1. Modeling of a non-uniform object accessed through a session.

in a data structure. A non-empty stack (lines 7–11) with y on top accepts either a Push message,

as in the empty case, or a Pop message, in which case it sends y back to the client. In both cases,

when an application some x u terminates, meaning that x has been popped, the stack returns to

its previous state, whatever it was (lines 5 and 10). Initially, the stack is empty (line 12). Note that,

according to established conventions [10], all session primitives including send return the endpoint

u possibly paired with the received message (receive) or injected through a tag that represents

an operation (branch). This allows the endpoint u to be associated with different session types

in different parts of the program where it is being used in accordance with the communication

protocol. Using the FuSe implementation of binary sessions [26], OCaml infers for stack the type
Sreg → β where Sreg is the (equi-recursive) session type that satisfies the equation

Sreg = &[Push : ?α;Sreg] (1)

according to which the client can only push elements of type α. In particular, this type forbids

the client to ever send End or Pop messages to the stack, even though the code in Figure 1 does

allow these operations at precise times during the lifetime of a stack. To understand the reason

why the End and Pop operations do not occur in Sreg, we have to consider that conventional

session types can only describe protocols whose set of (finite) traces is regular, whereas the set of

(finite) traces that describe legal interactions with stack is isomorphic to the language of balanced

parentheses, a typical example of a context-free language that is not regular. The session type Sreg
above corresponds to the best ω-regular and safe approximation of this context-free language that

OCaml manages to infer from the code of stack. When OCaml figures that the session type cannot

precisely track whether the stack is empty or not, and therefore whether an End or Pop operation

is allowed, it computes the “intersection” of the interfaces of these two states, which results in Sreg
along with warnings informing that lines 6 and 11 are dead code.

Guided by analogous considerations, Thiemann and Vasconcelos [31] propose context-free session
types as a more expressive protocol description language. The key idea is to enforce the order

of interactions in a protocol using a general form of sequential composition ; instead of the

usual prefix operator. For example, the context-free session types Snone and Ssome that satisfy the

equations

Snone = &[Push : ?α;Ssome;Snone, End : 1]
Ssome = &[Push : ?α;Ssome;Ssome, Pop : !α]

(2)

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:3

provide accurate descriptions of the legal interactions with stack: all finite, maximal traces de-

scribed by Snone have each Push eventually followed by a matching Pop. The “empty” protocol 1
marks the end of a legal interaction. Using Thiemann and Vasconcelos’ type system, it is then

possible to work out a typing derivation showing that stack has type Snone;A → A, where A is a

session type variable that can be instantiated with any session type.

In the present work we propose a practical realization of Thiemann and Vasconcelos’ type

system that ultimately allows us to infer a type as precise as Snone;A → A from the code of

a function very similar to (but not exactly the same as) stack. There are two key features of

Thiemann and Vasconcelos’ type system that make it challenging to be used as the basis for a type

inference algorithm: (1) a structural rule that rearranges session types according to the monoidal

and distributive laws of sequential composition and (2) the need to support polymorphic recursion

which ultimately arises as a consequence of (1). Type inference in the presence of polymorphic

recursion is known to be undecidable in general [16], a problem which often requires programmers

to explicitly annotate polymorphic-recursive functions with their type. In addition, the liberal

handling of sequential compositions means that functions like stack admit very different types

(such as Sreg → β and Snone;A → A) which do not appear to be instances of a unique, more general

type scheme. It is therefore unclear which notion of principal type should guide a type inference

algorithm. There is a third observation that must be kept in mind: even though Thiemann and

Vasconcelos [31] show that context-free session type equivalence is decidable, subtyping is not (we

give a proof of this fact in the present paper). Therefore, every direct realization of the type system

in [31] would have to disallow or at least restrict subtyping, a feature that has been extensively

studied in the session type literature and happens to be practically relevant [9, 10, 23].

Overall, these observations lead us to reconsider the way sequential compositions are handled

by the type system. Our proposal is to eliminate sequential compositions through an explicit,

higher-order combinator @> called resumption that has the following signature

@> : (T → 1) → T;S → S (3)

and that is operationally akin to functional application. Suppose f : T → 1 is a function that,

applied to a session endpoint of typeT , carries out the communication over the endpoint and returns

the depleted endpoint, of type 1. Using @> we can supply to f an endpoint u of type T;S knowing

that f will take care of the prefix T of T;S and leaving us with an endpoint of type S . In other

words, @> allows us to modularize the enforcement of a sequential protocolT;S by partitioning the

program into a part – the function f – that carries out the prefix T of the protocol and another

part – the evaluation context in which f @> u occurs – that carries out the continuation S .
From this informal description of the semantics of @> it is possible to spot a potential flaw of

our approach. The type T → 1 describes a function that takes an endpoint of type T and returns

an endpoint of type 1, but does not guarantee that the returned endpoint is the same endpoint
supplied to the function. Only in this case we are guaranteed that the sub-protocol T has been

completed and that the endpoint can be safely resumed. In order to reason about such guarantee,

we need a type-level mechanism to capture the identity of endpoints. Similar requirements have

already arisen in different contexts, to identify regions [2, 36] and to associate resources with

capabilities [1, 32, 34]. Reframing the techniques used in these works to our setting, the idea is to

refine endpoint types to a form [T]ϱ where ϱ is a variable that represents the abstract identity of

the endpoint at the type level. The refined signature of @> therefore becomes

@> : ([T]ϱ → [1]ϱ) → [T;S]ϱ → [S]ϱ (4)

where the fact that the same ϱ decorates both [T]ϱ and [1]ϱ means that @> can only be used on

functions that accept and return the same endpoint. In turn, the fact that the same ϱ decorates both

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:4 Luca Padovani

[T;S]ϱ and [S]ϱ guarantees that f @> u evaluates to the same endpoint u that was supplied to f
with its type changed to S .

Going back to stack, how should we patch its code so that the (inferred) session type of the

endpoint accepted by stack is Snone instead of Sreg? We are guided by an easy rule of thumb: place

resumptions where the code concludes a sub-protocol of the whole protocol. In this specific case,

looking at the protocols (2), we turn the recursive applications (some x u) on lines 5 and 10 to

(some x @> u), for every interaction with the stack allowed by the recursive call to some x u is
meant to be concluded by popping x from the stack. Thus, using the type system we present in this

paper, we obtain a typing derivation proving that the revised stack has type [Snone]ϱ → [1]ϱ. Most

importantly, the type system makes no use of structural rules or polymorphic recursion and there

is no ambiguity as to which protocol stack is supposed to carry out, for occurrences of ; in a

protocol are tied to the occurrences of @> in code that complies with such protocol.

As we will see, these properties make our type system easy to embed in any host programming

language supporting parametric polymorphism and (optionally) existential types. This way, we can

benefit from an off-the-shelf solution to context-free session type checking and inference instead

of developing specific checking/inference algorithms. In the remainder of the paper:

• We formalize a core functional programming language called FuSe{} (FuSewith resumptions)

that features threads, session-based communication primitives and a distinctive low-level con-

struct for resuming session endpoints (Section 2). The semantics of resumption combinators

(including, but not limited to, @>) will be explained using this construct.

• We equip FuSe{} with an original sub-structural type system that features context-free

session types and abstract endpoint identities (Sections 3 and 4). We show that subtyping for

context-free session types is undecidable and we prove fundamental properties of well-typed

programs emphasizing the implications of these properties in presence of resumptions.

• We detail two OCaml modules that implement the distinguishing features of FuSe{}, namely

explicit resumptions and endpoint identities (Section 5). Although a gap remains between

FuSe{} and the implementations, the modules provide a practical solution to the problems of

context-free session type checking and inference, striking different balances among static

safety, faithfulness to the formalization of FuSe{} and portability.

We defer the discussion of a more elaborate example and of related work to the end of the paper

(Sections 6 and 7). Proofs and additional technical material related to Sections 3, 4 and 5 can be

found in Appendices A, B and C, respectively. All the code discussed in the paper can be type

checked, compiled and run using OCaml and both implementations of FuSe{}. The source code of
FuSe [26], which incorporates support for context-free session types, is publicly available [25].

Source of the material. An earlier version of this paper [27] appears in the Proceedings of the 26th

European Symposium on Programming (ESOP’17). Unlike [27], the present version adopts a labeled

reduction semantics that permits a precise formulation of protocol fidelity (Theorem 4.7). The

present version also extends [27] with a more comprehensive set of examples, in-depth discussions

on the importance of the uniqueness of endpoint identity, and the full proofs of all the results states

in the paper, including the undecidability of context-free session subtyping.

2 A CALCULUS OF FUNCTIONS, SESSIONS AND RESUMPTIONS
The syntax of FuSe{} is given in Table 1 and is based on infinite sets of variables, identity variables,
and of session channels. We use an involution · that turns an identity variable or channel into

the (distinct) corresponding identity co-variable or co-channel. Each session channel a has two

endpoints, one denoted by the channel a itself, the other by the corresponding co-channel a. We say

that a is the peer endpoint of a and vice versa. Given an endpoint ε , we write ε for its peer. A name

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:5

Table 1. FuSe{}: syntax (‡ marks the runtime syntax not used in source programs).

Domains x ,y ∈ Var variables

ϱ ∈ IdVar identity variables

a,b ∈ Channel session channels

ε ∈ Channel ∪ Channel endpoints

u ∈ Channel ∪ Channel ∪ Var names

ι ∈ Channel ∪ Channel ∪ IdVar ∪ IdVar identities

C ∈ Tags tags

Processes P ,Q ::= ⟨e⟩ thread

| P |Q parallel composition
‡

| (νa)P session
‡

Expressions e ::= v value

| x variable

| e e ′ value application

| e [ι] identity application

| let x ,y = e1 in e2 pair splitting

| match e with {Ci ⇒ ei }i ∈I pattern matching

| ⌈ι, e⌉ packing

| let ⌈ϱ,x⌉ = e1 in e2 unpacking

| {e}u resumption

Values v,w ::= c | (v,w) | C v data

| pair v | fork v | _send v | select v | fix v partial application

| λx .e | Λϱ.v abstraction

| ε endpoint
‡

| ⌈ε,v⌉ package
‡

Constants c ::= () | pair | C | fix | fork
| create | _send | _receive | select | branch

is either an endpoint or a variable. An identity is either an endpoint or an identity (co-)variable. We

write ι for the co-identity of ι, which is defined in such a way that ϱ = ϱ.
The syntax of expressions is mostly standard and comprises constants, variables, abstractions,

applications, and two forms for splitting pairs and matching tagged values. Constants, ranged

over by c, comprise the unitary value (), the pair constructor pair, an arbitrary set of tags C for
tagged unions, the fixpoint operator fix, a primitive fork for creating new threads, and a set of

session primitives [10, 26] whose semantics will be detailed shortly. To improve readability, we

write (e1,e2) in place of the saturated application pair e1 e2. In addition, the calculus provides

abstraction, application, packing and unpacking of identities. These respectively correspond to

introduction and elimination constructs for universal and existential types, which are limited to

identities in the formal development of FuSe{}. The binder symbol of identity abstractions is Λ,
to distinguish it from value abstractions. The distinguishing feature of FuSe{} is the resumption

construct {e}u indicating that e uses the endpoint u for completing some prefix of a sequentially

composed protocol. As we will see in Example 4.8, resumptions are keys to define operators such as

@> introduced in Section 1. Values are fairly standard except for two details that are easy to overlook.

First, fix v is a value and reduces only when applied to a further argument. This approach, already

used by Tov [32], simplifies the operational semantics (and the formal proofs) sparing us the need

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:6 Luca Padovani

Table 2. FuSe{}: operational semantics.

Reduction of expressions e −→ e ′

[R1] (λx .e) v −→ e{v/x}
[R2] (Λϱ.v) [ε] −→ v{ε/ϱ}
[R3] fix v w −→ v (fix v)w
[R4] let x ,y = (v,w) in e −→ e{v/x}{w/y}
[R5] match (Ck v) with {Ci ⇒ ei }i ∈I −→ ek v k ∈ I
[R6] let ⌈ϱ,x⌉ = ⌈ε,v⌉ in e −→ e{ε/ϱ}{v/x}
[R7] {(v,ε)}ε −→ (v,ε)

Reduction of processes P
ℓ

−→ Q

[R8] ⟨E[fork v w]⟩
τ

−→ ⟨E[()]⟩ | ⟨v w⟩

[R9] ⟨E[create ()]⟩
τ

−→ (νa)⟨E[⌈a, (a,a)⌉]⟩ a < fn(E)
[R10] ⟨E[_send v ε]⟩ | ⟨E ′[_receive ε]⟩

ε
−→ ⟨E[ε]⟩ | ⟨E ′[(v,ε)]⟩

[R11] ⟨E[select v ε]⟩ | ⟨E ′[branch ε]⟩
ε

−→ ⟨E[ε]⟩ | ⟨E ′[v ε]⟩

[R12] ⟨E[e]⟩
τ

−→ ⟨E[e ′]⟩ if e −→ e ′

[R13] P | R
ℓ

−→ Q | R if P
ℓ

−→ Q

[R14] (νa)P
ℓ

−→ (νa)Q if P
ℓ

−→ Q and ℓ < {a,a}

[R15] (νa)P
τ

−→ (νa)Q if P
ℓ

−→ Q and ℓ ∈ {a,a}

[R16] P
ℓ

−→ Q if P ≡ P ′ ℓ
−→ Q ′ ≡ Q

to η-expand fix each time it is unfolded [37]. Second, the body of an identity abstraction Λϱ.v is

a value and not an arbitrary expression. This restriction, inspired by [32, 34], simplifies the type

system without affecting expressiveness since the body of an identity abstraction is usually another

(identity or value) abstraction. In this respect, the fact that fix v is a value allows us to write

identity-monomorphic, recursive functions of the form Λϱ.fix λ f .e which are both common and

useful in practice. Processes are parallel compositions of threads possibly connected by sessions.

The definition of free and bound names for both expressions and processes is the obvious one,

except that a restriction (νa)P binds both a and a in P . We identify terms modulo alpha-renaming

of bound names and we write fn(e) (respectively, fn(P)) for the free names of e (respectively, P).
Table 2 defines the (call-by-value) operational semantics of FuSe{}, where we write e{v/x} and

e{ι/ϱ} for the (capture-avoiding) substitutions of values and identities in place of variables and

identity variables, respectively. Evaluation contexts are essentially standard:

Context E ::= [] | E e | v E | ⌈ι, E⌉ | let ⌈ϱ,x⌉ = E in e | {E}u
| let x ,y = E in e | match E with {Ci ⇒ ei }i ∈I

Reduction rules [R1–R6] are unremarkable. The reduction rule [R7] erases the resumption { · }ε
around a pair (v,ε), provided that the endpoint in the right component of the pair matches the

annotation of the resumption. The type system for FuSe{} that we are going to define enforces this

condition statically. However, the rule also suggests an implementation of resumptions based on a

simple runtime check: {(v,ε)}ε ′ reduces to (v,ε) if ε and ε ′ are the same endpoint and fails (e.g.
raising an exception) otherwise. This alternative semantics may be useful if the type system of the

host language is not expressive enough to enforce the typing discipline described in Section 3. We

will consider this alternative semantics for one of the two implementations of FuSe{} (Section 5.2).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:7

The operational semantics of processes is essentially that given by Thiemann and Vasconcelos

[31] and Padovani [26] and is defined in terms of a structural congruence relation ≡ and a labeled

reduction relation

ℓ
−→. The relation ≡ is defined as the least congruence such that

P |Q ≡ Q | P P | (Q | R) ≡ (P |Q) | R
{a,a} ∩ fn(Q) = ∅

(νa)P |Q ≡ (νa)(P |Q)

The label ℓ in a relation P
ℓ

−→ Q is either an endpoint ε , meaning that (some sub-process of)

P sends a message over the endpoint ε , or the special symbol τ , meaning that P evolves into Q
by means of an unobservable action. We now discuss each reduction rule. Rule [R8] describes the

spawning of a new thread, whose body is the application of fork’s arguments. We have chosen this

semantics of fork so that it matches OCaml’s. Rule [R9] models session initiation, whereby create
reduces to a pair with the two endpoints of the newly created session. The side condition makes

sure that the new session does not capture any free name in the thread creating it. Compared to [10],

we have one primitive that returns both endpoints of a new session instead of a pair of primitives

that synchronize over shared/public channels. This choice is mostly a matter of technical economy:

session initiation based on shared/public channels can be programmed on top of this mechanism.

Also, the pair returned by create is packed to account for the fact that the caller of create does
not know the identities of the endpoints therein. Note that, in the residual process, the leftmost

occurrence of a represents an identity, hence it does not count as an actual usage of the endpoint a.
Rule [R10] models communication, moving the message from the sender to the receiver and pairing

the message with the continuation endpoint on the receiver side. Asynchronous communication

in the style of [10] can be accommodated without affecting any of the results that follow. The

primitives _send and _receive, while having the same operational semantics as the more common

send and receive found in other works [10, 26, 31, 35], are named differently because they will

be typed differently (Section 4). The usual send and receive will be defined in terms of _send
and _receive (Example 4.9). Rule [R11] models selections by applying the first argument of select
to the receiver’s continuation endpoint. Typically, the first argument of select will be a tag C
which is effectively the message being exchanged in this case. We adopt this slightly unusual

semantics of select because it models accurately the implementation and, at the same time, it

calls for specific features of the type system concerning the type-level identification of endpoints.

Rule [R12] lifts reductions from expressions to processes and rules [R13–R16] close reductions under

parallel compositions, restrictions, and structural congruence.

3 TYPES
Syntax. In this section we define the type language for FuSe{}. To keep the formal development

as simple as possible and to focus on the distinguishing traits of FuSe{}, we limit polymorphism to

identity variables. This limitation will be lifted in the actual implementation, where we leverage

on OCaml’s support for parametric polymorphism. The (finite) syntax of kinds, types, and session

types is given below:

Kind κ ::= U | L
Type t , s ::= unit | t × s | {Ci of ti }i ∈I | t →

κ s | [T]ι | ∃ϱ.t | ∀ϱ.t
Session type T , S ::= 0 | 1 | ?t | !t | &[Ci : Ti]i ∈I | ⊕[Ci : Ti]i ∈I | T;S

Instead of introducing concrete syntax for recursive (session) types, we let t , s andT , S range over

the possibly infinite, regular trees generated by the above constructors for types and session types,

respectively. We introduce recursive (session) types as solutions of finite systems of (session) type

equations, such as (1). The shape of the equation, with the metavariable Sreg occurring unguarded

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:8 Luca Padovani

on the left hand side and guarded by at least one constructor on the right hand side, guarantees

that the equation has exactly one solution [3]. Type equality corresponds to regular tree equality.

The kinds U and L are used to classify types as unlimited and linear, respectively. Types of kind

U denote values that can be used any number of times. Types of kind L denote values that must be

used exactly once. We introduce a few more notions before seeing how kinds are assigned to types.

Types include a number of base types (such as unit, int and possibly others used in the examples),

products t × s , and tagged unions {Ci of ti }i ∈I . The function type t →κ s has a kind annotation κ
indicating whether the function can be applied any number of times (κ = U) or must be applied

exactly once (κ = L). This latter constraint typically arises when the function contains linear values

in its closure. We often omit the annotation κ when it is U. An endpoint type [T]ι consists of a
session type T , describing the protocol according to which the endpoint must be used, and an

identity ι of the endpoint. Finally, we have existential and universal quantifiers ∃ϱ.t and ∀ϱ.t over
identity variables. These are the only binders in types. We write fid(t) for the set of identities

occurring free in t and we identify (session) types modulo renaming of bound identities.

A session type describes the sequence of actions to be peformed on an endpoint. The basic

actions ?t and !t respectively denote the input and the output of a message of type t . As in [31]

and unlike most presentations of session types, these forms do not specify a continuation, which

can be attached using sequential composition. External choices &[Ci : Ti]i ∈I and internal choices

⊕[Ci : Ti]i ∈I describe protocols that can proceed according to different continuations Ti each
associated with a tag Ci . When the choice is internal, the process using the endpoint selects the

continuation. When the choice is external, the process accepts the selection performed on the peer

endpoint. Therefore, an external choice corresponds to an input (of a tag Ci) and an internal choice

to an output. Sequential composition T;S combines two sub-protocols T and S into a protocol

where all the actions described byT are supposed to be performed before any action described by S .
The session type 0 describes a terminated protocol whereas 1 describes a terminated sub-protocol.

As we will see, this distinction affects also the kinding of endpoint types: an endpoint of session

type 0 can be discarded for it serves no purpose, whereas an endpoint of session type 1 must be

resumed exactly once.

Session type transitions. We define a labeled transition system (LTS) that formalizes the (observable)

actions allowed by a session type. This notion is instrumental in defining several key ingredients

of the type system. Labels of the LTS represent in an abstract form the message that is either sent

(!) or received (?) and their syntax is defined thus:

Message Type ω ::= t | C
Label µ ::= ?ω | !ω

Definition 3.1 (session type LTS). Let done(·) be the least predicate on session types inductively

defined by the following axiom and rule:

done(1)
done(T) done(S)

done(T;S)

Let

µ
−→ be the least family of relations on session types inductively defined by the following

axioms and rules:

?t
?t
−→ 1 !t

!t
−→ 1

k ∈ I

&[Ci : Ti]i ∈I
?Ck
−→ Tk

k ∈ I

⊕[Ci : Ti]i ∈I
!Ck
−→ Tk

T
µ

−→ T ′

T;S
µ

−→ T ′;S

done(T) S
µ

−→ S ′

T;S
µ

−→ S ′

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:9

We write T
µ

−→ if there exists S such that T
µ

−→ S . We now use these notions to characterize all

session types that describe terminated protocols:

terminated(T)
def

⇐⇒ ¬done(T) ∧ �µ : T
µ

−→

Note that 0 is the simplest session type describing a terminated protocol, but is not the only one.

For example, terminated(T) holds also for the session type T that satisfies the equation T = T;T .

Subtyping and type equivalence. We introduce the notion of type equivalence in two steps. First,

we define a subtyping relation ≲ for session types that is consistent with the conventional one [9].

Then, we define type equivalence ∼ as the equivalence relation induced by ≲. The reason to define

equivalence through subtyping (instead of directly as done by Thiemann and Vasconcelos [31]) is to

point out a substantial difference between the two relations that affects their adoption in practice.

Definition 3.2 (subtyping for session types). We write ≲ for the largest binary relation on session

types such that T ≲ S implies either:

(1) terminated(T) and terminated(S), or
(2) done(T) and done(S), or

(3) T
?ω′

−→ and T
?ω
−→ T ′

implies S
?ω
−→ S ′ and T ′ ≲ S ′, or

(4) S
!ω′

−→ and S
!ω
−→ S ′ implies T

!ω
−→ T ′

and T ′ ≲ S ′.

We write T ∼ S if T ≲ S and S ≲ T .

It is easy to see that ≲ is a partial order and that ∼ is an equivalence relation. In particular, ≲
is consistent with the standard notion of subtyping for session types [9]. For example, we have

⊕[Push : T , Done : S] ≲ ⊕[Push : T] for an endpoint on which both Push and Done can be selected

can be safely used in place of an endpoint on which only Push can. Dually, &[Push : T] ≲ &[Push :

T , Done : S] for an endpoint from which only Push can be received can be safely used in place of

an endpoint from which either Push or Done can. It is also easy to see that ∼ coincides with the

bisimulation relation defined by Thiemann and Vasconcelos [31]: two equivalent session types allow

exactly the same sequences of actions. The relation ∼ allows us to rewrite session types according

to the expected monoidal and distributive laws for sequential composition. More precisely:

Proposition 3.3 (properties of ≲). The following properties hold:

(1) (associativity) T;(S;R) ∼ (T;S);R;
(2) (unit) 1;T ∼ T;1 ∼ T ;
(3) (distributivity) &[Ci : Ti]i ∈I;T ∼ &[Ci : Ti;T] and ⊕[Ci : Ti]i ∈I;T ∼ ⊕[Ci : Ti;T];
(4) (pre-congruence) T ≲ T ′ and S ≲ S ′ imply T;S ≲ T ′;S ′.

The pre-congruence property of ≲ is particularly important in our setting since we use sequential

composition as a modular construct for structuring programs. We do not identify equivalent session
types, and we assume that sequential composition associates to the right: T;S;R means T;(S;R).

Oddly enough, the equivalence problem for context-free session types is decidable but subtyping

is not. The decidability of equivalence has already been established by Thiemann and Vasconcelos

by encoding session types into terms of Basic Process Algebra, for which bisimulation is known

to be decidable. Undecidability of subtyping for context-free session types follows from known

results in formal language theory [7] which have identified a number of language classes for which

language equivalence is decidable and inclusion is not.

Proposition 3.4. The relation ∼ is decidable, whereas ≲ is not.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:10 Luca Padovani

Compared to [31], the decidability of equivalence has a minor relevance in our setting since ∼ is

never used in the typing rules concerning user syntax. On the other hand, the undecidability of

subtyping shows that the increased expressiveness of context-free session types comes at a price: if

one tries to integrate subtyping in a context-free session type system, the subtyping relation must

be restricted somehow in order to preserve decidability. By tying the sequential structure of session

types to the structure of the code, resumptions are one mechanism to implement this restriction. In

fact, the implementations we will describe in Section 5 leverage on OCaml’s subtyping relation to

provide a sound (and necessarily incomplete) approximation of ≲.

Kinding. We are now ready to classify types according to their kind. We resort to a coinductive

definition to cope with possibly infinite types.

Definition 3.5 (kinding). Let :: be the largest relation between types and kinds such that t :: κ
implies either:

• κ = L, or
• t = unit, or
• t = t1 →

U t2, or
• t = [T]ι and terminated(T), or
• t = ∃ϱ.s and s :: κ, or
• t = ∀ϱ.s and s :: κ, or
• t = t1 × t2 and t1 :: κ and t2 :: κ, or
• t = {Ci of ti }i ∈I and ti :: κ for every i ∈ I .

We say that t is unlimited if t :: U and that t is linear if its only kind is L, namely if t :: κ implies

κ = L. Endpoint types and function types with kind annotation L are linear since they denote

values that must be used exactly once. Base types and function types with kind annotation U are

unlimited since they denote values that can be used without limitations or even discarded. Note

that the kind of a function type t →κ s solely depends on κ and not on the kind of t or s . For
example, [?int]ι → int is unlimited even if [?int]ι is not. An endpoint type [T]ι is linear as long
asT is not (equivalent to) the terminated session type 0. The kind of existential and universal types,
products and tagged unions is determined by that of the component types. For example, the type

t = {Nil of unit, Cons of int × t} of integer lists is unlimited, whereas the type int × [!int]ι is
linear. Finally, note that every type has kind L and therefore Definition 3.5 accounts for a form of

subkinding: t :: U implies t :: L. This is motivated by the observation that it is safe to use a value of

an unlimited type exactly once.

Duality. As usual, the session types associated with peer endpoints must be dual to each other to

guarantee communication safety. Duality expresses the fact that every input action performed on

an endpoint is matched by a corresponding output performed on its peer and is defined thus:

Definition 3.6 (session type duality). Session type duality is the function · coinductively defined

by the following equations:

0 = 0
1 = 1

?t = !t

!t = ?t

&[Ci : Ti]i ∈I = ⊕[Ci : T i]i ∈I
⊕[Ci : Ti]i ∈I = &[Ci : T i]i ∈I

T;S = T;S

It is easy to verify that duality is an involution, that is T = T .

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:11

Table 3. Type schemes of FuSe{} constants.

() : unit
pair : t → s →κ t × s t :: κ

Cj : tj → {Ci of ti }i ∈I j ∈ I
fix : ((t → s) → t → s) → t → s
fork : (t → unit) → t → unit

create : unit → ∃ϱ.([T]ϱ × [T]ϱ)
_send : t → [!t]ι →

κ [1]ι t :: κ
_receive : [?t]ι → t × [1]ι
select : ([Tj]ι →

κ {Ci of [Ti]ι }i ∈I) → [⊕[Ci : Ti]i ∈I]ι →
κ [Tj]ι j ∈ I

branch : [&[Ci : Ti]i ∈I]ι → {Ci of [Ti]ι }i ∈I

4 TYPE SYSTEM
The type system makes use of two environments: identity environments ∆ are sets of identities

written ι1, . . . , ιn , representing the endpoints statically known to a program fragment; type envi-

ronments Γ are finite maps from names to types written u1 : t1, . . . ,un : tn associating a type with

every (free) name occurring in an expression. We write ∆,∆′
for ∆∪∆′

when ∆∩∆′ = ∅. We write

Γ(u) for the type associated with u in Γ, dom(Γ) for the domain of Γ, and Γ1, Γ2 for the union of Γ1

and Γ2 when dom(Γ1) ∩ dom(Γ2) = ∅. We extend kinding to type environments in the obvious way,

writing Γ :: κ if Γ(u) :: κ for all u ∈ dom(Γ). Note that thanks to subkinding Γ :: L holds for all Γ,
whereas Γ :: U holds only if all types in the range in Γ are unlimited.

We also need a partial operator to combine type environments with possibly overlapping domains.

This operator is common in substructural type systems and allows names with unlimited types to

be used any number of times.

Definition 4.1 (environment combination [18]). We write + for the partial operation on type

environments such that:

Γ + Γ′
def
= Γ, Γ′ if dom(Γ) ∩ dom(Γ′) = ∅

(Γ,u : t) + (Γ′,u : t)
def
= (Γ + Γ′),u : t if t :: U

Note that Γ + Γ′ is undefined if Γ and Γ′ contain associations for the same name with different

or linear types. When Γ :: U, we have that Γ + Γ is always defined and equal to Γ itself.

The type schemes of FuSe{} constants are given in Table 3 as associations c : t . Note that, in
general, each constant has infinitely many types. Although most associations are as expected,

it is worth commenting on a few details. First, observe that the kind annotation κ in the types

of pair, _send and select coincides with the kind of the first argument of these constants. In

particular, when t is linear and pair/_send/select is supplied one argument v of type t , the
resulting partial application is also linear. Second, in accordance with their operational semantics

(Table 2) all the primitives for session communications (_send, _receive, select, and branch)
return the very same endpoint they take as input as indicated by the identity ι that annotates
the endpoint types in both the domain and range of these constants. Third, in an application

select v ε , the function v is meant to be applied to the peer of ε . This constraint is indicated by

the use of the co-identity ι and is key for proving the soundness of the type system. Note also

that the codomain of v matches the return type of branch, following the fact that v is applied to

the peer of ε after the communication has occurred (Table 2). Finally, create returns a packaged
pair of endpoints with dual session types. The package must be opened before the endpoints can

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:12 Luca Padovani

Table 4. FuSe{}: static semantics.

Typing rules for expressions ∆; Γ ⊢ e : t

[t-const]

Γ :: U c : t

∆; Γ ⊢ c : t

[t-split]

∆; Γ1 ⊢ e1 : t1 × t2 ∆; Γ2,x : t1,y : t2 ⊢ e2 : t

∆; Γ1 + Γ2 ⊢ let x ,y = e1 in e2 : t

[t-name]

Γ :: U

∆; Γ,u : t ⊢ u : t

[t-case]

∆; Γ1 ⊢ e : {Ci of ti }i ∈I ∆; Γ2 ⊢ ei : ti →
κi t (i ∈I)

∆; Γ1 + Γ2 ⊢ match e with {Ci ⇒ ei }i ∈I : t

[t-fun]

∆; Γ,x : t ⊢ e : s Γ :: κ

∆; Γ ⊢ λx .e : t →κ s

[t-app]

∆; Γ1 ⊢ e1 : t →κ s ∆; Γ2 ⊢ e2 : t

∆; Γ1 + Γ2 ⊢ e1 e2 : s

[t-id-fun]

∆, ϱ; Γ ⊢ v : t

∆; Γ ⊢ Λϱ.v : ∀ϱ.t

[t-id-app]

∆; Γ ⊢ e : ∀ϱ.t ι ∈ ∆

∆; Γ ⊢ e [ι] : t{ι/ϱ}

[t-resume]

∆; Γ,u : [T]ι ⊢ e : t × [1]ι
∆; Γ,u : [T;S]ι ⊢ {e}u : t × [S]ι

[t-pack]

∆; Γ ⊢ e : t{ι/ϱ} ι ∈ ∆

∆; Γ ⊢ ⌈ι, e⌉ : ∃ϱ.t

[t-unpack]

∆; Γ1 ⊢ e1 : ∃ϱ.t ∆, ϱ; Γ2,x : t ⊢ e2 : s

∆; Γ1 + Γ2 ⊢ let ⌈ϱ,x⌉ = e1 in e2 : s

Typing rules for processes ∆; Γ ⊢ P

[t-thread]

∆; Γ ⊢ e : unit

∆; Γ ⊢ ⟨e⟩

[t-par]

∆; Γi ⊢ Pi
(i=1,2)

∆; Γ1 + Γ2 ⊢ P1 | P2

[t-session]

∆,a,a; Γ,a : [T]a ,a : [S]a ⊢ P T ∼ S

∆; Γ ⊢ (νa)P

be used for communication. As we will see when discussing the typing rules, the type of create

could be safely relaxed to unit → ∃ϱ.([T]ϱ × [S]ϱ) provided that T ∼ S . This would account for

the possibility that the two endpoints of a session are used according to session types that are dual

to each other up to type equivalence.

The typing rules for FuSe{} are given in Table 4 and are used to derive judgments of the form

∆; Γ ⊢ e : t for expressions and judgments of the form ∆; Γ ⊢ P for processes. A judgment is well

formed if all the identities occurring free in Γ and t are included in ∆. From now on we make the

implicit assumption that all judgments are well formed.

We now discuss the most important aspects of the typing rules. In [t-const], the implict well-

formedness constraint on typing judgments restricts the set of types that we can give to a constant

to those whose free identities occur in ∆. In [t-const] and [t-name], the unused part of the type environ-

ment must be unlimited, to make sure that no linear name is left unused. The elimination rules for

products and tagged unions are standard. Note the use of + for combining type environments so that

the same linear resource is not used multiple times in different parts of an expression. Rules [t-fun]

and [t-app] deal with function types. In [t-fun], the kind annotation on the arrow must be consistent

with the kind of the environment in which the function is typed. If any name in the environment

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:13

has a linear type, then the function must be linear itself to avoid repeated use of such name. By

contrast, the kind annotation plays no role in [t-app]. Abstraction and application of identities are

standard. The premise ι ∈ ∆ of [t-id-app] makes sure that the supplied identity is in scope. This

condition is not necessarily captured by the well formedness of judgments in case ϱ does not occur
in t . Packing and unpacking are also standard. The identity variable ϱ introduced in [t-unpack] is

different from any other identity known to e2. This prevents e2 from using ϱ in any context where a

specific identity is required. Also, well formedness of judgments requires fid(s) ⊆ ∆, meaning that

ϱ is not allowed to escape its scope. The most interesting and distinguishing typing rule of FuSe{}

is [t-resume]. Let us discuss the rule clockwise, starting from {e}u and recalling that the purpose of

this expression is to resume u once the evaluation of e is completed. The rule requires u to have a

type of the form [T;S]ι , which specifies the identity ι of the endpoint and the protocols T and S to

be completed in this order. Within e the type of u is changed to [T]ι and the evaluation of e must

yield a pair whose first component, of type t , is the result of the computation and whose second

component, of type [1]ι , witnesses the fact that the prefix protocol T has been entirely carried out

on u. Once the evaluation of e is completed, the type of the endpoint in the pair is reset to the suffix

S . The same identity ι relates all the occurrences of the endpoint both in the type environments

and in the expressions. Note that the annotation u in { · }u does not count as a proper “use” of u.
Its purpose is solely to identify the endpoint being resumed.

The typing rules for processes are mostly unremarkable. In [t-session] the two peers of a session

are introduced both in the type environment and in the identity environment. The protocols T and

S of peer endpoints are required to be dual to each other modulo session type equivalence. The use

of ∼ accounts for the possibility that sequential compositions may be arranged differently in the

threads using the two peers. For instance, one thread might be using an endpoint with protocol T ,

and its peer could have type 1;T in a thread that has not resumed it yet. Still, T ∼ 1;T = 1;T .
We state a few basic properties of the typing discipline focusing on those more closely related

to resumptions. To begin with, we characterize the type environments in which expressions and

processes without free variables reduce.

Definition 4.2. We say that Γ is ground if dom(Γ) contains endpoints only; that it is well formed
if ε ∈ dom(Γ) implies Γ(ε) = [T]ε ; that it is balanced if ε, ε ∈ dom(Γ) implies Γ(ε) = [T]ε and

Γ(ε) = [S]ε and T ∼ S .

Note that in a well-formed environment the type associated with endpoint ε is annotated with

the correct identity of ε , that is ε itself.
As usual for session type systems, we must take into account the possibility that the type

associated with session endpoints changes over time. Normally this only happens when processes

use endpoints for communications. In our case, however, expressions may also change endpoint

types because of resumptions. In order to track these changes, we introduce two relations that

characterize the evolution of type environments alongside expressions and processes. The first

relation is the obvious extension of equivalence ∼ to type environments:

Definition 4.3 (equivalent type environments). Let Γ = {εi : [Ti]εi }i ∈I and Γ′ = {εi : [Si]εi }i ∈I . We

write Γ ∼ Γ′ if Ti ∼ Si for every i ∈ I .

The second relation includes∼ andmimics communications at the type level. As in the operational

semantics of FuSe{}, we label the relation to keep track of the sender of the message. This will

allow us to formally state a protocol fidelity result for FuSe{}.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:14 Luca Padovani

Definition 4.4. Let
ℓ

7−→ be the least family of relations between type environments such that:

Γ
τ

7−→ Γ′ if Γ ∼ Γ′

Γ, ε : [T]ε , ε : [S]ε
ε

7−→ Γ, ε : [T ′]ε , ε : [S ′]ε if T
!ω
−→ T ′

and S
?ω
−→ S ′

We write

τ
Z=⇒ for the reflexive, transitive closure of

τ
7−→ and

ε
Z=⇒ for the composition

τ
Z=⇒

ε
7−→

τ
Z=⇒.

Concerning subject reduction for expressions, we have:

Theorem 4.5 (subject reduction for expressions). Let ∆; Γ ⊢ e : t where Γ is ground and well
formed. If e −→ e ′, then ∆; Γ′ ⊢ e ′ : t for some Γ′ such that Γ ∼ Γ′.

Theorem 4.5 guarantees that resumptions in well-typed programs do not change arbitrarily

the session types of endpoints. The only permitted changes are those allowed by session type

equivalence. Concerning progress, we have:

Theorem 4.6 (progress for expressions). If Γ is ground and well formed and ∆; Γ ⊢ e : t and
e X−→, then either e is a value or e = E[K v] for some E, v ,w , and K generated by the grammar

K ::= forkw | create | _sendw | _receive | selectw | branch

That is, an irreducible expression that is not a value is a term that is meant to reduce at the

level of processes. Note that a resumption {(v,ε)}ε ′ is not a value and is meant to reduce at the

level of expressions via [R7]. Hence, Theorem 4.6 guarantees that in a well-typed program all such

resumptions are such that ε = ε ′. An alternative reading for this observation is that each endpoint

is guaranteed to have a unique identity in every well-typed program.

Theorem 4.7 (subject reduction for processes). Let ∆; Γ ⊢ P where Γ is ground, well formed

and balanced. If P
ℓ

−→ Q , then ∆; Γ′ ⊢ Q for some Γ′ such that Γ
ℓ

Z=⇒ Γ′.

Apart from being a fundamental sanity check for the type system, Theorem 4.7 states that

the communications occurring in processes are precisely those permitted by the session types

in the type environments. Therefore, Theorem 4.7 gives us a guarantee of protocol fidelity. A

particular instance of protocol fidelity concerns sequential composition: a well-typed process using

an endpoint with typeT;S is guaranteed to perform the actions described byT first, and then those

described by S . Other standard properties including communication safety and (partial) progress

for processes can also be proved [26].

Example 4.8 (resumption combinators). In prospect of devising an implementation of FuSe{} in
an ordinary programming language, the resumption expression { · }u is challenging to deal with:

its typing rule involves a non-trivial manipulation of the type environment whereby the type of

u changes as u flows into and out of the expression. In practice, it makes sense to encapsulate

{ · }u expressions in two combinators that can be easily implemented as higher-order functions

(Sections 5.2 and 5.3):

@=
def
= λ f .λx .{f x}x

@>
def
= λ f .λx .let _,x = {((),f x)}x in x

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:15

The combinator @= is a general version of @> that applies to functions returning an actual result

in addition to the endpoint to be resumed. We derive

[t-name]

∆; f : [T]ι →
κ t × [1]ι ⊢ f : [T]ι →

κ t × [1]ι
[t-name]

∆;x : [T]ι ⊢ x : [T]ι
[t-app]

∆; f : [T]ι →
κ t × [1]ι ,x : [T]ι ⊢ f x : t × [1]ι

[t-resume]

∆; f : [T]ι →
κ t × [1]ι ,x : [T;S]ι ⊢ {f x}x : t × [S]ι

[t-fun]

∆; f : [T]ι →
κ t × [1]ι ⊢ λx .{f x}x : [T;S]ι →

κ t × [S]ι
[t-fun]

∆; ∅ ⊢ λ f .λx .{f x}x : ([T]ι →
κ t × [1]ι) → [T;S]ι →

κ t × [S]ι

for every T , ι, t and S such that fid(T) ∪ fid(t) ∪ fid(S) ∪ {ι} ⊆ ∆. A similar derivation allows us to

derive

∆; ∅ ⊢ @> : ([T]ι →
κ [1]ι) → [T;S]ι →

κ [S]ι

In the implementation, we will give @= and @> their most general type by leveraging OCaml’s
support for parametric polymorphism. Other combinators for resuming two or more endpoints can

be defined similarly. For example,

@@>
def
= λ f .λx .λy.let y,x = {let x ,y = {f x y}y in (y,x)}x in (x,y)

is analogous to @>, but resumes two endpoints at once.

Note that an alternative version of FuSe{} without the resumption expression { · }u where @=
and @> are taken as primitives is not easy to formalize. This is because the body of the function

that consumes the prefix of a sequentially composed protocolT;S requires, in general, an arbitrary

number of reduction steps during which the session type of the involved endpoint must be split

into the prefix T and the suffix S . The library we describe in Section 5 does indeed implement @=
and @> as if they were primitives, but does so using unsafe casts. ■

Example 4.9 (communication API). The type of the communication primitives _send and _receive
(Table 3) differs from that of the homonymous primitives in standard presentations of session-

based functional calculi [10, 26, 31, 35], where the endpoint returned by the primitive can be used

immediately for subsequent communications. In particular, standard presentations of GV-like

languages provide send and receive primitives that have the same reduction semantics as _send
and _receive (Table 2) but types

send : t → [!t;T]ι →
κ [T]ι t :: κ

receive : [?t;T]ι → t × [T]ι

We find a communication API based on _send and _receive appealing for its clean correspon-

dence between primitives and session type constructors. In particular, with this API the resumption

combinators account for all occurrences of ; in protocols. Starting from _send and _receive,
send and receive can be easily obtained with the help of @= and @>, used below in infix notation:

send
def
= λz.λx ._send z @> x

receive
def
= λx ._receive @= x

Hereafter we will use and implement whichever version of the communication primitives is

convenient depending on the context. ■

We devote the last two examples of this section to motivate the distinguishing features of the type

system. In particular, we discuss functions that would be well typed (in possibly weaker versions

of the type system) and would allow dangerous rearrangements in the session types of endpoints if

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:16 Luca Padovani

the reduction rule [R7] did not require the resumed endpoint to coincide with the annotation of the

resumption.

Example 4.10. In this example we illustrate the key role of endpoint identities for the soundness

of resumptions. More specifically, we assume to work with the following relaxed version of the

[t-resume] typing rule

[t-resume-relaxed]

∆; Γ,u : [T]ι1 ⊢ e : t × [1]ι2
∆; Γ,u : [T;S]ι1 ⊢ {e}u : t × [S]ι2

which does not require the resumed endpoint to have the same identity as the annotation of the

resumption. This relaxed typing could be exploited by the function

bad_split
def
= λx .λy.{(x,y)}x

to disrupt the session types of its endpoint arguments. Indeed we could derive

...

x : [T]ι1 ,y : [1]ι2 ⊢ (x,y) : [T]ι1 × [1]ι2
[t-resume-relaxed]

x : [T;S]ι1 ,y : [1]ι2 ⊢ {(x,y)}x : [T]ι1 × [S]ι2
[t-fun]

x : [T;S]ι1 ⊢ λy.{(x,y)}x : [1]ι2 →
L [T]ι1 × [S]ι2

[t-fun]

⊢ λx .λy.{(x,y)}x : [T;S]ι1 → [1]ι2 →
L [T]ι1 × [S]ι2

meaning that bad_split could be used to cast the session type of x from T;S to T and the session

type of y from 1 to S . The first cast could compromise progress since x would be used to carry out

only a prefix of its intended protocol. The second cast, on the other hand, could also compromise

communication safety as the peer of y could be cast to another session type R unrelated to S . ■

Example 4.11. This example presents a well-typed function that “swaps” the session types of its

endpoint arguments assuming that they have the same identity. The function

bad_swap
def
= λx .λy.{let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x

applied to two endpoints x and y whose types are [1;T]ι and [1;S]ι respectively, returns a pair
containing the same two endpoints, but with their types changed to [S]ι and [T]ι . The derivation

...

x : [1]ι ,y : [1]ι ⊢ (y,x) : [1]ι × [1]ι
[t-resume]

x : [1]ι ,y : [1;S]ι ⊢ {(y,x)}y : [1]ι × [S]ι

...

x̂ : [S]ι , ŷ : [1]ι ⊢ (x̂,ŷ) : [S]ι × [1]ι
[t-split]

x : [1]ι ,y : [1;S]ι ⊢ let ŷ, x̂ = {(y,x)}y in (x̂,ŷ) : [S]ι × [1]ι
[t-resume]

x : [1;T]ι ,y : [1;S]ι ⊢ {let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [S]ι × [T]ι
[t-fun]

x : [1;T]ι ⊢ λy.{let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [1;S]ι →L [S]ι × [T]ι
[t-fun]

⊢ λx .λy.{let ŷ, x̂ = {(y,x)}y in (x̂,ŷ)}x : [1;T]ι → [1;S]ι →L [S]ι × [T]ι

shows that bad_swap is well typed. If there existed two endpoints ε1 and ε2 with the same identity

ι from two different sessions, bad_swap could be used to exchange their protocols, almost certainly

causing communication errors in the rest of the computation.

The same function bad_swap illustrates the importance of distinguishing the identities of peer

endpoints. If ε and ε were given the same identity, then bad_swap could be used to swap their roles.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:17

In this case, communication safety would still be guaranteed by the condition T ∼ S of [t-session]

because ∼ is symmetric and duality is an involution. However, protocol fidelity (Theorem 4.7) could

be violated. ■

5 CONTEXT-FREE SESSION TYPES IN OCAML

In this section we detail two different implementations of FuSe{} communication and resumption

primitives as OCaml functions. We define a few basic data structures and a convenient OCaml
representation of session types (Section 5.1) before describing the actual implementations. The

first one (Section 5.2) is easily portable to any programming language supporting parametric

polymorphism, but relies on lightweight runtime checks to verify when an endpoint can be safely

resumed. The second implementation (Section 5.3) follows more closely the typing discipline

of FuSe{} presented in Section 3, but relies on advanced features (existential types) of the host

language. The particular implementation we describe is based on OCaml’s first-class modules [8, 38].

5.1 Basic Setup
To begin with, we define a module Channel that implements unsafe communication channels. In

turn, Channel is based on OCaml’s Event module, which implements communication primitives in

the style of Concurrent ML [29].

module Channel : sig
type t

val create : unit → t (* create a new unsafe channel *)

val send : α → t → unit (* send a message of type α *)

val receive : t → α (* receive a message of type α *)

end = struct
type t = unit Event.channel

let create = Event.new_channel

let send x u = Event.sync (Event.send u (Obj.magic x))

let receive u = Obj.magic (Event.sync (Event.receive u))

end

An unsafe channel is just an Event.channel for exchanging messages of type unit. The
unit type parameter is a placeholder, for communication primitives perform unsafe casts (with

Obj.magic) on every exchanged message. Note that Event.send and Event.receive create syn-
chronization events, and communication only happens when these events are passed to Event.sync.
Using Event channels is convenient but not mandatory: the rest of our implementation is essentially

independent of the underlying communication framework.

The second ingredient of our library is an implementation of atomic boolean flags. Since OCaml’s
type system is not substructural, we are unable to distinguish between linear and unlimited types

and, in particular, we are unable to prevent multiple endpoint usages solely using the type system.

Following ideas of Tov and Pucella [33] and Hu and Yoshida [13] and the design of FuSe [26], the

idea is to associate each endpoint with a boolean flag indicating whether the endpoint can be safely

used or not. The flag is initially set to true, indicating that the endpoint can be used, and is tested

by every operation that uses the endpoint. If the flag is still true, then the endpoint can be used

and the flag is reset to false. If the flag is false, then the endpoint has already been used in the

past and the operation aborts raising an exception. Atomicity is needed to make sure that the flag

is tested and updated in a consistent way in case multiple threads try to use the same endpoint

simultaneously.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:18 Luca Padovani

module Flag : sig
type t

val create : unit → t (* create a new atomic boolean flag *)

val use : t → unit (* mark as used or raise exception *)

end = struct
type t = Mutex.t

let create = Mutex.create

let use f = if not (Mutex.try_lock f) then raise Error

end

We represent an atomic boolean flag as a Mutex.t, that is a lock in OCaml’s standard library. The
value of the flag is the state of the mutex: when the mutex is unlocked, the flag is true. Using the

flag means attempting to acquire the lock with the non-blocking function Mutex.try_lock. As
for Event channels, the mutex is a choice of convenience rather than necessity. More lightweight

realizations can be considered making some assumptions on the runtime environment [26].

We conclude the setup phase by defining a bunch of OCaml singleton types in correspondence

with the session type constructors:

type 0 = End (* terminated protocol *)

type 1 = Done (* terminated sub-protocol *)

type φ msg = Message (* either ?φ or !φ *)

type φ tag = Tag (* either &[φ] or ⊕[φ] *)

type (α,β) seq = Sequence (* α;β *)

The type parameter φ is the type of the exchanged message in msg and a polymorphic variant

type representing the available choices in tag. The type parameters α and β in seq stand for the

prefix and suffix protocols of a sequential composition α;β. The data constructors of these types
are never used and are given only because OCaml is more liberal in the construction of recursive

types when these are concrete rather than abstract. Hereafter, we use τ1, τ2, . . . to range over

OCaml types and α, β, . . . , φ to range over OCaml type variables. Considering that OCaml supports

equi-recursive types, we ignore once again the concrete syntax for expressing infinite session types

and work with infinite trees instead. OCaml uses the notation τ as α for denoting a type τ in which

occurrences of α stand for the type as a whole.

5.2 A Dynamically Checked, Portable Implementation
The first implementation of the library that we present ignores identities in types and verifies

the soundness of resumptions by means of a runtime check. In this case, an endpoint type [T]ι is
encoded as the OCaml type (τ1,τ2) t where τ1 and τ2 are determined as follows:

• when T is either 0 or 1, then both τ1 and τ2 are 0 or 1, respectively;
• when T is T1;T2, then τ1 is (T1,T2) seq and τ2 its dual (T1,T2) seq;
• when T is an input (either ?t or &[Ci : Ti]i ∈I), then τ1 is the encoding of the received

message/choice (either t msg or {Ci of Ti }i ∈I tag, respectively) and τ2 is 0;
• whenT is an output (either !t or ⊕[Ci : Ti]i ∈I), then τ1 is 0 and τ2 is the encoding of the sent

message/choice, along the lines of the previous case.

More precisely, types and session types are encoded thus:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:19

Definition 5.1 (encoding of types and session types). Let J·K and ⟨⟨·⟩⟩ be the encoding functions

coinductively and mutually defined by the following equations:

J0K = (0,0) t
J1K = (1,1) t

JT;SK = ((JT K,JSK) seq,(JT K,JSK) seq) t
J?tK = (⟨⟨t⟩⟩ msg,0) t
J!tK = (0,⟨⟨t⟩⟩ msg) t

J&[Ci : Ti]i ∈I K = ({Ci of JTiK}i ∈I tag,0) t

J⊕[Ci : Ti]i ∈I K = (0,{Ci of JTiK}i ∈I tag) t

⟨⟨[T]ι⟩⟩ = JT K

where ⟨⟨·⟩⟩ is extended homomorphically to all the remaining type constructors erasing kind

annotations on arrows and existential and universal quantifiers.

Note that identities ι in endpoint types are simply erased; we will revise this choice in the second

implementation (Section 5.3). The encoding is semantically grounded through the relationship

between sessions and linear channels [4, 5, 17, 26] and is extended here to sequential composition.

The distinguishing feature of this encoding is that is makes it easy to express session type duality

constraints solely in terms of type equality:

Theorem 5.2. If JT K = (τ1,τ2) t, then JT K = (τ2,τ1) t.

That is, we pass from a session type to its dual by flipping the type parameters of the t type.

This also works for unknown or partially known session types: the dual of (α,β) t is (β,α) t.
We can now look at the concrete representation of the type (α,β) t:

type (α,β) t = { chan : Channel.t; pol : int; once : Flag.t }

An endpoint is a record with three fields, a reference chan to the unsafe channel used for the

actual communications, an integer number pol ∈ {+1,−1} representing the endpoint’s polarity,

and an atomic boolean flag once indicating whether the endpoint can be safely used or not. Of

course, this representation is hidden from the user of the library and any direct access to these

fields occurs via one of the public functions that we are going to discuss. The use of integers for

representing polarities is not essential. Any other data type with (at least) two distinct values would

be equally fine.

The FuSe{} primitives for session communication are implemented by corresponding OCaml
functions with the following signatures, which are directly related to the type schemes in Table 3

through the encoding in Definition 5.1:

val create : unit → (α,β) t × (β,α) t

val _send : φ → (0,φ msg) t → (1,1) t

val _receive : (φ msg,0) t → φ × (1,1) t

val select : ((β,α) t → φ) → (0,φ tag) t → (α,β) t

val branch : (φ tag,0) t → φ

val (@=) : ((α,β) t → φ × (1,1) t) →

(((α,β) t,(γ,δ) t) seq,((β,α) t,(δ,γ) t) seq) t → φ × (γ,δ) t

We take advantage of parametric polymorphism to give these functions their most general types.

We omit the type declaration of @> which is just a particular instance of @= (Example 4.8). The

types for select and branch are slightly more general than those in Table 3, but the passing of

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:20 Luca Padovani

tags between choices and unions cannot be expressed as accurately in OCaml without fixing the set

of tags. The given typing is still sound though.

Since this version of the library ignores endpoint identities, the endpoints returned by create
are already unpackaged. The implementation of create is

let create () = let ch = Channel.create () in
{ chan = ch; pol = +1; once = Flag.create () },

{ chan = ch; pol = -1; once = Flag.create () }

and consists of the creation of a new unsafe channel ch and two records referring to it with opposite

polarities each with its own validity flag.

The communication primitives are defined in terms of corresponding operations on the underly-

ing unsafe channel and make use of an auxiliary function

let fresh u = { u with once = Flag.create () }

that returns a copy of u with once overwritten by a fresh flag. We have:

let _send x u = Flag.use u.once; Channel.send x u.chan; fresh u

let _receive u = Flag.use u.once; (Channel.receive u.chan, fresh u)

let select f u = Flag.use u.once; Channel.send f u.chan; fresh u

let branch u = Flag.use u.once; Channel.receive u.chan (fresh u)

The flag associated with the endpoint u is used before communication takes place and refreshed

just before the endpoint is returned to the user. It is not possible to refresh the flag by just releasing

the lock in it, for any existing alias to the endpoint must be permanently marked as invalid [26].

We complete the module with the implementation of @=, shown below:

let (@=) scope u =

let res, v = scope (Obj.magic u) in
if u.chan == v.chan && u.pol = v.pol then (res, Obj.magic v)

else raise Error

The endpoint u is passed to scope, which evaluates to a pair made of the result res of the

computation and the endpoint v to be resumed. The cast Obj.magic u is necessary to turn the

type of u from T;S to T , as required by scope. The second line in the body of @= checks that the
endpoint v resulting from the evaluation of scope is indeed the same endpoint u that was fed in it.

Note the key role of the polarity in checking that u and v are the same endpoint and the use of the

physical equality operator ==, which compares only the references to the involved unsafe channels.

An exception is raised if v is not the same endpoint as u. Otherwise, the result of the computation

and v are returned. The cast Obj.magic v effectively resumes the endpoint turning its type from

1 to S . The two casts roughly delimit the region of code that we would write within { · }u in the

formal model of FuSe{}.
The implementation of @> follows immediately from its definition as by Example 4.8:

let (@>) scope u = snd ((fun u → ((), scope u)) @= u)

Example 5.3. In this example we attempt to break the soundness of the resumption operator by

implementing an escape function of type [1;T]ϱ → [T]σ that changes the identity of the endpoint

it takes as argument. We implement escape as the OCaml function

let escape u = (fun _ → let v, _ = create () in v) @> u

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:21

where the idea is to ignore the argument u and return one endpoint v from a freshly generated

session. The lack of static checks concerning the linear usage of session endpoints makes this

function well typed for OCaml. However, if we try to actually use escape, for example in the code

let _ =

let u, _ = create () in close (escape u)

the runtime check in the implementation of @> detects the mismatch between u and v therefore
causing the Error exception. ■

5.3 A Statically Checked Implementation
The second implementation we present reflects more accurately the typing information in endpoint

types, which includes the identity of endpoints. In this case, we represent an endpoint type [T]ϱ as
an OCaml type (τ1,τ2,ϱ,ϱ) t where τ1 and τ2 are determined fromT in a similar way as before. In

addition, the phantom type parameter ϱ is the (abstract) identity of the endpoint and ϱ that of its
peer (we represent identity variables as OCaml type variables and assume that ϱ is another OCaml
type variable distinct from ϱ). More formally, the revised encoding of (session) types into OCaml
types is given below:

Definition 5.4 (revised encoding of types and session types). Let J·Kι and ⟨⟨·⟩⟩ be the encoding

functions coinductively and mutually defined by the following equations:

J0Kι = (0,0,ι,ι) t
J1Kι = (1,1,ι,ι) t

JT;SKι = ((JT Kι,JSKι) seq,(JT Kι,JSKι) seq,ι,ι) t
J?tKι = (⟨⟨t⟩⟩ msg,0,ι,ι) t
J!tKι = (0,⟨⟨t⟩⟩ msg,ι,ι) t

J&[Ci : Ti]i ∈I Kι = ({Ci of JTiKι }i ∈I tag,0,ι,ι) t

J⊕[Ci : Ti]i ∈I Kι = (0,{Ci of JTiKι }i ∈I tag,ι,ι) t

⟨⟨[T]ι⟩⟩ = JT Kι
where ⟨⟨·⟩⟩ is extended homomorphically to all the remaining type constructors erasing kind

annotations on arrows and existential and universal quantifiers.

In Definition 5.4, ι is always an identity (co-)variable for we apply the encoding to user types in

which these variables are never instantiated. Once again, the relation between the encoding of a

session type and that of its dual can be expressed in terms of type equality:

Theorem 5.5. If JT Kι = (τ1,τ2,ι,ι) t, then JT Kι = (τ2,τ1,ι,ι) t.

The concrete representation of (α,β,ι,ι) t is the same that we have given in Section 5.2. As an

optimization, the pol field of that representation could be omitted since there it is only necessary

to verify an endpoint equality condition which is statically guaranteed by the implementation we

are discussing now.

The easiest way of representing an existential type in OCaml is by means of its built-in module

system [21]. In our case, we have tomake sure that create returns a packaged pair of peer endpoints,
each with its own identity. The OCaml representation of this type can be given by the following

module signature

module type Package = sig
type i and j

val unpack : unit → (α,β,i,j) t × (β,α,j,i) t

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:22 Luca Padovani

end

which contains two abstract type declarations i and j, corresponding to the identities of the two

endpoints, and a function unpack to retrieve the endpoints once the module with this signature

has been opened. Concerning the implementation of Package, there are two technical issues we

have to address, both related to the fact that there cannot be two different endpoints with the same

identity. First, we have to make sure that each session has its own implementation of the Package
module signature. To this aim, we take advantage of OCaml’s support for first-class modules [8, 38],
allowing us to write a function (create in the specific case) that returns a module implementation.

The second issue is that we cannot store the two endpoints directly in the module, for the types

of the endpoints contain type variables (α and β in the above signature) which are not allowed

to occur free in a module. For this reason, we delay the actual creation of the endpoints at the

time unpack is applied. This means, however, that the same implementation of Package could in

principle be unpacked several times, instantiating different sessions whose endpoints would share

the same identities. To make sure that unpack is applied at most once for each implementation of

Package we resort once again to an atomic boolean flag.

The signatures of the functions implementing the communication primitives are essentially

those we have already seen in Section 5.2, except for the presence of identity variables ϱ and σ and

the type of create, which now returns a packaged pair of endpoints:

val create : unit → (module Package)

val _send : φ → (0,φ msg,ϱ,σ) t → (1,1,ϱ,σ) t

val _receive : (φ msg,0,ϱ,σ) t → φ × (1,1,ϱ,σ) t

val select : ((β,α,σ,ϱ) t → φ) → (0,φ tag,ϱ,σ) t → (α,β,ϱ,σ) t

val branch : (φ tag,0,ϱ,σ) t → φ

val (@=) : ((α,β,ϱ,σ) t → φ × (1,1,ϱ,σ) t) →

(((α,β,ϱ,σ) t,(γ,δ,ϱ,σ) t) seq,

((β,α,σ,ϱ) t,(δ,γ,σ,ϱ) t) seq,ϱ,σ) t → φ × (γ,δ,ϱ,σ) t

Note in particular the type of select, where we refer to both an endpoint and its peer by flipping

the type parameters corresponding to session types (α and β) and those corresponding to identity

variables (ϱ and σ) as well.
The implementation of create is shown below, in which Previous.create refers to the version

of create detailed in Section 5.2:

let create () =

let once = Flag.create () in
(module struct

type i and j

let unpack () = Flag.use once; Previous.create ()

end : Package)

The implementation of the I/O primitives is the same as in Section 5.2 and need not be repeated

here. The resumption combinator shrinks to a simple cast

let (@=) = Obj.magic

since the equality condition on endpoints that is necessary for its soundness is now statically

guaranteed by the type system. The cast is necessary because @= coerces its first argument to a

function with a different type. With this implementation of FuSe{}, a session is typically created

thus

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:23

let module A = (val create ()) in (* create session *)

let a, b = A.unpack () in (* unpack endpoints *)

fork server a; (* fork server *)

client b (* run client *)

where client and server are suitable functions that use the two endpoints of the session without

making any assumption on their identities. Otherwise, the abstract types A.i and A.jwould escape
their scope, resulting in a type error.

Example 5.6. A tentative version of the escape function discussed in Example 5.3 for the second

OCaml implementation of FuSe is shown below:

let escape u = (fun _ → let module A = (val create ()) in
let v, _ = A.unpack () in v) @> u

OCaml correctly flags this version of escape as ill typed and emits an error message signalling

the fact that the i type constructor in the locally opened module A would escape its scope. ■

Example 5.7. The function bad_cast of Example 4.11 can be implemented in OCaml as

let bad_cast x y = (fun x → swap ((fun y → (y, x)) @= y)) @= x

where swap : α × β → β × α permutes the two components of its pair argument. As we have

seen in Example 4.11, bad_cast is well typed provided that its two parameters x and y are endpoints
with the same identity. The code

let _ =

let module A = (val create ()) in
let u, v = A.unpack () in
let u, v = bad_cast u v in
close u; close v

attempts to use bad_cast to swap the types of u and v. OCaml correctly flags this code as ill typed

since type A.i (the abstract type representing u’s identity) is not compatible with type A.j (the
abstract type representing v’s identity). ■

6 EXTENDED EXAMPLE: TREES OVER SESSIONS
In this section we revisit and expand the running example of [31] to show how context-free session

types help improve the precision of (inferred) protocols and the robustness of code. We start from

the declaration

type α tree = Leaf | Node of α × α tree × α tree

defining an algebraic representation of binary trees, and we consider the following function, which

sends a binary tree over a session endpoint. Note that, for the sake of readability, in this section

we assume that OCaml polymorphic variant tags are curried as in the formal model and write for

example `Node instead of its η-expansion fun x → `Node x.

1 let send_tree t u =

2 let rec send_tree_aux t u =

3 match t with
4 | Leaf → select `Leaf u

5 | Node (x, l, r) → let u = select `Node u in
6 let u = send x u in

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:24 Luca Padovani

7 let u = send_tree_aux l u in
8 let u = send_tree_aux r u in u

9 in select `Done (send_tree_aux t u)

The auxiliary function send_tree_aux serializes a (sub)tree t on the endpoint u, whereas
send_tree invokes send_tree_aux once and finally sends a sentinel label Done that signals the
end of the stream of messages. FuSe infers for send_tree the type α tree → Treg → AwhereTreg
is the session type

Treg = ⊕[Leaf : Treg, Node : !α;Treg, Done : A] (5)

and A is a session type variable (the code in send_tree does not specify in any way how u will
be used when send_tree returns). Without the sentinel Done, the protocol Treg inferred by OCaml
would never terminate (like Sreg in (1)) making it hardly useful. Even with the sentinel, though,

Treg is very imprecise. For example, it allows the labels Node, Leaf, and Done to be selected in this

order, even though send_tree never generates such a sequence.
1

To illustrate the sort of issues that this lack of precision may cause, it helps to look at a consumer

process that receives a tree sent with send_tree:

1 let receive_tree u =

2 let rec receive_tree_aux u =

3 match branch u with
4 | `Leaf u → Leaf, u

5 | `Node u → let x, u = receive u in
6 let l, u = receive_tree_aux u in
7 let r, u = receive_tree_aux u in
8 Node (x, l, r), u

9 | _ → assert false (* impossible *)

10 in let t, u = receive_tree_aux u in
11 match branch u with
12 | `Done u → (t, u)

13 | _ → assert false (* impossible *)

This function consists of a main body (lines 2–9) responsible for building up a (sub)tree received

from u, the bootstrap of the reception phase (line 10), and a final reception that awaits for the

sentinel (lines 11–13). For receive_tree, OCaml infers the type Treg → α tree × A. The fact

that send_tree and receive_tree use endpoints with dual session types should be enough to

reassure us that the two functions communicate safely within the same session. Unfortunately, our

confidence is spoiled by two suspicious catch-all cases (lines 9 and 13) without which receive_tree
would be ill typed. In particular, omitting line 9 would result in a non-exhaustive pattern matching

(lines 3–8) because label Done can in principle be received along with Leaf and Node. A similar

issue would arise omitting line 13. Omitting both lines 9 and 13 would also be a problem. In search

of a typing derivation for receive_tree, OCaml would try to compute the intersection of the labels

handled by the two pattern matching constructs, only to find out that such intersection is empty.

We clean up and simplify send_tree and receive_tree using resumptions:

1 let rec send_tree t u =

2 match t with

1
The claim made in [31] that send_tree_aux is ill typed is incorrect. There exist typing derivations for send_tree_aux
proving that it has type α tree → T → T for every T that satisfies the equation T = ⊕[Leaf : T , Node : !α;T , . . .].

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:25

3 | Leaf → select `Leaf u

4 | Node (x, l, r) → let u = select `Node u in
5 let u = send x u in
6 let u = send_tree l @> u in (* resumption *)

7 let u = send_tree r u in u

8 let rec receive_tree u =

9 match branch u with
10 | `Leaf u → Leaf, u

11 | `Node u → let x, u = receive u in
12 let l, u = receive_tree @= u in (* resumption *)

13 let r, u = receive_tree u in Node (x, l, r), u

In send_treewe use the simple resumption @> since the function only returns the endpoint u. In
receive_treewe use @= since the function returns the received tree in addition to the continuation
endpoint. We no longer need an explicit sentinel message Done that marks the end of the message

stream because the protocol now specifies exactly the number of messages needed to serialize a

tree. For the same reason, the catch-all cases in receive_tree are no longer necessary. For these

functions, OCaml respectively infers the types α tree → [Tcf]ϱ → [1]ϱ and [Tcf]ϱ → α tree × [1]ϱ
where Tcf is the session type such that

Tcf = ⊕[Leaf : 1, Node : !α;Tcf;Tcf]

The leftmost occurrence of ; in !α;Tcf;Tcf is due to the communication primitive (either

_send or _receive) and the rightmost one to the resumption.

Note that the only difference between the revised send_tree and the homonymous function

presented in [31] is the occurrence of @>. All the other examples in [31] can be patched similarly

by resuming endpoints at the appropriate places.

7 RELATEDWORK
The work most closely related to ours is [31] in which Thiemann and Vasconcelos introduce

context-free session types, develop their metatheory, and prove that session type equivalence is

decidable. The main difference between Thiemann and Vasconcelos’ type system and our own

concerns the treatment of sequential compositions in session types. In [31], the only typing rules

that can eliminate a sequential composition T;S are those concerning send and receive. As a
consequence, all the interesting typing derivations use the monoidal laws of sequential composition

in a fundamental way: when typing an occurrence of send or receive, sequential compositions

should be associated so thatT is the single input/output operation being performed; when typing a

(recursive) function application, sequential compositions should be associated so that T describes

the whole prefix of the protocol carried out by the function and S the residual protocol. The different
ways sequential compositions must be associated in different parts of the code are dealt with a type

system featuring (1) a structural rule that rearranges sequential compositions in session types and

(2) support for polymorphic recursion. In contrast, our approach relies on the use of resumptions

inserted in the code. Resumptions tie sequential compositions in session types to the structure of

the code that uses endpoints with those types. As a consequence, equivalent session types (in the

sense of Definition 3.2) are no longer interchangeable, but the resulting type system does not need

structural rules nor polymorphic recursion and so it is more amenable to be embedded in a host

programming language taking advantage of its type inference engine.

Overall, we think that our approach strikes a good balance between expressiveness and flexibility:

resumptions are unobtrusive and typically sparse and they give the programmer complete control

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:26 Luca Padovani

over the occurrences of sequential compositions in session types, resolving the ambiguities that arise

with context-free session type inference (Sections 1 and 6). Also, the locations where resumptions

should be used in the code are typically easy to spot thanks to a simple but effective rule of thumb:

place resumptions in recursive applications that are not in tail position. The rationale for this rule

is simple: the recursive call carries out some prefix of a communication protocol; the fact that

the call is not in tail position suggests that after the call some further suffix of the protocol also

needs to be carried out. All the examples we have discussed, including the ones in [31], can be

addressed applying this rule. Finally, the resumption-based handling of sequential compositions

allows subtyping to some extent, despite the fact that subtyping for context-free session types in

undecidable in general (Proposition 3.4). Indeed, as explained in the implementation of FuSe [26],

the type parameters of endpoint types can be decorated with variance annotations allowing OCaml’s
subtyping to be lifted at the level of session types. This reduced form of subtyping does not account

for the monoidal and distributive laws of sequential composition, but it includes the well-known

co-/contra-variance properties of branches and choices [9] which happen to be useful in practice.

A potential limitation of our approach compared to [31] is that we require processes operating

on peer endpoints of a session to mirror each other as far as the placement of resumptions is

concerned. For example, a process using an endpoint with type (!int;1);?bool may interact with

another process that uses an endpoint with type (?int;1);!bool, but not with a process using

an endpoint with type ?int;!bool even though (?int;1);!bool ∼ ?int;!bool. Both processes

must resume the endpoints they use after the exchange of the first message. Understanding the

practical impact of this limitation requires an extensive analysis of code that deals with context-free

protocols. We have not pursued such investigation, but we can make two observations nonetheless.

First, resumptions are often used in combination with recursion and interacting recursive processes

already tend to mirror each other by their own recursive nature. We can see this by comparing

send_tree and receive_tree (Section 6) and also by looking at the examples in [31]. Second, it is

easy to provide explicit coercions corresponding to laws of ∼. Such coercions, whose soundness is

already accounted for by Theorem 4.5, can be used to rearrange sequential compositions in session

types. For example, a coercion (A;1);B → A;B composed with a function ?int;!bool → α would

turn it into a function (?int;1);!bool → α. The use of coercions augments the direct involvement

of the programmer, but is a low-cost solution to broaden the cases already addressed by plain

resumptions. One natural question to ask is whether the type error raised by OCaml due to a missing

coercion would provide any hint as to where the coercion should be placed. Unfortunately, the

answer is often negative in this respect. The point is that a session type error due to a mismatch

between the protocols followed by client and server is usually flagged at the point in the code

where client and server are connected together. This may be very far away from the point (in the

body of either client or server) where the coercion may be necessary. This is a notable case where

native session type support from the compiler may help producing meaningful error messages,

something that a library implementation falls short of.

FuSe [26] is an OCaml implementation of binary sessions that combines static protocol enforce-

ment with runtime checks for endpoint linearity [13, 33] and resumption safety (Section 5.2).

Support for sequential composition of session types based on resumptions was originally intro-

duced in FuSe to describe iterative protocols, showing that a class of unbounded protocols could be

described without resorting to (equi-)recursive types. The work of Thiemann and Vasconcelos [31]

prompted us to formalize resumptions and to study their implications for the precision of protocol

descriptions. This led to the discovery of a bug in early versions of FuSewhere peer endpoints were
given the same identity (cf. the discussion at the end of Example 4.11) and then to the development

of a fully static typing discipline to enforce resumption safety (Sections 3 and 5.3).

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:27

The need to express protocols going beyond regular expressions has been recognized also

by Igarashi and Kobayashi [15], who devise a type system for analyzing the usage protocols of

resources such as memory regions, locks and files. Interestingly, their type system makes no use of

polymorphic recursion (unlike Thiemann and Vasconcelos [31]) nor of specific operators akin to

resumptions (unlike our approach). The type system is also generic, in the sense that it enables

reasoning on arbitrary resources, each characterized by a specific set of operations. Igarashi and

Kobayashi [15] present an inference algorithm for their type system. In contrast, our approach

addresses the problem of providing an off-the-shelf solution to context-free session type inference

using a general-purpose programming language.

The use of type variables abstracting over the identity of endpoints has been inspired by works

on regions and linear types [2, 36], by L
3
[1], a language with locations supporting strong updates,

and Alms [32, 34], an experimental general-purpose programming language with affine types. In

these works, abstract identities are used to associate an object with the region it belongs to [2, 36],

or to link the (non-linear) reference to a mutable object with the (linear or affine) capability for

accessing it. Interestingly, in these works separating the reference from the capability (hence the

use of abstract identities) is not really a necessity, but rather a technique that results in increased

flexibility: the reference can be aliased without restrictions to create cyclic graphs [1] or to support

“dirty” operations on shared data structures [34]. In our case, endpoint identities are crucial for

checking the safety of resumptions. As one of the anonymous reviewers pointed out, the technique

of using type variables abstracting over regions can be traced back to the implementation of stateful

computations in Haskell [20], which was elaborated and proven safe by Moggi and Sabry [22].

ACKNOWLEDGMENTS
The author is grateful to the anonymous reviewers whose comments and questions have led to

substantial improvements in both content and presentation of the article. The author has also

benefited from discussions with, and references provided by, Naoki Kobayashi, Peter Thiemann

and Vasco T. Vasconcelos.

REFERENCES
[1] Amal Ahmed,Matthew Fluet, and GregMorrisett. 2007. L

3
: A Linear Languagewith Locations. Fundamenta Informaticae

77, 4 (2007), 397–449.

[2] Arthur Charguéraud and François Pottier. 2008. Functional translation of a calculus of capabilities. In Proceedings
of the 13th ACM SIGPLAN international conference on Functional programming (ICFP’08). ACM, 213–224. DOI:https:
//doi.org/10.1145/1411204.1411235

[3] Bruno Courcelle. 1983. Fundamental Properties of Infinite Trees. Theoretical Computer Science 25 (1983), 95–169. DOI:
https://doi.org/10.1016/0304-3975(83)90059-2

[4] Ornela Dardha, Elena Giachino, and Davide Sangiorgi. 2017. Session types revisited. Information and Computation 256

(2017), 253–286. DOI:https://doi.org/10.1016/j.ic.2017.06.002
[5] Romain Demangeon and Kohei Honda. 2011. Full Abstraction in a Subtyped pi-Calculus with Linear Types. In

Proceedings of the 22nd International Conference on Concurrency Theory (CONCUR’11) (LNCS), Vol. 6901. Springer,
280–296. DOI:https://doi.org/10.1007/978-3-642-23217-6_19

[6] Gert Florijn. 1995. Object Protocols as Functional Parsers. In Proceedings of the 9th European Conference on Object-
Oriented Programming (ECOOP’95) (LNCS), Vol. 952. Springer, 351–373. DOI:https://doi.org/10.1007/3-540-49538-X_17

[7] Emily P. Friedman. 1976. The Inclusion Problem for Simple Languages. Theoretical Computer Science 1, 4 (1976),

297–316. DOI:https://doi.org/10.1016/0304-3975(76)90074-8
[8] Alain Frisch and Jacques Garrigue. 2010. First-class modules and composable signatures in Objective Caml 3.12. In

ACM SIGPLAN Workshop on ML.
[9] Simon Gay and Malcolm Hole. 2005. Subtyping for Session Types in the π -calculus. Acta Informatica 42, 2-3 (2005),

191–225. DOI:https://doi.org/10.1007/s00236-005-0177-z
[10] Simon J. Gay and Vasco T. Vasconcelos. 2010. Linear type theory for asynchronous session types. Journal of Functional

Programming 20, 1 (2010), 19–50. DOI:https://doi.org/10.1017/S0956796809990268

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1145/1411204.1411235
https://doi.org/10.1145/1411204.1411235
https://doi.org/10.1016/0304-3975(83)90059-2
https://doi.org/10.1016/j.ic.2017.06.002
https://doi.org/10.1007/978-3-642-23217-6_19
https://doi.org/10.1007/3-540-49538-X_17
https://doi.org/10.1016/0304-3975(76)90074-8
https://doi.org/10.1007/s00236-005-0177-z
https://doi.org/10.1017/S0956796809990268

1:28 Luca Padovani

[11] Kohei Honda. 1993. Types for dyadic interaction. In Proceedings of the 4th International Conference on Concurrency
Theory (CONCUR’93) (LNCS), Vol. 715. Springer, 509–523. DOI:https://doi.org/10.1007/3-540-57208-2_35

[12] Kohei Honda, Vasco T. Vasconcelos, and Makoto Kubo. 1998. Language primitives and type disciplines for structured

communication-based programming. In Proceedings of the 7th European Symposium on Programming (ESOP’98) (LNCS),
Vol. 1381. Springer, 122–138. DOI:https://doi.org/10.1007/BFb0053567

[13] Raymond Hu and Nobuko Yoshida. 2016. Hybrid Session Verification through Endpoint API Generation. In Proceedings
of the 19th International Conference on Fundamental Approaches to Software Engineering (FASE’16) (LNCS), Vol. 9633.
Springer, 401–418. DOI:https://doi.org/10.1007/978-3-662-49665-7_24

[14] Hans Hüttel, Ivan Lanese, Vasco T. Vasconcelos, Luís Caires, Marco Carbone, Pierre-Malo Deniélou, Dimitris Mostrous,

Luca Padovani, António Ravara, Emilio Tuosto, Hugo Torres Vieira, and Gianluigi Zavattaro. 2016. Foundations of

Session Types and Behavioural Contracts. Comput. Surveys 49, 1 (2016), 3. DOI:https://doi.org/10.1145/2873052
[15] Atsushi Igarashi and Naoki Kobayashi. 2005. Resource Usage Analysis. ACM Transactions on Programming Languages

and Systems 27, 2 (March 2005), 264–313. DOI:https://doi.org/10.1145/1057387.1057390
[16] A. J. Kfoury, Jerzy Tiuryn, and Pawel Urzyczyn. 1993. Type Reconstruction in the Presence of Polymorphic Recursion.

ACM Transactions on Programming Languages and Systems 15, 2 (1993), 290–311. DOI:https://doi.org/10.1145/169701.
169687

[17] Naoki Kobayashi. 2002. Type Systems for Concurrent Programs. In 10th Anniversary Colloquium of UNU/IIST (LNCS),
Vol. 2757. Springer, 439–453. DOI:https://doi.org/10.1007/978-3-540-40007-3_26 Extended version available at

http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf.

[18] Naoki Kobayashi, Benjamin C. Pierce, and David N. Turner. 1999. Linearity and the pi-calculus. ACM Transactions on
Programming Languages and Systems 21, 5 (1999), 914–947. DOI:https://doi.org/10.1145/330249.330251

[19] A. J. Korenjak and John E. Hopcroft. 1966. Simple Deterministic Languages. In Proceedings of 7th Annual Symposium on
Switching and Automata Theory (SWAT’66). IEEE Computer Society, 36–46. DOI:https://doi.org/10.1109/SWAT.1966.22

[20] John Launchbury and Simon L. Peyton Jones. 1995. State in Haskell. Lisp and Symbolic Computation 8, 4 (1995),

293–341.

[21] John C. Mitchell and Gordon D. Plotkin. 1988. Abstract Types Have Existential Type. ACM Transactions on Programming
Languages and Systems 10, 3 (1988), 470–502. DOI:https://doi.org/10.1145/44501.45065

[22] Eugenio Moggi and Amr Sabry. 2001. Monadic encapsulation of effects: a revised approach (extended version). Journal
of Functional Programming 11, 6 (2001), 591–627. DOI:https://doi.org/10.1017/S0956796801004154

[23] Dimitris Mostrous, Nobuko Yoshida, and Kohei Honda. 2009. Global Principal Typing in Partially Commutative

Asynchronous Sessions. In Proceedings of the 18th European Symposium on Programming (ESOP’09) (LNCS), Vol. 5502.
Springer, 316–332. DOI:https://doi.org/10.1007/978-3-642-00590-9_23

[24] Oscar Nierstrasz. 1993. Regular Types for Active Objects. In Proceedings of the 8th Annual Conference on Object-Oriented
Programming Systems, Languages, and Applications (OOPSLA’93). ACM, 1–15. DOI:https://doi.org/10.1145/165854.
167976

[25] Luca Padovani. 2016. FuSe – A Simple Library Implementation of Binary Sessions. (2016). Retrieved May 27, 2018

from http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html

[26] Luca Padovani. 2017. A Simple Library Implementation of Binary Sessions. Journal of Functional Programming 27

(2017). DOI:https://doi.org/10.1017/S0956796816000289
[27] Luca Padovani. 2017. Context-Free Session Type Inference. In Proceedings of the 26th European Symposium on

Programming (ESOP’17) (LNCS), Vol. 10201. Springer, 804–830. DOI:https://doi.org/10.1007/978-3-662-54434-1_30
[28] António Ravara and Vasco T. Vasconcelos. 2000. Typing Non-uniform Concurrent Objects. In Proceedings of the

11th International Conference on Concurrency Theory (CONCUR’00) (LNCS), Vol. 1877. Springer, 474–488. DOI:https:
//doi.org/10.1007/3-540-44618-4_34

[29] John H. Reppy. 1999. Concurrent Programming in ML. Cambridge University Press.

[30] Mario Südholt. 2005. A Model of Components with Non-regular Protocols. In Revised Selected Papers of the 4th
International Workshop on Software Composition (SC’05) (LNCS), Vol. 3628. Springer, 99–113. DOI:https://doi.org/10.
1007/11550679_8

[31] Peter Thiemann and Vasco T. Vasconcelos. 2016. Context-Free Session Types. In Proceedings of the 21st International
Conference on Functional Programming (ICFP’16). ACM, 462–475. DOI:https://doi.org/10.1145/2951913.2951926

[32] Jesse A. Tov. 2012. Practical Programming with Substructural Types. Ph.D. Dissertation. Northeastern University.

[33] Jesse A. Tov and Riccardo Pucella. 2010. Stateful Contracts for Affine Types. In Proceedings of the 19th European Sympo-
sium on Programming (ESOP’10) (LNCS), Vol. 6012. Springer, 550–569. DOI:https://doi.org/10.1007/978-3-642-11957-6_
29

[34] Jesse A. Tov and Riccardo Pucella. 2011. Practical affine types. In Proceedings of the 38th Annual Symposium on Principles
of Programming Languages (POPL’11). ACM, 447–458. DOI:https://doi.org/10.1145/1926385.1926436

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1007/3-540-57208-2_35
https://doi.org/10.1007/BFb0053567
https://doi.org/10.1007/978-3-662-49665-7_24
https://doi.org/10.1145/2873052
https://doi.org/10.1145/1057387.1057390
https://doi.org/10.1145/169701.169687
https://doi.org/10.1145/169701.169687
https://doi.org/10.1007/978-3-540-40007-3_26
http://www.kb.ecei.tohoku.ac.jp/~koba/papers/tutorial-type-extended.pdf
https://doi.org/10.1145/330249.330251
https://doi.org/10.1109/SWAT.1966.22
https://doi.org/10.1145/44501.45065
https://doi.org/10.1017/S0956796801004154
https://doi.org/10.1007/978-3-642-00590-9_23
https://doi.org/10.1145/165854.167976
https://doi.org/10.1145/165854.167976
http://www.di.unito.it/~padovani/Software/FuSe/FuSe.html
https://doi.org/10.1017/S0956796816000289
https://doi.org/10.1007/978-3-662-54434-1_30
https://doi.org/10.1007/3-540-44618-4_34
https://doi.org/10.1007/3-540-44618-4_34
https://doi.org/10.1007/11550679_8
https://doi.org/10.1007/11550679_8
https://doi.org/10.1145/2951913.2951926
https://doi.org/10.1007/978-3-642-11957-6_29
https://doi.org/10.1007/978-3-642-11957-6_29
https://doi.org/10.1145/1926385.1926436

Context-Free Session Type Inference 1:29

[35] Philip Wadler. 2014. Propositions as sessions. Journal of Functional Programming 24, 2-3 (2014), 384–418. DOI:
https://doi.org/10.1017/S095679681400001X

[36] David Walker and Kevin Watkins. 2001. On Regions and Linear Types. In Proceedings of the 6th International Conference
on Functional Programming (ICFP’01). ACM, 181–192. DOI:https://doi.org/10.1145/507635.507658

[37] Andrew K.Wright andMatthias Felleisen. 1994. A Syntactic Approach to Type Soundness. Information and Computation
115, 1 (1994), 38–94. DOI:https://doi.org/10.1006/inco.1994.1093

[38] Jeremy Yallop and Oleg Kiselyov. 2010. First-class modules: hidden power and tantalizing promises. In ACM SIGPLAN
Workshop on ML.

A PROPERTIES OF SUBTYPING
Proposition 3.3. The following properties hold:
(1) (associativity) T;(S;R) ∼ (T;S);R;
(2) (unit) 1;T ∼ T;1 ∼ T .
(3) (distributivity) &[Ci : Ti]i ∈I;T ∼ &[Ci : Ti;T] and ⊕[Ci : Ti]i ∈I;T ∼ ⊕[Ci : Ti;T];
(4) (pre-congruence) T ≲ T ′ and S ≲ S ′ imply T;S ≲ T ′;S ′.

Proof. All properties are proved by simple applications of the coinduction principle. For illus-

trative purposes we focus on item (4). It suffices to show that

R
def
= ≲ ∪ {(T1;T2, S1;S2) | T1 ≲ S1 ∧T2 ≲ S2}

is included in ≲. Suppose (T1;T2, S1;S2) ∈ R where Ti ≲ Si for i = 1, 2. We reason by cases on the

conditions 1–4 of Definition 3.2 concerning Ti and Si . We omit the cases for output actions which

are analogous to those for input actions:

• Suppose terminated(T1). From condition 1 of Definition 3.2 we deduce terminated(S1). By

definition of terminated(·) we conclude terminated(T1;T2) and terminated(S1;S2), hence

condition 1 of Definition 3.2 is satisfied.

• Suppose done(T1) and done(T2). From condition 2 of Definition 3.2 we deduce done(S1)

and done(S2). By definition of done(·) we conclude done(T1;T2) and done(S1;S2), hence

condition 2 of Definition 3.2 is satisfied.

• Suppose done(T1) and T2

?ω
−→ T ′

2
. From condition 3 of Definition 3.2 we deduce done(S1) and

S2

?ω
−→ S ′

2
andT ′

2
≲ S ′

2
. We conclude that condition 3 of Definition 3.2 is satisfied by observing

that T1;T2

?ω
−→ T ′

2
and S1;S2

?ω
−→ S ′

2
and by definition of R.

• Suppose T1

?ω
−→ T ′

1
. From condition 3 of Definition 3.2 we deduce S1

?ω
−→ S ′

1
and T ′

1
≲ S ′

1
. We

conclude that condition 3 of Definition 3.2 is satisfied by observing that T1;T2

?ω
−→ T ′

1
;T2 and

S1;S2

?ω
−→ S ′

1
;S2 and by definition of R. □

Next we have a standard result relating subtyping and duality. The result has an important

corollary because it guarantees that duality preserves equivalence, that is T ∼ S implies T ∼ S .

Proposition A.1. If T ≲ S , then S ≲ T .

Proof. It suffices to show that R
def
= {(S,T) | T ≲ S} satisfies the conditions of Definition 3.2.

The details are easy and omitted. □

Proposition 3.4. The relation ∼ is decidable, whereas ≲ is not.

Proof. Decidability of ∼ has already been shown in [31]. We prove the undecidability of ≲ by

reducing the inclusion problem for simple deterministic languages [19] to subtyping for context-

free session types. The inclusion problem for simple deterministic languages has been shown

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

https://doi.org/10.1017/S095679681400001X
https://doi.org/10.1145/507635.507658
https://doi.org/10.1006/inco.1994.1093

1:30 Luca Padovani

undecidable by Friedman [7]. Following the terminology of Korenjak and Hopcroft [19], we say

that a context-free grammar G = (V, T, S,P) is an s-grammar if:
• every production in P is of the form Z → aY1 · · ·Yn where n ≥ 0, Z ∈ V is called head of the

production, Yi ∈ V for all 1 ≤ i ≤ n, and a ∈ T is called handle of the production;
• there are no two distinct productions in P with the same head Z and the same handle a.

The basic idea of the proof is to associate each s-grammar G with a session type st(G) such that

the language L(G) generated by G coincides with the complete traces of st(G). Then, the inclusion

problem between two languages respectively generated by the grammars G1 and G2 corresponds

to the relation st(G1) ≲ st(G2).

To define st(G) fromG = (V, T, S, P)we assume, without loss of generality, thatV = {X1, . . . ,Xn},

T = {C1, . . . , Cm} and S = X1. From G we define the (finite) system of equations

Xi = &[C : Y1; · · · ;Yk]Xi→CY1 · · ·Yk ∈P (1 ≤ i ≤ n)

where the sequential composition Y1; · · · ;Yk is 1 when k = 0. We appeal to Courcelle [3] to deduce

that this system of equations has a unique solution {X1 7→ T1, . . . ,Xn 7→ Tn} and we identify st(G)

with T1, that is the component of the solution corresponding to the start symbol of G.

Now it is a simple exercise to verify that

st(G)
?C1

−→ · · ·
?Ck
−→ 1 ⇐⇒ C1 · · · Ck ∈ L(G)

and therefore that

L(G1) ⊆ L(G2) ⇐⇒ st(G1) ≲ st(G2)

since external choices are covariant with respect to subtyping (Definition 3.2). This is enough to

conclude that ≲ is undecidable. □

B SOUNDNESS OF THE TYPE SYSTEM
B.1 Auxiliary notions for type environments
Note that every environment Γ such that Γ :: U is trivially balanced, there are no endpoints in its

domain.

Proposition B.1. Let Γ
µ

7−→ Γ′. The following properties hold:
(1) If Γ is ground/well formed/balanced, then so is Γ′.
(2) If Γ + Γ′′ is defined, then so is Γ′ + Γ′′ and Γ + Γ′′

µ
7−→ Γ′ + Γ′′.

Proof. Trivial from Definitions 4.3 and 4.4. □

B.2 Subject reduction for expressions
Definition B.2 (subkinding). Let ≤ be the least total order on kinds such that U ≤ L. We say that

κ1 is subkind of κ2 if κ1 ≤ κ2.

The following lemma relates the kind of a value with that of the environment in which it is

typed.

Lemma B.3. If ∆; Γ ⊢ v : t and t :: κ, then Γ :: κ.

Proof. By induction on the structure of v and by cases on its shape.

Case v = c v1 · · ·vn where c ∈ {(), pair, C, fix, fork, _send, select}. From [t-app] and [t-const] we

deduce Γ = Γ0 + Γ1 + · · ·+ Γn and Γ0 :: U and ∆; Γ0 ⊢ c : t1 →
κ1 · · · →κn−1 tn →κn t and ∆; Γi ⊢ vi : ti

for every 1 ≤ i ≤ n. By inspecting Table 3 we observe that t :: κ implies ti :: κ for every 1 ≤ i ≤ n.
By induction hypothesis we deduce Γi :: κ for every 1 ≤ i ≤ n, hence we conclude Γ :: κ.

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:31

Case v = λx .e . From [t-fun] we deduce t = t1 →κ′

t2 where κ
′ ≤ κ and Γ :: κ ′

, hence we conclude

Γ :: κ.

Case v = Λϱ.w . From [t-id-fun] we deduce t = ∀ϱ.s and ∆, ϱ; Γ ⊢ w : s . From the hypothesis t :: κ
and Definition 3.5 we deduce s :: κ. By induction hypothesis we conclude Γ :: κ.

Case v = ε . Then Γ = Γ′, ε : t . From [t-name] we deduce Γ′ :: U hence we conclude Γ :: κ.

Case v = ⌈ε,w⌉. From [t-pack] we deduce t = ∃ϱ.s and ∆; Γ ⊢ w : s{ε/ϱ}. From the hypothesis

t :: κ and Definition 3.5 we deduce s :: κ hence s{ε/ϱ} :: κ. By induction hypothesis we conclude

Γ :: κ. □

Hereafter we write fn(e) for the set of names occurring free in e .

Lemma B.4. If ∆; Γ ⊢ e : t , then fn(e) ⊆ dom(Γ).

Proof. A simple induction on the derivation of ∆; Γ ⊢ e : t . □

The type system enjoys an almost standard weakening property. Note that weakening is allowed

for unlimited environments only.

Lemma B.5 (weakening). If ∆; Γ1 ⊢ e : t and Γ1 + Γ2 is defined and Γ2 :: U, then ∆; Γ1 + Γ2 ⊢ e : t .

Proof. A simple induction on the derivation of ∆; Γ1 ⊢ e : t . □

Lemma B.6 (value substitution). If (1) ∆; Γ1,x : s ⊢ e : t and (2) ∆; Γ2 ⊢ v : s and (3) Γ1 + Γ2 is
defined, then ∆; Γ1 + Γ2 ⊢ e{v/x} : t .

Proof. By induction on the derivation of (1) and by cases on the last rule applied. We only

discuss a few significant cases.

Case [t-const]. Then e = c for some constant c and (Γ1,x : s) :: U. In particular, s :: U. From
Lemma B.3 we deduce Γ2 :: U and we conclude with Lemma B.5.

Case [t-name]. Then e = u and Γ1,x : s = Γ′,u : s ′ where Γ′ :: U. We distinguish three subcases,

depending on whether u is an endpoint or a variable other than x or x itself. If u = ε or u = y , x ,
then s :: U. From Lemma B.3 we deduce Γ2 :: U and we conclude with Lemma B.5. If u = x , then
Γ1 = Γ′ and e{v/x} = v and we conclude from (2) and Lemma B.5.

Case [t-fun]. Then e = λy.e ′. Without loss of generality we may assume that x , y, hence from
[t-fun] we deduce t = t1 →

κ t2 and ∆; Γ1,x : s,y : t1 ⊢ e
′

: t2 and (Γ1,x : s) :: κ. From Lemma B.3 we

deduce Γ2 :: κ. By induction hypothesis we deduce ∆; (Γ1 + Γ2),y : t1 ⊢ e
′{v/x} : t2 where Γ1 + Γ2 :: κ.

We conclude with one application of [t-fun].

Case [t-app]. Then e = e1 e2 and Γ,x : s = Γ11 + Γ12 where ∆; Γ11 ⊢ e1 : t ′ →κ t and ∆; Γ12 ⊢ e2 : t ′. We

distinguish three sub-cases:

• If x ∈ dom(Γ11) \ dom(Γ12), then from Lemma B.4 we deduce x < fn(e2) and Γ11 = Γ′
11
,x : s .

By induction hypothesis we deduce ∆; Γ′
11
+ Γ2 ⊢ e1{v/x} : t ′ →κ t and we conclude with

one application of [t-app].

• If x ∈ dom(Γ12) \ dom(Γ11), then from Lemma B.4 we deduce x < fn(e1) and Γ12 = Γ′
12
,x : s .

By induction hypothesis we deduce ∆; Γ′
12
+ Γ2 ⊢ e2{v/x} : t ′ and we conclude with one

application of [t-app].

• If x ∈ dom(Γ11) ∩ dom(Γ12), then Γ11 = Γ′
11
,x : s and Γ12 = Γ′

12
,x : s . From Definition 4.1 we

deduce s :: U and, from Lemma B.3, also Γ2 :: U. Therefore, Γ2+Γ2 = Γ2, again by Definition 4.1.

By induction hypothesis we derive ∆; Γ′
11
+Γ2 ⊢ e1{v/x} : t ′ →κ t and ∆; Γ′

12
+Γ2 ⊢ e2{v/x} : t ′.

We conclude with one application of [t-app]. □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:32 Luca Padovani

Lemma B.7 (identity substitution). If (1) ∆, ϱ; Γ ⊢ e : t and (2) ε ∈ ∆, then ∆; Γ{ε/ϱ} ⊢ e{ε/ϱ} :

t{ε/ϱ}.

Proof. A simple induction on the derivation of (1). □

Theorem 4.5 (subject reduction for expressions). Let ∆; Γ ⊢ e : t where Γ is ground and well
formed. If e −→ e ′, then ∆; Γ′ ⊢ e ′ : t for some Γ′ ∼ Γ.

Proof. By cases on the rule used to derive e −→ e ′. We only discuss a few representative cases.

Case [R1]. Then e = (λx .e ′′) v −→ e ′′{v/x} = e ′. From [t-app] we deduce that Γ = Γ1 + Γ2 and

∆; Γ1 ⊢ λx .e ′′ : s →κ t and ∆; Γ2 ⊢ v : s . From [t-fun] we deduce that ∆; Γ1,x : s ⊢ e ′′ : t and Γ1 :: κ.

Using Lemma B.6 we deduce ∆; Γ1 + Γ2 ⊢ e
′′{v/x} : t and we conclude by taking Γ′

def
= Γ.

Case [R2]. Then e = (Λϱ.v) [ε] −→ v{ε/ϱ} = e ′. From [t-id-app] we deduce that ∆; Γ ⊢ Λϱ.v : ∀ϱ.s
and ε ∈ ∆ and t = s{ε/ϱ}. From [t-id-fun] we deduce that ∆, ϱ; Γ ⊢ v : s . From Lemma B.7 we deduce

∆; Γ{ε/ϱ} ⊢ v{ε/ϱ} : s{ε/ϱ}. From the (implicit) hypothesis that every typing judgment is well

formed we deduce ϱ < fid(Γ), hence Γ{ε/ϱ} = Γ. We conclude by taking Γ′
def
= Γ.

Case [R3]. Then e = fixv w −→ v (fixv)w = e ′. From [t-app] and the type scheme of fixwe deduce
that Γ = Γ1 + Γ2 + Γ3 and ∆; Γ1 ⊢ fix : ((s → t) → s → t) → s → t and ∆; Γ2 ⊢ v : (s → t) → s → t
and ∆; Γ3 ⊢ w : s . From Lemma B.3 we deduce Γ1 :: U and Γ2 :: U. In particular, Γ2 = Γ2 + Γ2. From

[t-app] we deduce ∆; Γ1 + Γ2 ⊢ v (fix v) : s → t . From [t-app] we deduce ∆; Γ ⊢ e ′ : t and we conclude

by taking Γ′
def
= Γ.

Case [R6]. Then e = let ⌈ϱ,x⌉ = ⌈ε,v⌉ in e ′′ −→ e ′′{ε/ϱ}{v/x} = e ′. From [t-unpack] we deduce

Γ = Γ1 + Γ2 and ∆; Γ1 ⊢ ⌈ε,v⌉ : ∃ϱ.s and ∆, ϱ; Γ2,x : s ⊢ e ′′ : t . From [t-pack] we deduce ∆; Γ1 ⊢

v : s{ε/ϱ} and ε ∈ ∆. From the (implicit) assumption that every typing judgment is well formed

we deduce ϱ < fid(Γ2) ∪ fid(t), hence Γ2{ε/ϱ} = Γ2 and t{ε/ϱ} = t . From Lemma B.7 we deduce

∆; Γ2,x : s{ε/ϱ} ⊢ e ′′{ε/ϱ} : t . From Lemma B.6 we deduce ∆; Γ1 + Γ2 ⊢ e ′′{ε/ϱ}{v/x} : t and we

conclude by taking Γ′
def
= Γ.

Case [R7]. Then e = {(v,ε)}ε −→ (v,ε) = e ′. From [t-resume] and the hypothesis that Γ is well

formed we deduce Γ = Γ′′, ε : [T;S]ε and ∆; Γ′′, ε : [T]ε ⊢ (v,ε) : s × [1]ε and t = s × [S]ε . From
[t-app] and the type scheme of pair we deduce that Γ′′, ε : [T]ε = Γ0 + Γ1 + Γ2 and ∆; Γ0 ⊢ pair :

s → [1]ε →κ s × [1]ε and ∆; Γ1 ⊢ v : s and ∆; Γ2 ⊢ ε : [1]ε where Γ0 :: U and s :: κ. From [t-name] we

deduce that T = 1. We conclude by taking Γ′
def
= Γ′′, ε : [S]ε and by observing that Γ ∼ Γ′. □

Next are two results that allow us to reason on the typability of a sub-expression that occurs

in the hole of an evaluation context and on the fact that such sub-expression can be replaced by

another one having the same type.

Lemma B.8 (typability of subterms). If D is a derivation of ∆; Γ ⊢ E[e] : t , then there exist Γ1,
Γ2, and s such that Γ = Γ1 + Γ2 and D has a sub-derivation D ′ concluding ∆; Γ1 ⊢ e : s and the position
of D ′ in D corresponds to the position of [] in E.

Proof. By induction on E. We only discuss two cases, the others being analogous.

Case E = []. We conclude by taking Γ1

def
= Γ, Γ2

def
= ∅, and s

def
= t . The sought sub-derivation D ′

is

D itself.

Case E = E ′ e ′. From [t-app] we deduce that there exist Γ′
1
, Γ′

2
, and t ′ such that Γ = Γ′

1
+ Γ′

2
and

∆; Γ′
1
⊢ E ′[e] : t ′ →κ t and ∆; Γ′

2
⊢ e ′ : t ′. Let D ′′

be the sub-derivation concluding ∆; Γ′
1
⊢ E ′[e] :

t ′ →κ t . By induction hypothesis there exist Γ1, Γ
′′
2
, and s such that Γ′

1
= Γ1 + Γ′′

2
and D ′′

has a

sub-derivation D ′
concluding ∆; Γ1 ⊢ e : s such that the position of D ′

in D ′′
corresponds to the

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:33

position of [] in E ′
. We conclude by taking Γ2

def
= Γ′

2
+ Γ′′

2
and observing that D ′

is a sub-derivation

of D and that its position within D corresponds to the position of [] in E. □

Lemma B.9 (replacement). If:
(1) D is a derivation of ∆; Γ1 + Γ2 ⊢ E[e] : t ,
(2) D ′ is a sub-derivation of D concluding that ∆; Γ2 ⊢ e : s ,
(3) the position of D ′ in D corresponds to the position of [] in E,
(4) ∆; Γ3 ⊢ e

′
: s ,

(5) Γ1 + Γ3 is defined,
then ∆; Γ1 + Γ3 ⊢ E[e ′] : t .

Proof. By induction on E. □

B.3 Progress for expressions
We provide a syntactic characterization of those expressions that do not reduce further. These are

not necessarily values, for expressions may contain redexes involving primitives that reduce only

at the level of processes.

Theorem 4.6 (progress for expressions). If Γ is ground and well formed and ∆; Γ ⊢ e : t and
e X−→, then either e is a value or e = E[K v] for some E, v ,w , and K generated by the grammar

K ::= forkw | create | _sendw | _receive | selectw | branch | close

Proof. If e is a value there is nothing left to prove, so we assume that e is not a value and proceed
by induction on the structure of e and by cases on its shape. We only discuss a few representative

cases, the others being simpler or similar.

Case e = x . This case is impossible because Γ is ground.

Case e = e1 e2. Then Γ = Γ1 + Γ2 and ∆; Γ1 ⊢ e1 : s →κ t and ∆; Γ2 ⊢ e2 : s where Γ1 :: κ. We

further distinguish three subcases. If e1 is not a value, then by induction hypothesis we deduce that

e1 = E ′[K v] for some E ′
, K , and v and we conclude by taking E

def
= E ′ e2. If e1 is a value but e2

is not, then by induction hypothesis we deduce that e2 = E ′[K v] for some E ′
, K , and v and we

conclude by taking E
def
= e1 E

′
. If both e1 and e2 are values, we deduce that:

• e1 cannot be an abstraction or fix v , for otherwise e would reduce;

• e1 cannot be an identity abstraction or endpoint or package or (), C v , (v,w) because it has

an arrow type;

• e1 cannot be fix, fork, pair, C, _send, select, pair v or else e would be a value.

Then, e1 must be one of create, _receive, branch, forkw , _sendw , selectw , or close. We

conclude by taking E
def
= [], K

def
= e1, and v

def
= e2.

Case e = let x ,y = e1 in e2. Then ∆; Γ′ ⊢ e1 : t × s for some Γ′ ground and e1 X−→. Also, e1 cannot

be a value for the only values of type t × s are pairs whereas we know that e does not reduce. By
induction hypothesis we deduce that e1 = E ′[K v] for some E ′

, K , and v . We conclude by taking

E
def
= let x ,y = E ′ in e2.

Case e = {e ′}ε . Then Γ = Γ′, ε : [T;S]ε and ∆; Γ′, ε : [T]ε ⊢ e
′

: t × [1]ε for some e ′ X−→ and t . If e ′

is not a value, then by induction hypothesis we deduce that e ′ = E ′[K v] for some E ′
, K , and v and

we conclude by taking E
def
= {E ′}ε . If e

′
is a value, then e ′ = (v,w) for some v andw , for those are

the only values with a product type. Further, it must be the case thatw = ε , for endpoints are the
only values that can have type [1]ε and Γ is well formed by hypothesis. This is absurd because e
does not reduce, hence this case is impossible. □

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:34 Luca Padovani

B.4 Subject reduction for processes
The following results rely on an easy weakening property concerning the identity environment:

Lemma B.10. The following properties hold:
(1) If ∆; Γ ⊢ e : t , then ∆,∆′

; Γ ⊢ e : t ;
(2) If ∆; Γ ⊢ P , then ∆,∆′

; Γ ⊢ P .

Proof. By an easy induction on the respective derivations. □

The next result states the property that typing of processes is preserved by structural congruence.

Lemma B.11. If ∆; Γ ⊢ P and P ≡ Q , then ∆; Γ ⊢ Q .

Proof. An easy induction on the derivation of P ≡ Q and by cases on the last rule applied. □

Theorem 4.7. Let ∆; Γ ⊢ P where Γ is ground, well formed and balanced. If P
ℓ

−→ Q , then ∆; Γ′ ⊢ Q

for some Γ′ such that Γ
ℓ

Z=⇒ Γ′.

Proof. By induction on the derivation of P
ℓ

−→ Q and by cases on the last rule applied. We only

discuss a few representative cases.

Case [R8]. Then P = ⟨E[fork v w]⟩
τ

−→ ⟨E[()]⟩ | ⟨v w⟩ = Q . From [t-thread] we deduce ∆; Γ ⊢

E[fork v w] : unit. From Lemma B.8 we deduce that there exist Γ1, Γ2, and t such that Γ = Γ1 + Γ2

and ∆; Γ1 ⊢ fork v w : t . From [t-app] and the type scheme of fork we deduce that there exist s ,
Γ11, Γ12, and Γ13 such that ∆; Γ11 ⊢ fork : (s → unit) → s → unit and ∆; Γ12 ⊢ v : s → unit and

t = unit and ∆; Γ13 ⊢ w : s . From [t-const] we deduce Γ11 :: U. From Lemma B.9 and Lemma B.5 we

derive ∆; Γ11 + Γ2 ⊢ E[()] : unit. Using [t-app] we derive ∆; Γ12 + Γ13 ⊢ v w : unit. We conclude with

two applications of [t-thread], one application of [t-par], and taking Γ′
def
= Γ.

Case [R9]. Then P = ⟨E[create ()]⟩
τ

−→ (νa)⟨E[⌈a, (a,a)⌉]⟩ = Q where a is fresh. From [t-thread]

we deduce ∆; Γ ⊢ E[create ()] : unit. From Lemma B.8 we deduce that there exist Γ1, Γ2, and t
such that Γ = Γ1 + Γ2 and ∆; Γ1 ⊢ create () : t . From [t-app] and the type scheme of create we

deduce that there exist Γ11 and Γ12 such that ∆; Γ11 ⊢ create : unit → t and ∆; Γ12 ⊢ () : unit
where t = ∃ϱ.([T]ϱ × [T]ϱ) for some T and fid(t) ⊆ ∆. In particular, a,a < fid(t). Using [t-name]

and [t-app] we derive ∆,a,a;a : [T]a ,a : [T]a ⊢ (a,a) : [T]a × [T]a . Using [t-pack] we derive

∆,a,a;a : [T]a ,a : [T]a ⊢ ⌈a, (a,a)⌉ : ∃ϱ.([T]ϱ×[T]ϱ). From Lemma B.9 and Lemma B.10 we derive

∆,a,a; Γ,a : [T]a ,a : [T]a ⊢ E[⌈a, (a,a)⌉] : unit. We conclude with one application of [t-thread]

and one application of [t-session], recalling that protocol duality is an involution, that ∼ is reflexive,

and taking Γ′
def
= Γ.

Case [R10]. Then P = ⟨E[_send v ε]⟩ | ⟨E ′[_receive ε]⟩
ε

−→ ⟨E[ε]⟩ | ⟨E ′[(v,ε)]⟩ = Q . From [t-par]

and [t-thread] we deduce Γ = Γ1 + Γ2 and ∆; Γ1 ⊢ E[_send v ε] : unit and ∆; Γ2 ⊢ E ′[_receive ε] :

unit. From the hypothesis that Γ is well formed, from Lemma B.8, [t-app] and the type scheme of

_send we deduce the following facts:

• Γ1 = Γ10 + Γ11 + Γ12 + Γ13;

• ∆; Γ11 ⊢ _send : t → [!t]ε →
κ [1]ε where Γ11 :: U and t :: κ;

• ∆; Γ12 ⊢ v : t ;
• ∆; Γ13 ⊢ ε : [!t]ε , hence Γ13 = Γ′′

13
, ε : [!t]ε where Γ

′′
13

:: U.
From the hypothesis that Γ is well formed, from Lemma B.8, [t-app] and the type scheme of

_receive we deduce the following facts:

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

Context-Free Session Type Inference 1:35

• Γ2 = Γ20 + Γ21 + Γ22;

• ∆; Γ21 ⊢ _receive : [?s]ε → s × [1]ε where Γ21 :: U;
• ∆; Γ22 ⊢ ε : [?s]ε , hence Γ22 = Γ′′

22
, ε : [?s]ε where Γ

′′
22

:: U.

From the hypothesis that Γ is balanced we deduce that !t ∼ ?s = !s;, that is t = s . Let

Γ′
13

def
= Γ′′

13
, ε : [1]ε and Γ′

22

def
= Γ′′

22
, ε : [1]ε and let Γ′

1

def
= Γ10 + Γ11 + Γ′

13
and Γ′

2

def
= Γ20 + Γ21 + Γ12 + Γ′

22
.

From Lemma B.9 and Lemma B.5 we deduce ∆; Γ′
1
⊢ E[ε] : unit and ∆; Γ′

2
⊢ E ′[(v,ε)] : unit. Let

Γ′
def
= Γ′

1
+ Γ′

2
. We derive ∆; Γ′ ⊢ Q with one application of [t-par] and we conclude by observing that

Γ
ε

7−→ Γ′.

Case [R11]. Then P = ⟨E[select v ε]⟩ | ⟨E ′[branch ε]⟩
ε

−→ ⟨E[ε]⟩ | ⟨E ′[v ε]⟩ = Q . From [t-par] and

[t-thread] we deduce Γ = Γ1 + Γ2 and ∆; Γ1 ⊢ E[select v ε] : unit and ∆; Γ2 ⊢ E ′[branch ε] : unit.
From the hypothesis that Γ is well formed, from Lemma B.8, [t-app] and the type scheme of select
we deduce the following facts:

• Γ1 = Γ10 + Γ11 + Γ12 + Γ13;

• ∆; Γ11 ⊢ select : ([Tj]ε →κ {Ci of [Ti]ε }i ∈I) → [⊕[Ci : Ti]i ∈I]ε →κ [Tj]ε where j ∈ I and
Γ11 :: U and t :: κ;

• ∆; Γ12 ⊢ v : [Tj]ε →
κ {Ci of [Ti]ε }i ∈I ;

• ∆; Γ13 ⊢ ε : [⊕[Ci : Ti]i ∈I]ε , hence Γ13 = Γ′′
13
, ε : [⊕[Ci : Ti]i ∈I]ε where Γ

′′
13

:: U.

From the hypothesis that Γ is well formed, from Lemma B.8, [t-app] and the type scheme of branch
we deduce the following facts:

• Γ2 = Γ20 + Γ21 + Γ22;

• ∆; Γ21 ⊢ branch : [&[Ci : Si]i ∈J]ε → {Ci of [Si]ε }i ∈J where Γ21 :: U;
• ∆; Γ22 ⊢ ε : [&[Ci : Si]i ∈J]ε , hence Γ22 = Γ′′

22
, ε : [&[Ci : Si]i ∈J]ε where Γ

′′
22

:: U.

From the hypothesis that Γ is balanced we deduce that I = J and Ti ∼ Si for every i ∈ I .

In particular, Tj ∼ S j , that is Tj ∼ S j . Let Γ
′
13

def
= Γ′′

13
, ε : [Tj]ε and Γ′

22

def
= Γ′′

22
, ε : [Tj]ε and let

Γ′
1

def
= Γ10 + Γ11 + Γ′

13
and Γ′

2

def
= Γ20 + Γ21 + Γ12 + Γ′

22
. From Lemma B.9, Lemma B.5, and [t-app] we

deduce ∆; Γ′
1
⊢ E[ε] : unit and ∆; Γ′

2
⊢ E ′[v ε] : unit. Let Γ′

def
= Γ′

1
+ Γ′

2
. We derive ∆; Γ′ ⊢ Q with

one application of [t-par] and we conclude by observing that Γ
ε

7−→
τ

7−→ Γ′, where
ε

7−→ accounts for

the actual choice, whereas

τ
7−→ accounts for Tj ∼ S j .

Case [R12]. Then P = ⟨E[e]⟩
τ

−→ ⟨E[e ′]⟩ = Q where e −→ e ′. From [t-thread] we deduce ∆; Γ ⊢

E[e] : unit. From Lemma B.8 we deduce that there exist Γ1, Γ2, and t such that Γ = Γ1 + Γ2 and

∆; Γ1 ⊢ e : t . From Theorem 4.5 we deduce ∆; Γ′
1
⊢ e ′ : t for some Γ′

1
∼ Γ1. From Lemma B.9 and

using one application of [r-thread] we derive ∆; Γ′
1
+ Γ2 ⊢ E[e ′]. We conclude by taking Γ′

def
= Γ′

1
+ Γ2

and observing that Γ
τ

7−→ Γ′.

Case [R13]. Then P = P1 |P2

ℓ
−→ P ′

1
|P2 = Q where P1

ℓ
−→ P ′

1
. From [t-par] we deduce Γ = Γ1+ Γ2 and

∆; Γi ⊢ Pi for i = 1, 2. By induction hypothesis we derive ∆; Γ′
1
⊢ P ′

1
for some Γ′

1
such that Γ1

ℓ
Z=⇒ Γ′

1
.

We conclude by taking Γ′
def
= Γ′

1
+ Γ2 using one application of [t-par] and Proposition B.1.

Case [R14]. Then P = (νa)P ′ ℓ
−→ (νa)Q ′ = Q where P ′ ℓ

−→ Q ′
and ℓ < {a,a}. From [t-session] we

deduce ∆,a,a; Γ,a : [T]a ,a : [S]a ⊢ P ′
and T ∼ S . Note that Γ,a : [T]a ,a : [S]a is well formed,

ground and balanced if so is Γ. By induction hypothesis we deduce that there exist Γ′, T ′
, and S ′

such that ∆,a,a; Γ′,a : [T ′]a ,a : [S ′]a ⊢ Q ′
and Γ,a : [T]a ,a : [S]a

ℓ
Z=⇒ Γ′,a : [T ′]a ,a : [S ′]a , hence

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

1:36 Luca Padovani

Γ
ℓ

Z=⇒ Γ′ using the fact that ℓ < {a,a}. From Proposition B.1 we deduce that T ′ ∼ S ′. We conclude

with one application of [t-session].

Case [R15]. Similar to the previous case.

Case [R16]. Easy consequence of Lemma B.11 and the induction hypothesis. □

C OCAML ENCODING OF SESSION TYPES
We only prove Theorem 5.2. The proof of Theorem 5.5 is essentially the same.

Theorem 5.2. If JT K = (τ1,τ2) t, then JT K = (τ2,τ1) t.

Proof. By cases on the structure of T . We omit trivial and symmetric cases.

Case T = ?t . Then JT K = (⟨⟨t⟩⟩ msg,0) t and we conclude by observing that JT K = J!tK =
(0,⟨⟨t⟩⟩ msg) t.

Case T = &[Ci : Ti]i ∈I . Then J&[Ci : Ti]i ∈I K = ({Ci of JTiK}i ∈I tag,0) t and we conclude by

observing that JT K = J⊕[Ci : T i]i ∈I K = (0,{Ci of JTiK}i ∈I tag) t = (0,{Ci of JTiK}i ∈I tag) t
using the definition of duality, Definition 5.1, and the fact that duality is an involution.

Case T = T1;T2. Then JT K = ((JT1K,JT2K) seq,(JT1K,JT2K) seq) t and we conclude by observing

that JT K = ((JT1K,JT2K) seq,(JT1K,JT2K) seq) t = ((JT1K,JT2K) seq,(JT1K,JT2K) seq) t using

the definition of duality, Definition 5.1, and the fact that duality is an involution. □

Received April 2017; revised January 2018; accepted May 2018

ACM Trans. Program. Lang. Syst., Vol. 1, No. 1, Article 1. Publication date: January 2017.

	Abstract
	1 Introduction
	2 A Calculus of Functions, Sessions and Resumptions
	3 Types
	4 Type System
	5 Context-Free Session Types in OCaml
	5.1 Basic Setup
	5.2 A Dynamically Checked, Portable Implementation
	5.3 A Statically Checked Implementation

	6 Extended Example: Trees Over Sessions
	7 Related work
	Acknowledgments
	References
	A PROPERTIES OF SUBTYPING
	B Soundness of the type system
	B.1 Auxiliary notions for type environments
	B.2 Subject reduction for expressions
	B.3 Progress for expressions
	B.4 Subject reduction for processes

	C OCaml ENCODING OF SESSION TYPES

