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Abstract. In this paper, we consider a model of classical linear logic
based on coherence spaces endowed with a notion of totality. If we re-
strict ourselves to total objects, each coherence space can be regarded as
a uniform space and each linear map as a uniformly continuous function.
The linear exponential comonad then assigns to each uniform space X
the finest uniform space ! X compatible with X. By a standard realiz-
ability construction, it is possible to consider a theory of representations
in our model. Each (separable, metrizable) uniform space, such as the
real line R, can then be represented by (a partial surjecive map from)
a coherence space with totality. The following holds under certain mild
conditions: a function between uniform spaces X and Y is uniformly con-
tinuous if and only if it is realized by a total linear map between the
coherence spaces representing X and Y.

1 Introduction

Since the inception of Scott’s domain theory in 1960’s, topology and continuity
have been playing a prominent role in denotational understanding of logic and
computation. On the other hand, uniformity and uniform continuity have not
yet been explored so much. The purpose of this paper is to bring them into
the setting of denotational semantics by relating them to another denotational
model: coherence spaces and linear maps. Our principal idea is that linear maps
should be uniformly continuous, not just in analysis, but also in denotational
semantics. The following situation, typical for computable real functions (in the
sense of [Ko91)), illustrates our idea.

Example 1. Imagine that each real number x € R is presented by a rational
Cauchy sequence (2, )neny With | — z,| < 27" Let f : R — R be a computable
function which is uniformly continuous. Then there must be a function p: N —
N, called a modulus of continuity, such that an approximation of f(x) with
precision 27™ can be computed from a single rational number x,(,,), no matter
where z is located on the real line. Thus one has to access the sequence ()
(regarded as an oracle) only once.

On the other hand, if f : R — R is not uniformly continuous, it admits no
uniform modulus of continuity. Hence one has to accsess (x,,) at least twice to
obtain an approximation of f(z), once for figuring out the location of z and
thus obtaining a local modulus of continuity @ around z, once for getting the
approximate value x ().
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Thus there is a difference in query complexity between uniformly continuous
and non-uniformly continuous functions. This leads us to an inspiration that lin-
ear maps, whose query complexity is 1, should be somehow related to uniformly
continuous functions. To materialize this inspiration, we work with coherence
spaces with totality.

Coherence spaces, introduced by Girard [Gi87], are domains which are simply
presented as undirected reflexive graphs. It was originally introduced as a deno-
tational semantics for System F, and later led to the discovery of linear logic.
One of the notable features of coherence spaces is that there are two kinds of
morphisms coexisting: stable and linear maps.

Totalities, which originate in domain theory (eg. [Gi86/No90/Be93]), are often
attached to coherence spaces (eg. [KN97]). Specifically, a coherence space with
totality in our sense is a coherence space X equipped with a set Tx of cliques
called a totality, so that for any a € Tx there exists ¢ € Tx1 with an¢ # ¢, and
vice versa. Totalities are usually employed to restrict objects and morphisms
to total ones, while we use them to impose a uniform structure on X: when
restricted to “strict” ones (to be defined later), a totality Tx can be seen as a
set of ideal points of a uniform space X, while a co-totality Tx . as the uniform
sub-basis for X. Moreover, this allows us to prove that every “total” linear map
F: X —;, Y is uniformly continuous (though not vice versa).

The category of coherence spaces with totality and total linear maps forms
a model of classical linear logic. In this setting, the linear exponential comonad
! admits an interesting interpretation: it assigns to each uniform space X the
finest uniform space ! X compatible with X.

We then apply our framework to computable analysis, where people study
computability over various continuous and analytic structures (such as the real
numbers, metric spaces and topological spaces). An essential prerequisite for this
is that each abstract space should be concretely represented. While traditional
approaches employ Baire spaces [KW85|[We0O0BHWOS] or Scott-Ershov domains
[BI97T/ES99ISHTOS], we here consider representations based on coherence spaces.

This program has been already launched by [MT16], where we have suitably
defined admissible representations based on coherence spaces (by importing var-
ious results from the type-two theory of effectivity). The principal result there is
as follows. Let X and Y be topological spaces admissibly represented by (partial
surjections from) coherence spaces X and Y (eg. the real line R is admissibly
represented by a coherence space R in Example [Z). Then a function f: X — Y
is sequentially continuous if and only if f is realized (i.e., tracked) by a stable
map F': X —4 Y.

In passing, we have also observed in [MT16] a curious phenomenon: when
restricted to R, a function f : R — R is uniformly continuous if and only if f
is realized by a linear map F : R —;;, R. Thus linearity in coherence spaces
corresponds to uniform continuity of real functions. While we did not have any
rationale or generalization, at that time, we now have a better understanding
of uniform continuity in terms of coherence spaces. As a result, we are able to
systematically generalize the above result to separable metrizable uniform spaces.



Plan of the paper. We quickly review uniform spaces in §2.1 and coherence spaces
in §2.2. We then introduce in §3.1 the notion of coherence space with totality,
total and strict cliques, and study the categorical structure. In §3.2, we explore
the uniformities induced by co-totalities. In §4, we give an application of our
model to computable analysis. We conclude in §5 with some future work.

2 Preliminaries

2.1 Uniform Spaces

We review some concepts regarding uniform spaces. See [[s64/Wi70] for details.

A cover of a set X is a family of subsets U« < P(X) such that [ JU = X. Let
U and V be covers of X. We say that U refines V, written U < V, if for every
U € U there exists V € V with U < V. We then have the meet (greatest lower
bound) of U and V defined as {U nV : U e U and V € V}, denoted by U A V.

When U is a cover and A is a subset of the set X, the star st(A;U) is defined
as | {U el : AnU # &}. Given any cover U of X, its star closure is defined
as U* := {st(U;U) : U € U}, which is also a cover of X and is refined by U. We
say that a cover U star-refines V if U* < V.

Definition 1 A family u of covers of X is called a Hausdorff uniformity if it
satisfies the following:

(U1) IfU,Vepu, thenU AV € pi;

(U2) IfUepandU <V, then V € u;

(U3) For every U € p, there exists V € p which star-refines U;

(U4) Given any two distinct points x,y € X, there exists U € p such that noU € U
contains both x and y (the Hausdorff condition ).

Throughout this paper we always assume the Hausdorff condition. A (Haus-
dorff) uniform space is a pair X = (X, pux), a set X endowed with a (Hausdorff)
uniformity. Given any cover U € ux and any points z,y € X, we write |[z—y| < U
if z,y € U for some U € U. The condition (U4) can be restated as follows: if
|z —y| <U for every U € pux then x = y.

Let X = (X, ux) and Y = (Y, uy ) be uniform spaces. A uniformly continuous
function from X to Y is a function f : X — Y satisfying that for any V € uy
there exists U € px with |z —y| <U = |f(x) — f(y)| <V for every z,y € X.
A function f : X — Y is called uniform quotient if it is surjective and for
every function g : Y — Z to a uniform space Z, g is uniformly continuous iff
gof:X—>7Zis.

A (uniform) basis of a uniformity p is a subfamily 8 < p such that for every
U € p there exists V € 8 with V <U. A (uniform) sub-basis of a uniformity pu is
a subfamily ¢ € p such that the finite meets of members of o form a basis: for
every U € p there exist finitely many V1, ..., V, € o with V1 A---AV,, < U. Notice
that if a family of covers satisfies the conditions (U2)-(U4) (resp. (U3)-(U4)),
it uniquely generates a uniformity as a basis (resp. sub-basis).



For instance, every metric space is in fact a uniform space. A uniformity on
a metric space X is generated by a countable basis U, := {B(z;27") : z € X}
(n=1,2,...), where B(z;27") is the open ball of center z and radius 27".

On the other hand, every uniform space X = (X, ux) can be equipped with
a topological structure, called the uniform topology. A set O € X is open with
respect to the uniform topology iff for every p € O there exists U € pux such
that st({p},U) < O. We will denote by 7yt(1) the uniform topology induced by a
uniformity p. Given any uniformity p on X, one can choose a basis  consisting
of open covers.

It is easy to see that uniform continuity implies topological continuity: if a
function f : (X, ux) — (Y, py) is uniformly continuous, then it is continuous as
a function f: (X, rut(px)) — (Y, mue(py)).

We say that a uniformity p on X is compatible with a topology 7 if 7 = 7y ().
A topological space X = (X, 7) is said to be uniformizable if there exists a
uniformity g on X compatible with 7. It is known that a topological space is
uniformizable if and only it is Tychonoff. For a metrizable space, the induced uni-
formity defined above is indeed compatible with the metric topology. In general,
a uniformity is induced by a metric if and only if it has a countable basis.

Every Tychonoff (i.e. uniformizable) space X = (X, 7) can be equipped with
the finest uniformity pgne which contains all of the uniformities compatible with
7. A fine uniform space is a uniform space endowed with the finest uniformity
(compatible with its uniform topology). For a Tychonoff space X = (X, 7x) we
denote by Xfine = (X, ttfine) the fine uniform space compatible with 7x.

The finest uniformity can be characterized as follows. Let Tych be the cat-
egory of Tychonoff spaces and continuous maps, and Unif be the category of
uniform spaces and uniformly continuous maps. The fine functor F' : Tych —
Unif, which assigns to each Tychonoff space X the fine uniform space Xgpe, is
left adjoint to the topologizing functor G : Unif — Tych, which assigns to each
uniform space Y the topological space Y+ endowed with the uniform topology:

F

T T

Tych 1 Unif . (1)

~

Thus, for every Tychonoff space X and uniform space Y,

f:X > Yy is continuous <= [ : Xfne — Y is uniformly continuous .

2.2 Coherence Spaces

We here recall some basics of coherence spaces. See [Gi87IMe09] for further
information.

Definition 2 A coherence space X = (X, C) consists of a set X of tokens and
a reflexive symmetric relation < on X, called coherence.



Throughout this paper, we assume that every token set X is countable. This
assumption is quite reasonable in practice, since we would like to think of to-
kens as computational objects (see [As90] for the study on computability over
coherence spaces).

A clique of X is a set of pairwise coherent tokens in X . By abuse of notation,
we denote by X the set of all cliques of the coherence space X. We also use the
notations Xy, and X . for the sets of all finite cliques and maximal cliques,
respectively.

Given tokens z,y € X, we write x ~y (strict coherence) if x Cy and = # y.
Notice that coherence and strict coherence are mutually definable from each
other. The coherence relation < on the token set X is naturally extended to X
as: aCb < aube X (a,be X). This is equivalent to say that any token in
a is coherent with any token in b.

An anti-clique of X is a set of pairwise incoherent tokens in X, that is, a
subset a € X such that —(x —~y) for every z,y € a. We will use the symbol =<
for incoherence: x <Xy <= —(z ~y). Alternatively, an anti-clique of X is a
clique of the dual coherence space X+ := (X, =).

It is known that the set X of cliques ordered by inclusion € is in fact a
Scott domain, whose compact elements are finite cliques of X. Thus the Scott
topology on X is generated by {(a): a € Xn} as a basis, where {(a) is an upper
set defined by {a) := {b€ X : a < b}. We will denote by Tgc, this topology on
X

Given a subset A € X, we also write 7s¢, for the induced subspace topology
on A. Note that X is a Ty-space, and is countably-based due to the assumption
that the token set X is countable. Moreover, (X max, Tsco) is Hausdorff.

Coherence spaces have a sufficiently rich structure to represent abstract
spaces. Let us begin with a coherence space for the real line R:

Ezample 2 (coherence space for real numbers). Let D := Z x N, where each pair
(m,n) € Dis identified with a dyadic rational number m/2™. We use the following
notations for x = (m,n) € D: den(z) :=n; D, := {x € D | den(z) = n} for each
neN; and [z] := [(m —1)/2™; (m + 1)/2"].

Hence n = den(z) denotes the exponent of the denominator of z, and [z]
denotes the compact interval of R with center = and width 2~ (1),

Let R be a coherence space (D, ©) defined by z ~y iff den(z) # den(y)
and [z] n [y] # . The latter condition immediately implies the inequality
|z —y| < 279en(®) 4 9=den() hence each maximal clique a € Rpax corresponds to
a rapidly-converging Cauchy sequence {x,, : n € N} such that x,, € D,, for each
neNand |z, — x| < 27" +27™ for every n,m € N.

We then have a mapping pr : Rmax — R defined by pgr(a) := lim, o 2.

Definition 3 (stable and linear maps) Let X and Y be coherence spaces.
A function F : X — Y is said to be stable, written F' : X —4 Y, if it is
Scott-continuous and a &b = F(anb) = F(a) n F(b) for any cliques a,be X.
A function F : X — Y 1is said to be linear, written F : X —;,, Y, if it
satisfies that a = Y, ; a; = F(a) = >,,.; F(a;), for any cliqgue a € X and any
family of cliques {a;}ier € X . Here Y, means the disjoint union of cliques.



It is easy to see that linearity implies stability.

There are alternative definitions. Given a function F' : X — Y, call (a,y) €
Xiin x Y a minimal pair of F if F(a) 3 y and there is no proper subset a’ < a
such that F'(a’) 3 y. Denote by tr(F') the set of all minimal pairs, called the trace
of F. Now, F' is a stable map iff it is S-monotone and satisfies that: if F(a) 3 v,
there is a unique ag € a such that (ag,y) € tr(F).

If F is furthermore linear, preservation of disjoint unions ensures that the
finite part ag must be a singleton. Thus F' is a linear map iff it is S-monotone
and satisfies that: if F'(a) 3 y, there is a unique = € a such that ({z},y) € tr(F).
By abuse of notation, we simply write tr(F) for the set {(z,y)|({z},y) € tr(F)}
if F' is supposed to be linear.

Below are some typical constructions of coherence spaces. Let X; = (X;, ©;)
be a coherence space for ¢ = 1,2. We define:

— 1= L= ({s){(s @)

- X1 ® X9 := (X7 x Xo, ©), where (z,2) C (w,y) holds iff both z < jw and
xZ2y.
X, — X9 := (X1 x X2, ©), where (z,2) ~ (w,y) holds iff 2 ;w implies
T —2Yy.

—1X; = ((X1)fin, &), where a b holds iff a 1.
We omit the definitions of additives (& and T). It easily follows that X+ ~
X—o L.

A notable feature of coherence spaces is that they have two closed structures:
the category Stab of coherence spaces and stable maps is cartesian closed; while
the category Lin of coherence spaces and linear maps equipped with (1,®, —o, 1)
is *-autonomous. Moreover, the co-Kleisli category of the linear exponential
comonad ! on Lin is isomorphic to Stab in such a way that a stable map
F: X —4 Y can be identified with a linear map G :! X —;,, Y so that
tr(F) = tr(G) € X4in x Y. This leads to a linear-non-linear adjunction:

K

— T
Stab 1 Lin . (2)

~~

L

The purpose of this paper is to establish a connection between the two ad-
junctions () and (@), which will be done in §3.2.

We do not describe the categorical structures in detail, but let us just mention
the following. Given any linear map F' : X —;,, Y, we have tr(F) e X —o Y.
Conversely, given any clique kK € X —Y, the induced linear map k : X —;, Y
is defined by k(a) := {y € Y : (z,y) € & for some z € a}.

3 Uniform Structures on Coherence Spaces

In this section, we introduce a notion of (co-)totality on coherence spaces and
observe that co-totality induces a uniform structure on the set of total cliques.



3.1 Coherence Spaces with Totality

Let X be a coherence space. For any clique a € X and any anti-clique ¢ € X L
a N ¢ is either empty or a singleton. If the latter is the case, we write a L ¢.

For any subset A € X, we write AL for the set {ce X+ :Vae A a L c} of
anti-cliques of X. One can immediately observe the following: (i) A € A+ € X;
(ii) B < A implies AL = B+ and (iii) A+ = AL44. As a consequence, A = AL
iff A =Bt for some B< X+,

Definition 4 (coherence spaces with totality) A coherence space with to-
tality is a coherence space X endowed with a set Tx < X such that Tx = T)J(‘J‘,
called a totality. Cliques in Tx are said to be total.

It is clear that a totality Tx is upward-closed with respect to <, and is closed
under compatible intersections: a,b € Tx with a b implies a nb € Tx. As a
consequence, every total clique a € Tx is associated with a unique minimal total
clique a® := [(){b € Tx : b < a} € Tx. Such a total clique is called strict (or
material in the sense of ludics). We write Tx for the set of strict total cliques of
X. We have

Tx ={be X :aCbforsomeac Ty} =(Tx) "

Thus defining a totality is essentially equivalent to defining a strict totality.
Notice that a € Tx iff for every ¢ € ’Tj{-, a L c. In particular, a € Ty iff for every
¢ € (Tx)° there exists € a such that € ¢ and dually, for every = € a there
exists ¢ € (T5)° such that z € c.

Our use of totality is inspired by Kristiansen and Normann [KN97], although
they use a set of anti-cliques of | X as totality and they do not consider strictness
and bi-orthogonality. Similar constructions are abundant in the literature, eg.,
totality spaces by Loader [Loa94] and finiteness spaces by Ehrhard [Ehr05)].

Ezample 3. Consider the coherence space R = (D, © ) for real numbers defined
in Example 2l Then Tg := Rpnax is a totality on R: it is easy to see that 'TI% =
{D,, : n € N}, hence 'Tl%l = Rmax = Tr. Moreover, T = Rmax since a° < a and
a® € Rnyax imply a® = a.

Ezxample 4. The idea of Example [2] can be generalized to a more general class.
Let X = (X, ) be a uniform space with a countable basis 8 = {U,, } nen consisting
of countable covers. A metrization theorem states that such a uniform space must
be separable metrizable (see [Ke75] for instance).

Let Bx = (B, C) be a coherence space defined as B = [[,Un and
(n,U)~(m,V) iff n # m and U n' V # &, where [ [, Un means the co-
product {(n,U) : ne N, U € Uy,}. Each a € (Bx)max corresponds to a sequence
of members of uniform covers: a = {U,}nen such that U, € U,, for each n € N
and U, nU,, # J for every n, m € N. By the Hausdorff property, it indicates at
most one point in X.

The separable metrizable space X is represented by a partial map dx :&
Bx — X defined by 0x(a) :=p <= p € ),y Un, for every p € X and
a = {Uy, : n € N} € (Bx)max- Let us define a totality by T, := dom(dx)*.



Notice that we do not have dom(dx) = dom(dx)** in general, even though
{U, :ne N} Té‘x, since dom(8x)tt = (Bx)max- To make dom(dx) itself a
totality, we have to assume that X is complete (every Cauchy sequence must be
converging).

All constructions of coherence spaces are extended with totality in a rather
canonical way. Let X = (X, © x) and Y = (Y, Cy) be coherence spaces, and
Tx € X and Ty € Y be totalities of X and Y, respectively. Define:

= Tx: = T)J(_7 T1 = Lmax-

— Txey = (Tx ® Ty)*t, where a®b := {(x,y) : 7 € a,y € b} for a € X and
beY, and Tx ® Ty is pointwise defined.

— Tx -y = {IiE (Xl —OXQ) : %[Tx] cTy.

— Tix := (! Tx)**, where !a := {ap € X : ap Sfn a} for a € X, and ! Tx is
pointwise defined.

The connectives ® and ! admit “internal completeness” in the following sense.

Proposition 1. (Tx ® Ty )**° = Tx ® Ty holds whenever totalities Tx, Ty,
Tx and T are all nonempty. (! Tz)*° =1(T5) holds for an arbitrary totality
Tz.

A proof is given in Appendix.
Let us now turn to the morphisms.

Definition 5 A linear map F : X —;, Y is called total if tr(F) € Tx oy, or
equivalently if F preserves totality: F[Tx] € Ty .

A stable map F : X — Y is total if so is the corresponding linear map
G:' X — ;Y given in §2.2.

Denote by Linte the category of coherence spaces with totality and total
linear maps. It turns out to be a model of classical linear logic (CLL):

Theorem 6. The category Linte is a model of classical linear logic (i.e., a *-
autonomous category with finite (co)products and a linear exponential (co)monad).

This is due to Theorem 5.14 in [HS03]. In fact, our construction of LinTe is
essentially following the idea of tight orthogonality category T(Lin) induced by
the orthogonality relation |, which can be shown to be a symmetric stable or-
thogonality in Lin.

The category Stabrot of coherence spaces with totality and total stable maps,
is trivially the co-Kleisli category of the linear exponential comonad ! and hence
is cartesian closed.

3.2 Uniformities induced by co-Totality

We shall next show that each coherence space with totality can be equipped with
a uniform structure. Our claim can be summarized as follows. Given a coherence
space X with totality 7x, the set of strict total cliques Ty is endowed with both
a topology and a uniformity:



the totality Ty is a set of points endowed with a Hausdorff topology Tsco ,
while
the co-totality (Tx)° is a uniform sub-basis.

Moreover, the co-totality (775 )° on ! X is a uniform basis, which induces the
finest uniformity on Ty .

Recall that each finite clique a € X, generates the upper set {a) := {be X :
b 2 a} in such a way that incoherence corresponds to disjointness:

—(zoy) = (@&nly =J; —(aSb) = (WHn)=0J

for every z,y € X and a,b € X4pn, where (x) stands for {{z}) by abuse of
notation. Let us write (x)° := (z) n Tx and {a)° := {a) N Tx.

We call each ¢ € (T)° a uni-cover of Tg. It can be seen as a disjoint cover
{(x)° : x € ¢} of Ty, since ¢ being total precisely means that every a € Ty is
contained in (x)° for some z € ¢. Thus T = > . (x)°. Moreover, ¢ being strict
means that (x)° is nonempty for every z € c. That is, restricting ¢ € T to ¢ €
(75 )° amounts to removing all empty (x)° from the disjoint cover {(z)° : z € ¢}.

On the other hand, each € € (7,%)° is called an unbounded-cover of Ty. It is
also identified with a disjoint cover {(a)° : a € €} of Tg, consisting of nonempty
upper sets, so that Tx = >, _.(a)°.

To emphasize the uniformity aspect, we will use the notations 0% := (T3 )°
and B% = (Ti%)°. Each uni-cover can be considered as an unbounded-cover
consisting of singletons: 0% < BY by c€ oy — {{z} : v € ¢} € BY.

The families 0% and 8% indeed generate uniformities on 7x:

Proposition 2. (Tg,BY) satisfies azioms (U1), (U3) and (U4), while (Tg,0%)
satisfies (U3) and (U4) in Definition [.

Proof. (U1) Given A, B € B, let AA B :={aub : ac A, be B and a >b}°.
It is indeed the meet of 2 and 9B, and belongs to Y = (17x>)°. In fact, given
lc €lTx, there are a € 2 and b € B such that a €lc and b €lc. Hence a U b €
len (A A B).

(U3) In general, we have st(U,€) = J{V e €: UnV # &} = U for any disjoint
cover € of Ty and U € €. Hence each 2 € B}é’, which is disjoint, star-refines
itself.

(U4) Assume that a,b € Ty with a # b. Then there are z € a\b and ¢ € 0% =
(T3 )° such that x € ¢ by strictness of a. As a € (x)°, b ¢ (x)° and ¢ is a disjoint
cover, this witnesses the Hausdorff property for o (so for % too). ]

Consequently, B&?, as basis, generates a uniformity u“Xb, called the unbounded
uniformity, while 0%, as sub-basis, generates another uniformity u% < 4,
called the bounded uniformity. The index X will be often dropped if it is obvious
from the context.

As one may have noticed, the uniformities satisfy axiom (U3) for a rather
trivial reason. Nevertheless, viewing coherence spaces with totality as uniform
spaces will be essential to establish our main theorem (Theorem [I6).



Unlike ng, the set O'B( is not closed under finite meets. To make it closed,
we have to extend it to another set BE,} c B}}) which consists of all finite meets
of uni-covers: ¢; A -+ A ¢y i= {{z1,...,2m} € X :2; € ¢; (1 <i < m)}°. Notice
that ¢; A --- A ¢, consists of cliques of size at most m. That is why ug( is called
bounded.

Although % and p% are different as uniformities, they do induce the same
uniform topology.

Proposition 3. The (un)bounded uniformity on Ty is compatible with the Scott
topology restricted to Tg. That is, Tut (1P) = Tt (1) = Tsco-

Proof. By definition a set U < Ty is open with respect to 7y (u"?) iff for every
a € U there exists 2 € 84 such that st({a}; A) < U (see §2.1). Due to disjointness
of 2, however, st({a}; ) just amounts to {ag)°, where ag is the unique clique in
A such that a € {ap)°. Moreover, any ag € Xin with {ag)° # & is contained in
some A € BY by Lemma [2in §A2l All together, U is open iff for every a € U
there exists ag € X such that a € {agp)® iff U is open with respect to 7gco-
The same reasoning works for 7,(1") too. [ |

The unbounded uniformity p"" is hence compatible with, and finer than the
bounded uniformity ;”. We can furthermore show that it is the finest uniformity
on Tx. The omitted proofs are found in §A.2l

Theorem 7. (Tx,u¥) is a fine uniform space.

Due to the internal completeness (Proposition[dl), we have a bijection Ty ~
Tix defined by a € T <!la € Tx. Notice also that S = (T,%)° = ofx
and fine uniformity is preserved under uniform homeomorphisms. These facts
together allow us to prove:

Corollary 1. There is a uniform homeomorphism (Tx, %) ~ (Tx, 13 x ). As
a consequence, (T x, uk!’X) is a fine uniform space.

We are now ready to establish uniform continuity of linear maps.

Theorem 8. A total linear map F : X —;, Y is strongly uniformly continu-
ous: for any b € % there exists a € 0% such that |a—b| < a = |F(a)—F(b)] <b

for every a,be Tx. As a consequence:

(i) Every total linear map F : X —;, Y is uniformly continuous w.r.t. the
bounded uniformities.

(i) Ewery total stable map F : X —4 Y is topologically continuous w.r.t. the
uniform topologies.

Proof. Note that the transpose F© : Y+ —;;,, X, defined by z € FL({y}) «
F({z}) 2 y for every z € X and y € Y, is also total linear since Linte is *-
autonomous. By linearity, any = € a is uniquely associated with y € b such that
r e FX({y}) (e, F({z}) 2 y). From this, one can immediately observe that
a,b e (x)° with z € a implies F(a), F(b) € (y)° with y € b. [ |



We thus obtain a functor J : Lint,; — Unif which sends a coherence space
with totality (X, Tx) to the uniform space (T, u®) and a total linear map to the
corresponding uniformly continuous map which is shown in the above theorem.
There is also a functor I : Stabtes — Tych sending (X, 7Tx) to the Tychonoff
space (Tx,Tsco) and a total stable map to the corresponding continuous map.
We now have the following diagram, in which the two squares commute (up to
natural isomorphisms):

F
Tych L Unif (3)
G
I J
K
Stabro: z Linte: .
L

In addition, the pair of functors (I, J) preserves an adjunction: it is a pseudo-map
of adjunctions in the sense of Jacobs [Ja99] (see Appendix in JA3).
This combines () and (2), as we have planned.

4 Coherent Representations

In this section, we exhibit a representation model based on coherence spaces
and show that there exist good representations based on which linear maps well
express uniformly continuous functions.

4.1 Representations as a Realizability Model

We represent abstract spaces, largely following the mainstreams of computable
analysis: Baire-space representations in type-two theory of effectivity (TTE)
[KWR5[We00/BHWO0S], and domain representations [BI97UES9IISHTOS]. In both
theories, computations are tracked by continuous maps over their base spaces
(the Baire space B = N* for TTE or Scott domains for domain representations).
Similarly we assign “coherent” representations to topological spaces, and track
computations by stable maps, just as in Examples 2] and [l
Let us formally give a definition:

Definition 9 Let S be an arbitrary set. A tuple (X, p,S) is called a represen-
tation of S if X is a coherence space and p :< X — S is a partial surjective
function. Below, we write X 2> S, or simply p for (X,p,S).

Representations enable us to express abstract functions as stable maps:



Definition 10 (stable realizability) Let X 2% S and Y 25 T be represen-
tations. A function f : S — T is stably realizable with respect to px and py
if it is tracked by a stable map F : X — 4 Y. That is, F' makes the following
diagram commute:

x-Loy (4)
X Y
f

S——T

We denote by StabRep the category of coherent representations and stably
realizable functions.

With the help of Longley’s theory of applicative morphisms [Lon94|, one can
compare StabRep with other models of representations. By simply mimick-
ing Bauer’s approach [Ba00/Ba02], we obtain an applicative retraction between
coherent representations and TTE-representations. As a consequence, we can
embed TTE into the theory of coherent representations:

Theorem 11. Let TTERep be a category which embodies TTE: the category
of TTE-representations and continuously realizable functions. Then TTERep
s equivalent to a full coreflexive subcategory of StabRep.

For details on the realizability theory, we refer to [Lon94]. We also refer to the
Ph.D thesis of Bauer [Ba00], in which the relationship between the theory of
(TTE and domain) representations and realizability theory is deeply studied.
In [MT16], we have defined a full subcategory SpStabRep of StabRep
which is equivalent to TTERep, and introduced a concept of admissibility of
representations in SpStabRep. The main result of [MT16] is as follows:

Theorem 12 ([MT16]). Let X and Y be topological spaces represented by ad-
missible representations X 25 X and Y 25 Y in SpStabRep. A function
f: X —Y is stably realizable if and only if it is sequentially continuous, that
is, it preserves the limit of any convergent sequence: x, — = = f(x,) — f(z).

For instance, the coherent representation R 2% R defined in Example 2 belongs
to SpStabRep and is admissible. Consequently, a function f : R — R is stably
realizable w.r.t. pg iff it is continuous. This equivalence can be generalized to
any countably-based Ty-space (and more generally, any gcb-space in the sense of
[Si03]) as shown in [WeQ0/Sc02].

Notice that given any topological space X, its admissible representations
are “interchangeable”: if Xo 2% X and X; 25 X are adimissible, then the
identity map id : X — X is realized by stable maps F' : X¢ —4 X; and
G : X1 — s X which reduce each representation to another one.

4.2 Linear Realizability for Separable Metrizable Spaces

On the other hand, we have found in [MTI16] a linear variant of the above
equivalence between stable realizability and continuity: a function f : R — R



is linearly realizable iff it is uniformly continuous. We below try to generalize
this correspondence to a class of separable metrizable spaces, based on standard
representations defined in Example (]

Definition 13 (linear realizability) Let X 25 S and Y 2% T be represen-
tations. A function f : S — T is linearly realizable with respect to px and py
if it is tracked by a linear map F : X —y;, Y. That is, F makes the diagram
{4) commute.

We denote by LinRep the category of coherent representations and linearly
realizable functions.

Given suitable totalities, a linear map F which tracks f turns out to be
uniformly continuous. First recall that for any set A € X of a coherence space
X, the set A1+ is a totality on X, hence is endowed with a bounded uniformity
(observed in §3). Here is an extension lemma for the double negation totalities:

Lemma 1. Let AS X and BCSY be arbitrary (non-empty) sets of cliques. If
F: X —;,, Y satisfies F[A] € B then F is indeed total: F[A*] < B+,

Given any coherent representation X RENS , let us endow X with a totality
Tx := dom(dx)**. From the above lemma, we obtain that f : S — T is linearly
realizable if and only if it is tracked by a total linear map F' : X —;,, Y. So one
can say that a linearly realizable function is in fact a “totally linearly realizable”
function. Recall that dom(pr)** = dom(pr)**° = Rmax and dom(dx)*+ =
dom(dx)J‘J‘o = (BX)max-

Theorem 14. LinRep is a linear category (i.e., a symmetric monoidal closed
category with a linear exponential comonad).

Proof Sketch. Recall that a linear combinatory algebra (LCA) [AHS02| is a
linear variant of well-known partial combinatory algebras (PCA). It is shown
in Theorem 2.1 of [AL05] that the PER category PER(A) over an LCA A is a
linear category.

We can naturally define an LCA Coh such that LinRep ~ PER(Coh).
Indeed, coherence spaces have linear type structures and there also exists a
universal type, from which we obtain an untyped LCA Coh by a linear variant
of the Lietz-Streicher theorem [LS02].

Consequently, the category LinRep ~ PER(Coh) is a linear category. B
From the categorical structure of PER(Coh), one can naturally construct various
coherent representations, which are explicitly given in A7l We leave to future
work to relate the co-Kleisli category LinRep, and StabRep.

Then one can see that a standard representation Bx %, X of a separable
metrizable space X is topologically “good” for linear realizability, like admissible
representations for stable realizability. It is shown in A5 that a standard rep-
resentation of X does not depend on the chocie of a uniform basis, up to linear
isomorphisms. Moreover, we can show that:



Theorem 15. Let X and Y be separable metrizable spaces with standard repre-

sentations Bx 2%, X and By 2 Y. Then every uniformly continuous function
f: X =Y is linearly realizable.

See §AH for a proof.
For the other direction, we need a kind of connectedness in addition so that

uni-covers of the coherence space exactly generates the uniformity on the rep-
resented space. A uniform space X = (X, px) is chain-connected (or sometimes
called uniformly connected) if for any two points p, ¢ € X and every uniform cover
U € ux, there exist finitely many Uy, ...U, € U such that pe Uy, U;nU; 11 # &
for every i < n, and U, 3 q.

Theorem 16. Let X and Y be separable metrizable spaces represented by the
standard representations. Provided that X is chain-connected, a function f :
X =Y is linearly realizable iff it is uniformly continuous.

Proof. The “if”-direction is due to Theorem We shall show the “only-if”
direction. As noted above, if f is linearly realizable, there exists a total linear
map F : Bx —;, By which tracks f, hence F is uniformly continuous w.r.t.
the bounded uniformities by Theorem Bl Any standard representation dy is also
uniformly continuous as a partial map dy :& By — Y, so is the composition
dy o F : dom(dx) — Y. Since dx is a uniform quotient by Lemma [I5] in §A.6]
uniform continuity of f o dx = dy o F' implies that of f. ]

This result substantially and systematically generalizes the already mentioned
result in [MT16]: a function f : R — R is linearly realizable w.r.t. pg iff it is
uniformly continuous.

5 Related and Future Work

Type theory. In this paper, we have proposed coherence spaces with totality as
an extension of ordinary coherence spaces, following the idea of Kristiansen and
Normann. Originally in the domain theory, domains with totality, are introduced
by Berger [Be93| to interpret Martin-Lof type theory (i.e., intuitionistic type
theory), using “total” domain elements. Since our model of coherence spaces
with totality is a linear version of this model, one can expect that it could model
intuitionistic linear type theory.

Our theory also includes a natural representation of (separable, metrizable)
uniform spaces and uniformly continuous maps between them. Hence it might
lead to a denotational model of real functional programming languages (e.g.,
[Es96/ES14]) extended with other uniform spaces, where one can deal with uni-
formly continuous functions based on linear types.

Realizability theory. In the traditional setting, giving representations roughly
amounts to constructing modest sets over a partial combinatory algebra (PCA)
in the theory of realizability. Our model of coherent representations and sta-
ble realizability is in fact considered as a modest set model over a PCA Coh,



constructed from the universal coherence space U in Stab, to which one can
embed any coherence spaces by linear (hence stable) maps. A modest set model
turns out to be a model of intuitionistic logic [Lon94/Ba00]. Bauer then gave an
attractive paradigm [Ba05]:

Computable mathematics is a realizability interpretation
of constructive mathematics.

On the other hand, less is known about the relationship between computable
mathematics and linear realizability theory over a linear combinatory algebra
(LCA) [ALOQ], which is a linear analogue of PCA, and for which we can build
a PER model of intuitionitstic linear logic. Since the above universal coherence
space U in fact resides in Lin, it is in principle possible to develop such a
theory based on our framework. We believe that exploring this direction, already
mentioned in [Ba00], will be an interesting avenue for future work.
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A Miscellaneous Proofs

A.1 Construction of Totalities

Lemma 2. The functional totality is well-defined: Tx oy = Ty -


http://www.kurims.kyoto-u.ac.jp/~terui/pub.html

Proof. Notice that (X oY)t = X @ Y™* and #(a) L ¢ iff K L a® ¢ for any
keX oY,ae X and c e Y. It follows that x € Tx oy iff R(a) L ¢ for any
ae X and ce Ty iff ke (Tx ® T3)*. u

The following lemmas prove the internal completeness of ® and ! (Proposi-

tion [).

Lemma 3. Given a€ T and be Ty, let aeb := {(z,y) : x € a, y€ b}. Then

aebe (Tx®Ty)J‘.

Proof. First of all, ae b is an anti-clique of X ® Y. Indeed, given (z,y), (2/,y’) €
aeb with (x,y) # («/,y), either x # 2’ or y # y'. Assume that z # z’. We then
have ~(z '), so —((z,y) & (2, y")).

Now given ¢ € Tx and d € Ty, we have ¢ L a and d L b, from which we
conclude c®d 1L aeb. |

Lemma 4. T3 @ Ty € (Tx ® Ty ).

Proof. Let a € T and b € Ty. It is clear that a®b € (Tx ® ’Ty)J—J—. Too see
strictness, let (7,y) € a ® b. Then there are ¢ € T and 0 € Ty such that = € ¢
and y € 9. Hence (z,y) eced and ced € (Tx ® Ty)* by Lemma 3 [ |

Lemma 5. Assume that T and Ty are not empty. Given c € (Tx @ Ty)*t,
let ¢t := {z : (z,y) € c for some y} and ¢* := {y : (z,y) € c for some x}. Then
cteTx and € Ty .

Proof. Let a € Ts. Since we suppose that Ty # (J there is be Tyr and aeb e
(Tx @ Ty )* by Lemma[3l Hence ¢ | aeb and we conclude that ¢! 1| a. [ |

Lemma 6. Assume that Tx and Ty are not empty. Given ¢ € (Tx ® Ty)*,
let ¢t :={x : (z,y) € ¢ for some y} and ¢ := {y : (x,y) € ¢ for some x}. Then
eTx and ? e Ty

Proof. Similarly. [ |

Lemma 7. Assume that Tx, Ty, ’T)J(‘ and 'T}J; are all nonempty. Then (Tx ®
Ty)tHe c Ty @ Ty

Proof. Let ¢ € (Tx ® Ty )*1°. We prove that ¢! € Ty (and ¢® € Ty). Since
ccct®c? and ¢! ®c? is strict in (Tx ® Ty )™+ by Lemma H, we will be able to
conclude that c =l ® % € Tx ® Ty by strictness of c.

Totality of ¢! is due to Lemma [Bl To show strictness, let = € ¢!, so that
(z,y) € c for some y. Since c is strict, there is 0 € (Tx ® Ty)* such that
(z,y) € 0. We then have x € 0! and d' € T3 by Lemma [ [ |

We have established the internal completeness of ®. Let us next proceed to
connective !.



Lemma 8. Given c1,...,¢, € T, let
NiCi i= {{l‘l,...,xn}EX:,TiECi (1 <z<n)}
Then ~qic; € (\Tx)*t. In particular, rc:={{z}e X :xec}e (1 Tx)".

Proof. Each A;c; consists of finite cliques of X, namely tokens of !X, which
are pairwise incoherent in !X. Indeed, given distinct {x1,...,2n}, {y1,.--,Yn},
there is ¢ such that z; # y; and z;,y; € ¢;. We have —(x; Cy;), so that
—({z1,..- 20} {1, -, yn}). Hence n;c; € (1X)L.

To see totality, suppose that a € Tx so that la €!Tx. We then have x; € an;
for each 1 < ¢ < n, hence the clique {z1,...,2,} S a belongs to A;c;. This proves
la L Ajc;. |

Lemma 9. ! Ty < (! 7x)**°.

Proof. Tt is easy to see that every la €! Ty belongs to (!7x)*+. For strictness,

let agp = {x1,...,2,} €la. Since a € Ty, there are ¢; € T such that z; € ¢; for
each 1 < i < n. Applying the previous lemma, we obtain A;c; € (! 7x )+, which
contains ag. |

Lemma 10. Given a € (ITx)t, let ot := {z : {z} € an(Ac) for some c € Tx}.
Then o' € Tx.

Proof. Given ¢ € T, we have Ac € (ITx)t by Lemma B Hence {z} € o n (Ac)
for some z, so x € a! N ¢. Strictness of o' is obvious. [ |

Lemma 11. (!7x)*° < !(Tx).

Proof. Let a € (1Tx)**°. We prove that la! € a. Since la! € (17x)*+° by
combining Lemmas [0 and [I0] we will be able to conclude a =!a! €!Tg by
strictness of a.

Let ag €lal. As in the proof of Lemma [0 we obtain ¢; € Tg (1 < i < n)
such that ag € As¢; € (! Tx)t. Meanwhile, we have some a; € a N Ajc; since
o€ (!TX)J-J-O. If ag # a1, there would be x,y € ¢; such that = € ag, ¥y € a; and
x # y. We would have —(z Cy) since they belong to an anti-clique ¢;, while
x Cy since they belong to a clique |, that is a contradiction. We therefore
conclude that ag = a1 € a. |

This completes the proof of Proposition [l

A.2 The proof of Theorem [7|
Let us begin with an important lemma:

Lemma 12. For every a € X, with {a)° # (J, there exist finitely many uni-
COVETS €1, ...,Cm € UB)( such that a € ¢1 A -++ A ¢y, hence a is contained in the
unbounded cover ¢1 A -+ A Gy € ﬂgcb



Proof. Let a = {z1, ...,z }. By assumption, there exists b € Tx with b 2 a. By
strictness of b, each z; is contained in some ¢; € ’Tjg, which we may assume is
strict. Hence we have a € ¢1 A -+ + A €y, |

The next lemma is used to cut down and divide the set Tx.

Lemma 13. For anyn e N and ag, ..., a, € Xsn, there exists B € (1X)* such
o o n—1 o

that Zbe‘B<b> = {an)°\ Ui:o ai)®.

Proof. Without loss of generality, one can assume that {a;)° # ¢ for all i =

1,...,n. By Lemma 2 each a; belongs to some unbounded-cover 2; € B"P.
Define

% = (Qll\{ao}) VANRIRRIVAN (anfl\{anfl}) A\ {an}
= {bou-Ubp1UaneX | be(A\{ai}) (O<i<n—1)}o.

We then have c € (b)° for some b=bypu - Uby_1Ua,eBiff ce(bp)°n--- N
(p—1)° n{an)® iff ¢ ¢ {ap)°,...,c ¢ {an—1)° (by disjointness) and c € {a,)°. M

Now we go on the proof of Theorem [Tt (T3, #4%2) is a fine uniform space.

Proof. Let U be an open cover of Ty . Since an open set in 7y is a countable
union of upper sets {a)°, we can assume that ¢/ is of the form {{a,)° : n € N}.
Our goal is to show that there exists B € 7Tf,-( which refines U: for any b € B
there exists n € N with (b) € {a,). It will follow that B° belongs to u"® and so
does U by axiom (U2).

Let us denote D,, := {a,)°\ U;:Ol<ai>° so that T = >, D,,. For eachn € N,
apply Lemma [[3 to a, ..., a, to find B,, € (! X)* such that e, (b)° = Dn.

Now it is easy to see that B := |, B, also belongs to (! X)* and moreover
B € Tk, since {(b)° : b € B} covers Ty = Y, D,. Finally, any b € B, < B
satisfies (b) € D,, < {an)- [ |

A.3 Existence of a pseudo-Map of Adjunctions

The pair of functors (I, J) in the diagram (B)) is a psudo-map of adjunctions.
That is, {I,J) preserves the counit-unit pair (up to isomorphisms): Jrneon =
(Munit)g : J = JLK ~ GFJ and Iecon = (éunir)r : IKL ~ FGI = I, where
{€cohs Neohy and {€unif, Tunif) are the counit-unit pairs of the adjunctions F - G
and K — L, respectively.

Proof. Let X € Stabsto: be a coherence space with totality. Since (1eon)x (@) :=
la for every a € X, (Ineon)x : (Tx:Tsco) = (T x> Tsco) gives the bijection
a € Ty —!la e TPx given in Proposition [lI On the other hand, (Munif)rx :
(T 7Tsco) = (T, Tsco) is the identity, therefore, Ineon = (unir)r up to isomor-
phisms.

Let Y € Lingte: be a coherence space with totality. Recall that (econ)y :
'Y — i Y is the dereliction so that (econ)y (!a) := a for every a € Y. Hence
(Jecon)y : (Toy1hy) — (Ts, 1) also gives the uniform homeomorphism in
Proposition [ Similarly, (eunir) sy : (T3, ptine) — (Ty2, i) is the identity, there-
fore, we obtain Jecon = (€unif)s up to isomorphisms. [ |



A.4 Uniform Structure on a Linear Function Space

We shall exhibit an explicit structure of uniformity on a function space induced
by co-totality given in §3.

Proposition 4. Fvery total linear map F : (X oY) —;, Z is uniformly
continuous at single points: for every ¢ € 0’%, there exist a € Tx and a total
linear map G 1Y — 3, Z such that |F (k) —G(R(ao))| < ¢ for every k € T .y -

Proof. By Theorem 8] there exists f € 0% _y such that |k — /| <f = |F(k)—
F(x")| < ¢ for all k,x" € T__y. Notice that (X - Y)t = X ® Y. Hence
% oy = T ® (T3)° by Proposition Il so f = ag ® b for some ag € T and
b e ob. We now have |k — k| <ag®b = |F(k) — F(r')] < c.

Let ¢ € T be an arbitrary uni-cover, and define 6 € Y —;;, (X < Y') as
tr(0) := {(y,(x,y)) : zec,ye Y} It is easy to see that 6 is strictly total and
satisfies that 6(b)(a) := b for all a € Tx and b e Ty

Then G := Fof : Y —;, Z is a total linear map satisfying our requirement:
By letting b := K(ao),

%(ao) = é\(bo)(ao) = bo —— |I€ — 6‘(b0)| < ap @ b — |F(I€) — F(e(bo))l <cC.
|

What is interesting here is that the uniform structures on the constructed
spaces are determined by purely logical rules: for instance (X oY)+ = X QY.

A.5 The proof of Theorem

To prove the theorem, we first observe that a standard representation dx satisfies
a kind of universality.

A coherent representation X — Y is said to be linearish if (i) <y implies
Y[z)] nvy[{y)] # & for every z,y € X; and (ii) for every uniform cover U € uy
there exists ¢ € 0% such that |[a—b| < ¢ = |y(a) —v(b)| < U for all a,b € dom(y),
which is an analogue of strong uniform continuity in Theorem [

A standard representation Bx %%, X is indeed linearish. Let B8 = {U,} be a
countable basis of a uniform space X = (X, ux) and dx is a standard representa-
tion induced from f. (i) By definition, (n,U) ~ (m,V) implies U "'V # &,
hence 0x[(n,U)] = U, éx[(m,V)] = V and éx[(n,U)] n &x[(m, V)] # <.
(ii) For every uniform cover U € pux, there exists n € N such that U, re-
fines U. Since ¢ := {(n,U) : U € U,} is a uni-partition of Tp,, we have
la —b] < ¢c=|0x(a) — 0x(b)| <U, < U.

The following lemma indicates that dx is a representative example of linearish
representations.

Lemma 14. For any subspace Xo € X and any linearish representation X ——
Xo, there exists a linear map F : X —;, Bx with dx o F' = ~.



In particular, it immediately follows that standard representations of X are all
isomorphic by letting X := X, hence they do not depend on the choice of uniform
basis .

Proof. Let {Uy, : n € N} be a countable basis on X. Since + is linearish, we can
take a sequence of uni-covers {¢, : n € N} € o% such that |[a — b| < ¢, =
|v(a) — v(b)| < U, for each n € N. Let 1) :€ X x N — B be a partial function
so that 1(x,n) := U is defined for each n € N and = € a,, and then U € U,
and vy[{z)] € U. We define a linear map F' : X —;,, Bx as F(a) := {¢(z,n) :
n € N and z € a}. Let us now verify that F is the desired map in 4 steps.

(i) F(a) € Bx for every a € X. Let (n,U),(m,V) € F(a) with (n,U) #
(m, V). This means that there exist x € a,, and w € a,, such that ¥(x,n) = U,
Y(w,m) =V and z,w € a (so xS w). If n = m then x = w since z C w but
x,w € a,. Hence U = ¢(x,n) = ¥(z,m) =V, contradicting the assumption, so
n # m.

We also have U NV # &, since x © w implies y[{z)] ny[{w)] # &, y[{x)] <
U and v[{w)] € V. Therefore, (n,U) ~ (m, V).

(ii) F is a linear map. It is sufficient to verify the condition that F(a) 3 y
implies the unique existence of x € X such that F({z}) 2 y. Let y = (n,U) €
B. By definition, it is immediate that there is a unique x € a n a, such that
Y(z,n) ="U.

(i) F(a) € (Bx)max for every a € dom(y). Let 2, € a n a,, for each n € N. It
suffices to show that for every n € N there is (n,U) € F(a) for some U € U,,. By
definition, ¢ (z,,n) := U is defined so that (n,U) € F(a).

(iv) ox o F(a) = 7y(a) for every a € dom(y). Suppose that (n,U,) € F(a),
namely there is z € a such that ¢(x,n) = U,. By definition, we have v(a) €
7[{x)] € Un. Since it holds for every token of F(a), we have y(a) € (), v, )er(a) Un-
Therefore, F'(a) € dom(dx) and 0x o F'(a) = v(a). [ |

We are now ready to prove Theorem [T Let Y := f[X] and v := fodx. Then
«v is linearish: (i) If z © y then dx[{z)] N ox[{y)] # & hence v[{x)] nv[{y)] # .
(ii) For every (subspace) uniform cover V € puy,, there exists U € px such that
Ip—q|l <U = |f(p) — f(q)] <V, and we also have ¢ € 0% such that |a — b| <
¢ = |0x(a) — dx(b)] < U, since dx is linearish.

Applying Lemma [I4] to By L N Yo, we obtain a (total) linear map
F : Bx — i, By such that éy o F' = f o dx. This concludes Theorem

A.6 The Lemma for Theorem

Lemma 15. If X is chain-connected, the standard representation dx is a uni-
form quotient. That is, {dx[c] : ¢ € 0%} is a uniform basis of X, where 5x[c] is a
cover of X defined by {0x[{x)] : x € c}.

Proof. We need to check that the surjection By %%, X induces the uniformity
on X: namely, {0x[c] : ¢ € o } forms a uniform basis of X, where dx[c] is a cover
of X defined by 0x[c] := {dx[{x)] : z € c}.



Let {U, : n € N} be a countable basis of X. All we have to show is that each
uni-cover ¢ € oy is of the form ¢ = {(n,U) : U € Uy} for some n € N. Then
0x[c] = Uy, hence they generate the uniformity on X.

Let ¢ € o be a uni-cover of dom(dx). Since ¢ # (¥, one can fix a token
(n,Up) € c.

Indeed ¢ = {(n,U) : U € U,}. By chain-connectedness of X, we have U/, #
U, € U,, such that U,, nU}, # J. Given arbitrary p € U, n U], we can take {U,, :
m # n} such that p € Uy, € Uy, for each m # n € N. Let a := {(m,Up,) : m #
nyu{(n,Un)} and a’ := {(m,Uy,) : m # n}u{(n,U})}. Bothpe (), ., UnnU,
and p € ()2, Um N U}, hold, hence a,a’ € dom(dx). Since ¢ is a uni-cover
of dom(dx), both a L ¢ and o’ L ¢ hold, therefore, (n,U,) € ¢ (otherwise, if
(m,Up,) € a’ n¢, then anc contains both (n,U,) and (m, Uy, ), which contradicts
that a » ¢ must be a singleton.

Repeating this argument, we obtain (n,U) € ¢ for all U € U,,. [ ]

A.7 Some Constructions of Coherent Representations

Typical constructions of coherent representations are naturally given as follows.
Given X 25 S and Y 25 T, define:

- XY [ox®e¥] ¢« T is defined as dom([px ® py]) := dom(px) ®dom(py)
and [px ® py|(a®b) := (px(a), py (b)), where dom( ) means the domains
of representations (as partial maps).

- X oy P LR(px,py) is defined as follows. Define [px —o py] :S
X oY —T%by

[px ©<py](k):=f << f:S8—TisrealizedbyR: X —;, Y.

LR(px,py) € YX is the range of [px —o py], which consists of linearly
realizable functions.

— 1x 12X] g5 defined as dom([!px]) :=!dom(px) and [! px]('a) ;= px(a)
for every a € dom(px).

Unfortunately, the total extension lemma (Lemma [I]) is no longer available
for these constructions. For instance, we do not have dom([px ®py])** = Txey
in general, where Txgy is the tensor of the totalities Tx and 7y which are the
double negations of dom(px) and dom(py ) respectively.

To avoid this, we consider the following condition. A coherent representation
X % S is said to be classical if dom(px) = dom(px)° (i.e. the domain is
a totality on X and consists of strict total cliques). As noted in Example [ a
complete space X has a classical standard representation Jx.

Then it is easy to see that if px and py are classical, so are [px ® py| and
[!px], due to the internal completeness (Proposition [l). Although [px —o py]
is not classical, one can naturally restrict it as follows. Since [px —o py (k) =
[px —opy](k°) for every k € Tx oy, the strict restriction [px —py]° : Tx oy —
LR(px,py) is well-defined.



These representations are indeed compatible with the uniformities induced
by totalities: dom([px ® py])*+ = Txgy, dom([px — py]°)** = Tx oy and
dom([! px])**+ = T1 x, where Tx := dom(px) and Ty := dom(py).
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