
ar
X

iv
:1

60
2.

01
36

5v
6 

 [
cs

.L
O

] 
 2

6 
A

pr
 2

01
7

ON THE SEMANTICS OF INTENSIONALITY

G. A. KAVVOS

Abstract. In this paper we propose a categorical theory of intensionality.
We first revisit the notion of intensionality, and discuss its relevance to logic
and computer science. It turns out that 1-category theory is not the most
appropriate vehicle for studying the interplay of extension and intension. We
are thus led to consider the P-categories of Čubrić, Dybjer and Scott, which
are categories only up to a partial equivalence relation (PER). In this setting,
we introduce a new P-categorical construct, that of exposures. Exposures are
very nearly functors, except that they do not preserve the PERs of the P-
category. Inspired by the categorical semantics of modal logic, we begin to
develop their theory. Our leading examples demonstrate that an exposure is
an abstraction of well-behaved intensional devices, such as Gödel numberings.
The outcome is a unifying framework in which classic results of Kleene, Gödel,
Tarski and Rice find concise, clear formulations, and where each logical device
or assumption involved in their proofs can be expressed in the same algebraic
manner.

1. Introduction: Intensionality & Intensional Recursion

This paper proposes a new theory of intensionality. Intensionality is a notion that
dates as early as Frege’s philosophical distinction between sense and denotation,
see for example [11]. In the most mathematically general sense, to be ‘intensional’
is to somehow operate at a level finer than some predetermined ‘extensional’ equal-
ity. Whereas in mainstream mathematics intensionality is merely a nuisance, it is
omnipresent in computer science, where the objects of study are distinct programs
and processes describing (often identical) abstract mathematical values. At one
end of the spectrum, programs are extensionally equal if they are observationally
equivalent, i.e. interchangeable in any context. At the other extreme, computer
viruses often make decisions simply on patterns of object code they encounter, dis-
regarding the actual function of what they are infecting; one could say they operate
up to syntactic identity.

1.1. Intensionality as a Logical Construct. We are interested in devising a
categorical setting in which programs can be viewed in two ways simultaneously,
either as black boxes—i.e. extensionally, whatever we define that to mean, but
also as white boxes—i.e. intensionally, which should amount to being able to ‘look
inside’ a construction and examine its internal workings.

There are many reasons for pursuing this avenue. The main new construct we will
introduce will be an abstraction of the notion of Gödel numbering. The immediate
achievement of this paper is a categorical language in which we can state many
classic theorems from logic and computability that depend on the interplay between
extension and intension. This unifying language encompasses all such ‘diagonal
constructions’ in a way that makes the ingredients involved in each argument clear.
As such, we regard this as an improvement on the classic paper of Lawvere [16].
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2 G. A. KAVVOS

A more medium-term goal is the quest to prove a logical foundation to compu-
tational reflection, in the sense of Brian Cantwell Smith [23]. A reflective program
is always able to obtain a complete description of its source code and current state;
this allows it to make decisions depending on both its syntax and runtime behaviour.
This strand of research quickly ran into impossibility results that demonstrate that
reflective features are logically ill-behaved: see e.g. [2] for reflection in untyped
λ-calculus, or [25] for a more involved example involving the LISP fexpr construct.
Our viewpoint allows us to talk about the notion of intensional recursion, which
is more general than ordinary extensional recursion, and seems to correspond to a
well-behaved form of reflection. We connect this to a classic result in computability
theory, namely Kleene’s Second Recursion Theorem (SRT).

Finally, a more long-term goal is to understand non-functional computation.
In this context, non-functional computation means something much more general
than just computing with side-effects: we are interested in general higher-order
computation acting ‘on syntax.’ Approaches to such forms of computation have
hitherto been ad-hoc, see e.g. [18, §6]. We would like to provide a very general way
to add ‘intensional’ features to a pure functional programming language.

1.2. Prospectus. To begin, we introduce in §2 a known connection between the no-
tion of intension and the necessity modality from modal logic, and the use of modal
types in isolating intension from extension. We argue that this connection cannot
be fully substantiated in 1-category theory. Hence, we introduce P-categories and
explain their use in modelling intensionality.

In §3 we introduce a new P-categorical construct, the exposure. Exposures ‘turn
intensions into extensions’ in a manner inspired by the modality-as-intension inter-
pretation. In §4 we use exposures to talk about the notion of intensional recursion
in terms of intensional fixed points (IFPs).

In §5 we use IFPs to prove abstract analogues to Tarski’s undefinability theorem
and Gödel’s First Incompleteness Theorem. In §6 we construct a P-category and an
endoexposure that substantiate the claim that the the abstract versions correspond
to the usual theorems.

We then ask the obvious question: where do IFPs come from? In §7 we gener-
alize Lawvere’s fixed-point theorem to yield IFPs. Then, in §8, we draw a parallel
between Kleene’s First Recursion Theorem (FRT) and Lawvere’s fixed point result,
whereas we connect our IFP-yielding result with Kleene’s Second Recursion Theo-
rem. We substantiate this claim in §9 by constructing a P-category and exposure
based on realizability theory.

Finally, in §10 we provide further evidence for the usefulness of our language by
reproducing an abstract version of Rice’s theorem, a classic result in computability
theory. We find that this is already substantiated in the P-category constructed in
§9.

2. Modality-as-Intension

All the negative results regarding intensionality and computational reflection
have something in common: they invariably apply to some construct that can turn
extension into intension. For example, in [2] a contradiction is derived from the
assumption that some term Q satisfies QM =β pMq for anyM , where the RHS is a
Gödel number ofM . The moral is that one should not mix intension and extension.

To separate the two, we will use modal types, as first suggested by Davies and
Pfenning [10, 22]. In op. cit. the authors use modal types to simulate two-level
λ-calculi. In passing, they interpret the modal type �A as the type of ‘intensions
of type A’ or ‘code of type A.’ The T axiom �A → A may then be read as an
interpreter that maps code to values, whereas the 4 axiom �A→ ��A corresponds
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to quoting, but quoting that can only happen when the initial value is already code,
and not a ‘runtime,’ live value.

Unfortunately, the available semantics do not corroborate this interpretation.
The categorical semantics of the S4 necessity modality—due to Bierman and de
Paiva [4]—specify that � is a monoidal comonad (�, ǫ, δ) on a CCC. The problem is
now rather obvious, in that equality in the category is extensional equality: if f = g,
then �f = �g. In modal type theory, this amounts to saying that ⊢ M = N : A
implies ⊢ boxM = box N : �A, which is not what we mean by intensionality at
all. By definition, ‘intension’ should not be preserved under equality, and in [10] it
is clearly stated that there should be no reductions under a box (−) construct.

To salvage this modality-as-intension interpretation, we have to leave 1-category
theory, and move to a framework where we can separate extensional equality—
denoted ∼—and intensional equality—denoted ≈. We will thus use the P-categories
of Čubrić, Dybjer and Scott [8]. P-categories are only categories up to a family of
partial equivalence relations (PERs). In our setting, the PER will specify exten-
sional equality. All that remains is to devise a construct that (a) behaves like a
modality, so that intension and extension stay separate, and (b) unpacks the non-
extensional features of an arrow. This will be the starting point of our theory of
exposures.

2.1. P-categories and Intensionality. Suppose we have a model of computation
or a programming language whose programs are seen as computing functions, and
suppose that we are able to compose programs in this language, so that given pro-
grams P (computing f) and Q (computing g) there is a simple syntactic construction
Q; P (computing g ◦ f). In more elegant cases, like the λ-calculus, composition will
be substitution of a term for a free variable. But in most other cases there will be
unappealing overhead, involving e.g. some horrible disjoint unions of sets of states.
This syntactic overhead almost always ensures that composition of programs is
not associative: (R; Q); P is not syntactically identical to R; (Q; P), even though they
compute the same function.

To model this we will use P-categories, first introduced in [8]. Generally denoted
B,C, . . . , or even (B,∼), P-categories are categories whose hom-sets are not sets,
but P-sets : a P-set is a pair A = (|A| ,∼A) of a set |A| and a partial equivalence
relation (PER)1 on |A|. If a ∼A a′, then a can be thought of as ‘equal’ to a′. The
lack of reflexivity means that there may be some a ∈ |A| such that a 6∼A a: these
can be thought of as points which are not well-defined. A P-function f : A → B

between two P-sets A = (|A| ,∼A) and B = (|B| ,∼B) is a function |f | : |A| → |B|
that respects the PER: if a ∼A a′ then |f | (a) ∼B |f | (a′). We simply write f(a) if
a ∼A a.

Thus, we take each hom-set C(A,B) of a P-category C to be a P-set. We will
only write f : A → B if f ∼C(A,B) f , i.e. f is a well-defined arrow. Arrows
in a P-category are intensional constructions. Two arrows f, g : A → B will be
extensionally equal if f ∼C(A,B) g. The axioms of category theory will then only
hold up to the family of PERs, i.e. ∼ = {∼C(A,B)}A,B∈C. For example, it may be
that f ◦ (g ◦ h) 6= (f ◦ g) ◦ h, yet f ◦ (g ◦ h) ∼ (f ◦ g) ◦ h.

Hence, we regain all the standard equations of 1-categories, up to PERs. Fur-
thermore, the standard notions of terminal objects, products and exponentials all
have a P-variant in which the defining equations hold up to ∼. We are unable to
expound on P-categories any further, but please refer to [8] for more details.

1That is, a symmetric and transitive relation.
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3. Exposures

We can now formulate the definition of exposures. An exposure is almost a
(P-)functor: it preserves identity and compositions, but it only reflects PERs.

Definition 1. An exposure Q : (B,∼) # (C,∼) consists of (a) an object QA ∈ C

for each object A ∈ B, and (b) an arrow Qf : QA → QB in C for each arrow
f : A→ B in B, such that (1) Q(idA) ∼ idQA, and (2) Q(g ◦ f) ∼ Qg ◦Qf for any
arrows f : A → B and g : B → C, and (3) for any f, g : A → B, if Qf ∼ Qg then
f ∼ g.

The identity exposure IdB : B # B maps every object to itself, and every arrow
to itself. Finally, it is easy to see that the composite of two exposures is an exposure.

As exposures give a handle on the internal structure of arrows, they can be used
to define intensional equality: if the images of two arrows under the same exposure
Q are extensionally equal, then the arrows have the same implementation, so they
are intensionally equal. This is an exact interpretation of a slogan of Abramsky [1]:
intensions become extensions.

Definition 2 (Intensional Equality). Let there be P-categories B, C, and an expo-
sure Q : (B,∼) # (C,∼). Two arrows f, g : A → B are intensionally equal (up to
Q), written f ≈ g, just if Qf ∼ Qg.

It is obvious then that the last axiom on the definition of exposures means that
intensional equality implies extensional equality.

To re-interpret concepts from the modality-as-intension interpretation—such as
interpreters, quoting etc.—we shall need a notion of transformation between expo-
sures.

Definition 3. A natural transformation of exposures t : F
•
# G where F,G : B #

C are exposures, consists of an arrow tA : FA → GA of C for each object A ∈ B,
such that, for every arrow f : A→ B of B, the following diagram commutes up to
∼:

FA FB

GA GB

Ff

tA tB

Gf

3.1. Cartesian Exposures. Bare exposures offer no promises or guarantees re-
garding intensional equality. For example, it is not a given that π1 ◦ 〈f, g〉 ≈ f .
However, one may argue that this equality should hold, insofar as there is no grand
intensional content in projecting a component. This leads to the following notion:

Definition 4. A exposure Q : B # C where B is a cartesian P-category is itself
cartesian just if, for arrows f : C → A and g : C → B, we have

π1 ◦ 〈f, g〉 ≈ f, π2 ◦ 〈f, g〉 ≈ g, and 〈π1 ◦ h, π2 ◦ h〉 ≈ h

However, this is not enough to formally regain standard equations like 〈f, g〉 ◦
h ≈ 〈f ◦ h, g ◦ h〉. We need to also require that exposures ‘extensionally preserve’
products.

Definition 5. A cartesian exposure Q : B # C of a cartesian P-category B in a
cartesian P-category C is product-preserving whenever the canonical arrows

〈Qπ1, Qπ2〉 : Q(A×B) → QA×QB

!Q1 : Q1 → 1

are P-isomorphisms. We write mA,B : QA×QB
∼=
−→ Q(A × B) and m0 : 1

∼=
−→ Q1

for their inverses.
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Amongst the exposures, then, the ones that are both cartesian and product-
preserving are the ones that behave reasonably well in interaction with the product
structure. For example, it is an easy calculation to show that

Proposition 1. In the above setting, mA,B ◦ 〈Qf,Qg〉 ∼ Q〈f, g〉.

We can now prove that 〈f, g〉 ◦ h ≈ 〈f ◦ h, g ◦ h〉:

Q(〈f, g〉 ◦ h) ∼ Q(〈π1 ◦ 〈f, g〉 ◦ h, π2 ◦ 〈f, g〉 ◦ h〉)

∼ m ◦ 〈Q(π ◦ 〈f, g〉 ◦ h), Q(π′ ◦ 〈f, g〉 ◦ h)〉

∼ m ◦ 〈Q(f ◦ h), Q(g ◦ h)〉 ∼ Q(〈f ◦ h, g ◦ h〉)

3.2. Evaluators, Quotation Devices, and Comonadic Exposures. Using
transformations of exposures, we may begin to reinterpret concepts from the modality-
as-intension interpretation. Throughout this section, we fix a cartesian P-category
B, and a cartesian, product-preserving endoexposure Q : B # B.

Definition 6. An evaluator is a transformation of exposures ǫ : Q
•
# IdB.

What about quoting? Given a point a : 1 → A, its quote is defined to be the point
Q(a) ◦m0 : 1 → QA. We will require the following definition:

Definition 7. A arrow δ : QA→ Q2A is a reasonable quoting device just if for any
a : 1 → QA the following diagram commutes up to ∼:

1 QA

Q1 Q2A

a

m0 δA

Qa

A special case of this condition is the equation that holds if a natural transformation
of a similar type to δ is monoidal, namely δ1 ◦m0 ∼ Q(m0) ◦m0.

Definition 8. A quoter is a transformation of exposures δ : Q
•
# Q2 such that

every component δA : QA→ Q2A is a reasonable quoting device.

These ingredients finally combine to form a comonadic exposure.

Definition 9. A comonadic exposure (Q, ǫ, δ) consists of an endoexposure Q :

(B,∼) # (B,∼), an evaluator ǫ : Q
•
# IdB, and a quoter δ : Q

•
# Q2, such that

the following diagrams commute up to ∼:

QA Q2A

Q2A Q3A

δA

δA δQ(A)

Q(δA)

QA Q2A

Q2A QA

δA

δA
idA

ǫQA

Q(ǫA)

4. Exposures & Intensional Recursion

Armed with the above, we can now speak of both extensional and intensional
recursion. Lawvere [16] famously proved a theorem which guarantees that, under
certain assumptions which we will discuss in §7, there exist fixed points of the
following sort.

Definition 10. An extensional fixed point (EFP) of an arrow t : Y → Y is a point
y : 1 → Y such that t ◦ y ∼ y. If, for a given object Y , every arrow t : Y → Y has
a EFP, then we say that Y has EFPs.
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In Lawvere’s paper EFPs are a kind of fixed point that oughtn’t exist. In fact,
Lawvere shows that—were truth definable—the arrow ¬ : 2 → 2 representing
negation would have a fixed point, i.e. a formula φ with ¬φ ↔ φ that leads to
inconsistency.

EFPs do not encompass fixed points that ought to exist. For example, the diag-
onal lemma for Peano Arithmetic (henceforth PA) stipulates that for any predicate
φ(x), there exists a closed formula fix(φ) such that

PA ⊢ fix(φ) ↔ φ(pfix(φ)q)

The formula fix(φ) occurs asymmetrically: on the left hand side of the bi-implication
it appears as a truth value, but on the right hand side it appears under a Gödel
numbering, i.e. an assignment p·q of a numeral to each term and formula of PA.
Since exposures map values to their encoding, the following notion encompasses
this kind of ‘asymmetric’ fixed point.

Definition 11. Let Q : B # B be a cartesian, product-preserving endoexposure.
An intensional fixed point (IFP) of a arrow t : QY → Y is a point y : 1 → Y such
that

y ∼ t ◦Q(y) ◦m0

An object A has IFPs (w.r.t. Q) if every arrow t : QA→ A has a IFP.

This makes intuitive sense: y : 1 → Y is extensionally equal to t ‘evaluated’ at
the point Q(y) ◦m0 : 1 → QY , which is the ‘quoted’ version of y.

5. Consistency, Truth and Provability: Gödel and Tarski

We are now in a position to argue that two well-known theorems from logic can
be reduced to very simple algebraic arguments involving exposures. In fact, the gist
of both arguments relies on the existence of IFPs for an ‘object of truth values’ in
a P-category. The theorems in question are Gödel’s First Incompleteness Theorem
and Tarski’s Undefinability Theorem [24, 5].

Suppose that we have some sort of object 2 of ‘truth values.’ This need not be
fancy: we require that it has two points ⊤ : 1 → 2 and ⊥ : 1 → 2, standing for true
and false respectively. We also require an arrow ¬ : 2 → 2 which satisfies ¬◦⊤ ∼ ⊥
and ¬ ◦ ⊥ ∼ ⊤.

A simplified version of Gödel’s First Incompleteness theorem for PA is this:

Theorem 1 (Gödel). If PA is consistent, then there are sentences φ of PA such
that neither PA ⊢ φ nor PA ⊢ ¬φ.

The proof relies on two constructions: the diagonal lemma, and the fact that
provability is definable in the system. The definability of provability amounts to
the fact that there is a formula Prov(x) with one free variable x such that PA ⊢ φ if
and only if PA ⊢ Prov(pφq). That is: the system can internally talk about its own
provability, modulo some Gödel numbering.

It is not then hard to sketch the proof to Gödel’s theorem: take ψ such that
PA ⊢ ψ ↔ ¬Prov(pψq). Then ψ is provable if and only if it is not, so if either
PA ⊢ ψ or PA ⊢ ¬ψ we would observe inconsistency. Thus, if PA is consistent,
neither ψ nor its negation are provable. It follows that ψ is neither equivalent to ⊥
or to ⊤. In a way, ψ has an eerie truth value, neither ⊤ nor ⊥.

Let us represent the provability predicate as an arrow p : Q2 → 2 such that
y ∼ ⊤ if and only if p ◦ Q(y) ◦m0 ∼ ⊤. Consistency is captured by the following
definition:

Definition 12. An object 2 as above is simply consistent just if ⊤ 6∼ ⊥.
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Armed with this machinery, we can transport the argument underlying Gödel’s
proof to our more abstract setting:

Theorem 2. If a p : Q2 → 2 is as above, and 2 has IFPs, then one of the following
things is true: either (a) there are points of 2 other than ⊤ : 1 → 2 and ⊥ : 1 → 2;
or (b) 2 is not simply consistent, i.e. ⊤ ∼ ⊥.

Proof. As 2 has IFPs, take y : 1 → 2 such that y ∼ ¬◦p◦Q(y)◦m0. Now, if y ∼ ⊤,
then by the property of p above, p ◦Q(y) ◦m0 ∼ ⊤, hence ¬ ◦ p ◦Q(y) ◦m0 ∼ ⊥,
hence y ∼ ⊥. So either y 6∼ ⊤ or 2 is not simply consistent. Similarly, either y 6∼ ⊥
or 2 is not simply consistent. �

Tarski’sUndefinability Theorem, on the other hand is the result that truth cannot
be defined in arithmetic [24].

Theorem 3 (Tarski). If PA is consistent, then there is no predicate True(x) such
that PA ⊢ φ↔ True(pφq) for all sentences φ.

The proof is simple: use the diagonal lemma to obtain a closed ψ such that
PA ⊢ ψ ↔ ¬True(pψq), so that PA ⊢ ψ ↔ ¬ψ, which leads to inconsistency.

Now, a proof predicate would constitute an evaluator ǫ : Q
•
# IdB: we would

have that
ǫ2 ◦Q(y) ◦m0 ∼ y ◦ ǫ1 ◦m0 ∼ y

where the last equality is because 1 is terminal. This is actually a more general

Lemma 1. Let Q : B # B be an endoexposure, and let ǫ : Q
•
# IdB be an

evaluator. Then, if A has IFPs then it also has EFPs.

Proof. Given t : A→ A, consider t ◦ ǫA : QA→ A. A IFP for this arrow is a point
y : 1 → A such that y ∼ t ◦ ǫA ◦Q(y) ◦m0. But we may calculate as above to show
that ǫA ◦Q(y) ◦m0 ∼ y and thus y ∼ t ◦ y. �

In proving Tarski’s theorem, we constructed a sentence ψ such that PA ⊢ ψ ↔
¬ψ. This can be captured abstractly by the following definition.

Definition 13. An object 2 as above is fix-consistent just if the arrow ¬ : 2 → 2

has no EFP; that is, there is no y : 1 → 2 such that ¬ ◦ y ∼ y.

Putting these together, we get

Theorem 4. If 2 has IFPs in the presence of an evaluator, then it is not fix-
consistent.

6. An Exposure on Arithmetic

We will substantiate the results of the previous section by sketching the construc-
tion of a P-category and endoexposure based on a first-order theory. The method
is very similar to that of Lawvere [16], and we will also call it the Lindenbaum
P-category of the theory. The construction is general, and so is the thesis of this
section: an exposure on a Lindenbaum P-category abstractly captures the notion
of a well-behaved Gödel ‘numbering’ on the underlying theory.

Let there be a single-sorted first-order theory T. The objects of the P-category
are the formal products of (a) 1, the terminal object, (b) A, the domain, and (c)
2, the object of truth values. Arrows 1 → A and A→ A are terms with no or one
free variable respectively. Arrows An → 2 and 1 → 2 are predicates, with n and
no free variables respectively. Finally, arrows 2n → 2 can be thought of as logical
connectives (e.g. ∧ : 2× 2 → 2).

Two arrows s, t : C → A with codomain A (i.e. two terms of the theory) are
related if and only if they are provably equal, i.e. s ∼ t iff T ⊢ s = t. Two
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arrows φ, ψ : C → 2 with codomain 2 are related if and only if they are provably
equivalent, i.e. φ ∼ ψ iff T ⊢ φ↔ ψ.

To define an exposure, it suffices to have a Gödel numbering, i.e. a represen-
tation of terms and formulas of the theory as elements of its domain A. More
precisely, we need a Gödel numbering for which substitution is internally defin-
able. We write pφ(x1, . . . , xn)q and pt(a1, . . . , am)q for the Gödel numbers of the
formula φ(x1, . . . , xn) and the term t(a1, . . . , am) respectively, and we assume that

p·q is injective. Let QA
def

= A, Q(2)
def

= A, and Q(1)
def

= 1. Finally, define Q to
act component-wise on finite products: this will guarantee that it is cartesian and
product-preserving.

The action on arrows is what necessitated that substitution be definable: this
amounts to the existence of a term sub(y, x) with the property that if φ(x) is a
predicate and t is a term, then T ⊢ sub(pφq, ptq) = pφ(t)q. Now, given a predicate
φ : A → 2 with one free variable, Q(φ) : A → A is defined to be the term
sub(pφq, x). Given a sentence φ : 1 → 2, we define Q(φ) : 1 → A to be exactly the
closed term pφq. The action is similar on arrows with codomain A, and component-
wise on product arrows. The last axiom of exposures is satisfied: if Qφ ∼ Qψ, then
pφq = pψq, so that φ = ψ, by the injectivity of the Gödel numbering.

In this setting, IFPs really are fixpoints of formulas.

7. Where do IFPs come from?

In §4 we mentioned Lawvere’s fixed point theorem. This theorem guarantees the
existence of EFPs under the assumption that there is an arrow of this form:

Definition 14. An arrow r : X × A → Y is weakly-point surjective if, for every
f : A → Y , there exists a xf : 1 → X such that for all points a : 1 → A it is the
case that r ◦ 〈xf , a〉 ∼ f ◦ a.

So a weak-point surjection is a bit like ‘pointwise cartesian closure,’ in that the
effect of all arrows A→ Y on points 1 → A is representable by some point 1 → X ,
w.r.t. r. Lawvere noticed that if the ‘exponential’ X and the domain A coincide,
then a simple diagonal argument yields fixpoints for all arrows Y → Y .

Theorem 5 (Lawvere). If r : A × A → Y is a weak-point surjection, then every
arrow t : Y → Y has an extensional fixed point (EFP).

Proof. Let f
def

= t ◦ r ◦ 〈idA, idA〉. Then there exists a xf : 1 → A such that
r ◦ 〈xf , a〉 ∼ f ◦ a for all a : 1 → A. We compute that r ◦ 〈xf , xf 〉 ∼ t ◦ r ◦
〈idA, idA〉 ◦ xf ∼ t ◦ r ◦ 〈xf , xf 〉, so that r ◦ 〈xf , xf 〉 is a EFP of t. �

Can we adapt Lawvere’s result to IFPs? The answer is positive, and rather
straightforward once we embellish the statement with appropriate occurrences of
Q. We also need a reasonable quoting device.

Theorem 6. Let Q be a monoidal exposure, and let δA : QA→ Q2A be a reasonable
quoting device. If r : QA × QA → Y is a weak-point surjection then every arrow
t : QY → Y has an intensional fixed point.

Proof. Let f
def

= t ◦Qr ◦mQA,QA ◦ 〈δA, δA〉. Then there exists a xf : 1 → QA such
that r ◦ 〈xf , a〉 ∼ f ◦ a for all a : 1 → QA. We compute that

r ◦ 〈xf , xf 〉 ∼ t ◦Qr ◦m ◦ 〈δA, δA〉 ◦ xf ∼ t ◦Qr ◦m ◦ 〈δA ◦ xf , δA ◦ xf 〉

∼ t ◦Qr ◦m ◦ 〈Q(xf ) ◦m0, Q(xf ) ◦m0〉

∼ t ◦Qr ◦m ◦ 〈Q(xf ), Q(xf )〉 ◦m0

∼ t ◦Qr ◦Q(〈xf , xf 〉) ◦m0 ∼ t ◦Q(r ◦ 〈xf , xf 〉) ◦m0
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so that r ◦ 〈xf , xf 〉 is a IFP of t. �

In the next section, we shall see that this is a true categorical analogue of Kleene’s
Second Recursion Theorem (SRT).

8. The Recursion Theorems

In fact, the theorem we just proved in §7 is strongly reminiscent of a known
theorem in (higher order) computability theory, namely a version of Kleene’s First
Recursion Theorem (FRT).

Let us fix some notation. We write≃ forKleene equality: we write e ≃ e′ to mean
either that both expressions e and e′ are undefined, if either both are undefined, or
both are defined and of equal value. Let φ0, φ1, . . . be an enumeration of the partial
recursive functions. We will also require the s-m-n theorem from computability
theory. Full definitions and statements may be found in the book by Cutland [9].

Theorem 7 (First Recursion Theorem). Let PR be the set of unary partial recur-
sive functions, and let F : PR → PR be an effective operation. Then F : PR →
PR has a fixed point.

Proof. That F : PR → PR is an effective operation means that there is a partial
recursive f : N × N ⇀ N such that f(e, x) ≃ F (φe)(x). Let d ∈ N a code for the

partial recursive function φd(y, x)
def

= f(S(y, y), x), where S : N×N⇀ N is the s-1-1
function of the s-m-n theorem. Then, by the s-m-n theorem, and the definitions of
d ∈ N and f ,

φS(d,d)(x) ≃ φd(d, x) ≃ f(S(d, d), x) ≃ F (φS(d,d))(x)

so that φS(d,d) is a fixed point of F : PR → PR. �

Lawvere’s theorem is virtually identical to a point-free version of this proof.
Yet, one cannot avoid noticing that we have proved more than that for which we
bargained. The f : N× N ⇀ N in the proof above has the special property that it
is extensional, in the sense that

φe = φe′ =⇒ ∀x ∈ N. f(e, x) = f(e′, x)

However, the step which yields the fixed point argument holds for any such f , not
just the extensional ones. This fact predates the FRT, and was shown by Kleene
in 1938 [14].

Theorem 8 (Second Recursion Theorem). For any partial recursive f : N×N⇀ N,
there exists e ∈ N such that φe(y) ≃ f(e, y) for all y ∈ N.

This is significantly more powerful than the FRT, as f(e, y) can make arbitrary
decisions depending on the source code e, irrespective of the function φe of which
it is the source code. Moreover, it is evident that the function φe has access to
its own code, allowing for a certain degree of reflection. Even if f is extensional,
hence defining an effective operation, the SRT grants us more power than the FRT:
for example, before recursively calling e on some points, f(e, y) could ‘optimise’ e
depending on what y is, hence ensuring that the recursive call will run faster than
e itself would. This line of thought is common in the partial evaluation community,
see e.g. [12].

In the sequel we argue that our fixed point theorem involving exposures is a
generalisation of Lawvere’s theorem, in the exact same way that the SRT is a non-
extensional generalisation of the FRT. In order to do so, we define a P-category and
an exposure based on realizability theory, and claim that the FRT and the SRT are
instances of the general theorems in that particular P-category.



10 G. A. KAVVOS

9. An Exposure on Assemblies

Our second example of an exposure will come from realizability, where the basic
objects are assemblies. An assembly is a set to every element of which we have
associated a set of realizers. The elements of the set can be understood as elements
of a datatype, and the set of realizers of each such element as the machine-level
representations of it. For example, if realizers range in the natural numbers, then
assemblies and functions between them which are partial recursive on the level of
realizers yield a category where ‘everything is computable.’

In practice, the generalisation from natural numbers to an arbitrary partial com-
binatory algebra (PCA) is made. A PCA is an arbitrary, untyped ‘universe’ corre-
sponding to some notion of computability or realizability. There are easy tricks with
which one may encode various common ‘first-order’ datatypes, such as booleans, in-
tegers, etc. as well as all partial recursive functions (up to the encoding of integers).
These methods can be found [3, 17, 20, 21].

Definition 15. A partial combinatory algebra (PCA) (A, ·) consists of a set A, its
carrier, and a partial binary operation · : A×A ⇀ A such that there exist K,S ∈ A

with the properties that

K · x ↓, K · x · y ≃ y, S · x · y ↓, S · x · y · z ≃ x · z · (y · z)

for all x, y, z ∈ A.

The simplest example of a PCA, corresponding to classical computability, is K1,

also known as Kleene’s first model. Its carrier is N, and r · a
def

= φr(a).

Definition 16. An assembly X on a PCA A consists of a set |X | and, for each
x ∈ |X |, a non-empty subset ‖x‖X of A. If a ∈ ‖x‖X , we say that a realizes x.

Definition 17. For two assemblies X and Y , a function f : |X | → |Y | is said to
be tracked by r ∈ A just if, for all x ∈ |X | and a ∈ ‖x‖X , we have r · a ↓ and
r · a ∈ ‖f(x)‖Y

Now: for each PCA A, we can define a category Asm(A), with objects all
assemblies X on A, and morphisms f : X → Y all functions f : |X | → |Y | that are
tracked by some r ∈ A.

Theorem 9. Assemblies and ‘trackable’ morphisms between them form a category
Asm(A) that is cartesian closed, has finite coproducts, and a natural numbers ob-
ject.

We only mention one other construction that we shall need. Given an assembly
X , the lifted assembly X⊥ is defined to be

|X⊥|
def

= |X | ∪ {⊥} and ‖x‖X⊥

def

=

{

{

r
∣

∣ r · 0 ↓ and r · 0 ∈ ‖x‖X
}

for x ∈ |X |
{

r
∣

∣ r · 0 ↑
}

for x = ⊥

for some chosen element of the PCA 0. Elements of X⊥ are either elements of X ,
or the undefined value ⊥. Realizers of x ∈ |X | are ‘computations’ r ∈ A which,
when run (i.e. given the dummy value 0 as argument) return a realizer of x. A
computation that does not halt when run represents the undefined value.2

2Bear in mind that this definition of the lifted assembly does not work if the PCA is total. We
are mostly interested in the decidedly non-total PCA K1, so this is not an issue. There are other,
more involved ways of defining the lifted assembly; see [20] in particular.
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9.1. Passing to a P-category. The lack of intensionality in the categoryAsm(A)
is blatantly obvious. To elevate a function f : |X | → |Y | to a morphism f : X → Y ,
we only require that there exists a ‘witness’ r ∈ A that realizes it, and then we forget
about this witness entirely. To mend this, we define a P-category.

The P-category Asm(A) of assemblies on A is defined to have all assemblies X
on A as objects, and pairs (f : |X | → |Y | , r ∈ A) where r tracks f as arrows. We
define (f, r) ∼ (g, s) just if f = g, i.e. when the underlying function is the same.
The composition of (f, p) : X → Y and (g, q) : Y → Z is (g ◦ f,B · q · p) where B is
a combinator in the PCA such that B · f · g · x ≃ f · (g · x) for any f, g, x ∈ A. The
identity idX : X → X is defined to be (id|X|, I) : X → X , where I is a combinator
in the PCA such that I · x ≃ x for all x ∈ A.

Much in the same way as before—but now up to the PER ∼—we can show

Theorem 10. Asm(A) is a cartesian closed P-category with a natural numbers
object N.

We can now define an exposure � : Asm(A) # Asm(A). For an assembly
X ∈ Asm(A), let �X be the assembly defined by

|�X |
def

= { (x, a) | x ∈ |X | , a ∈ ‖x‖A } , ‖(x, a)‖
�X

def

= { a }

Given (f, r) : X → Y , we define �(f, r) = (fr, r) : �X → �Y where fr : |�X | →

|�Y | is defined by fr(x, a)
def

= (f(x), r · a). Thus, under the exposure each element
(x, a) ∈ |�X | carries with it its own unique realizer a. The image of (f, r) under
� shows not only what f does to an element of its domain, but also how r acts on
the realizer of that element.

It is long but straightforward to check that

Theorem 11. � : Asm(A) # Asm(A) is a cartesian, product-preserving, and
comonadic endoexposure.

9.2. Kleene’s Recursion Theorems, categorically. Let us concentrate on the
category Asm(K1). Arrows N → N⊥ are easily seen to correspond to partial recur-
sive functions. It is not hard to produce a weak-point surjection rE : N×N → N

N

⊥,
and hence to invoke Lawvere’s theorem to show that every arrow N

N

⊥ → N
N

⊥ has
an extensional fixed point. Now, by Longley’s generalised Myhill-Shepherdson the-
orem [17, 19], arrows NN

⊥ → N
N

⊥ correspond to effective operations. Hence, in this
context Lawvere’s theorem corresponds to the simple diagonal argument that we
used to show the FRT.3

Let us look at arrows of type �(NN

⊥) → N
N

⊥. These correspond to ‘non-functional’
transformations, mapping functions to functions, but without respecting extension-
ality. As every natural number indexes a partial recursive function, these arrows
really correspond to all partial recursive functions (up to some tagging and encod-
ing). It is not hard to see that �N is P-isomorphic to N, and that one can build a
weak-point surjection of type �N×�N → N

N

⊥, so that by our theorem, every arrow
of type �(NN

⊥) → N
N

⊥ has an intensional fixed point. This is exactly Kleene’s SRT!

10. Rice’s theorem

To further illustrate the applicability of the language of exposures, we state
and prove an abstract version of Rice’s theorem. Rice’s theorem is a result in
computability which states that no computer can decide any non-trivial property
of a program by looking at its code. A short proof relies on the SRT.

3But note that this is not the complete story, as there is no guarantee that the fixed point
obtained in least, which is what Kleene’s original proof in [15] gives. See also [13].
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Theorem 12 (Rice). Let F be a non-trivial set of partial recursive functions, and

let AF
def
= { e ∈ N | φe ∈ F } be the set of indices of functions in that set. Then AF

is undecidable.

Proof. Suppose AF is decidable. The fact F is non-trivial means that there is some
a ∈ N such that φa ∈ F and some b ∈ N such that φb 6∈ F . Consequently, a ∈ AF

and b 6∈ AF .
Define f(e, x) ≃ if e ∈ AF then φb(x) else φa(x). By Church’s thesis, f : N×

N → N is partial recursive. Use the SRT to obtain e ∈ N such that φe(x) ≃ f(e, x).
Now, either e ∈ AF or not. If it is, φe(x) ≃ f(e, x) ≃ φb(x), so that φe 6∈ F , a
contradiction. A similar phenomenon occurs if e 6∈ AF . �

Constructing the function f in the proof required three basic elements: (a) the
ability to evaluate either φa or φb given a and b; (b) the ability to decide which one
to use depending on the input; and (c) intensional recursion. For (a), we shall need
evaluators, for (b) we shall need that the truth object 2 is a weak coproduct of two
copies of 1, and for (c) we shall require IFPs.

Theorem 13. Let 2 is a simply consistent ‘truth object’ which also happens to be
a a weak coproduct of two copies of 1, with injections ⊤ : 1 → 2 and ⊥ : 1 → 2.
Furthermore, suppose that A has EFPs. If f : A→ 2 is such that for all x : 1 → A,
either f ◦ x ∼ ⊤ or f ◦ x ∼ ⊥, then f is trivial, in the sense that either f ◦ x ∼ ⊤
for all x : 1 → A, or f ◦ x ∼ ⊥ for all x : 1 → A.

Proof. Suppose there are two such distinct a, b : 1 → A such that f ◦ a ∼ ⊤ and

f ◦ b ∼ ⊥. Let g
def

= [b, a] ◦ f and let y : 1 → A be its EFP. Now, either f ◦ y ∼ ⊤
or f ◦ y ∼ ⊥. In the first case, we can calculate that ⊤ ∼ f ◦ [b, a] ◦ f ◦ y ∼
f ◦ [b, a] ◦ ⊤ ∼ f ◦ b ∼ ⊥ so that 2 is not simply consistent. A similar situation
occurs if f ◦ y ∼ ⊥. �

Needless to say that the premises of this theorem are easily satisfied in our
exposure on assemblies from §9 if we take A = N⊥

N and 2 to be the lifted coproduct
(1+ 1)⊥.

11. Conclusion

We have modelled intensionality with P-categories, and introduced a new con-
struct that abstractly corresponds to Gödel numbers. This led us to an immediate
unification of many ‘diagonal arguments’ in logic and computability, as well as a
new perspective on the notion of intensional recursion. Our approach is clearer and
more systematic than the one in [16].

Many questions are left open. We are currently working on the medium-term
goal of a safe, reflective programming language based on modal type theory. The
basics are there, but there are many questions: what operations should be available
at modal types; with how much expressivity would the language be endowed for
each possible set; and what are the applications?

On the more technical side, it is interesting to note that we have refrained from
a categorical proof of the diagonal lemma for PA. All our attempts were inelegant,
and we believe that this is because arithmetic is fundamentally untyped: Q(2)
has many more points than ‘all Gödel numbers of predicates.’ In contrast, our
approach using exposures is typed, which sets it apart from all previous attempts at
capturing such arguments categorically, including the very elegant work of Cockett
and Hofstra [6, 7]. The approach in op. cit. is based on Turing categories, in which
every object is a retract of some very special objects—the Turing objects. In the
conclusion of [6] this is explicitly mentioned as an ‘inherent limitation.’ Only time
will tell which approach is more encompassing.
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Finally, it would be interesting to study the meaning of exposure in examples
not originating in logic and computability, but in other parts of mathematics. Can
we find examples of exposures elsewhere? Are they of any use?
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