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Abstract. It is well known that the length of a β-reduction sequence of a simply typed
λ-term of order k can be huge; it is as large as k-fold exponential in the size of the λ-term in
the worst case. We consider the following relevant question about quantitative properties,
instead of the worst case: how many simply typed λ-terms have very long reduction
sequences? We provide a partial answer to this question, by showing that asymptotically
almost every simply typed λ-term of order k has a reduction sequence as long as (k−1)-fold
exponential in the term size, under the assumption that the arity of functions and the
number of variables that may occur in every subterm are bounded above by a constant.
To prove it, we have extended the infinite monkey theorem for words to a parameterized
one for regular tree languages, which may be of independent interest. The work has been
motivated by quantitative analysis of the complexity of higher-order model checking.

1. Introduction

It is well known that a β-reduction sequence of a simply typed λ-term can be extremely
long. Beckmann [1] showed that, for any k ≥ 0,

max{β(t) | t is a simply typed λ-term of order k and size n} = expk(Θ(n))

where β(t) is the maximum length of the β-reduction sequences of the term t, and expk(x) is

defined by: exp0(x) , x and expk+1(x) , 2expk(x). Indeed, the following order-k term [1]:

(2k)
n2k−1 · · · 22(λxo.a x x)((λxo.x)c),

where 2j is the twice function λf τ
(j−1)

.λxτ
(j−2)

.f(f x) (with τ (j) being the order-j type

defined by: τ (0) = o and τ (j) = τ (j−1) → τ (j−1)), has a β-reduction sequence of length
expk(Ω(n)).
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Although the worst-case length of the longest β-reduction sequence is well known as
above, much is not known about the average-case length of the longest β-reduction sequence:
how often does one encounter a term having a very long β-reduction sequence? In other
words, suppose we pick a simply-typed λ-term t of order k and size n randomly ; then what is
the probability that t has a β-reduction sequence longer than a certain bound, like expk(cn)
(where c is some constant)? One may expect that, although there exists a term (such as
the one above) whose reduction sequence is as long as expk(Ω(n)), such a term is rarely
encountered.

In the present paper, we provide a partial answer to the above question, by showing
that almost every simply typed λ-term of order k has a β-reduction sequence as long as
(k − 1)-fold exponential in the term size, under a certain assumption. More precisely, we
shall show:

lim
n→∞

#
(
{[t]α ∈ Λn(k, ι, ξ) | β(t) ≥ expk−1(np)}

)
#(Λn(k, ι, ξ))

= 1

for some constant p > 0, where Λn(k, ι, ξ) is the set of (α-equivalence classes [−]α of)
simply-typed λ-terms such that the term size is n, the order is up to k, the (internal) arity
is up to ι ≥ k and the number of variable names is up to ξ (see the next section for the
precise definition).

Related problems have been studied in the context of the quantitative analysis of untyped
λ-terms [2, 3, 4]. For example, David et al. [2] have shown that almost all untyped λ-terms
are strongly normalizing, whereas the result is opposite in the corresponding combinatory
logic. A more sophisticated analysis is, however, required in our case, for considering only
well-typed terms, and also for reasoning about the length of a reduction sequence instead of
a qualitative property like strong normalization.

To prove our main result above, we have extended the infinite monkey theorem (a.k.a.
“Borges’s theorem” [5, p.61, Note I.35]) to a parameterized version for regular tree languages.
The infinite monkey theorem states that for any word w, a sufficiently long word almost
surely contains w as a subword (see Section 2 for a more precise statement). Our extended
theorem, roughly speaking, states that, for any regular tree grammar G that satisfies a certain
condition and any family (Um)m∈N of trees (or tree contexts) generated by G such that
|Um| = O(m), a sufficiently large tree T generated by G almost surely contains Udp log |T |e as
a subtree (where p is some positive constant). Our main result is then obtained by preparing
a regular tree grammar for simply-typed λ-terms, and using as Um a term having a very long
β-reduction sequence, like (2k)

m2k−1 · · · 22(λxo.a x x)((λxo.x)c) given above. The extended
infinite monkey theorem mentioned above may be of independent interest and applicable to
other problems.

Our work is a part of our long-term project on the quantitative analysis of the complexity
of higher-order model checking [6, 7]. The higher-order model checking asks whether the
(possibly infinite) tree generated by a ground-type term of the λY-calculus (or, a higher-order
recursion scheme) satisfies a given regular property, and it is known that the problem is k-
EXPTIME complete for order-k terms [7]. Despite the huge worst-case complexity, practical
model checkers [8, 9, 10] have been built, which run fast for many typical inputs, and have
successfully been applied to automated verification of functional programs [11, 12, 13, 14].
The project aims to provide a theoretical justification for it, by studying how many inputs
actually suffer from the worst-case complexity. Since the problem appears to be hard due
to recursion, as an intermediate step towards the goal, we aimed to analyze the variant of
the problem considered by Terui [15]: given a term of the simply-typed λ-calculus (without
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recursion) of type Bool, decide whether it evaluates to true or false (where Booleans are
Church-encoded; see [15] for the precise definition). Terui has shown that even for the
problem, the complexity is k-EXPTIME complete for order-(2k + 2) terms. If, contrary to
the result of the present paper, the upper-bound of the lengths of β-reduction sequences were
small for almost every term, then we could have concluded that the decision problem above
is easily solvable for most of the inputs. The result in the present paper does not necessarily
provide a negative answer to the question above, because one need not necessarily apply
β-reductions to solve Terui’s decision problem.

The present work may also shed some light on other problems on typed λ-calculi with
exponential or higher worst-case complexity. For example, despite DEXPTIME-completeness
of ML typability [16, 17], it is often said that the exponential behavior is rarely seen in
practice. That is, however, based on only empirical studies. A variation of our technique
may be used to provide a theoretical justification (or possibly unjustification).

A preliminary version of this article appeared in Proceedings of FoSSaCS 2017 [18].
Compared with the conference version, we have strengthened the main result (from “almost
every λ-term of size n has β-reduction sequence as long as expk−2(n)” to “... as long as
expk−1(np)”), and added proofs. We have also generalized the argument in the conference
version to formalize the parameterized infinite monkey theorem for regular tree languages.

The rest of this paper is organized as follows. Section 2 states our main result formally.
Section 3 proves the extended infinite monkey theorem, and Section 4 proves the main result.
Section 5 discusses related work, and Section 6 concludes this article.

2. Main Results

This section states the main results of this article: the result on the quantitative analysis of the
length of β-reduction sequences of simply-typed λ-terms (Section 2.1) and the parameterized
infinite monkey theorem for regular tree grammars (Section 2.2). The latter is used in the
proof of the former in Section 4. In the course of giving the main results, we also introduce
various notations used in later sections; the notations are summarized in Appendix A. We
assume some familiarity with the simply-typed λ-calculus and regular tree grammars and
omit to define some standard concepts (such as β-reduction); readers who are not familiar
with them may wish to consult [19] about the simply-typed λ-calculus and [20, 21] about
regular tree grammars.

For a set A, we denote by #(A) the cardinality of A; by abuse of notation, we write
#(A) =∞ to mean that A is infinite. For a sequence s, we also denote by #(s) the length
of s. For a sequence s = a1a2 · · · a#(s) and i ≤ #(s), we write s�i for the i-th element ai. We
write s1 · s2 or just s1s2 for the concatenation of two sequences s1 and s2. We write ε for
the empty sequence. We use

⊎
to denote the union of disjoint sets. For a set I and a family

of sets (Ai)i∈I , we define
∐
i∈I Ai ,

⊎
i∈I({i} ×Ai) = {(i, a) | i ∈ I, a ∈ Ai}. For a map f ,

we denote the domain and image of f by Dom(f) and Im (f), respectively. We denote by
log x the binary logarithm log2 x.

2.1. The Main Result on Quantitative Analysis of the Length of β-Reductions.
The set of (simple) types, ranged over by τ, τ1, τ2, . . ., is defined by the grammar:

τ ::= o | τ1 → τ2.
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Note that the set of types can also be generated by the following grammar:

τ ::= τ1 → · · · → τk → o

where k ≥ 0; we sometimes use the latter grammar for inductive definitions of functions on
types. We also use σ as a metavariable for types.

Remark 2.1. We have only a single base type o above. The main result (Theorem 2.5)
would not change even if there are multiple base types.

Let V be a countably infinite set, which is ranged over by x, y, z (and x′, x1, etc.). The
set of λ-terms (or terms), ranged over by t, t1, t2, . . ., is defined by:

t ::= x | λxτ.t | t1 t2 x ::= x | ∗.
We call elements of V ∪ {∗} variables, and use meta-variables x, y, z (and x′, x1, etc.) for
them. We sometimes omit type annotations and just write λx.t for λxτ.t. We call the special
variable ∗ an unused variable, which may be bound by λ, but must not occur in the body. In
our quantitative analysis below, we will count the number of variable names occurring in a
term, except ∗. For example, the term λx.λy.λz.x in the standard syntax can be represented
by λx.λ∗.λ∗.x, and the number of used variables in the latter is counted as 1.

Terms of our syntax can be translated to usual λ-terms by regarding elements in V ∪{∗}
as usual variables. Through this identification we define the notions of free variables, closed
terms, and α-equivalence ∼α. The α-equivalence class of a term t is written as [t]α. In this
article, we distinguish between a term and its α-equivalence class, and we always use [−]α
explicitly. For a term t, we write FV(t) for the set of all the free variables of t.

For a term t, we define the set V(t) of variables (except ∗) in t by:

V(x) , {x} V(λxτ.t) , {x} ∪V(t) V(λ∗τ.t) , V(t) V(t1t2) , V(t1) ∪V(t2).

Note that neither V(t) nor even #(V(t)) is preserved by α-equivalence. For example,
t = λx.(λy.y)(λz.x) and t′ = λx.(λx.x)(λ∗.x) are α-equivalent, but #(V(t)) = 3 and
#(V(t′)) = 1. We write #vars(t) for mint′∈[t]α#(V(t′)), i.e., the minimum number of
variables required to represent an α-equivalent term. For example, for t = λx.(λy.y)(λz.x)
above, #vars(t) = 1, because t ∼α t′ and #(V(t′)) = 1.

A type environment Γ is a finite set of type bindings of the form x : τ such that if
(x : τ), (x : τ ′) ∈ Γ then τ = τ ′; sometimes we regard an environment also as a function.
When we write Γ1∪Γ2, we implicitly require that (x : τ) ∈ Γ1 and (x : τ ′) ∈ Γ2 imply τ = τ ′,
so that Γ1 ∪ Γ2 is well formed. Note that (∗ : τ) cannot belong to a type environment; we
do not need any type assumption for ∗ since it does not occur in terms.

The type judgment relation Γ ` t : τ is inductively defined by the following typing rules.

x : τ ` x : τ

Γ1 ` t1 : σ→τ Γ2 ` t2 : σ

Γ1 ∪ Γ2 ` t1t2 : τ

Γ′ ` t : τ Γ′ = Γ or Γ′ = Γ ∪ {x : σ} x /∈ Dom(Γ)

Γ ` λxσ.t : σ→τ

The type judgment relation is equivalent to the usual one for the simply-typed λ-calculus,
except that a type environment for a term may contain only variables that occur free in
the term (i.e., if Γ ` t : τ then Dom(Γ) = FV(t)). Note that if Γ ` t : τ is derivable, then
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the derivation is unique. Below we consider only well-typed λ-terms, i.e., those that are
inhabitants of some typings.

Definition 2.2 (Size, Order and Internal Arity of a Term). The size of a term t, written
|t|, is defined by:

|x| , 1 |λxτ.t| , |t|+ 1 |t1t2| , |t1|+ |t2|+ 1.

The order and internal arity of a type τ , written ord(τ) and iar(τ) respectively, are defined
by:

ord(τ1 → · · · → τn → o) , max({0} ∪ {ord(τi) + 1 | 1 ≤ i ≤ n})
iar(τ1 → · · · → τn → o) , max({n} ∪ {iar(τi) | 1 ≤ i ≤ n})

where n ≥ 0. We denote by Types(δ, ι) the set of types {τ | ord(τ) ≤ δ, iar(τ) ≤ ι}. For a
judgment Γ ` t : τ , we define the order and internal arity of Γ ` t : τ , written ord(Γ ` t : τ)
and iar(Γ ` t : τ) respectively, by:

ord(Γ ` t : τ) , max{ord(τ ′) | (Γ′ ` t′ : τ ′) occurs in ∆}
iar(Γ ` t : τ) , max{iar(τ ′) | (Γ′ ` t′ : τ ′) occurs in ∆}

where ∆ is the (unique) derivation tree for Γ ` t : τ .

Note that the notions of size, order, internal arity, and β(t) (the maximum length
of β-reduction sequences of t, as defined in Section 1) are well-defined with respect to
α-equivalence.

Example 2.3. Recall the term 2j , λf τ
(j−1)

.λxτ
(j−2)

.f(f x) (with τ (j) being the order-j

type defined by: τ (0) = o and τ (j) = τ (j−1) → τ (j−1)) in Section 1. For t = 23 22 (λxo.x) y, we
have ord(y :o ` t : o) = iar(y :o ` t : o) = 3. Note that the derivation for y :o ` t : o contains

the type judgment ∅ ` 23 : τ (3), where τ (3) = ((o → o) → (o → o)) → (o → o) → o → o,

and ord(τ (3)) = iar(τ (3)) = 3.

We now define the sets of (α-equivalence classes of) terms with bounds on the order,
the internal arity, and the number of variables.

Definition 2.4 (Terms with Bounds on Types and Variables). Let δ, ι, ξ ≥ 0 and n ≥ 1 be
integers. For each Γ and τ , Λ(〈Γ; τ〉, δ, ι, ξ) and Λn(〈Γ; τ〉, δ, ι, ξ) are defined by:

Λ(〈Γ; τ〉, δ, ι, ξ) , {[t]α | Γ ` t : τ, ord(Γ ` t : τ) ≤ δ, iar(Γ ` t : τ) ≤ ι,#vars(t) ≤ ξ}
Λn(〈Γ; τ〉, δ, ι, ξ) , {[t]α ∈ Λ(〈Γ; τ〉, δ, ι, ξ) | |t| = n}.

We also define:

Λ(δ, ι, ξ) ,
⊎

τ∈Types(δ,ι)

Λ(〈∅; τ〉, δ, ι, ξ) Λn(δ, ι, ξ) , {[t]α ∈ Λ(δ, ι, ξ) | |t| = n}.

Intuitively, Λ(〈Γ; τ〉, δ, ι, ξ) is the set of (the equivalence classes of) terms of type τ under Γ,
within given bounds δ, ι, and ξ on the order, (internal) arity, and the number of variables
respectively; and Λn(〈Γ; τ〉, δ, ι, ξ) is the subset of Λ(〈Γ; τ〉, δ, ι, ξ) consisting of terms of size
n. The set Λ(δ, ι, ξ) consists of (the equivalence classes of) all the closed (well-typed) terms,
and Λn(δ, ι, ξ) consists of those of size n. For example, t = [λxo.λyo.λzo.x]α belongs to
Λ4(1, 3, 1); note that |t| = 4 and #vars(t) = #vars(λxo.λ∗.λ∗.x) = 1.

We are now ready to state our main result, which is proved in Section 4.
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Theorem 2.5. For δ, ι, ξ ≥ 2 and k = min{δ, ι}, there exists a real number p > 0 such that

lim
n→∞

#
(
{[t]α ∈ Λn(δ, ι, ξ) | β(t) ≥ expk−1(np)}

)
#(Λn(δ, ι, ξ))

= 1.

As we will see later (in Section 4), the denominator #(Λn(δ, ι, ξ)) is nonzero if n is sufficiently
large. The theorem above says that if the order, internal arity, and the number of used
variables are bounded independently of term size, most of the simply-typed λ-terms of size
n have a very long β-reduction sequence, which is as long as (k − 1)-fold exponential in n.

Remark 2.6. Recall that, when k = δ, the worst-case length of β-reduction sequence is
k-fold exponential [1]. We do not know whether k− 1 can be replaced with k in the theorem
above.

Note that in the above theorem, the order δ, the internal arity ι and the number ξ of
variables are bounded above by a constant, independently of the term size n. Our proof of the
theorem (given in Section 4) makes use of this assumption to model the set of simply-typed
λ-terms as a regular tree language. It is debatable whether our assumption is reasonable. A
slight change of the assumption may change the result, as is the case for strong normalization
of untyped λ-terms [2, 4]. When λ-terms are viewed as models of functional programs,
our rationale behind the assumption is as follows. The assumption that the size of types
(hence also the order and the internal arity) is fixed is sometimes assumed in the context of
type-based program analysis [22]. The assumption on the number of variables comes from
the observation that a large program usually consists of a large number of small functions,
and that the number of variables is bounded by the size of each function.

2.2. Regular Tree Grammars and Parameterized Infinite Monkey Theorem. To
prove Theorem 2.5 above, we extend the well-known infinite monkey theorem (a.k.a. “Borges’s
theorem” [5, p.61, Note I.35]) to a parameterized version for regular tree grammars, and
apply it to the regular tree grammar that generates the set of (α-equivalence classes of)
simply-typed λ-terms. Since the extended infinite monkey theorem may be of independent
interest, we state it (as Theorem 2.13) in this section as one of the main results. The theorem
is proved in Section 3. We first recall some basic definitions for regular tree grammars
in Sections 2.2.1 and 2.2.2, and then state the parameterized infinite monkey theorem in
Section 2.2.3.

2.2.1. Trees and Tree Contexts. A ranked alphabet Σ is a map from a finite set of terminal
symbols to the set of natural numbers. We use the metavariable a for a terminal, and
often write a, b, c, . . . for concrete terminal symbols. For a terminal a ∈ Dom(Σ), we call
Σ(a) the rank of a. A Σ-tree is a tree constructed from terminals in Σ according to their
ranks: a(T1, . . . , TΣ(a)) is a Σ-tree if Ti is a Σ-tree for each i ∈ {1, . . . ,Σ(a)}. Note that
Σ(a) may be 0: a( ) is a Σ-tree if Σ(a) = 0. We often write just a for a( ). For example, if
Σ = {a 7→ 2, b 7→ 1, c 7→ 0}, then a(b(c), c) is a tree; see (the lefthand side of) Figure 1 for
a graphical illustration of the tree. We use the meta-variable T for trees. The size of T ,
written |T |, is the number of occurrences of terminals in T . We denote the set of all Σ-trees
by T (Σ), and the set of all Σ-trees of size n by Tn(Σ).
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a

b

c

c

a

a

[ ] c

b

[ ]

Figure 1. A tree a(b(c), c) (left) and a context a(a([ ], c), b([ ])) (right).

C :
a

[ ] a

[ ] [ ]

C1 :
b

[ ]

C[C1, C2, C3] :
a

b

[ ]

a

c [ ]

Figure 2. Context filling (where C2 = c and C3 = [ ]).

Before introducing grammars, we define tree contexts, which play an important role in
our formalization and proof of the (parameterized) infinite monkey theorem for regular tree
languages. The set of contexts over a ranked alphabet Σ, ranged over by C, is defined by:

C ::= [ ] | a(C1, . . . , CΣ(a)).

In other words, a context is a tree where the alphabet is extended with the special nullary
symbol [ ]. For example, a(a([ ], c), b([ ])) is a context over {a 7→ 2, b 7→ 1, c 7→ 0}; see (the
righthand side of) Figure 1 for a graphical illustration. We write C(Σ) for the set of contexts
over Σ. For a context C, we write hn(C) for the number of occurrences of [ ] in C. We call
C a k-context if hn(C) = k, and an affine context if hn(C) ≤ 1. A 1-context is also called a
linear context. We use the metavariable S for linear contexts and U for affine contexts. We
write [ ]i for the i-th hole occurrence (in the left-to-right order) of C.

For contexts C, C1, . . . , Chn(C), we write C[C1, . . . , Chn(C)] for the context obtained by
replacing each [ ]i in C with Ci. For example, if C = a([ ], a([ ], [ ])), C1 = b([ ]), C2 = c,
and C3 = [ ], then C[C1, C2, C3] = a(b([ ]), a(c, [ ])); see Figure 2 for a graphical illustration.
Also, for contexts C, C ′ and i ∈ {1, . . . , hn(C)}, we write C[C ′]i for the context obtained by
replacing [ ]i in C with C ′. For example, for C and C1 above, C[C1]2 = a([ ], a(b([ ]), [ ])).

For contexts C and C ′, we say that C is a subcontext of C ′ and write C � C ′ if there
exist C0, C1, . . . , Chn(C), and 1 ≤ i ≤ hn(C0) such that C ′ = C0[C[C1, . . . , Chn(C)]]i. For
example, C = a(b([ ]), [ ]) is a subcontext of C ′ = a([ ], a(b([ ]), c)), because C ′ = C0[C[[ ], c]]2
for C0 = a([ ], [ ]); see also Figure 3 for a graphical illustration. The subcontext relation �
may be regarded as a generalization of the subword relation. In fact, a word w = a1 · · · ak
can be viewed as a linear context w] = a1(· · · (ak[ ]) · · · ); and if w is a subword of w′, i.e., if

w′ = w1ww2, then w′] = w]1[w][w]2]]. The size of a context U , written |U |, is defined by:

|[ ]| , 0 and |a(C1, . . . , CΣ(a))| , 1 + |C1|+ · · ·+ |CΣ(a)|. Note that [ ] and 0-ary terminal a
have different sizes: |[ ]| = 0 but |a| = 1. For a 0-context C, |C| coincides with the size of C
as a tree.

2.2.2. Tree Grammars. A regular tree grammar [20, 21] (grammar for short) is a triple
G = (Σ,N ,R) where (i) Σ is a ranked alphabet; (ii) N is a finite set of symbols called
nonterminals; (iii) R is a finite set of rewriting rules of the form N −→ C[N1, . . . , Nhn(C)]
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a 

[ ] a 

[ ] 

b c 

Figure 3. A graphical illustration of a subcontext. The part surrounded by
the rectangle is the subcontext a(b([ ]), [ ]).

where C ∈ C(Σ) and N,N1, . . . , Nhn(C) ∈ N . We use the metavariable N for nonterminals.
We write Σ ∪ N for the ranked alphabet Σ ∪ {N 7→ 0 | N ∈ N} and often regard the
right-hand-side of a rule as a (Σ ∪N )-tree.

The rewriting relation −→G on T (Σ ∪N ) is inductively defined by the following rules:

(N −→ C[N1, . . . , Nhn(C)]) ∈ R
N −→G C[N1, . . . , Nhn(C)]

Ti −→G T ′i
a(T1, . . . , Tk) −→G a(T1, . . . , Ti−1, T ′i , Ti+1, . . . , Tk)

We write −→∗G for the reflexive and transitive closure of −→G . For a tree grammar G =

(Σ,N ,R) and a nonterminal N ∈ N , the language L(G, N) of N is defined by L(G, N) ,
{T ∈ T (Σ) | N −→∗G T}. We also define Ln(G, N) , {T ∈ L(G, N) | |T | = n}. If G is
clear from the context, we often omit G and just write T −→∗ T ′, L(N), and Ln(N) for
T −→∗G T ′, L(G, N), and Ln(G, N), respectively.

We are interested in not only trees, but also contexts generated by a grammar. Let
G = (Σ,N ,R) be a grammar. The set of context types of G, ranged over by κ, is defined by:

κ ::= N1 · · ·Nk⇒N
where k ∈ N and N,N1, . . . , Nk ∈ N . Intuitively, N1 · · ·Nk⇒N denotes the type of k-
contexts C such that N −→∗ C[N1, . . . , Nk]. Based on this intuition, we define the sets
L(G, κ) and Ln(G, κ) of contexts by:

L(G, N1 · · ·Nk⇒N) , {C ∈ C(Σ) | hn(C) = k,N −→∗G C[N1, . . . , Nk]}
Ln(G, κ) , {C ∈ L(G, κ) | |C| = n}.

We also write C : κ when C ∈ L(G, κ) (assuming that G is clear from the context). Note
that L(G,⇒N) = L(G, N), and we identify a context type ⇒N with the nonterminal
N . We call an element in L(G, κ) a κ-context, and also a κ-tree if it is a tree. It is
clear that, if C ∈ L(G, N1 · · ·Nk⇒N) and Ci ∈ L

(
G, N i

1 · · ·N i
`i
⇒Ni

)
(i = 1, . . . , k), then

C[C1, . . . , Ck] ∈ L
(
G, N1

1 · · ·N1
`1
· · ·Nk

1 · · ·Nk
`k
⇒N

)
. We also define:

L(G) ,
⋃
N∈N
L(G, N) Ln(G) , {T ∈ L(G) | |T | = n}

S(G) ,
⋃

N,N ′∈N

L
(
G, N⇒N ′

)
Sn(G) , {S ∈ S(G) | |S| = n}

U(G) , L(G) ∪ S(G) Un(G) , {U ∈ U(G) | |U | = n}.
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Example 2.7. Consider the grammar G0 = ({a 7→ 2, b 7→ 1, c 7→ 0}, {A0, B0},R0), where
R0 consists of:

A0 −→ a(B0, B0) A0 −→ c B0 −→ b(A0).

Then, a([ ], [ ]) ∈ L1(G0, B0B0⇒A0) and a(b([ ]), b(c)) ∈ L4(G0, A0⇒A0).

This article focuses on grammars that additionally satisfy two properties called strong
connectivity and unambiguity. We first define strong connectivity.

Definition 2.8 (Strong Connectivity [5]1). Let G = (Σ,N ,R) be a regular tree grammar.
We say that N ′ is reachable from N if L(G, N ′⇒N) is non-empty, i.e., if there exists a linear
context S ∈ C(Σ) such that N −→∗ S[N ′]. We say that G is strongly connected if for any
pair N,N ′ ∈ N of nonterminals, N ′ is reachable from N .

Remark 2.9. There is another reasonable, but slightly weaker condition of reachability:
N ′ is reachable from N if there exists a (Σ ∪N )-tree T such that N −→∗ T and N ′ occurs
in T . The two notions coincide if L(G, N) 6= ∅ for every N ∈ N . Furthermore this condition
can be easily fulfilled by simply removing all the nonterminals N with L(G, N) = ∅ and the
rules containing those nonterminals.

Example 2.10. The grammar G0 in Example 2.7 is strongly connected, since b([ ]) ∈
L(G0, A0⇒B0) and a([ ], b(c)) ∈ L(G0, B0⇒A0).

Next, consider the grammar G1 = ({a 7→ 2, b 7→ 1, c 7→ 0}, {A1, B1},R1), where R1

consists of:

A1 −→ a(c, A1) A1 −→ b(B1) B1 −→ b(B1) B1 −→ c.

G1 is not strongly connected, since L(G1, A1⇒B1) = ∅.
To define the unambiguity of a grammar, we define (the standard notion of) leftmost

rewriting. The leftmost rewriting relation −→G,` is the restriction of the rewriting relation
that allows only the leftmost occurrence of nonterminals to be rewritten. Given T ∈ T (Σ) and
N ∈ N , a leftmost rewriting sequence of T from N is a sequence T1, . . . , Tn of (Σ ∪N )-trees
such that

N = T1 −→G,` T2 −→G,` . . . −→G,` Tn = T.

It is easy to see that T ∈ L(G, N) if and only if there exists a leftmost rewriting sequence
from N to T .

Definition 2.11 (Unambiguity). A grammar G = (Σ,N ,R) is unambiguous if, for each
N ∈ N and T ∈ T (Σ), there exists at most one leftmost rewriting sequence from N to T .

2.2.3. Parameterized Infinite Monkey Theorem for Tree Grammars. We call a partial function
f from N to R with infinite definitional domain (i.e., Dom(f) = {n ∈ N | f(n) is defined} is
infinite) a partial sequence, and write fn for f(n). For a partial sequence f = (fn)n∈N, we

define deff(−) as the bijective monotonic function from N to Dom(f), and then we define:

limdef
n→∞

fn , lim
n→∞

f
deffn

.

1 In [5], strong connectivity is defined for context-free specifications. Our definition is a straightforward
adaptation of the definition for regular tree grammars.
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All the uses of limdef in this article are of the form: limdefn→∞
bn
an

where (an)n∈N and

(bn)n∈N are (non-partial) sequences (hence, bn
an

is undefined only when an = 0). The following
property on limdef is straightforward, which we leave for the reader to check.

Lemma 2.12. If limdef
n→∞

b
(i)
n

a
(i)
n

= 1 for i = 1, . . . , k, and if 0 ≤ b(i)n ≤ a(i)
n for i = 1, . . . , k and

for n ∈ N, then limdef
n→∞

∑
i b

(i)
n∑

i a
(i)
n

= 1.

Now we are ready to state the second main result of this article.

Theorem 2.13 (Parameterized Infinite Monkey Theorem for Regular Tree Languages). Let
G = (Σ,N ,R) be an unambiguous and strongly-connected regular tree grammar such that
#(L(G)) = ∞, and (Sn)n∈N be a family of linear contexts in S(G) such that |Sn| = O(n).
Then there exists a real constant p > 0 such that for any N ∈ N the following equation holds:

limdef
n→∞

#
(
{T ∈ Ln(G, N) | Sdp logne � T}

)
#(Ln(G, N))

= 1.

Intuitively, the equation above says that if n is large enough, almost all the trees of size
n generated from N contain Sdp logne as a subcontext.

Remark 2.14. The standard infinite monkey theorem says that for any finite word w =
a1 · · · ak over an alphabet A, the probability that a randomly chosen word of length n
contains w as a subword converges to 1, i.e.,

lim
n→∞

#({w′ ∈ An | ∃w0, w1 ∈ A∗.w′ = w0ww1})
#(An)

= 1.

Here, A∗ and An denote the set of all words over A and the set of all words of length n
over A, respectively. This may be viewed as a special case of our parameterized infinite
monkey theorem above, where (i) the components of the grammar are given by Σ = {a 7→
1 | a ∈ A} ∪ {e 7→ 0}, N = {N}, and R = {N −→ a(N) | a ∈ A} ∪ {N −→ e}, and (ii)
Sn = a1(· · · ak([ ]) · · · ) independently of n.

Note that in the theorem above, we have used limdef rather than lim. To avoid the use
of limdef, we need an additional condition on G, called aperiodicity.

Definition 2.15 (Aperiodicity [5]). Let G be a grammar. For a nonterminal N , G is called
N -aperiodic if there exists n0 such that #(Ln(N)) > 0 for any n ≥ n0. Further, G is called
aperiodic if G is N -aperiodic for any nonterminal N .

In Theorem 2.13, if we further assume that G is N -aperiodic, then limdef
n→∞

in the statement

can be replaced with lim
n→∞

.

In the rest of this section, we reformulate the theorem above in the form more convenient
for proving Theorem 2.5. In Definition 2.4, Λn(δ, ι, ξ) was defined as the disjoint union
of (Λn(〈∅; τ〉, δ, ι, ξ))τ∈Types(δ,ι). To prove Theorem 2.5, we will construct a grammar G so
that, for each τ , Λn(〈∅; τ〉, δ, ι, ξ) ∼= L(G, N) holds for some nonterminal N . Thus, the
following style of statement is more convenient, which is obtained as an immediate corollary
of Theorem 2.13 and Lemma 2.12.

Corollary 2.16. Let G be an unambiguous and strongly-connected regular tree grammar
such that #(L(G)) = ∞, and (Sn)n∈N be a family of linear contexts in S(G) such that



Vol. 15:1 ALMOST EVERY SIMPLY TYPED λ-TERM HAS A LONG β-REDUCTION SEQUENCE 16:11

|Sn| = O(n). Then there exists a real constant p > 0 such that for any non-empty set I of
nonterminals of G the following equation holds:

limdef
n→∞

#
(
{(N,T ) ∈∐N∈I Ln(G, N) | Sdp logne � T}

)
#
(∐

N∈I Ln(G, N)
) = 1.

We can also replace a family of linear contexts (Sn)n above with that of trees (Tn)n. We
need only this corollary in the proof of Theorem 2.5.

Corollary 2.17. Let G be an unambiguous and strongly-connected regular tree grammar
such that #(L(G)) =∞ and there exists C ∈ ∪κL(G, κ) with hn(C) ≥ 2. Also, let (Tn)n∈N
be a family of trees in L(G) such that |Tn| = O(n). Then there exists a real constant p > 0
such that for any non-empty set I of nonterminals of G the following equation holds:

limdef
n→∞

#
(
{(N,T ) ∈∐N∈I Ln(G, N) | Tdp logne � T}

)
#
(∐

N∈I Ln(G, N)
) = 1.

Proof. Let G = (Σ,N ,R). Let C ∈ L(G, κ) be the context in the assumption and let κ
be of the form N ′1 · · ·N ′k⇒N ′, i.e., N ′ −→∗ C[N ′1, . . . , N

′
k], where k = hn(C) ≥ 2. By

Corollary 2.16, it suffices to construct a family of linear contexts (Sn)n such that (i)
Sn ∈ S(G), (ii) Tn � Sn, and (iii) |Sn| = O(n). For each n, there exists Nn such that
Nn −→∗ Tn. Since #(L(G)) = ∞ and by the strong connectivity, for each i ≤ k there
exists T ′i such that N ′i −→∗ T ′i . For each n, by the strong connectivity, there exists S′n such
that N ′1 −→∗ S′n[Nn], and since N is finite, we can choose S′n so that the size is bounded
above by a constant (that is independent of n). Let Sn be C[S′n[Tn], [ ], T ′3, . . . , T

′
k]. Then (i)

Sn ∈ L(G, N ′2⇒N ′) ⊆ S(G) because N ′ −→∗ C[N ′1, . . . , N
′
k] −→∗ C[S′n[Tn], N ′2, T

′
3, . . . , T

′
k],

(ii) Tn � Sn, and (iii) |Sn| = O(n), as required.

Remark 2.18. In each of Corollaries 2.16 and 2.17, if we further assume that G is N -
aperiodic for any N ∈ I, then limdef

n→∞
in the statement can be replaced with lim

n→∞
.

Remark 2.19. In Theorem 2.5 (and similarly in Corollaries 2.16 and 2.17), one might be
interested in the following form of probability:

limdef
n→∞

#
(
]m≤n{T ∈ Lm(G, N) | Sdp logme � T}

)
#(]m≤nLm(G, N))

= 1,

which discusses trees of size at most n rather than exactly n. Under the assumption of
aperiodicity, the above equation follows from Theorem 2.5, by the following Stolz-Cesàro
theorem [23, Theorem 1.22]: Let (an)n∈N and (bn)n∈N be a sequence of real numbers and
assume bn > 0 and

∑∞
n=0 bn =∞. Then for any c ∈ [−∞,+∞],

lim
n→∞

an
bn

= c implies lim
n→∞

∑
m≤n am∑
m≤n bm

= c.

(We also remark that the inverse implication also holds if there exists γ ∈ R \ {1} such that

limn→∞

∑
m≤n bm∑
m≤n+1 bm

= γ [23, Theorem 1.23].)
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3. Proof of the Parameterized Infinite Monkey Theorem for Regular Tree
Languages (Theorem 2.13)

Here we prove Theorem 2.13. In Section 3.1, we first prove a parameterized version2 of
infinite monkey theorem for words, and explain how the proof for the word case can be
extended to deal with regular tree languages. The structure of the rest of the section is
explained at the end of Section 3.1.

3.1. Proof for Word Case and Outline of this Section. Let A be an alphabet, i.e., a
finite non-empty set of symbols. For a word w = a1 · · · an over A, We write |w| for n and call
it the size (or length) of w. As usual, we denote by An the set of all words of size n over A,
and by A∗ the set of all finite words over A: A∗ =

⋃
n≥0A

n. For two words w,w′ ∈ A∗, we

say w′ is a subword of w and write w′ v w if w = w1w
′w2 for some words w1, w2 ∈ A∗. The

infinite monkey theorem states that, for any word w ∈ A∗, the probability that a randomly
chosen word of size n contains w as a subword tends to one if n tends to infinity (recall
Remark 2.14). The following theorem is a parameterized version, where w may depend on n.
It may also be viewed as a special case of Theorem 2.13, where Σ = {a 7→ 1 | a ∈ A} ∪ {e},
N = {N}, R = {N −→ a(N) | a ∈ A} ∪ {N −→ e}, and Sn = a1(· · · ak([ ]) · · · ) for each
wn = a1 · · · ak.
Proposition 3.1 (Parameterized Infinite Monkey Theorem for Words). Let A be an alphabet
and (wn)n be a family of words over A such that |wn| = O(n). Then, there exists a real
constant p > 0 such that we have:

lim
n→∞

#
(
{w ∈ An | wdp logne v w}

)
#(An)

= 1.

Proof. Let Zn be 1−#
(
{w ∈ An | wdp logne v w}

)
/#(An), i.e., the probability that a word

of size n does not contain wdp logne. By the assumption |wn| = O(n), there exists b > 0 such
that |wn| ≤ bn for sufficiently large n. Let 0 < q < 1 be an arbitrary real number, and we

define p , q
2b log #(A) . We write s(n) for |wdp logne| and c(n) for bn/s(n)c. Let n ∈ N. Given

a word w = a1 · · · an ∈ An, let us decompose it to subwords of length s(n) as follows.

w = a1 · · · as(n)︸ ︷︷ ︸
first subword

· · · a(c(n)−1)s(n)+1 · · · ac(n)s(n)︸ ︷︷ ︸
c(n)-th subword

ac(n)s(n)+1 · · · an︸ ︷︷ ︸
remainder

.

Then,

0 ≤ Zn ≤ “the probability that none of the i-th subword is wdp logne”

=
#
(
(As(n) \ {wdp logne})c(n)An−c(n)s(n)

)
#(An)

=

(
#
(
As(n) \ {wdp logne}

)
#
(
As(n)

) )c(n)

=

(
#
(
As(n)

)
− 1

#
(
As(n)

) )c(n)

=

(
1− 1

#(A)s(n)

)c(n)

and we can show limn→∞

(
1− 1

#(A)s(n)

)c(n)
= 0 as follows.

2Although the parameterization is a simple extension, we are not aware of literature that explicitly states
this parameterized version.
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For sufficiently large n, we have s(n) ≤ bdp log ne ≤ 2bp log n = q logn
log #(A) = q log#(A) n,

and hence(
1− 1

#(A)s(n)

)c(n)

≤
(

1− 1

nq

)c(n)

≤
(

1− 1

nq

) n
s(n)
−1

≤
(

1− 1

nq

) log #(A)
q

n
logn

−1

.

Also we have limn→∞
(
1− 1

nq

) n
logn = 0 (which we leave for the reader to check); therefore

limn→∞ Zn = 0.

The key observations in the above proof were:

(W1) Each word w = a1 · · · an can be decomposed to

(w′rem, w
′
1, . . . , w

′
c(n)) ∈ An−c(n)s(n) ×

( c(n)∏
i=1

As(n)
)

where w′rem = ac(n)s(n)+1 · · · an and w′i = a(i−1)s(n)+1 · · · ais(n).
(W2) The word decomposition above induces the following decomposition of the set An of words

of length n:

An ∼= An−c(n)s(n) ×
( c(n)∏
i=1

As(n)
)

∼=
∐

w∈An−c(n)s(n)

c(n)∏
i=1

As(n)

Here, ∼= denotes the existence of a bijection.
(W3) Choose s(n) and c(n) so that (i) As(n) contains at least one element that contains wn

as a subword and (ii) c(n) is sufficiently large. By condition (i), the probability that an
element of An does not contain w as a subword can be bounded above the probability
that none of w′i (i ∈ {1, . . . , c(n)}) contains wn as a subword, i.e., (1− 1

#(As(n))
)c(n), which

converges to 0 by condition (ii).

The proof of Theorem 2.13 in the rest of this section is based on similar observations:

(T1) Each tree T of size n can be decomposed to

(E,U1, . . . , UcE ),

where U1, . . . , UcE are (affine) subcontexts, E, called a second-order context (which will
be formally defined later), is the “remainder” of T obtained by extracting U1, . . . , UcE ,
and cE is a number that depends on E. For example, the tree on the lefthand side of
Figure 4 can be decomposed to the second-order context and affine contexts shown on
the righthand side. By substituting each affine context for J K in the preorder traversal
order, we recover the tree on the lefthand side. This decomposition of a tree may be
regarded as a generalization of the word decomposition above (by viewing a word as an
affine context), where the part E corresponds to the remainder ac(n)s(n)+1 · · · an of the
word decomposition.
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a(b([ ]), c) · b(b(c)) · a(b(c), b(c))

Second-order context

Sequence of affine subcontexts

Φ•
3

Figure 4. An example of tree decomposition. The parts surrounded by
rectangles on the lefthand side show the extracted affine contexts, and the
remaining part of the tree is the second-order tree context.

(T2) The tree decomposition above induces the decomposition of the set Ln(G, N) in the
following form:

Ln(G, N) ∼=
∐
E∈E

cE∏
j=1

UE,j (3.1)

where E is a set of second-order contexts and UE,j is a set of affine contexts. (At this
point, the reader need not be concerned about the exact definitions of E and UE,j , which
will be given later.)

(T3) Design the above decomposition so that (i) each UE,j contains at least one element that
contains Sdp logne as a subcontext, and (ii) cE is sufficiently large. By condition (i), the
probability that an element of Ln(G, N) does not contain Sdp logne as a subcontext is
bounded above by the probability that none of Ui (i ∈ {1, . . . , cE}) contain Sdp logne as a

subcontext, which is further bounded above by max
E∈E

( cE∏
j=1

(1− 1

#(UE,j)
)
)

. The bound can

be proved to converge to 0 by using condition (ii).

The rest of the section is organized as follows. Before we jump to the decomposition
of Ln(G, N), we first present a decomposition of Tn(Σ), i.e., the set of Σ-trees of size n in
Section 3.2. The decomposition of Tn(Σ) may be a special case of that of Ln(G, N), where G
generates all the trees in Tn(Σ). For a technical convenience in extending the decomposition
of Tn(Σ) to that of Ln(G, N), we normalize grammars to canonical form in Section 3.3. We
then give the decomposition of Ln(G, N) given in Equation (3.1) above, and prove that it
satisfies the required properties in Sections 3.4 and 3.5. Finally, we prove Theorem 2.13 in
Section 3.6.

3.2. Grammar-Independent Tree Decomposition. In this subsection, we will define
a decomposition function Φ•m (where m is a parameter) that decomposes a tree T into (i)
a (sufficiently long) sequence P = U1 · · ·Uk consisting of affine subcontexts of size no less
than m, and (ii) a “second-order” context E (defined shortly in Section 3.2.1), which is
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the remainder of extracting P from T . Recall Figure 4, which illustrates how a tree is
decomposed by Φ•3. Here, the symbol J K in the second-order context on the right-hand side
represents the original position of each subcontext. By filling the i-th occurrence (counted
in the depth-first, left-to-right pre-order) of J K with the i-th affine context, we can recover
the original tree on the left hand side.

As formally stated later (in Corollary 3.8), the decomposition function Φ•m provides a
witness for a bijection of the form

Tn(Σ) ∼=
∐
E∈E

cE∏
j=1

UE,j ,

a special case of Equation (3.1) mentioned in Section 3.1.

3.2.1. Second-Order Contexts. We first define the notion of second-order contexts and
operations on them.

The set of second-order contexts over Σ, ranged over by E, is defined by:

E ::= J Knk [E1, . . . , Ek] | a(E1, . . . , EΣ(a)) (a ∈ Dom(Σ)).

Intuitively, the second-order context is an expression having holes of the form J Knk (called
second-order holes), which should be filled with a k-context of size n. By filling all the
second-order holes, we obtain a Σ-tree. Note that k may be 0. In the technical development
below, we only consider second-order holes J Knk such that k is 0 or 1. We write shn(E) for the
number of the second-order holes in E. Note that Σ-trees can be regarded as second-order
contexts E such that shn(E) = 0, and vice versa. For i ≤ shn(E), we write E�i for the i-th
second-order hole (counted in the depth-first, left-to-right pre-order). We define the size |E|
by: |J Knk [E1, . . . , Ek]| , n+ |E1|+ · · ·+ |Ek| and |a(E1, . . . , EΣ(a))| , |E1|+ · · ·+ |EΣ(a)|+ 1.
Note that |E| includes the size of contexts to fill the second-order holes in E.

Example 3.2. The second-order context on the right hand side of Figure 4 is expressed
as E = b(J K3

1[a(J K3
0, b(J K5

0))]), where shn(E) = 3, |E| = 14, E�1 = J K3
1, E�2 = J K3

0, and
E�3 = J K5

0.

Next we define the substitution operation on second-order contexts. For a context C
and a second-order hole J Knk , we write C : J Knk if C is a k-context of size n. Given E and
C such that shn(E) ≥ 1 and C : E�1, we write EJCK for the second-order context obtained
by replacing the leftmost second-order hole of E (i.e., E�1) with C (and by interpreting the
syntactical bracket [−] as the substitution operation). Formally, it is defined by induction
on E as follows:

(J Knk [E1, . . . , Ek]) JCK , C[E1, . . . , Ek]

(a(E1, . . . , EΣ(a)))JCK , a(E1, . . . , EiJCK, . . . , EΣ(a))
where i = min{j | shn(Ej) ≥ 1, 1 ≤ j ≤ Σ(a)}.

In the first clause, C[E1, . . . , Ek] is the second-order context obtained by replacing [ ]i in
C with Ei for each i ≤ k. Note that we have |EJCK| = |E| whenever EJCK is well-defined,
i.e., if C : E�1 (cf. Lemma 3.4 below).

We extend the substitution operation for a sequence of contexts. We use metavariable
P for sequences of contexts. For E and P = C1C2 · · ·Cshn(E), we write P : E if Ci : E�i for
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each i ≤ shn(E). Given E and a sequence of contexts P = C1C2 · · ·C` such that ` ≤ shn(E)
and Ci : E�i for each i ≤ `, we define EJP K by induction on P :

EJεK , E EJC · P K , (EJCK)JP K
Note that shn(EJCK) = shn(E)− 1, so if P : E then EJP K is a tree.

Example 3.3. Recall the second-order context E = b(J K3
1[a(J K3

0, b(J K5
0))]) in Figure 4 and

Example 3.2. Let P be the sequence of affine contexts given in Figure 4:

a(b([ ]), c) · b(b(c)) · a(b(c), b(c)).

Then
EJP �1K = b(P �1[a(J K3

0, b(J K5
0))]) = b(a(b(a(J K3

0, b(J K5
0))), c)),

and

EJP K = ((EJP �1K])JP �2K)JP �3K
= b(a(b(a(P �2, b(P �3))), c)) = b(a(b(a(b(b(c)), b(a(b(c), b(c))))), c)),

which is the tree shown on the left hand side of Figure 4.

Thanks to the size annotation, the substitution operation preserves the size of a second-
order context.

Lemma 3.4. Let E be a second-order context and P be a sequence of contexts such that
P : E. Then |E| = |EJP K|.
Proof. The proof is given by a straightforward induction on E. In the case E = J Knk [E1, . . . , Ek],
we use the fact |C[E1, . . . , Ek]| = |C|+ |E1|+ · · ·+ |Ek| (which can be shown by induction
on C).

3.2.2. Grammar-Independent Decomposition Function. Now we define the decomposition
function Φ•m. Let Σ be a ranked alphabet and m ≥ 1. We define rΣ , max(Im (Σ)),
which is also written as r for short. We always assume that r ≥ 1, since it holds whenever
#(L(G)) =∞, which is an assumption of Theorem 2.13. We shall define the decomposition

function Φ•,Σm (we omit Σ and just write Φ•m for Φ•,Σm below) so that Φ•m(T ) = (E,P ) where
(i) E is the second-order context, and (ii) P is a sequence of affine contexts, (iii) EJP K = T ,
and (iv) m ≤ |P �i| ≤ r(m− 1) + 1 for each i ∈ {1, . . . ,#(P )}.

The function Φ•m is defined as follows, using an auxiliary decomposition function Φm

given below.
Φ•m(T ) , (U [E], P ) where (U,E, P ) = Φm(T ).

The auxiliary decomposition function (just called “decomposition function” below) Φm

traverses a given tree T in a bottom-up manner, extracts a sequence P of subcontexts, and
returns it along with a linear context U and a second-order context E; U and E together
represent the “remainder” of extracting P from T . During the bottom-up traversal, the
U -component for each subtree T ′ represents a context containing the root of T ′; whether it is
extracted as (a part of) a subcontext or becomes a part of the remainder will be decided later
based on the surrounding context. The E-component will stay as a part of the remainder
during the decomposition of the whole tree (unless the current subtree T ′ is too small, i.e.,
|T ′| < m).

We define Φm by:
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• If |T | < m, then Φm(T ) , ([ ], T, ε).
• If |T | ≥ m, T = a(T1, . . . , TΣ(a)), and Φm(Ti) = (Ui, Ei, Pi) (for each i ≤ Σ(a)), then:

Φm(T ) ,



([ ], a
(
U1[E1], . . . , UΣ(a)[EΣ(a)]

)
, P1 · · ·PΣ(a))

if there exist i, j such that 1 ≤ i < j ≤ Σ(a) and |Ti|, |Tj | ≥ m
([ ], J Kn1 [Ei], a(T1, . . . , Ui, . . . , TΣ(a)) · Pi)

if |Tj | < m for every j 6= i, |Ti| ≥ m, and

n , |a(T1, . . . , Ui, . . . , TΣ(a))| ≥ m
(a(T1, . . . , Ui, . . . , TΣ(a)), Ei, Pi)

if |Tj | < m for every j 6= i, |Ti| ≥ m, and

|a(T1, . . . , Ui, . . . , TΣ(a))| < m

([ ], J Kn0 , T )

if |Ti| < m for every i ≤ Σ(a), and n , |T |

(3.2)

As defined above, the decomposition is carried out by case analysis on the size of a given
tree. If T is not large enough (i.e., |T | < m), then Φm(T ) returns an empty sequence of
contexts, while keeping T in the E-component. If |T | ≥ m, then Φm(T ) returns a non-empty
sequence of contexts, by case analysis on the sizes of T ’s subtrees. If there are more than
one subtree whose size is no less than m (the first case above), then Φm(T ) concatenates
the sequences of contexts extracted from the subtrees, and returns the remainder as the
second-order context. If only one of the subtrees, say Ti, is large enough (the second and
third cases), then it basically returns the sequence Pi extracted from Ti; however, if the
remaining part a(T1, . . . , Ui, . . . , TΣ(a)) is also large enough, then it is added to the sequence
(the second case). If none of the subtrees is large enough (but T is large enough), then T is
returned as the P -component (the last case).

Example 3.5. Recall Figure 4. Let T0 be the tree on the left hand side. For some of the
subtrees of T0, Φ3 can be calculated as follows.

Φ3(b(c)) = ([ ], b(c), ε)
Φ3(b(b(c))) = ([ ], J K3

0, b(b(c))) (by the last case of (3.2))
Φ3(a(b(c), b(c))) = ([ ], J K5

0, a(b(c), b(c))) (by the last case of (3.2))
Φ3(a(b(b(c)), b(· · · ))) = ([ ], a(J K3

0, b(J K5
0)), b(b(c)) · a(b(c), b(c)))

(by the first case of (3.2))
Φ3(T0) = (b([ ]), J K3

1[a(J K3
0, b(J K5

0))], a(b([ ]), c) · b(b(c)) · a(b(c), b(c)))
(by the third case of (3.2))

From Φ3(T0) above, we obtain:

Φ•3(T0) =
(
b(J K3

1[a(J K3
0, b(J K5

0))]), a(b([ ]), c) · b(b(c)) · a(b(c), b(c))
)
.

3.2.3. Properties of the Decomposition Function. We summarize important properties of Φm

in this subsection.
We say that an affine context U is good for m if |U | ≥ m and U is of the form

a(U1, . . . , UΣ(a)) where |Ui| < m for each i ≤ Σ(a). In other words, U is good if U is of an
appropriate size: it is large enough (i.e. |U | ≥ m), and not too large (i.e. the size of any



16:18 K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada Vol. 15:1

proper subterm is less than m). For example, a(b([ ]), b(c)) is good for 3, but neither b(b([ ]))
nor a(b([ ]), b(b(c))) is.

The following are basic properties of the auxiliary decomposition function Φm. The
property (1) says that the original tree can be recovered by composing the elements obtained
by the decomposition, and the property (3) ensures that Φ•m(T ) extracts only good contexts
from T .

Lemma 3.6. Let T be a tree. If Φm(T ) = (U,E, P ), then:

(1) P : E, hn(U) = 1, and (U [E])JP K = T .
(2) |U | < m.
(3) For each i ∈ {1, . . . ,#(P )}, P �i is good for m.
(4) |T | = |U [E]|.
Proof. (1)–(3) follow by straightforward simultaneous induction on |T |. (4) follows from (1)
and Lemma 3.4.

The following lemma ensures that shn(E) is sufficiently large whenever Φ•m(T ) = (E,P ).
Recall condition (ii) of (T3) in Section 3.1; shn(E) corresponds to cE .

Lemma 3.7. For any tree T and m such that 1 ≤ m ≤ |T |, if Φm(T ) = (U,E, P ), then

#(P ) ≥ |T |
2rm

.

Proof. Recall that r , max(Im (Σ)) and we assume r ≥ 1. We show below that

|U |+ 2rm#(P )− rm ≥ |T |
by induction on T . Then it follows that

2rm#(P ) ≥ |T |+ rm− |U | > |T |+ rm−m ≥ |T |
(where the second inequality uses Lemma 3.6(2)), which implies #(P ) > |T |

2rm as required.
Since |T | ≥ m, Φm(T ) is computed by Equation (3.2), on which we perform a case

analysis. Let T = a(T1, . . . , TΣ(a)) and Φm(Ti) = (Ui, Ei, Pi) (i ≤ Σ(a)).

• The first case: In this case, we have

U = [ ] P = Pi1Pi2 · · ·Pis
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where {i1, . . . , is} = {i ≤ Σ(a) | |Ti| ≥ m} and s ≥ 2, since if |Ti| < m then Pi = ε. Note
that we have r ≥ 2 in this case. Then,

|U |+ 2rm#(P )− rm

= 2rm
(∑

j≤s #
(
Pij
))
− rm

≥
(∑

j≤s(|Tij |+ rm− |Uij |)
)
− rm (∵ by induction hypothesis for Tij )

≥
(∑

j≤s(|Tij |+ rm− (m− 1))
)
− rm (∵ |Uij | ≤ m− 1 by Lemma 3.6(2))

=
(∑

j≤s |Tij |
)

+ srm− sm+ s− rm

≥
(∑

j≤s |Tij |
)

+ 2rm− sm+ s− rm− r + 1 (∵ s ≥ 2 and r ≥ 1)

=
(∑

j≤s |Tij |
)

+ (r − s)(m− 1) + 1

≥
(∑

j≤s |Tij |
)

+ (Σ(a)− s)(m− 1) + 1 (∵ r ≥ Σ(a))

≥
(∑

j≤s |Tij |
)

+ (
∑

i∈{1,...,Σ(a)}\{i1,...,is} |Ti|) + 1

(∵ m− 1 ≥ |Ti| for i ∈ {1, . . . ,Σ(a)} \ {i1, . . . , is})
= |T |

as required.
• The second case: In this case, we have

U = [ ] P = a(T1, . . . , Ui, . . . , TΣ(a))Pi

and |Tj | ≥ m if and only if j = i. Also we have r ≥ 1. Then,

|U |+ 2rm#(P )− rm
= 2rm(1 + #(Pi))− rm
= rm+ 2rm#(Pi)

≥ rm+ (|Ti|+ rm− |Ui|) (∵ by induction hypothesis for Ti)

≥ |Ti|+ rm− (m− 1) (∵ rm ≥ 0, |Ui| ≤ m− 1 by Lemma 3.6(2))

≥ |Ti|+ rm− r −m+ 2 (∵ r ≥ 1)

= |Ti|+ (r − 1)(m− 1) + 1

≥ |Ti|+ (Σ(a)− 1)(m− 1) + 1 (∵ r ≥ Σ(a))

≥ |Ti|+ (
∑

j∈{1,...,Σ(a)}\{i} |Tj |) + 1

= |T |
as required.
• The third case of (3.2): In this case, we have

U = a(T1, . . . , Ui, . . . , TΣ(a)) P = Pi
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and |Tj | ≥ m if and only if j = i. Then,

|U |+ 2rm#(P )− rm
= 1 + (

∑
j 6=i |Tj |) + |Ui|+ 2rm#(Pi)− rm

≥ 1 + (
∑

j 6=i |Tj |) + |Ti| (∵ by induction hypothesis for Ti)

= |T |
as required.
• The fourth case of (3.2): In this case, we have

U = [ ] P = T.

Then

|U |+ 2rm#(P )− rm
= rm

≥ r(m− 1) + 1 (∵ r ≥ 1)

≥ Σ(a)(m− 1) + 1 (∵ r ≥ Σ(a))

≥ (
∑

j∈{1,...,Σ(a)} |Tj |) + 1

= |T |
as required.

3.2.4. Decomposition of Tn(Σ). This subsection shows that the decomposition function Φ•m
above provides a witness for a bijection of the form

Tn(Σ) ∼=
∐
E∈E

cE∏
j=1

UE, j .

We prepare some definitions to precisely state the bijection. We define the set Emn of
second-order contexts and the set UmJ Knk

of affine contexts by:

Emn , {E | (E,P ) = Φ•m(T ) for some T ∈ Tn(Σ) and P}
UmJ Knk

, {U | U : J Knk , U is good for m}.
Intuitively, Emn is the set of second-order contexts obtained by decomposing a tree of size n,
and UmJ Knk

is the set of good contexts that match the second-order context J Knk .

The bijection is then stated as the following lemma.

Lemma 3.8.

Tn(Σ) ∼=
∐
E∈Emn

shn(E)∏
i=1

UmE�i. (3.3)

The rest of this subsection is devoted to a proof of the lemma above; readers may wish
to skip the rest of this subsection upon the first reading.

Lemma 3.9. If E ∈ Emn , then |E| = n.

Proof. Suppose E ∈ Emn . Then (E,P ) = Φ•m(T ) for some T ∈ Tn(Σ) and P . By
Lemma 3.6(4), |E| = |T | = n.
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For a second-order context E, and m ≥ 1, we define the set PmE of sequences of affine
contexts:

PmE , {P | (E,P ) = Φ•m(T ) for some T ∈ T (Σ)}.
The set PmE consists of sequences P of affine contexts that match E and are obtained by
the decomposition function Φ•m. In the rest of this subsection, we prove the bijection in
Lemma 3.8 in two steps. We first show Tn(Σ) ∼=

∐
E∈Emn P

m
E (Lemma 3.10, called “coproduct

lemma”), and then show PmE =
∏shn(E)
j=1 UmE�j (Lemma 3.10, called “product lemma”).

Lemma 3.10 (Coproduct Lemma (for Grammar-Independent Decomposition)). For any
n ≥ 1 and m ≥ 1, there exists a bijection

Tn(Σ) ∼=
∐
E∈Emn

PmE

that maps each element (E,P ) of the set
∐
E∈Emn P

m
E to EJP K ∈ Tn(Σ).

Proof. We define a function

f :
∐
E∈Emn

PmE −→ Tn(Σ)

by f(E,P ) , EJP K, and a function

g : Tn(Σ) −→
∐
E∈Emn

PmE

by g(T ) , Φ•m(T ).
Let us check that these are functions into the codomains:

• f(E,P ) ∈ Tn(Σ): Since P ∈ PmE , there exists T ∈ T (Σ) such that (E,P ) = Φ•m(T ). By
Lemma 3.6(1), we have f(E,P ) = EJP K = T ∈ T (Σ). By the condition E ∈ Emn and by
Lemmas 3.4 and 3.9, |EJP K| = |E| = n. Thus, f(E,P ) ∈ Tn(Σ) as required.
• g(T ) ∈∐E∈Emn P

m
E : Obvious from the definitions of Emn and PmE .

We have f(g(T )) = T by Lemmas 3.6(1). Let (E,P ) ∈∐E∈Emn P
m
E . By definition, there

exists T ∈ T (Σ) such that (E,P ) = Φ•m(T ). By using Lemmas 3.4 and 3.9 again, we have
|T | = |EJP K| = |E| = n. Thus, (E,P ) = g(T ). Then

g(f(E,P )) = g(f(g(T )) = g(T ) = (E,P ).

It remains to show the product lemma: PmE =
∏shn(E)
j=1 UmE�j . To this end, we prove a

few more properties about the auxiliary decomposition function Φm.

Lemma 3.11. If |T | ≥ m and Φm(T ) = (U,E, P ), then |E| ≥ m.

Proof. Straightforward induction on T .

The following lemma states that, given Φm(U [T ]) = (U,E, P ), P is determined only
by T (U does not matter); this is because the decomposition is performed in a bottom-up
manner.

Lemma 3.12. For m ≥ 1, E, P , T , and a linear context U with |T | ≥ m and |U | < m, we
have Φm(T ) = ([ ], E, P ) if and only if Φm(U [T ]) = (U,E, P ).
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Proof. The proof proceeds by induction on |U |. If U = [ ] the claim trivially holds. If U 6= [ ],
U is of the form a(T1, . . . , Ui, . . . , TΣ(a)). Since |U | < m, we have |Ui| < m and |Tj | < m for
every j 6= i.

Assume that Φm(T ) = ([ ], E, P ). By the induction hypothesis, we have Φm(Ui[T ]) =
(Ui, E, P ). Since |U | = |a(T1, . . . , Ti−1, Ui, Ti+1, . . . , TΣ(a))| < m, we should apply the third
case of Equation (3.2) to compute Φm(U [T ]). Hence, we have

Φm(U [T ]) = (a(T1, . . . , Ti−1, Ui, Ti+1, . . . , TΣ(a)), E, P ) = (U,E, P ).

Conversely, assume that

Φm(U [T ]) = (U,E, P ) = (a(T1, . . . , Ti−1, Ui, Ti+1, . . . , TΣ(a)), E, P ).

Let (U ′i , E
′
i, P
′
i ) = Φm(Ui[T ]) and (U ′j , E

′
j , P

′
j) = Φm(Tj) for each j 6= i. Then the fi-

nal step in the computation of Φm(U [T ]) must be the third case; otherwise U = [ ],
a contradiction. By the position of the unique hole in U , it must be the case that
U = a(T1, . . . , Ti−1, U

′
i , Ti+1, . . . , TΣ(a)), E = E′i and P = P ′i . So (Ui, E, P ) = Φm(Ui[T ]).

By the induction hypothesis, Φm(T ) = ([ ], E, P ).

The following is the key lemma for the product lemma, which says that if (U,E, P ) =
Φm(T ), the decomposition is actually independent of the P -part.

Lemma 3.13. If (U,E, P ) = Φm(T ), then Φm(U [E]JP ′K) = (U,E, P ′) for any P ′ ∈∏shn(E)
i=1 UmE�i.

Proof. The proof proceeds by induction on |T |(= |U [E]|). If |T | < m, then E = T , hence
shn(E) = 0. Thus, P = P ′ = ε, which implies Φm(U [E]JP ′K) = Φm(T ) = (U,E, P ) =
(U,E, P ′).

For the case |T | ≥ m, we proceed by the case analysis on which rule of Equation (3.2) was
used to compute (U,E, P ) = Φm(T ). Assume that T = a(T1, . . . , TΣ(a)) and (Ui, Ei, Pi) =
Φm(Ti) for each i = 1, . . . ,Σ(a). By Lemma 3.6, we have Pi : Ei for each i.

• The first case of Equation (3.2): We have |Tj |, |Tj′ | ≥ m for some 1 ≤ j < j′ ≤ Σ(a), and:

U = [ ] E = a(U1[E1], . . . , UΣ(a)[EΣ(a)]) P = P1 · · ·PΣ(a).

Since P, P ′ : E, we can split P ′ = P ′1 · · ·P ′Σ(a) so that P ′i : Ei for each i. By the induction

hypothesis,

Φm(Ui[Ei]JP ′i K) = (Ui, Ei, P
′
i ) (for each i = 1, . . . ,Σ(a)).

Since |Uj [Ej ]JP ′jK| = |Uj [Ej ]| = |Tj | ≥ m and |Uj′ [Ej′ ]JP ′j′K| = |Uj′ [Ej′ ]| = |Tj′ | ≥ m for

some 1 ≤ j < j′ ≤ Σ(a), we have

Φm(U [EJP ′K]) = Φm(a(U1[E1JP ′1K], . . . , UΣ(a)[EΣ(a)JP ′Σ(a)K]))
= ([ ], a(U1[E1], . . . , UΣ(a)[EΣ(a)]), P

′
1 · · ·P ′Σ(a))

= (U,E, P ′)

as required.
• The second case of Equation (3.2): We have |Tj | ≥ m for a unique j ∈ {1, . . . ,Σ(a)} and:

n , |U0| ≥ m U = [ ] E = J Kn1 [Ej ] P = U0 · Pj
for U0 , a(T1, . . . , Tj−1, Uj , Tj+1, . . . , TΣ(a)). Because |Tj | ≥ m, we have |Ej | ≥ m by
Lemma 3.11. Now we have |EjJPjK| = |Ej | ≥ m, |Uj | < m, and Φm(Uj [EjJPjK]) =
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Φm(Tj) = (Uj , Ej , Pj); hence by Lemma 3.12, we have Φm(EjJPjK) = ([ ], Ej , Pj). Let
P ′ = U ′0 · P ′′. By the assumption, U ′0 : J Kn1 and thus U ′0 is a 1-context. Also, U ′0 is good
for m; thus |U ′0| ≥ m and U ′0 is of the form a′(T ′1, . . . , T

′
j′−1, U

′
j′ , T

′
j+1, . . . , T

′
Σ(a′)) where

|U ′j′ | < m and |T ′i | < m for every i 6= j′. Now we have

(1) Φm(U ′j′ [Ej ]JPjK) = (U ′j′ , Ej , Pj) by Lemma 3.12 and Φm(EjJPjK) = ([ ], Ej , Pj);

(2) P ′′ ∈∏shn(Ej)
i=1 UmEj �i since P ′ = U ′0 · P ′′ ∈

∏shn(E)
i=1 UmE�i where E = J Kn1 [Ej ];

(3) |U ′j′ [Ej ]| < |U ′0[Ej ]| = n+ |Ej | = |E| = |U [E]|.
Therefore, we can apply the induction hypothesis to U ′j′ [Ej ], resulting in

Φm(U ′j′ [Ej ]JP ′′K) = (U ′j′ , Ej , P
′′).

We have |U ′j′ [Ej ]| ≥ |Ej | ≥ m and |T ′i | < m for every i 6= j′. Furthermore

|a′(T ′1, . . . , T ′j′−1, U
′
j′ , T

′
j′+1, . . . , T

′
Σ(a′))| = |U ′0| = n ≥ m.

Hence we have

Φm(U [E]JP ′K) = Φm(U ′0[Ej ]JP ′′K)
= Φm(a′(T ′1, . . . , T

′
j′−1, U

′
j′ , T

′
j′+1, . . . , T

′
Σ(a′))[Ej ]JP ′′K)

= Φm(a′(T ′1, . . . , T
′
j′−1, U

′
j′ [Ej ]JP ′′K, T ′j′+1, . . . , T

′
Σ(a′)))

= ([ ], J Kn1 [Ej ], U
′
0 · P ′′)

= (U,E, P ′)

• The third case of Equation (3.2): We have |Tj | = |Uj [Ej ]| ≥ m for a unique j ∈
{1, . . . ,Σ(a)} (and thus |Ti| < m for every i 6= j) and:

U = a(T1, . . . , Tj−1, Uj , Tj+1, . . . , TΣ(a)) |U | < m E = Ej P = Pj .

By the induction hypothesis,

Φm(Uj [Ej ]JP ′K) = (Uj , Ej , P
′).

Since |Ti| < m for every i 6= j and |a(T1, . . . , Tj−1, Uj , Tj+1, . . . , TΣ(a))| < m, we have

Φm(U [E]JP ′K) = Φm(a(T1, . . . , Tj−1, Uj [Ej ]JP ′K, Tj+1, . . . , TΣ(a)))

= (a(T1, . . . , Tj−1, Uj , Tj+1, . . . , TΣ(a)), Ej , P
′)

= (U,E, P ′)

• The fourth case of Equation (3.2): Let n be |T |; we have n ≥ m and:

U = [ ] E = J Kn0 P = T.

Since P ′ : E, P ′ must be a singleton sequence consisting of a tree, say T ′ = a′(T ′1, . . . , T
′
Σ(a′)).

By the assumption, T ′ is good for m. Hence |T ′| ≥ m and |T ′i | < m for every i =
1, . . . ,Σ(a′). So

Φm(U [E]JP ′K) = Φm(T ′) = ([ ], J Kn0 , T ′) = (U,E, P ′).

Corollary 3.14. If (E,P ) = Φ•m(T ), then Φ•m(EJP ′K) = (E,P ′) for any P ′ ∈∏shn(E)
i=1 UmE�i.
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Proof. If (E,P ) = Φ•m(T ), then (U,E′, P ) = Φm(T ) and U [E′] = E for some U,E′.

Since
∏shn(E)
i=1 UmE�i =

∏shn(E′)
i=1 UmE′�i, Lemma 3.13 implies Φm(EJP ′K) = Φm(U [E′]JP ′K) =

(U,E′, P ′). Thus, we have Φ•m(EJP ′K) = (U [E′], P ′) = (E,P ′) as required.

We are now ready to prove the product lemma.

Lemma 3.15 (Product Lemma (for Grammar-Independent Decomposition)). For E and
m ≥ 1, if PmE is non-empty, then

PmE =

shn(E)∏
i=1

UmE�i.

Proof. The direction ⊆ follows from the fact that (E,P ) = Φ•m(T ) implies P : E and P �i is
good for m (Lemma 3.6).

We show the other direction. Since PmE 6= ∅, there exist P and T such that Φ•m(T ) =

(E,P ). Let P ′ ∈ ∏shn(E)
i=1 UmE�i. By Corollary 3.14, we have Φ•m(EJP ′K) = (E,P ′). This

means that P ′ ∈ PmE .

Lemma 3.8 follows as an immediate corollary of Lemmas 3.10 and 3.15.

3.3. Grammars in Canonical Form. As a preparation for generalizing the decomposition
of Tn(Σ) (Lemma 3.8) to that of Ln(G, N), we first transform a given regular tree grammar
into canonical form, which will be defined shortly (in Definition 3.16). We prove that the
transformation preserves unambiguity and (a weaker version of) strong connectivity.

Definition 3.16 (Canonical Grammar). A rewriting rule of a regular tree grammar G is in
canonical form if it is of the form

N −→G a(N1, . . . , NΣ(a)).

A grammar G = (Σ,N ,R) is canonical if every rewriting rule is in canonical form.

We transform a given regular tree grammar G = (Σ,N ,R) to an equivalent one in
canonical form. The idea of the transformation is fairly simple: we replace a rewriting rule

N −→ a(T1, . . . , Tn) (T1, . . . , Tn are (Σ ∪N )-trees)

such that Ti /∈ N with rules

{ N −→ a(T1, . . . , Ti−1, N
′, Ti+1, . . . , Tn), N ′ −→ Ti }

where N ′ is a fresh nonterminal that does not appear in N . After iteratively applying the
above transformation, we next replace a rewriting rule of the form N −→ N ′ with rules

{N0 −→ a(. . . , N ′, . . . ) | (N0 −→ a(. . . , N, . . . )) ∈ R}.
Again by iteratively applying this transformation, we finally obtain a grammar in canonical
form.

The transformation, however, does not preserve strong connectivity. For example,
consider the grammar G = ({a 7→ 2, b 7→ 1, c 7→ 0}, {N},R) where

R = { N −→ b(c), N −→ a(N,N) }.
Then the above transformation introduces a nonterminal N ′ as well as rules

N −→ b(N ′) and N ′ −→ c.
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Then N is not reachable from N ′.
Observe that the problem above was caused by a newly introduced nonterminal that

generates a single finite tree. To overcome the problem, we introduce a weaker version
of strong connectivity called essential strong-connectivity. It requires strong connectivity
only for nonterminals generating infinite languages; hence, it is preserved by the above
transformation.

Definition 3.17 (Essential Strong-connectivity). Let G = (Σ,N ,R) be a regular tree
grammar. We say that G is essentially strongly-connected if for any nonterminals N1, N2 ∈ N
with #(L(G, N1)) = #(L(G, N2)) =∞, N2 is reachable from N1.

Note that by the definition, every strongly-connected grammar is also essentially-strongly
connected. In the definition above, as well as in the arguments below, nonterminals N with
#(L(G, N)) =∞ play an important role. We write N inf for the subset of N consisting of
such nonterminals.

Remark 3.18. A regular tree grammar that is essentially strongly-connected can be easily
transformed into a strongly-connected grammar, hence the terminology. Let G be an
essentially strongly-connected grammar and N ∈ N inf . We say that a nonterminal is
inessential if it generates a finite language. Let N0 be an inessential nonterminal of a
grammar G such that L(G, N0) = {T1, . . . , Tn}. Then by replacing each rule

N1 −→ C[N0, . . . , N0]

(where C is a k-context possibly having nonterminals other than N0) with rules

{N1 −→ C[Ti1 , . . . , Tik ] | i1, . . . , ik ∈ {1, . . . , n}},
one can remove the inessential nonterminal N0 from the grammar. A grammar G is
essentially strongly-connected if and only if the grammar G′ obtained by removing all
inessential nonterminals is strongly-connected. This transformation preserves the language
in the following sense: writing G′ = (Σ,N inf ,R′) for the resulting grammar, we have
L(G, N) = L(G′, N) for each N ∈ N inf . Note that the process of erasing inessential
nonterminals breaks canonicity; in fact, the class of languages generated by strongly-connected
canonical regular tree grammars is a proper subset of that of essentially strongly-connected
canonical regular tree grammars.

Recall that the second main theorem (Theorem 2.13) takes a family (Sn)n∈N from
S(G) =

⋃
N,N ′∈N L(G, N⇒N ′). In order to restate the theorem for essentially strongly

connected grammars, we need to replace S(G) with the “essential” version, namely,

S inf(G) ,
⋃

N,N ′∈N inf

L
(
G, N⇒N ′

)
.

Lemma 3.19 (Canonical Form). Let G = (Σ,N ,R) be a regular tree grammar that is
unambiguous and strongly connected. Then one can (effectively) construct a grammar
G′ = (Σ,N ′,R′) and a family (IN )N∈N of subsets IN ⊆ N ′ that satisfy the following
conditions:

• G′ is canonical, unambiguous and essentially strongly-connected.
• L(G, N) =

⊎
N ′∈IN L(G′, N ′) for every N ∈ N .

• If #(L(G)) =∞, then S(G) ⊆ S inf(G′).
Proof. See Appendix B.



16:26 K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada Vol. 15:1

3.4. Decomposition of Regular Tree Languages. This subsection generalizes the de-
composition of Tn(Σ) in Section 3.2:

Tn(Σ) ∼=
∐
E∈Emn

shn(E)∏
i=1

UmE�i

to that of Ln(G, N), and proves a bijection of the following form:

Ln(G, N) ∼=
∐

Ẽ∈Ẽmn (G,N)

shn(Ẽ)∏
i=1

Ũm
Ẽ�i

(G).

Here, Ẽ denotes a typed second-order context (which will be defined shortly in Section 3.4.1),

each of whose second-order holes Ẽ�i = J Knκ carries not only the size n but the context type κ

of a context to be substituted for the hole. Accordingly, we have replaced UmE�i with Ũm
Ẽ�i

(G),

which denotes the set of contexts that respect the context type specified by Ẽ�i.
In the rest of this subsection, we first define the notion of typed second-order contexts

in Section 3.4.1, extend the decomposition function accordingly in Section 3.4.2, and use it
to prove the above bijection in Section 3.4.3. Throughout this subsection (i.e., Section 3.4),
we assume that G is a canonical and unambiguous grammar. We emphasize here that the
discussion in this subsection essentially relies on both unambiguity and canonicity of the
grammar. The essential strong connectivity is not required for the results in this subsection;

it will be used in Section 3.5, to show that each component Ũm
Ẽ�i

(G) contains an affine context

that has Sdp logne as a subcontext (recall condition (i) of (T3) in Section 3.1).

Remark 3.20. Note that any deterministic bottom-up tree automaton (without any ε-
rules) [21] can be considered an unambiguous canonical tree grammar, by regarding each
transition rule a(q1, . . . , qk) −→ q as a rewriting rule Nq −→ a(Nq1 , . . . , Nqk). Thus, by the
equivalence between the class of tree languages generated by regular tree grammars and the
class of those accepted by deterministic bottom-up tree automata, any regular tree grammar
can be converted to an unambiguous canonical tree grammar.

3.4.1. Typed Second-Order Contexts. The set of G-typed second-order contexts, ranged over

by Ẽ, is defined by:

Ẽ ::= J KnN1···Nk⇒N [Ẽ1, . . . , Ẽk] | a(Ẽ1, . . . , ẼΣ(a)) (a ∈ Dom(Σ)).

The subscript κ = (N1 · · ·Nk⇒N) describes the type of first-order contexts that can be
substituted for this second-order hole; the superscript n describes the size as before. Hence
a (first-order) context C is suitable for filling a second-order hole J Knκ if C : κ and |C| = n.

We write C : J Knκ if C : κ and |C| = n. The operations such as Ẽ�i, ẼJCK and ẼJP K
are defined analogously. For a sequence of contexts P = C1C2 · · ·C`, we write P : Ẽ if

#(P ) (= `) = shn(Ẽ) and Ci : Ẽ�i for each i ≤ shn(Ẽ).

We define the second-order context typing relation ` Ẽ : N inductively by the rules in

Figure 5. Intuitively, ` Ẽ : N means that ẼJP K ∈ L(G, N) holds for any P such that P : Ẽ
(as confirmed in Lemma 3.23 below). As in the case of untyped second-order contexts, we
actually use only typed second-order contexts with holes of the form J KnN1···Nk⇒N where k is
0 or 1.
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` Ẽi : Ni (for each i = 1, . . . , k)

` J KnN1···Nk⇒N [Ẽ1, . . . , Ẽk] : N
(SC-Hole)

(N −→ a(N1, . . . , NΣ(a))) ∈ R ` Ẽi : Ni (for each i = 1, . . . ,Σ(a))

` a(Ẽ1, . . . , ẼΣ(a)) : N
(SC-Term)

Figure 5. Typing rules for Ẽ

Example 3.21. Recall the second-order context E = b(J K3
1[a(J K3

0, b(J K5
0))]) in Figure 4 and

Example 3.2. Given the grammar consisting of the rules:

A→ a(B,B) B → b(A) B → b(B) B → c,

the corresponding typed second-order context Ẽ is:

b(J K3
A⇒A[a(J K3

⇒B, b(J K5
⇒A))])

and we have ` Ẽ : B. For P = a(b([ ]), c) · b(b(c)) · a(b(c), b(c)), we have P : Ẽ, and:

ẼJP K = b(a(b(a(b(b(c)), b(a(b(c), b(c))))), c)) ∈ L(G, B) .

Lemma 3.22. The following rule is derivable:

C ∈ L(G, N1 . . . Nk⇒N) ` Ẽi : Ni (for each i = 1, . . . , k)

` C[Ẽ1, . . . , Ẽk] : N
(SC-Ctx)

Proof. The proof proceeds by induction on C. Assume that the premises of the rule hold. If

C = [ ], then C[Ẽ1, . . . , Ẽk] = Ẽ1 and N = N1; thus the result follows immediately from the
assumption. If C = a(C1, . . . , C`), then by the assumption that the grammar is canonical and
C ∈ L(G, N1 . . . Nk⇒N), we have N → a(N ′1, . . . , N

′
`) with Ci ∈ L

(
G, Nki−1+1 . . . Nki⇒N ′i

)
for i = 1, . . . , ` where k0 = 0 and k` = k. By the induction hypothesis, we have `
Ci[Ẽki−1+1, . . . , Ẽki ] : N ′i . Thus, by using rule (SC-Term), we have ` C[Ẽ1, . . . , Ẽk] : N as
required.

Lemma 3.23. Assume that ` Ẽ : N .

(1) If shn(Ẽ) = 0, then Ẽ is a tree and Ẽ ∈ L(G, N).

(2) If shn(Ẽ) ≥ 1 and C : Ẽ�1, then ` ẼJCK : N .

(3) If P : Ẽ, then ẼJP K ∈ L(G, N).

Proof. (1) By induction on the structure of ` Ẽ : N . (2) By induction on the structure

of ` Ẽ : N . The base case is when Ẽ = J KnN1...Nk⇒N [Ẽ1, . . . , Ẽk]. Since ` Ẽ : N , we have

` Ẽi : Ni for each i. Then by the derived rule (SC-Ctx), we have ` C[Ẽ1, . . . , Ẽk] : N . (3)

By induction on shn(Ẽ) (using (1) and (2)).
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Ẽi C Ei (for each i = 1, . . . , k)

J KnN1···Nk⇒N [Ẽ1, . . . , Ẽk]C J Knk [E1, . . . , En]
(Ref-Hole)

Ẽi C Ei (for each i = 1, . . . ,Σ(a))

a(Ẽ1, . . . , ẼΣ(a))C a(E1, . . . , En)
(Ref-Term)

Figure 6. Refinement relation

3.4.2. Grammar-Respecting Decomposition Function Φ̃•,Gm . We have defined in Section 3.2.2
the function Φ•m that decomposes a tree T and returns a pair (E,P ) of a second-order
context E and a sufficiently long sequence P of (first-order) contexts. The aim here is to

extend Φ•m to a grammar-respecting one Φ̃•,Gm that takes a pair (T,N) such that T ∈ L(G, N)

as an input, and returns a pair (Ẽ, P ), which is the same as Φ•m(T ) = (E,P ), except that Ẽ
is a “type-annotated” version of E. For example, for the tree in Figure 4 and the grammar

in Example 3.21, we expect that Φ̃•,Gm (T ) = (Ẽ, P ) where:

T = b(a(b(a(b(b(c)), b(a(b(c), b(c))))), c))

Ẽ = b(J K3
A⇒A[a(J K3

⇒B, b(J K5
⇒A))]) P = a(b([ ]), c) · b(b(c)) · a(b(c), b(c)).

We say that Ẽ refines E, written Ẽ C E, if E is obtained by simply forgetting type

annotations, i.e., replacing J KnN1···Nk⇒N in Ẽ with J Knk . This relation is formally defined by

induction on the structures of E and Ẽ by the rules in Figure 6. The following lemma is

obtained by straightforward induction on Ẽ C E.

Lemma 3.24. Assume Ẽ C E.

(1) |Ẽ| = |E|.
(2) If P : Ẽ, then P : E.

(3) If P : Ẽ, then ẼJP K = EJP K.

Given T ∈ L(G, N) and (E,P ) = Φ•m(T ), the value of Φ̃•,Gm (T,N) should be (Ẽ, P )

where Ẽ is a G-typed second-order context that satisfies the following conditions:

Ẽ C E, ` Ẽ : N and P : Ẽ.

We prove that, for every T ∈ L(G, N), there exists exactly one typed second-order context

Ẽ that satisfies the above condition. Hence the above constraints define the function
Φ̃•,Gm (T,N).

We first state and prove a similar result for first-order contexts (in Lemma 3.25), and
then prove the second-order version (in Lemma 3.26), using the former.

Lemma 3.25. Let C be a (first-order) k-context and T1, . . . , Tk be trees. Assume that
C[T1, . . . , Tk] ∈ L(G, N). Then there exists a unique family (Ni)i∈{1,...,k} such that C ∈
L(G, N1 . . . Nk⇒N) and Ti ∈ L(G, Ni) for every i = 1, . . . , k.

Proof. By induction on C.

• Case C = [ ]: Then k = 1. The existence follows from [ ] ∈ L(G, N⇒N) (as N −→∗ N)
and T1 = C[T1] ∈ L(G, N). The uniqueness follows from the fact that [ ] ∈ L(G, N1⇒N)
implies N1 = N .
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• Case C = a(C1, . . . , CΣ(a)): Let ` = Σ(a), ki = hn(Ci) for each i = 1, . . . , ` and

(T1,1, . . . , T1,k1 , T2,1, . . . , T2,k2 , . . . , T`,1, . . . , T`,k`) = (T1, . . . , Tk).

Then C[T1, . . . , Tk] = a(C1[T1,1, . . . , T1,k], . . . , C`[T`,1, . . . T`,k` ]). Since C[T1, . . . , Tk] ∈
L(G, N), there exists a rewriting sequence

N −→ a(N1, . . . , N`) −→∗ a(C1[T1,1, . . . , T1,k1 ], . . . , C`[T`,1, . . . T`,k` ]).

Thus Ni −→∗ Ci[Ti,1, . . . , Ti,ki ], i.e., Ci[Ti,1, . . . , Ti,ki ] ∈ L(G, Ni), for each i = 1, . . . , `. By
the induction hypothesis, there exist Ni,1, . . . , Ni,ki such that Ci ∈ L(G, Ni,1 . . . Ni,ki⇒Ni)
and Ti,j ∈ L(G, Ni,j) for each j = 1, . . . , ki. Then (the rearrangement of) the family
(Ni,j)i≤`,j≤ki satisfies the requirement.

We prove the uniqueness. Assume that both (N1
i,j)i,j and (N2

i,j)i,j satisfy the require-

ment. Then, for each m = 1, 2, there exist Nm
i (i = 1, . . . , `) such that

N −→ a(Nm
1 , . . . , N

m
` ) −→∗ a(C1[Nm

1,1, . . . , N
m
1,k1 ], . . . , C`[N

m
`,1, . . . , N

m
`,k`

])

−→∗ a(C1[T1,1, . . . , T1,k1 ], . . . , C`[T`,1, . . . , T`,k` ]).

Since G is unambiguous, N1
i = N2

i for each i = 1, . . . , `. By the induction hypothesis, we
have N1

i,j = N2
i,j for each i and j.

Lemma 3.26. Let G be a canonical unambiguous regular tree grammar and T ∈ L(G, N).

Given E and P , assume that P :E and EJP K = T . Then E has a unique refinement Ẽ CE
such that ` Ẽ : N and P : Ẽ.

Proof. We prove by induction on E.

• Case E = J Knk [E1, . . . , Ek]: The sequence P can be decomposed as P = C · P1 · · ·Pk
so that Pi : Ei for each i = 1, . . . , k. Furthermore hn(C) = k and |C| = n. We have
EJP K = C[E1JP1K, . . . , EkJPkK] ∈ L(G, N).

We prove the existence. By Lemma 3.25, there exists a family (Ni)i=1,...,k such that
C ∈ L(G, N1 . . . Nk⇒N) (i.e., C : J KnN1...Nk⇒N ) and EiJPiK ∈ L(G, Ni) for each i = 1, . . . , k.

By the induction hypothesis, for each i = 1, . . . , k, there exists ẼiCEi such that ` Ẽi : Ni

and Pi : Ẽi. Let Ẽ , J KnN1...Nk⇒N [Ẽ1, . . . , Ẽk]. Then Ẽ C E, ` Ẽ : N , and P : Ẽ.

We prove the uniqueness. Assume Ẽ1 and Ẽ2 satisfy that Ẽj C E, ` Ẽj : N

and P : Ẽj for j = 1, 2. Since Ẽj C E and ` Ẽj : N , Ẽj must be of the form:

Ẽj = J Kn
Nj

1 ...N
j
k⇒N

[Ẽj1, . . . , Ẽ
j
k] with Ẽji C Ei and ` Ẽji : N j

i . Since P : Ẽj , we have

C ∈ L
(
G, N j

1 . . . N
j
k⇒N

)
and Pi : Ẽji for i = 1, . . . , k. By Lemma 3.23, Ẽji JPiK ∈

L
(
G, N j

i

)
for each i = 1, . . . , k and j = 1, 2. By Lemma 3.24(3), EJP K = ẼjJP K =

C[Ẽj1JP1K, . . . , ẼjkJPkK] ∈ L(G, N). Hence by Lemma 3.25, N1
i = N2

i for each i = 1, . . . , k.

By the induction hypothesis, Ẽ1
i = Ẽ2

i for each i. Hence Ẽ1 = Ẽ2.
• Case E = a(E1, . . . , EΣ(a)): The sequence P can be decomposed as P = P1 · · ·PΣ(a) so

that Pi : Ei for each i = 1, . . . ,Σ(a). Then EJP K = a(E1JP1K, . . . , EΣ(a)JPΣ(a)K).
We prove the existence. Since N −→∗ a(E1JP1K, . . . , EΣ(a)JPΣ(a)K), there exists a rule

N −→ a(N1, . . . , NΣ(a)) such that

N −→ a(N1, . . . , NΣ(a)) −→∗ a(E1JP1K, . . . , EΣ(a)JPΣ(a)K).
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So Ni −→∗ EiJPiK for each i = 1, . . . ,Σ(a). By the induction hypothesis, there exists

Ẽi CEi such that ` Ẽi : Ni and Pi : Ẽi. Let Ẽ , a(Ẽ1, . . . , ẼΣ(a)). Then Ẽ CE, ` Ẽ : N ,

and P : Ẽ.
We prove the uniqueness. Assume Ẽ1 and Ẽ2 satisfy that Ẽj C E, ` Ẽj : N and

P : Ẽj for j = 1, 2. Since Ẽj C E, Ẽj must be of the form: Ẽj = a(Ẽj1, . . . , Ẽ
j
Σ(a)) with

Ẽji CEi. By ` Ẽj : N , there exists a rule N −→ a(N j
1 , . . . , N

j
Σ(a)) such that ` Ẽji : N j

i for

each i. Since P : Ẽj , we have Pi : Ẽji for each i. By Lemmas 3.23 and 3.24(3), we have

Ẽji JPiK = EiJPiK ∈ L
(
G, N j

i

)
. Now we have

N −→ a(N j
1 , . . . , N

j
Σ(a)) −→

∗ a(E1JP1K, . . . , EΣ(a)JPΣ(a)K)
for j = 1, 2. Since G is unambiguous, N1

i = N2
i for each i = 1, . . . ,Σ(a). By the induction

hypothesis, Ẽ1
i = Ẽ2

i for each i. Hence Ẽ1 = Ẽ2.

3.4.3. Decomposition of Ln(G, N). To formally state the decomposition lemma, we prepare
some definitions. For a canonical unambiguous grammar G = (Σ,N ,R), N ∈ N , n ≥ 1, and

m ≥ 1, we define Ẽmn (G, N), P̃m
Ẽ

(G, N), and ŨmJ Knκ
(G) by:

Ẽmn (G, N) , {Ẽ | (Ẽ, P ) = Φ̃•,Gm (T,N) for some T ∈ Ln(G, N) and P}.

P̃m
Ẽ

(G, N) , {P | (Ẽ, P ) = Φ̃•,Gm (T,N) for some T ∈ L(G, N)}.

ŨmJ Knκ
(G) , {U | U : J Knκ, U is good for m}.

The set Ẽmn (G, N) consists of second-order contexts that are obtained by decomposing trees

of size n, and P̃m
Ẽ

(G, N) consists of affine context sequences that match Ẽ. The set P̃m
Ẽ

(G, N)

is the set of contexts that match the hole J Knκ.
The following is the main result of this subsection.

Lemma 3.27.

Ln(G, N) ∼=
∐

Ẽ∈Ẽmn (G,N)

shn(Ẽ)∏
i=1

Ũm
Ẽ�i

(G).

The lemma above is a direct consequence of typed versions of coproduct and product
lemmas (Lemmas 3.28 and 3.30 below). The following coproduct lemma can be shown in a
manner similar to Lemma 3.10:

Lemma 3.28 (Coproduct Lemma (for Grammar-Respecting Decomposition)). For any
n ≥ 1 and m ≥ 1, there exists a bijection

Ln(G, N) ∼=
∐

Ẽ∈Ẽmn (G,N)

P̃m
Ẽ

(G, N).

such that (Ẽ, P ) in the right hand side is mapped to ẼJP K.
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Proof. We define a function

f :
∐

Ẽ∈Ẽmn (G,N)

P̃m
Ẽ

(G, N) −→ Ln(G, N)

by f(Ẽ, P ) , ẼJP K, and a function

g : Ln(G, N) −→
∐

Ẽ∈Ẽmn (G,N)

P̃m
Ẽ

(G, N)

by g(T ) , Φ̃•,Gm (T,N).
Let us check that these are functions into the codomains:

• f(Ẽ, P ) ∈ Ln(G, N): Since P ∈ P̃m
Ẽ

(G, N), there exists T ∈ Ln(G, N) such that (Ẽ, P ) =

Φ̃•,Gm (T,N). By Lemmas 3.6 and 3.24, we have f(Ẽ, P ) = ẼJP K = T ∈ Ln(G, N).

• g(T ) ∈∐
Ẽ∈Ẽmn (G,N)

P̃m
Ẽ

(G, N): Obvious from the definitions of Ẽmn (G, N) and P̃m
Ẽ

(G, N).

We have f(g(T )) = T by Lemmas 3.6(1) and 3.24. Let (Ẽ, P ) ∈∐
Ẽ∈Ẽmn (G,N)

P̃m
Ẽ

(G, N).

By definition, there exists T ∈ Ln(G, N) such that (Ẽ, P ) = Φ̃•,Gm (T,N) = g(T ). Then

g(f(Ẽ, P )) = g(f(g(T )) = g(T ) = (Ẽ, P ).

The following is a key lemma used for proving a typed version of the product lemma.

Lemma 3.29. For a nonterminal N , n ≥ 1, m ≥ 1 and Ẽ ∈ Ẽmn (G, N), let E be the unique

second-order context such that Ẽ C E. Then we have

P̃m
Ẽ

(G, N) = PmE ∩ {P | P : Ẽ}.
Proof. The direction ⊆ is clear. We prove the converse.

Let P be in the right hand side. Since Ẽ ∈ Ẽmn (G, N), there exist T ′ and P ′ such that

Φ̃•,Gm (T ′, N) = (Ẽ, P ′).

By the definition of Φ̃•,Gm (T ′, N), we have ` Ẽ : N . Since P ∈ PmE , there exists T such that
(E,P ) = Φ•m(T ) and thus, by Lemma 3.6,

Φ•m(EJP K) = (E,P ).

Since Φ•m(EJP K) = (E,P ), Ẽ C E, ` Ẽ : N , and P : Ẽ, by the definition of Φ̃•,Gm , we have

Φ̃•,Gm (EJP K, N) = (Ẽ, P ). By Lemmas 3.23(3) and 3.24(3), EJP K = ẼJP K ∈ L(G, N). Hence

P ∈ P̃m
Ẽ

(G, N).

The following is the typed version of the product lemma, which follows from Lemmas 3.15
and 3.29.

Lemma 3.30 (Product Lemma (for Grammar-Respecting Decomposition)). For any non-

terminal N , n ≥ 1, m ≥ 1 and Ẽ ∈ Ẽmn (G, N), we have

P̃m
Ẽ

(G, N) =

shn(Ẽ)∏
i=1

Ũm
Ẽ�i

(G).
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Proof. Let E be the unique second-order context such that ẼCE. By Lemmas 3.15 and 3.29,
we have:

P̃m
Ẽ

(G, N) = PmE ∩ {P | P : Ẽ}

= (
∏shn(E)
i=1 UmE�i) ∩ (

∏shn(Ẽ)
i=1 {U | U : Ẽ�i})

=
∏shn(Ẽ)
i=1 (UmE�i ∩ {U | U : Ẽ�i})

=
∏shn(Ẽ)
i=1 Ũm

Ẽ�i
(G).

Lemma 3.27 is an immediate corollary of Lemmas 3.28 and 3.30.

3.5. Each Component Contains the Subcontext of Interest. In Section 3.4, we have
shown that the set Ln(G, N) of trees can be decomposed as:

Ln(G, N) ∼=
∐

Ẽ∈Ẽmn (G,N)

shn(Ẽ)∏
i=1

Ũm
Ẽ�i

(G),

assuming that G is canonical and unambiguous. In this subsection, we further assume that
G is essentially strongly connected, and prove that, for each tree context S ∈ S inf(G), every

component “contains” S, i.e., there exists U ∈ Ũm
Ẽ�i

(G) such that S � U if m is sufficiently

large, say m ≥ m0 (where m0 depends on |S|). More precisely, the goal of this subsection is
to prove the following lemma.

Lemma 3.31. Let G = (Σ,N ,R) be an unambiguous, essentially strongly-connected gram-
mar in canonical form and (Sn)n∈N be a family of linear contexts in S inf(G) such that
|Sn| = O(n). Then there exist integers b, c ≥ 1 that satisfy the following: For any N ∈ N inf ,

n ≥ 1, m ≥ b, Ẽ ∈ Ẽcmn (G, N) and i ∈ {1, . . . , shn(Ẽ)}, there exists U ∈ Ũcm
Ẽ�i

(G) such that

Sm � U .

The rest of this subsection is devoted to a proof of the lemma above. The idea of the

proof is as follows. Assume S ∈ L(G, N1⇒N2) (N1, N2 ∈ N inf) and J Knκ = Ẽ�i. Recall that

ŨmJ Knκ
(G) = {U | U ∈ L(G, κ) , |U | = n, and U is good for m}.

It is not difficult to find a context U that satisfies both U ∈ L(G, κ) and S � U . For example,
assume that κ = N0⇒N3 (N0, N3 ∈ N inf). Then, since the grammar is assumed to be
essentially strongly-connected, there exist S0,1 ∈ L(G, N0⇒N1) and S2,3 ∈ L(G, N2⇒N3)

and then U , S2,3[S[S0,1]] satisfies U ∈ L(G, κ) and S � U . What is relatively difficult is
to show that S2,3 and S0,1 can be chosen so that they meet the required size constraints
(i.e., |U | = n and U is good for m).

The following is a key lemma, which states that any essentially strongly connected
grammar G is periodic in the sense that there is a constant c (that depends on G) and
a family of constants dN,N ′ such that, for each N,N ′ ∈ N inf , and sufficiently large n,
Ln(G, N⇒N ′) 6= ∅ if and only if n ≡ dN,N ′ mod c.

Lemma 3.32. Let G = (Σ,N ,R) be a regular tree grammar. Assume that G is essentially
strongly-connected and #(L(G)) = ∞. Then there exist constants n0, c > 0 and a family
(dN,N ′)N,N ′∈N inf of natural numbers 0 ≤ dN,N ′ < c that satisfy the following conditions:
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(1) For every N,N ′ ∈ N inf , if Ln(G, N⇒N ′) 6= ∅, then n ≡ dN,N ′ mod c.

(2) The converse of (1) holds for sufficiently large n: for any N,N ′ ∈ N inf and n ≥ n0, if
n ≡ dN,N ′ mod c then Ln(G, N⇒N ′) 6= ∅.

(3) dN,N = 0 for every N ∈ N inf .

(4) dN,N ′ + dN ′,N ′′ ≡ dN,N ′′ mod c for every N,N ′, N ′′ ∈ N inf .

The proof of the above lemma is rather involved; we defer it to Appendix C. We give
some examples below, to clarify what the lemma means.

Example 3.33. Consider the grammar G1 consisting of the following rewriting rules:

A −→ a(B) B −→ b(A) A −→ c(C) C −→ c

Then N inf = {A,B} and the conditions of the lemma above hold for:

n0 = 0 c = 2 dA,A = dB,B = 0 dA,B = dB,A = 1.

In fact, L(G1, A⇒A) = {(ab)k[ ] | k ≥ 0}, L(G1, B⇒B) = {(ba)k[ ] | k ≥ 0}, L(G1, B⇒A) =
{(ab)ka[ ] | k ≥ 0}, and L(G1, A⇒B) = {(ba)kb[ ] | k ≥ 0}. Here, since the arities of a and b

are 1, we have used regular expressions to denote linear contexts.
Consider the grammar G2, obtained by adding the following rules to the grammar above.

A −→ a(A1) A1 −→ a(A2) A2 −→ a(A).

Then, the conditions of the lemma above hold for n = 6, c = 1, dN,N ′ = 0 for N,N ′ ∈
{A,A1, A2, B}. Note that L(G2, A2⇒A1) = {a2(a3|ab)ka2[ ] | k ≥ 0}.
Remark 3.34. With some additional assumptions on a grammar, Lemma 3.32 above can
be easily proved. For example, consider a canonical, unambiguous and essentially strongly-
connected grammar G and assume that (i) G is N -aperiodic for some N and (ii) there
exist a 2-context C and nonterminals N,N1, N2 ∈ N inf such that N −→∗G C[N1, N2]. Then
Lemma 3.32 for the grammar G trivially holds with c = 1. In fact, this simpler approach is
essentially what we adopted in the conference version [18] of this article.

Using the lemma above, we prove that for every S ∈ S inf(G) and any sufficiently large n
such that Ln(G, κ) 6= ∅, we can find a context U ∈ Ln(G, κ) such that S � U (Lemma 3.35
below).

Lemma 3.35. Let G = (Σ,N ,R) be a regular tree grammar in canonical form. Assume
that G is unambiguous and essentially strongly-connected and #(L(G)) = ∞. Then there
exists a constant n0 ∈ N that satisfies the following condition: For every

• S ∈ S inf(G),
• n ≥ n0 + |S|, and
• κ = (⇒N ′) or (N⇒N ′) where N,N ′ ∈ N inf ,

if Ln(G, κ) 6= ∅, then there exists U ∈ Ln(G, κ) with S � U .

Proof. First, let us choose the following constants:

• m0 ∈ N such that, for every N,N ′ ∈ N inf , there exists SN,N ′ ∈ L(G, N⇒N ′) with
|SN,N ′ | ≤ m0. The existence of m0 is a consequence of essential strong-connectivity and
of finiteness of N .
• m1 which is the constant n0 of Lemma 3.32.
• m2 ∈ N such that, for every N ∈ N\N inf and every T ∈ L(G, N), we have |T | < m2. The

existence of m2 follows from the fact that
⋃
N∈N\N inf L(G, N) is a finite set.
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Let c and (dN,N ′)N,N ′∈N inf be the constant and the family obtained by Lemma 3.32.

We define n1 , m0 +m1 and n2 , m0 +m1 + rm2 + 1, where r , max(Im (Σ)). Below

we shall show: (i) the current lemma for the case κ = (N⇒N ′), by setting n0 , n1 and then

(ii) the lemma for the case κ = (⇒N ′), by setting n0 , n2; we use (i) to show (ii). The

whole lemma then follows immediately from (i) and (ii) with n0 , max{n1, n2} (= n2).

• Case (i): We define n0 , n1 = m0 + m1. Assume that: S ∈ L(G, N1⇒N2) where
N1, N2 ∈ N inf ; n ≥ n0 + |S|; κ = (N⇒N ′) where N,N ′ ∈ N inf ; and Ln(G, κ) 6= ∅. Let
S1 ∈ L(G, N2⇒N ′) with |S1| ≤ m0. Then S1[S] ∈ L(G, N1⇒N ′). It suffices to show that
Ln−|S1[S]|(G, N⇒N1) 6= ∅. By Lemma 3.32(1)(4),

n ≡ dN,N ′ ≡ dN,N1 + dN1,N2 + dN2,N ′ mod c (∵ Ln(G, κ) = Ln
(
G, N⇒N ′

)
6= ∅)

|S1| ≡ dN2,N ′ mod c (∵ (S1 ∈)L|S1|
(
G, N2⇒N ′

)
6= ∅)

|S| ≡ dN1,N2 mod c (∵ (S ∈)L|S|(G, N1⇒N2) 6= ∅)
and thus

n− |S1[S]| ≡ dN,N1 mod c.

Since n ≥ m0 + m1 + |S|, we have n − |S1[S]| ≥ m1, and hence by Lemma 3.32(2), we
have Ln−|S1[S]|(G, N⇒N1) 6= ∅.
• Case (ii): We define n0 , n2 = m0 + m1 + rm2 + 1. Assume that: S ∈ L(G, N1⇒N2)

where N1, N2 ∈ N inf ; n ≥ n0 + |S|; κ = (⇒N ′) where N ′ ∈ N inf ; and Ln(G, κ) 6= ∅. Let
T ∈ Ln(G, κ). Since arities of terminal symbols are bounded by r and |T | ≥ rm2 + 1,
there exists a subtree T0 � T such that m2 ≤ |T0| ≤ rm2 + 1, which can be shown by
induction on tree T . Let U be a linear context such that T = U [T0]. Since G is canonical
and unambiguous, by Lemma 3.25, U ∈ L(G, N⇒N ′) and T0 ∈ L(G, N) for some N ∈ N .
Since m2 ≤ |T0| ≤ rm2 + 1, we have N ∈ N inf and |U | ≥ m0 + m1 + |S|. By using the
case (1), since (U ∈)L|U |(G, N⇒N ′) 6= ∅, there exists U ′ ∈ L|U |(G, N⇒N ′) with S � U ′.
Let T ′ , U ′[T0]; then T ′ ∈ Ln(G,⇒N ′) and S � T ′.

We prepare another lemma.

Lemma 3.36. If Φm(T ) = (U,E, P ), ` ∈ {1, . . . , shn(E)}, P �` is a linear context, and the
second-order hole E�` occurs in E in the form (E�`)[E′], then |E′| ≥ m.

Proof. By straightforward induction on |T | and case analysis of Equation (3.2) in the
definition of Φm. We can use Lemma 3.11 in the second case of Equation (3.2) when ` = 1;
all the other cases immediately follow from induction hypothesis.

We are now ready to prove the main lemma of this subsection.

Proof of Lemma 3.31. Since S0 ∈ S inf(G), we have N inf 6= ∅ and hence #(L(G)) =∞. Let
n0 be the constant of Lemma 3.35. Let c1 be a positive integer such that |Sn| ≤ c1n for

every n ∈ N. We define c , (2r + 1)c1 (recall that r is the largest arity of Σ) and choose b
so that b ≥ n0 and b > |T | for any T ∈ ⋃N∈N\N inf L(G, N).

Assume that N ∈ N inf , n ≥ 1, m ≥ b, Ẽ ∈ Ẽcmn (G, N) and i ∈ {1, . . . , shn(Ẽ)}. Let

Ẽ�i = J Kn′κ′ . We need to show that there exists U ∈ Ũcm
J Kn′
κ′

(G) such that Sm � U .

Since Ẽ ∈ Ẽcmn (G, N), there exist T ∈ Ln(G, N) and P such that (Ẽ, P ) = Φ̃•,Gcm (T,N);

hence P �i ∈ Ũcm
Ẽ�i

(G) = Ũcm
J Kn′
κ′

(G). The affine context P �i must be of the form a(U1, . . . , UΣ(a)).
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Since P �i is good for cm, we have |P �i| ≥ cm = (2r + 1)c1m ≥ 2rc1m+ 1. Since Σ(a) ≤ r,
there exists j ≤ Σ(a) such that |Uj | ≥ 2c1m. We have κ′ = (N ′⇒N ′′) or (⇒N ′′) for some
N ′, N ′′ ∈ N . Since P �i = a(U1, . . . , UΣ(a)) ∈ L(G, κ′), there exist N1, . . . , NΣ(a) ∈ N such
that

N ′′ −→ a(N1, . . . , NΣ(a)) −→∗ T ′
where T ′ = P �i[N ′] if κ′ = (N ′⇒N ′′), and T ′ = P �i if κ′ = (⇒N ′′). Let κ be N ′⇒Nj

if Uj is a linear context, and ⇒Nj otherwise. Then Uj ∈ L|Uj |(G, κ) 6= ∅. In order to

apply Lemma 3.35 (for S = Sm and n = |Uj |), we need to check the conditions: (i)

|Uj | ≥ n0 + |Sm| and (ii) κ consists of only nonterminals in N inf . Condition (i) follows
immediately from |Uj | ≥ 2c1m ≥ m+ c1m ≥ n0 + |Sm|. As for (ii), it suffices to check that
L(G, Nj) and L(G, N ′) contain a tree whose size is no less than b (where the condition on
L(G, N ′) is required only if Uj is a linear context). The condition on L(G, Nj) follows from
|Uj | ≥ 2c1m ≥ m ≥ b. If Uj is a linear context, by Lemma 3.36, there exist S and T ′′ such
that:

T = S[(P �i)[T ′′]] |T ′′| ≥ cm ≥ b T ′′ ∈ L
(
G, N ′

)
as required.

Thus, we can apply Lemma 3.35 and obtain U ′j ∈ L(G, κ) such that Sm � U ′j and |U ′j | =
|Uj |. Since P �i = a(U1, . . . , UΣ(a)) is good for cm, U , a(U1, . . . , Uj−1, U

′
j , Uj+1, . . . , UΣ(a))

is also good for cm. Obviously |U | = |P �i| and thus U ∈ Ũcm
J Kn′
κ′

(G). Since Sm � U ′j and

U ′j � U , we have Sm � U as required.

3.6. Main Proof. Here, we give a proof of Theorem 2.13. Before the proof, we prepare
a simple lemma. We write U≤n(Σ) for the set of affine contexts over Σ of size at most n.
Lemma 3.37 below gives an upper bound of #(U≤n(Σ)). A more precise bound can be
obtained by using a technique of analytic combinatorics such as Drmota–Lalley–Woods
theorem (cf. [5], Theorem VII.6), but the rough bound provided by the lemma below is
sufficient for our purpose.

Lemma 3.37. For every ranked alphabet Σ, there exists a real constant γ > 1 such that

#(U≤n(Σ)) ≤ γn

for every n ≥ 0.

Proof. Let A be the set of symbols: {à, á | a ∈ Dom(Σ)} ∪ {�}. Intuitively à and á are
opening and closing tags of an XML-like language.

We can transform an affine context U to its XML-like string representation U † ∈ A∗ by:

(a(U1, . . . , UΣ(a)))
† , à U †1 · · ·U †Σ(a) á

[ ]† , �.

Obviously, (·)† is injective. Furthermore, |U †| = 2|U | if U is a 0-context (i.e., a tree), and
|U †| = 2|U |+ 1 if U is a linear context (note that the size of the hole [ ] is zero, but its word
representation is of length 1). Thus, for n > 0, we have

#(U≤n(Σ)) ≤
2n+1∑
i=0

(#(A))i ≤
3n∑
i=0

(#(A))i ≤ (#(A) + 1)3n = ((#(A) + 1)3)n.
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If n = 0, then #(U≤n(Σ)) = 1 = ((#(A) + 1)3)n, as U≤n(Σ) is the singleton set {[ ]}. Thus,
the required result holds for γ = (#(A) + 1)3.

The following lemma is a variant of Theorem 2.13, specialized to a canonical grammar.

Lemma 3.38. Let G = (Σ,N ,R) be a canonical, unambiguous, and essentially strongly-
connected regular tree grammar such that #(L(G)) =∞, and (Sn)n∈N be a family of linear
contexts in S inf(G) such that |Sn| = O(n). Then there exists a real constant p > 0 such that
for any N ∈ N inf ,

limdef
n→∞

#
(
{T ∈ Ln(G, N) | Sdp logne � T}

)
#(Ln(G, N))

= 1.

Proof. The overall structure of the proof is the same as that of Proposition 3.1. Let Zn be

1−
#
(
{T ∈ Ln(G, N) | Sdp logne � T}

)
#(Ln(G, N))

=
#
(
{T ∈ Ln(G, N) | Sdp logne 6� T}

)
#(Ln(G, N))

.

It suffices to show that Zn converges to 0.
By Lemma 3.27, we have

Ln(G, N) ∼=
∐

Ẽ∈Ẽmn (G,N)

shn(Ẽ)∏
i=1

Ũm
Ẽ�i

(G)

for any m > 0. Thus, we have

Zn ≤
∑

Ẽ∈Ẽmn (G,N)

∏shn(Ẽ)
i=1 #

(
{U ∈ Ũm

Ẽ�i
(G) | Sdp logne 6� U}

)
∑

Ẽ∈Ẽm(n)
n (G,N)

∏shn(Ẽ)
i=1 #

(
Ũm
Ẽ�i

(G)
) . (3.4)

Let b, c ≥ 1 be the numbers in Lemma 3.31. Then, by the lemma, for any n and p such that

dp log ne ≥ b, each Ũcdp logne
Ẽ�i

(G) contains at least one U that has Sdp logne as a subcontext.

Thus, for m = cdp log ne, #
(
{U ∈ Ũm

Ẽ�i
(G) | Sdp logne 6� U}

)
is bounded above by:

#
(
Ũm
Ẽ�i

(G)
)
− 1 = (1− 1

#
(
Ũm
Ẽ�i

(G)
))#

(
Ũm
Ẽ�i

(G)
)
≤ (1− 1

γrm
)#
(
Ũm
Ẽ�i

(G)
)
.

Here γ is the constant (that only depends on Σ) of Lemma 3.37, and r is the largest arity of

Σ. In the last inequality, we have used the fact that Ũm
Ẽ�i

(G) ⊆ U≤rm(Σ).
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By using the upper-bound above, Equation (3.4), and shn(Ẽ) ≥ n
2rm (Lemma 3.7), we

have:

Zn ≤

∑
Ẽ∈Ẽmn (G,N)

∏shn(Ẽ)
i=1 (1− 1

γrm
)#
(
Ũm
Ẽ�i

(G)
)

∑
Ẽ∈Ẽm(n)

n (G,N)

∏shn(Ẽ)
i=1 #

(
Ũm
Ẽ�i

(G)
)

=

∑
Ẽ∈Ẽmn (G,N)

(1− 1

γrm
)shn(Ẽ)

shn(Ẽ)∏
i=1

#
(
Ũm
Ẽ�i

(G)
)

∑
Ẽ∈Ẽm(n)

n (G,N)

∏shn(Ẽ)
i=1 #

(
Ũm
Ẽ�i

(G)
)

≤

∑
Ẽ∈Ẽmn (G,N)

(1− 1

γrm
)

n
2rm

shn(Ẽ)∏
i=1

#
(
Ũm
Ẽ�i

(G)
)

∑
Ẽ∈Ẽm(n)

n (G,N)

∏shn(Ẽ)
i=1 #

(
Ũm
Ẽ�i

(G)
) = (1− 1

γrm
)

n
2rm

for any n and p such that dp log ne ≥ b and m = cdp log ne.
It remains to choose p so that (1 − 1

γrm
)

n
2rm = (1 − 1

γrcdp logne )
n

2rcdp logne converges to

0. Let us choose positive real numbers a, p, and q so that p and q satisfy the following
conditions for every n ≥ a:

p log n ≥ b (3.5)

γrcdp logne ≤ nq (3.6)

q < 1. (3.7)

For example, we can choose a, p, q as follows:

a = max{γb(rc+2), γrc(rc+2)} p =
1

(rc+ 2) log γ
q =

rc+ 1

rc+ 2

In fact, condition (3.6) follows from:

rcdp log ne − logγ n
q ≤ rc( 1

(rc+2) log γ log n+ 1)− rc+1
rc+2

logn
log γ

= 1
(rc+2) log γ (rc log n+ rc(rc+ 2) log γ − (rc+ 1) log n)

= 1
(rc+2) log γ (rc(rc+ 2) log γ − log n)

≤ 1
(rc+2) log γ (rc(rc+ 2) log γ − log a) ≤ 0.

Thus, for n ≥ a, we have:

(1− 1

γrcdp logne )
n

2rcdp logne ≤ (1− 1

nq
)

n
2rcdp logne ≤

((
1− 1

nq

) n
logn

) 1
3rcp

.

Since limn→∞
(
1− 1

nq

) n
logn = 0, we have limdef

n→∞
Zn = 0 as required.

Remark 3.39. In the proof above, we used the fact that if 0 < q < 1 then

lim
n→∞

(
1− 1

nq

) n
logn

= 0.
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We also remark that if q ≥ 1 then

lim
n→∞

(
1− 1

nq

) n
logn

= 1.

Thus, p should be chosen to be sufficiently small so that Equation (3.6) in the proof holds
for some q < 1.

We are now ready to prove Theorem 2.13. We restate the theorem.

Theorem 2.13 (Parameterized Infinite Monkey Theorem for Regular Tree Languages). Let
G = (Σ,N ,R) be an unambiguous and strongly-connected regular tree grammar such that
#(L(G)) = ∞, and (Sn)n∈N be a family of linear contexts in S(G) such that |Sn| = O(n).
Then there exists a real constant p > 0 such that for any N ∈ N the following equation holds:

limdef
n→∞

#
(
{T ∈ Ln(G, N) | Sdp logne � T}

)
#(Ln(G, N))

= 1.

Proof. By Lemma 3.19, there exists a canonical, unambiguous and essentially strongly-
connected grammar G′ = (Σ,N ′,R′) and a family (IN )N∈N of subsets IN ⊆ N ′ such that

L(G, N) =
⊎
N ′∈IN L(G′, N ′) for every N ∈ N and S(G) ⊆ S inf(G′). Let I ′N , IN ∩N ′

inf =

{N ′ ∈ IN | L(G′, N ′) =∞}. For any N ∈ N , since L(G) =∞ and G is strongly connected,
we have L(G, N) = ∞, and hence I ′N 6= ∅. By Lemma 3.38, there exists a real constant
p > 0 such that, for each N ′ ∈ I ′N ,

limdef
n→∞

#
(
{T ∈ Ln(G′, N ′) | Sdp logne � T}

)
#(Ln(G′, N ′)) = 1. (3.8)

Thus, we have

limdef
n→∞

#
(
{T ∈ Ln(G, N) | Sdp logne � T}

)
#(Ln(G, N))

= limdef
n→∞

∑
N ′∈IN #

(
{T ∈ Ln(G′, N ′) | Sdp logne � T}

)∑
N ′∈IN #(Ln(G′, N ′))

= limdef
n→∞

∑
N ′∈I′N

#
(
{T ∈ Ln(G′, N ′) | Sdp logne � T}

)∑
N ′∈I′N

#(Ln(G′, N ′))
= 1

as required; we have used Lemma 2.12 and Equation (3.8) in the last step.

4. Proof of the Main Theorem on λ-calculus

This section proves our main theorem (Theorem 2.5). We first prepare a regular tree
grammar that generates the set of tree representations of elements of Λ(δ, ι, ξ) in Section 4.1,
and then apply Corollary 2.17 to obtain Theorem 2.5, where (Tn)n∈N in the corollary are set
to (the tree representations of) the terms in the introduction that have long β-reduction
sequences.



Vol. 15:1 ALMOST EVERY SIMPLY TYPED λ-TERM HAS A LONG β-REDUCTION SEQUENCE 16:39

4.1. Regular Tree Grammar G(δ, ι, ξ) of Λ(δ, ι, ξ). Recall that Λ(δ, ι, ξ) is the set of
(α-equivalence classes of) closed well-typed terms, whose order, internal arity, and number of
variables are bounded above by δ, ι, and ξ (consult Definition 2.4 for the precise definition).
The set Λ(δ, ι, ξ) can be generated by the following grammar (up to isomorphism).

Definition 4.1 (Grammar of Λ(δ, ι, ξ)). Let δ, ι, ξ ≥ 0 be integers and Xξ = {x1, . . . , xξ} be
a subset of V . The regular tree grammar G(δ, ι, ξ) is defined as (Σ(δ, ι, ξ),N (δ, ι, ξ),R(δ, ι, ξ))
where:

Σ(δ, ι, ξ) , {x 7→ 0 | x ∈ Xξ} ∪ {@ 7→ 2}
∪ {λxτ 7→ 1 | x ∈ {∗} ∪Xξ, τ ∈ Types(δ − 1, ι)}

N (δ, ι, ξ) , {N〈Γ;τ〉 | τ ∈ Types(δ, ι),Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι),

Λ(〈Γ; τ〉, δ, ι, ξ) 6= ∅}
R(δ, ι, ξ) , {N〈{xi:τ};τ〉 −→ xi} ∪ {N〈Γ;σ→τ〉 −→ λ∗σ(N〈Γ;τ〉)}

∪ {N〈Γ;σ→τ〉 −→ λxσi (N〈Γ∪{xi:σ};τ〉) | i = min{j | xj ∈ Xξ \Dom(Γ)}}
∪ {N〈Γ;τ〉 −→ @(N〈Γ1;σ→τ〉, N〈Γ2;σ〉) | Γ = Γ1 ∪ Γ2}

The grammar above generates the tree representations of elements of Λ(δ, ι, ξ), where
a variable x, a lambda-abstraction, and an application are represented respectively as
the nullary tree constructor x, unary tree constructor λx, and binary tree constructor @.
The nonterminal N〈Γ;τ〉 is used to generate (the tree representations of) the elements of
Λ(〈Γ; τ〉, δ, ι, ξ); the condition Λ(〈Γ; τ〉, δ, ι, ξ) 6= ∅ on nonterminal N〈Γ;τ〉 ensures that every
nonterminal generates at least one tree. To guarantee that the grammar generates at most
one tree for each α-equivalence class [t]α, (i) variables are chosen from the fixed set Xξ, and
(ii) in the rule for generating a λ-abstraction, a variable is chosen in a deterministic manner.
Note that Σ(δ, ι, ξ), N (δ, ι, ξ) and R(δ, ι, ξ) are finite. The finiteness of N (δ, ι, ξ) follows
from that of Xξ, Types(δ − 1, ι), and {Γ | Dom(Γ) ⊆ Xξ, Im (Γ) ⊆ Types(δ − 1, ι)}. The
finiteness of R(δ, ι, ξ) also follows immediately from that of N (δ, ι, ξ).

Example 4.2. Let us consider the case where δ = ι = ξ = 1. The grammar G(1, 1, 1)
consists of the following components.

Σ(1, 1, 1) = {x1,@, λx
o
1, λ∗o} N (1, 1, 1) = {N〈∅;o→o〉, N〈{x1:o};o〉, N〈{x1:o};o→o〉}

R(1, 1, 1) =


N〈∅;o→o〉 −→ λxo1(N〈{x1:o};o〉)

N〈{x1:o};o〉 −→ x1 | @(N〈{x1:o};o→o〉, N〈{x1:o};o〉) | @(N〈∅;o→o〉, N〈{x1:o};o〉)

N〈{x1:o};o→o〉 −→ λ∗o(N〈{x1:o};o〉).

There is an obvious embedding e(δ,ι,ξ) (e for short) from trees in T (Σ(δ, ι, ξ)) into (not
necessarily well-typed) λ-terms. For N〈Γ;τ〉 ∈ N (δ, ι, ξ) we define

π
(δ,ι,ξ)
〈Γ;τ〉 , [−]α ◦ e : L

(
N〈Γ;τ〉

)
→ Λ(〈Γ; τ〉, δ, ι, ξ)

where [−]α maps a term to its α-equivalence class. We sometimes omit the superscript

and/or the subscript and may write just π for π
(δ,ι,ξ)
〈Γ;τ〉 .

The following lemma says that G(δ, ι, ξ) gives a complete representation system of the
α-equivalence classes.
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Lemma 4.3. For δ, ι, ξ ≥ 0, π
(δ,ι,ξ)
〈Γ;τ〉 : L

(
G(δ, ι, ξ), N〈Γ;τ〉

)
→ Λ(〈Γ; τ〉, δ, ι, ξ) is a size-

preserving bijection.

Proof. It is trivial that the image of π〈Γ;τ〉 is contained in Λ(〈Γ; τ〉, δ, ι, ξ) and π preserves
the size.

The injectivity, i.e., e(T ) ∼α e(T ′) implies T = T ′ for T, T ′ ∈ L
(
N〈Γ;τ〉

)
, is shown by

induction on the length of the leftmost rewriting sequence N〈Γ;τ〉 −→∗ T and by case analysis
of the rewriting rule used in the first step of the reduction sequence. In the case analysis
below, we use the fact that if T ∈ L

(
N〈Γ;τ〉

)
, then FV(e(T )) = Dom(Γ), which can be

proved by straightforward induction.

• Case for the rule N〈{xi:τ};τ〉 −→ xi: In this case, T = xi. By the assumption e(T ) ∼α e(T ′),
T = T ′ follows immediately.
• Case for the rule N〈Γ;σ→τ〉 −→ λ∗σ(N〈Γ;τ〉): In this case, T = λ∗σ(T1) with N〈Γ;τ〉 −→∗ T1.

By the assumption e(T ) ∼α e(T ′), T ′ must be of the form λxσ(T ′1) where (i) x does not
occur free in e(T ′1), and (ii) e(T1) ∼α e(T ′1). Then x = ∗ and hence we have N〈Γ;σ→τ〉 −→
λ∗σ(N〈Γ;τ〉) with N〈Γ;τ〉 −→∗ T ′1, because, if x 6= ∗, we have N〈Γ;σ→τ〉 −→ λxσ(N〈Γ∪{x:σ};τ〉)
with N〈Γ∪{x:σ};τ〉 −→∗ T ′1, and hence FV(e(T ′1)) = Dom(Γ ∪ {x : σ}), which contradicts
the condition (i). Therefore, by the induction hypothesis, we have T1 = T ′1, which implies
T = T ′ as required.
• Case for the rule: N〈Γ;σ→τ〉 −→ λxσi (N〈Γ∪{xi:σ};τ〉), where i = min{j | xj ∈ Xξ \Dom(Γ)}.

By the assumption e(T ) ∼α e(T ′), T ′ must be of the form λxσ(T ′1) where x occurs free
in e(T ′1), and [x′/xi]e(T1) ∼α [x′/x]e(T ′1) for a fresh variable x′. Thus, by the definition
of R(δ, ι, ξ), T ′ must have also been generated by the same rule, i.e., T ′ = λxσi (T ′1) with
N〈Γ∪{xi:σ};τ〉 −→∗ T ′1. By the induction hypothesis, we have T1 = T ′1, which also implies
T = T ′ as required.
• Case for the rule: N〈Γ;τ〉 −→ @(N〈Γ1;σ→τ〉, N〈Γ2;σ〉) where Γ = Γ1∪Γ2. Then T = @(T1, T2)

with N〈Γ1;σ→τ〉 −→∗ T1 and N〈Γ2;σ〉 −→∗ T2. By the assumption e(T ) ∼α e(T ′), T ′ must
also be of the form @(T ′1, T

′
2), with e(T1) ∼α e(T ′1) and e(T2) ∼α e(T ′2). Therefore, T ′

must also have been generated by a rule for applications; hence N〈Γ′1;σ′→τ〉 −→∗ T ′1
and N〈Γ′2;σ′〉 −→∗ T ′2 for some Γ′1,Γ

′
2, σ
′ such that Γ = Γ′1 ∪ Γ′2. By the condition

e(Ti) ∼α e(T ′i ), Dom(Γi) = FV(e(Ti)) = FV(e(T ′i )) = Dom(Γ′i) for each i ∈ {1, 2}. Thus,
since Γ1 ∪ Γ2 = Γ′1 ∪ Γ′2, we have Γi = Γ′i, which also implies σ = σ′ (since the type of
a simply-typed λ-term is uniquely determined by the term and the type environment).
Therefore, by the induction hypothesis, we have Ti = T ′i for each i ∈ {1, 2}, which implies
T = T ′ as required.

Next we show the surjectivity, i.e., for any [t]α ∈ Λ(〈Γ; τ〉, δ, ι, ξ) there exists T ∈
L
(
N〈Γ;τ〉

)
such that e(T ) ∼α t. For δ, ι, ξ with Xξ = {x1, . . . , xξ} and N〈Γ;τ〉 ∈ N (δ, ι, ξ), we

define a “renaming” function ρ
(δ,ι,ξ)
〈Γ;τ〉 (ρ〈Γ;τ〉 or ρ for short) from {t | [t]α ∈ Λ(〈Γ; τ〉, δ, ι, ξ)}

to L
(
N〈Γ;τ〉

)
by induction on the size of t, so that π(ρ(t)) = [t]α holds.
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ρ〈{x:τ};τ〉(x) , x
ρ〈Γ;σ→τ〉(λ∗σ.t) , λ∗σ(ρ〈Γ;τ〉(t))

ρ〈Γ;σ→τ〉(λx
σ.t) , λ∗σ(ρ〈Γ;τ〉(t)) (if x /∈ FV(t))

ρ〈Γ;σ→τ〉(λx
σ.t) , λxσi (ρ〈Γ∪{xi:σ};τ〉([xi ↔ x]t)) where i , min{j | xj ∈ Xξ \Dom(Γ)}

(if x ∈ FV(t))

ρ〈Γ1∪Γ2;τ〉(t1t2) , @(ρ〈Γ1;σ→τ〉(t1), ρ〈Γ2;σ〉(t2)) (if Γ1 ` t1 : σ→τ and Γ2 ` t2 : σ)

Here, [x↔ y]t represents the term obtained by swapping every occurrence of x with that of
y; for example, [x ↔ y](λx.xy) = λy.yx. Note that in the last clause, if Γ ` t1t2 : τ , then
there exists a unique triple (Γ1,Γ2, σ) such that Γ = Γ1 ∪ Γ2, Γ1 ` t1 : σ→τ , and Γ2 ` t2 : σ.
We can prove that π(ρ(t)) = [t]α holds for every λ-term t such that [t]α ∈ Λ(〈Γ; τ〉, δ, ι, ξ),
by straightforward induction on the size of t.

Lemma 4.4. For δ, ι, ξ ≥ 0, G(δ, ι, ξ) is unambiguous.

Proof. The proof is similar to that of the injectivity of Lemma 4.3. We show that, for any
N〈Γ;τ〉 ∈ N (δ, ι, ξ), T ∈ T (Σ(δ, ι, ξ)), and two leftmost rewriting sequences of the form

N〈Γ;τ〉 −→ T (1) −→ . . . −→ T (n) = T (n ≥ 1)

N〈Γ;τ〉 −→ T ′(1) −→ . . . −→ T ′(n
′) = T (n′ ≥ 1),

n = n′ and T (k) = T ′(k) hold for 1 ≤ k < n. The proof proceeds by induction on n, with
case analysis on the rule N〈Γ;τ〉 −→ T (1). As in the proof of Lemma 4.3, we use the fact that

if T ∈ L
(
N〈Γ;τ〉

)
, then FV(e(T )) = Dom(Γ).

• Case for the rule N〈{xi:τ};τ〉 −→ xi: In this case, T = xi and n = 1. Since the root of T ′(1)

must be xi, we have T ′(1) = T and n′ = 1 = n.

• Case for the rule N〈Γ;σ→τ ′〉 −→ λ∗σ(N〈Γ;τ ′〉): In this case, n ≥ 2, T (k) = λ∗σ(T
(k)
1 ) (k ≤ n),

T = λ∗σ(T1), and we have the following leftmost rewriting sequences:

N〈Γ;τ ′〉 = T
(1)
1 −→ . . . −→ T

(n)
1 = T1.

Since the root of T ′(k) is the same as that of T , T ′(k) = λ∗σ(T
′(k)
1 ) for k ≤ n′, and we have

the following leftmost rewriting sequence:

T
′(1)
1 −→ . . . −→ T

′(n′)
1 = T1.

By the definition of rules, T ′(1) must be of the form λ∗σ(N〈Γ;τ〉) and so T
′(1)
1 = N〈Γ;τ〉.

By the induction hypothesis for N〈Γ;τ〉 −→ T
(2)
1 , we have n = n′ and T

(k)
1 = T

′(k)
1 for

2 ≤ k < n. Thus we have also T (k) = T ′(k) for 1 ≤ k < n, as required.
• Case for the rule: N〈Γ;σ→τ ′〉 −→ λxσi (N〈Γ∪{xi:σ};τ ′〉), where i = min{j | xj ∈ Xξ \Dom(Γ)}.

In this case, n ≥ 2, T (k) = λxσi (T
(k)
1 ) (k ≤ n), T = λxσi (T1), and we have the following

leftmost rewriting sequences:

N〈Γ∪{xi:σ};τ ′〉 = T
(1)
1 −→ . . . −→ T

(n)
1 = T1.

Since the root of T ′(k) are the same as that of T , T ′(k) = λxσi (T
′(k)
1 ) (k ≤ n′), and we have

the leftmost rewriting sequence:

T
′(1)
1 −→ . . . −→ T

′(n′)
1 = T1.



16:42 K. Asada, N. Kobayashi, R. Sin’ya, and T. Tsukada Vol. 15:1

By the definition of rules, N〈Γ;σ→τ ′〉 −→ λxσi (T
′(1)
1 ) implies that T

′(1)
1 = N〈Γ∪{xi:σ};τ ′〉.

Hence by the induction hypothesis for N〈Γ∪{xi:σ};τ〉 −→ T
(2)
1 , we have n = n′ and T

(k)
1 =

T
′(k)
1 for 2 ≤ k < n. Thus we also have T (k) = T ′(k) for 1 ≤ k < n.

• Case for the rule: N〈Γ;τ〉 −→ @(N〈Γ1;σ→τ〉, N〈Γ2;σ〉) where Γ = Γ1 ∪ Γ2. In this case,
n = n1 + n2 − 1, n1, n2 ≥ 2, T = @(T1, T2),

T (k) = @(T
(k)
1 , N〈Γ2;σ〉) (1 ≤ k ≤ n1)

T (n1−1+k) = @(T1, T
(k)
2 ) (1 ≤ k ≤ n2),

and we have the following leftmost rewriting sequences:

N〈Γ1;σ→τ〉 = T
(1)
1 −→ . . . −→ T

(n1)
1 = T1

N〈Γ2;σ〉 = T
(1)
2 −→ . . . −→ T

(n2)
2 = T2.

Since the root of T ′(1) is @, T ′(1) must be of the form @(N〈Γ′1;σ′→τ〉, N〈Γ′2;σ′〉) with Γ′1∪Γ′2 =

Γ. Also let us consider T ′(k): we have n = n′1 + n′2 − 1, n′1, n
′
2 ≥ 2,

T ′(k) = @(T
′(k)
1 , N〈Γ′2;σ′〉) (1 ≤ k ≤ n′1)

T ′(n
′
1−1+k) = @(T1, T

′(k)
2 ) (1 ≤ k ≤ n′2),

and we have the following leftmost rewriting sequences:

N〈Γ′1;σ′→τ〉 = T
′(1)
1 −→ . . . −→ T

′(n′1)
1 = T1

N〈Γ′2;σ′〉 = T
′(1)
2 −→ . . . −→ T

′(n′2)
2 = T2.

Since Dom(Γi) = FV(e(Ti)) = Dom(Γ′i) for each i ∈ {1, 2} and Γ1 ∪ Γ2 = Γ′1 ∪ Γ′2,
we have Γi = Γ′i, which also implies σ = σ′. Hence by the induction hypothesis for

N〈Γ1;σ→τ〉 −→ T
(2)
1 and for N〈Γ2;σ〉 −→ T

(2)
2 , we have ni = n′i and T

(k)
i = T

′(k)
i for each

i ∈ {1, 2} and 2 ≤ k < ni. Thus we also have T (k) = T ′(k) for 1 ≤ k < n.

4.2. Strong Connectivity and Aperiodicity. In this section, we restrict the grammar
G(δ, ι, ξ) to G∅(δ, ι, ξ) by removing unnecessary nonterminals, and show the strong con-

nectivity and aperiodicity of G∅(δ, ι, ξ) for δ, ι, ξ ≥ 2 (Lemma 4.8 below). Recall that the
strong connectivity and aperiodicity is required to apply Corollary 2.17 and Remark 2.18,
respectively.

We define the restricted grammar G∅(δ, ι, ξ) by:

N ∅(δ, ι, ξ) , {N ∈ N (δ, ι, ξ) | N is reachable in G(δ, ι, ξ) from some N〈∅;σ〉 ∈ N (δ, ι, ξ)}
R∅(δ, ι, ξ) , {N −→ T ∈ R(δ, ι, ξ) | N ∈ N ∅(δ, ι, ξ)}
G∅(δ, ι, ξ) , (Σ(δ, ι, ξ),N ∅(δ, ι, ξ),R∅(δ, ι, ξ)).

For N ∈ N ∅(δ, ι, ξ), clearly L
(
G∅(δ, ι, ξ), N

)
= L(G(δ, ι, ξ), N). Through the bijection π, we

can show that, for any N〈Γ;τ〉 ∈ N (δ, ι, ξ), N〈Γ;τ〉 also belongs to N ∅(δ, ι, ξ) if and only if
there exists a term in Λ(δ, ι, ξ) whose type derivation contains a type judgment of the form
Γ ` t : τ .
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The strong connectivity of G∅(δ, ι, ξ) follows from the following facts: (i) each N〈Γ;τ〉 ∈
N ∅(δ, ι, ξ) is reachable from some N〈∅;τ ′〉 ∈ N ∅(δ, ι, ξ) (by the definition of G∅(δ, ι, ξ) above),

(ii) each N〈∅;τ〉 ∈ N ∅(δ, ι, ξ) is reachable from N〈∅;o→o〉 (Lemma 4.5 below), and (iii) N〈∅;o→o〉
is reachable from every N〈Γ;τ〉 ∈ N ∅(δ, ι, ξ) (Lemma 4.6 below).

Lemma 4.5. Let δ, ι ≥ 2 and ξ ≥ 1 be integers. Then for any nonterminal N〈∅;τ〉 ∈
N ∅(δ, ι, ξ), N〈∅;τ〉 is reachable from N〈∅;o→o〉.

Proof. Let τ = τ1→ . . .→τn→o and τi = τ i1→ . . .→τ i`i→o for i = 1, . . . , n. For i = 1, . . . , n,

let Tτi , λ ∗τ
i
1 (. . . λ ∗τ

i
`i (x1) . . . ). Then, we have:

N〈x1:o;τi〉 −→ λ ∗τ i1 (N〈x1:o;τ i2→...→τ i`i→o〉) −→∗ λ ∗τ
i
1 (. . . λ ∗τ

i
`i (N〈x1:o;o〉) . . . )

−→ λ ∗τ i1 (. . . λ ∗τ
i
`i (x1) . . . ) = Tτi

and hence

N〈∅;o→o〉 −→ λxo1(N〈x1:o;o〉)

−→ λxo1(@(N〈x1:o;τn→o〉, N〈x1:o;τn〉)) −→∗ λxo1(@(N〈x1:o;τn→o〉, Tτn))

−→∗ λxo1(@(@(. . .@(N〈x1:o;τ2→···→τn→o〉, Tτ2), . . . ), Tτn))

−→ λxo1(@(@(. . .@(@(N〈∅;τ1→τ2→···→τn→o〉, N〈x1:o;τ1〉), Tτ2), . . . ), Tτn))

−→∗ λxo1(@(@(. . .@(@(N〈∅;τ〉, Tτ1), Tτ2), . . . ), Tτn)).

Lemma 4.6. Let δ, ι, ξ ≥ 2 be integers. Then for any nonterminal N〈Γ;τ〉 ∈ N ∅(δ, ι, ξ),
N〈∅;o→o〉 is reachable from N〈Γ;τ〉.

Proof. Suppose N〈Γ;τ〉 ∈ N ∅(δ, ι, ξ). By the definition of N ∅(δ, ι, ξ) (and N (δ, ι, ξ)), there

exists t such that [t]α ∈ Λ(〈Γ; τ〉, δ, ι, ξ). Let T , π−1([t]α) ∈ L
(
N〈Γ;τ〉

)
. Now T contains at

least one (possibly bound) variable, say x, and let σ be the type of x. Since T ∈ L
(
N〈Γ;τ〉

)
,

there exists a linear context C such that

N〈Γ;τ〉 −→∗ C[N〈{x:σ};σ〉] −→ C[x] = T.

We show, by the induction on the structure of σ, that N〈{x:σ};σ〉 −→∗ C ′[N〈{y:o};y〉] for
some y and linear context C ′. The case for σ = o is obvious. If σ = σ′ → τ ′, then since
ξ ≥ 2, we obtain:

N〈{x:σ};σ〉 −→ λxσ
′
i N〈{x:σ,xi:σ′};τ ′〉 −→ λxσ

′
i (@(N〈{x:σ};σ〉, N〈{xi:σ′};σ′〉))

−→ λxσ
′
i (@(x,N〈{xi:σ′};σ′〉))

by “η-expansion”. By the induction hypothesis, we have N〈{xi:σ′};σ′〉 −→∗ C ′′[N〈{y:o};o〉] for

some y and 1-context C ′′. Thus, the result holds for C ′ = λxσ
′
i (@(x,C ′′)).

By using the property above, we obtain

N〈Γ;τ〉 −→∗ C[N〈{x:σ};σ〉] −→∗ C[C ′[N〈{y:o};o〉]]
−→ C[C ′[@(N〈∅;o→o〉, N〈{y:o};o〉)]] −→ C[C ′[@(N〈∅;o→o〉, y)]].

Thus, N〈∅;o→o〉 is reachable from N〈Γ;τ〉.

Lemma 4.7. Let δ, ι ≥ 2 and ξ ≥ 1 be integers. Then for any integer n ≥ 5, the nonterminal
N〈∅;o→o〉 of G∅(δ, ι, ξ) satisfies Ln

(
N〈∅;o→o〉

)
6= ∅.
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Proof. For simplicity of the presentation, here we identify trees with terms by the size-
preserving bijection π. The proof proceeds by induction on n. For n = 5, 6, 7, the following
terms

λxo.(λ∗o.x)x

λxo.(λ∗o→o.x)(λ∗o.x)

λxo.(λ∗o→o→o.x)λ∗o.λ∗o.x
belong to Ln

(
N〈∅;o→o〉

)
, respectively. For n ≥ 8, by the induction hypothesis, there exists

t ∈ Ln−3

(
N〈∅;o→o〉

)
. Thus we have λx.tx ∈ Ln

(
N〈∅;o→o〉

)
as required.

The following is the main result of this subsection.

Lemma 4.8. G∅(δ, ι, ξ) is strongly connected and aperiodic for any δ, ι, ξ ≥ 2.

Proof. Strong connectivity follows from Lemmas 4.5 and 4.6, and the definition of G∅(δ, ι, ξ)
(as stated at the beginning of this subsection). The aperiodicity follows from Lemma 4.7
and strong connectivity. (Note that for every nonterminal N , there exists a linear con-
text U ∈ L

(
G, N〈∅;o→o〉⇒N

)
. Thus, for any n ≥ |U | + 5, Ln(G, N) ⊇ {U [T ] | T ∈

Ln−|U |
(
G, N〈∅;o→o〉

)
} 6= ∅.)

4.3. Explosive Terms. In this section, we define a family (Explkn)n of λ-terms, which have
long β-reduction sequences. They play the role of (Tn)n in Corollary 2.17.

We define a “duplicating term” Dup , λxo.(λxo.λ∗o.x)xx, and Id , λxo.x. For two

terms t, t′ and integer n ≥ 1, we define the “n-fold application” operation ↑n by t ↑0 t′ , t′
and t ↑n t′ , t(t ↑n−1 t′). For an integer k ≥ 2, we define an order-k term

2k , λf
τ (k−1)

.λxτ
(k−2)

.f(fx)

where τ (i) is defined by τ (0) , o and τ (i+1) , τ (i)→τ (i).

Definition 4.9 (Explosive Term). Let m ≥ 1 and k ≥ 2 be integers. We define the explosive

term Explkm by:

Explkm , λx
o.
(
(2k ↑m 2k−1)2k−2 · · · 22 Dup(Id x)

)
.

We state key properties of Explkm below.

Lemma 4.10 (Explosive). (1) ∅ ` Explkm : o→o is derivable.

(2) ord(Explkm) = k, iar(Explkm) = k and #(V(Explkm)) = 2.

(3) |Explkm| = 8m+ 8k − 2.

(4) [Explkm]α ∈ Λ(〈∅; o→o〉, δ, ι, ξ) if δ, ι ≥ k and ξ ≥ 2.

(5) If a term t satisfies Explkm � t, then β(t) ≥ expk(m) holds.

Proof. First, observe that by the definition of 2k, we have:

|2k| = 7, ` 2k : τ (k), ord(2k) = k, iar(2k) = k.

(1) is obvious, and in the derivation of ∅ ` Explkm : o→o, 2k is a subterm that has
a type of the largest order and internal arity. Thus, (2) follows also immediately from
ord(2k) = iar(2k) = k, and V(Explkm) = {f, x}.
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(3) follows from the following calculation.

|Explkm| = 1 + |2k ↑m 2k−1|+ Σk−2
i=2 (1 + |2i|) + (1 + |Dup|) + (1 + |Id x|)

(by |t0t1 · · · tn| = |t0|+ Σn
i=1(1 + |ti|))

= 1 + ((|2k|+ 1)m+ |2k−1|) + Σk−2
i=2 (1 + |2i|) + (1 + |Dup|) + (1 + |Id x|)

= 1 + (8m+ 7) + 8(k − 3) + 9 + 5 = 8m+ 8k − 2.

(4) follows from (1) and (2).
The proof for (5) is the same as the corresponding proof in [1].

4.4. Proof of the Main Theorem. We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5. We apply Corollary 2.17 with Remark 2.18 to the grammar G∅(δ, ι, ξ),
which is unambiguous by Lemma 4.4, and aperiodic and strongly connected by Lemma 4.8.
We define Tn , π−1([Explkn]α); then by Lemma 4.10(3), we have |Tn| = 8n+ 8k − 2 = O(n).
Thus, by Corollary 2.17 (with Remark 2.18, which allows us to replace limdefn→∞ with

limn→∞), there exists p > 0 such that, for I , {N〈∅;τ〉 | τ ∈ Types(δ, ι)},

lim
n→∞

#
(
{(N,T ) ∈∐N∈I Ln

(
G∅(δ, ι, ξ), N

)
| Tdp logne � T}

)
#
(∐

N∈I Ln
(
G∅(δ, ι, ξ), N

)) = 1. (4.1)

For n ∈ N, we have

{[t]α ∈ Λn(δ, ι, ξ) | Explkdp logne � t} ⊆ {[t]α ∈ Λn(δ, ι, ξ) | β(t) ≥ expk−1(np)} (4.2)

by Lemma 4.10(5), and

Λn(δ, ι, ξ) =
⊎

τ∈Types(δ,ι)

Λn(〈∅; τ〉, δ, ι, ξ) ∼=
∐
N∈I
Ln
(
G∅(δ, ι, ξ), N

)
(4.3)

by Lemma 4.3.
Therefore, we have:

1 ≥ #
(
{[t]α ∈ Λn(δ, ι, ξ) | β(t) ≥ expk−1(np)}

)
#(Λn(δ, ι, ξ))

≥
#
(
{[t]α ∈ Λn(δ, ι, ξ) | Explkdp logne � t}

)
#(Λn(δ, ι, ξ))

(∵ by (4.2))

=
#
(
{(N,T ) ∈∐N∈I Ln

(
G∅(δ, ι, ξ), N

)
| Tdp logne � T}

)
#
(∐

N∈I Ln
(
G∅(δ, ι, ξ), N

)) (∵ by (4.3))

Since the right hand side converges to 1 by (4.1), we have

lim
n→∞

#
(
{[t]α ∈ Λn(δ, ι, ξ) | β(t) ≥ expk−1(np)}

)
#(Λn(δ, ι, ξ))

= 1

as required.
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5. Related Work

As mentioned in Section 1, there are several pieces of work on probabilistic properties of
untyped λ-terms [2, 3, 4]. David et al. [2] have shown that almost all untyped λ-terms are
strongly normalizing, whereas the result is opposite for terms expressed in SK combinators
(the latter result has later been generalized for arbitrary Turing complete combinator
bases [24]). Their former result implies that untyped λ-terms do not satisfy the infinite
monkey theorem, i.e., for any term t, the probability that a randomly chosen term of size n
contains t as a subterm tends to zero.

Bendkowski et al. [4] proved that almost all terms in de Brujin representation are not
strongly normalizing, by regarding the size of an index i is i + 1, instead of the constant
1. The discrepancies among those results suggest that this kind of probabilistic property is
quite fragile and depends on the definition of the syntax and the size of terms. Thus, the
setting of our paper, especially the assumption on the boundedness of internal arities and
the number of variables is a matter of debate, and it would be interesting to study how the
result changes for different assumptions.

We are not aware of similar studies on typed λ-terms. In fact, in their paper about
combinatorial aspects of λ-terms, Grygiel and Lescanne [3] pointed out that the combinatorial
study of typed λ-terms is difficult, due to the lack of (simple) recursive definition of typed
terms. In the present paper, we have avoided the difficulty by making the assumption on the
boundedness of internal arities and the number of variables (which is, as mentioned above,
subject to a debate though).

Choppy et al. [25] proposed a method to evaluate the average number of reduction steps
for a restricted class of term rewriting systems called regular rewriting systems. In our
context, the average number of reduction steps is not of much interest; note that, as the
worst-case number of reduction steps is k-fold exponential for order-k terms, the average is
also k-fold exponential, even if it were the case that the number of reduction steps is small
for almost all terms.

In a larger context, our work may be viewed as an instance of the studies of average-case
complexity [26, Chapter 10], which discusses “typical-case feasibility”. We are not aware of
much work on the average-case complexity of problems with hyper-exponential complexity.

As a result related to our parameterized infinite monkey theorem for trees (Theorem 2.13),
Steyaert and Flajolet [27] studied the probability that a given pattern (which is, in our
terminology, a tree context of which every leaf is a hole) occurs at a randomly chosen node
of a randomly chosen tree. Their result immediately yields a non-parameterized infinite
monkey theorem for trees (which says that the probability that a given pattern occurs in a
sufficiently large tree tends to 1), but their technique does not seem directly applicable to
obtain our parameterized version.

6. Conclusion

We have shown that almost every simply-typed λ-term of order k has a β-reduction sequence
as long as (k − 1)-fold exponential in the term size, under a certain assumption. To our
knowledge, this is the first result of this kind for typed λ-terms. We obtained the result
through the parameterized infinite monkey theorem for regular tree grammars, which may
be of independent interest.
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A lot of questions are left for future work, such as (i) whether our assumption (on the
boundedness of arities and the number of variables) is reasonable, and how the result changes
for different assumptions, (ii) whether our result is optimal (e.g., whether almost every term
has a k-fold exponentially long reduction sequence), and (iii) whether similar results hold
for Terui’s decision problems [15] and/or the higher-order model checking problem [7]. To
resolve the question (ii) above, it may be useful to conduct experiments to count the number
of reduction steps for randomly generated terms.

Acknowledgment. We would like to thank anonymous referees for useful comments. This
work was supported by JSPS KAKENHI Grant Number JP15H05706.
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Appendix A. A List of Notations

notation explanation introduced at:
#(X) the cardinality of set X, or the length of sequence X Section 2.1
s.i the i-th element of sequence s Section 2.1
Dom(f) the domain of function f Section 2.1
Im (f) the image of function f Section 2.1
τ a type (of a simply-typed λ-term); Section 2.1
ord(τ) the order of type τ Section 2.1
iar(τ) the internal arity of type τ Section 2.1

Types(δ, ι)
the set of types whose order and internal arity are
bounded by δ and ι respectively Section 2.1

t a λ-term Section 2.1
β(t) the maximal length of β-reduction sequences of t Section 2.1
δ a bound on the order of λ-terms Section 2.1
ι a bound on the arity of λ-terms Section 2.1
ξ a bound on the number of variables used in λ-terms Section 2.1

Λ(〈Γ; τ〉, δ, ι, ξ)
the set of α-equivalence classes of terms t such
that Γ ` t : τ , with the given bounds Section 2.1

Λn(〈Γ; τ〉, δ, ι, ξ)
Like Λ(〈Γ; τ〉, δ, ι, ξ), but the term size is restricted
to n Section 2.1

Λ(δ, ι, ξ)
the set of α-equivalence classes of closed well-typed
terms, with the given bounds Section 2.1

Λn(δ, ι, ξ) Like Λ(δ, ι, ξ), but the term size is restricted to n Section 2.1

T a tree Section 2.2
|T | the size of tree T Section 2.2
C a tree context Section 2.2
|C| the size of context C Section 2.2
C � C ′ C is a subcontext of C ′ Section 2.2
S a linear context Section 2.2
U an affine context Section 2.2
N a nonterminal Section 2.2
a a terminal symbol Section 2.2
G a grammar Section 2.2
κ a context type Section 2.2
L(G, N) the set of trees generated by N Section 2.2

Ln(G, N) Like L(G, N), but the tree size is restricted to n Section 2.2

L(G, κ)
the set of contexts C such that N −→∗
C[N1, . . . , Nk] where κ = N1 · · ·Nk⇒N Section 2.2

Ln(G, κ) Like L(G, κ), but the context size is restricted to n Section 2.2
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notation explanation introduced at:

L(G) the set of trees generated from some nonterminals Section 2.2

Ln(G) Like Ln(G), but the tree size is restricted to n Section 2.2

S(G)
the set of linear contexts generated from some
nonterminals Section 2.2

Sn(G) Like Sn(G), but the size is restricted to n Section 2.2

U(G)
the set of affine contexts generated from some
nonterminals Section 2.2

Un(G) Like Un(G), but the size is restricted to n Section 2.2

E a second-order context Section 3.2
shn(E) the number of second-order holes of E Section 3.2
P a sequences of affine contexts Section 3.2
#(P ) the length of the sequence P of affine contexts Section 3.2
r the largest arity of symbols in Σ Section 3.2.2

Φ•m grammar-independent decomposition function Section 3.2.2

Φm an auxiliary decomposition function Section 3.2.2

Emn
the set of second-order contexts obtained by
decomposing trees of size n Section 3.2.4

UmJ Knk
the set of affine contexts that match the hole J Knk Section 3.2.4

PmE
the set of sequences of affine contexts that match
the second-order context E Section 3.2.4

Ẽ a typed second order context Section 3.4
J Knκ a second-order hole Section 3.4

shn(Ẽ) the number of second-order holes in Ẽ Section 3.4

Ẽ�i the i-th second-order hole of Ẽ Section 3.4

Φ̃•,Gm grammar-respecting decomposition function for trees Section 3.4.2

Ẽmn (G, N) typed-version of Emn Section 3.4.3

ŨmJ Knκ
(G) typed-version of UmJ Knk

Section 3.4.3

P̃m
Ẽ

(G, N) typed-version of PmE Section 3.4.3

Σ(δ, ι, ξ) the set of terminals of the grammar for λ-terms Section 4.1
N (δ, ι, ξ) the set of nonterminals of the grammar for λ-terms Section 4.1
R(δ, ι, ξ) the set of rules of the grammar for λ-terms Section 4.1

Explkm an explosive term Section 4.3

Appendix B. Proof of Canonical Form Lemma

This section proves Lemma 3.19 in Section 3.3. We describe the required transformation
as the composite of two transformations. In the first step, we transform a grammar to
semi-canonical one:
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Definition B.1 (Semi-Canonical Grammar). A rewriting rule is in semi-canonical form if
it is in canonical form or of the form

N −→G N ′.
A grammar G = (Σ,N ,R) is semi-canonical if every rewriting rule is in semi-canonical form.

Lemma 3.19 will be shown by the next two lemmas.

Lemma B.2. Let G = (Σ,N ,R) be a regular tree grammar that is unambiguous and essen-
tially strongly-connected. Then one can (effectively) construct a grammar G′ = (Σ,N ′,R′)
with N ⊆ N ′ that satisfies the following conditions:

• G′ is semi-canonical, unambiguous and essentially strongly-connected.
• L(G, N) = L(G′, N) for every N ∈ N .
• S inf(G) ⊆ S inf(G′).
Proof. Let G = (Σ,N ,R) be a grammar that satisfies the assumption. We can assume
without loss of generality that L(G, N0) 6= ∅ for every N0 ∈ N .

Assume G has a rule of the form

N ′ −→ a(T1, . . . , Tn) (T1, . . . , Tn are (Σ ∪N )-trees)

such that Ti /∈ N for some i. (If G does not have a rule of this form, then G is already
semi-canonical.) Let N ′′ be a fresh nonterminal not in N . Consider the grammar G′′ =
(Σ,N ∪ {N ′′},R′′) where

R′′ = (R \ { N ′ −→ a(T1, . . . , Tn) })
∪ { N ′ −→ a(T1, . . . , Ti−1, N

′′, Ti+1, . . . , Tn), N ′′ −→ Ti }.
Then we can show the following claim by induction on the length of rewriting sequences.

Claim For every N ∈ N and (Σ ∪N )-tree T ,
• N −→∗G T if and only if N −→∗G′′ T , and
• N −→∗G,` T if and only if N −→∗G′′,` T .

This claim implies that G′′ is unambiguous and L(G, N) = L(G′′, N) for every N ∈ N .
We show that G′′ is essentially strongly-connected. Let N1, N2 ∈ N ∪ {N ′′} and assume

#(L(G′′, N1)) = #(L(G′′, N2)) =∞. We should show that N2 is reachable from N1. We can
assume without loss of generality that N1 6= N ′′ and N2 6= N ′′ by the following argument:

• If N1 = N ′′, then Ti must contain a nonterminal N ′1 ∈ N with #(L(G′′, N ′1)) =∞. Since
N ′′ −→G′′ Ti is the unique rule for N ′′ and #(L(G′′, N ′′)) =∞, we have L(G, N0) 6= ∅ for
each nonterminal N0 appearing in Ti. Hence N ′′ −→G′′ Ti −→∗G′′ S[N ′1] for some linear
context S over Σ by rewriting each occurrence of a nonterminal N0 in Ti (except for one
occurrence of N ′1) with an element of L(G′′, N0). So N ′1 is reachable from N ′′ in G′′. Since
the reachability relation is transitive, it suffices to show that N2 is reachable from N ′1 ∈ N ,
which satisfies #(L(G′′, N ′1)) =∞.
• If N2 = N ′′, then L(G′′, N ′) is infinite and N ′′ is reachable from N ′. (Here we use the

assumption that L(G, N0) 6= ∅ for every N0 ∈ N .) Hence it suffices to show that N ′ is
reachable from N1.

Since L(G′′, Ni) = L(G, Ni) (i = 1, 2), both L(G, N1) and L(G, N2) are infinite. Since G is
essentially strongly-connected, there exists a 1-context S such that N1 −→∗G S[N2]. Since
S[N2] is a (Σ ∪N )-tree, by the above claim, N1 −→∗G′′ S[N2] and thus N2 is reachable from
N1 in G′′.
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We show that S inf(G) ⊆ S inf(G′′). Suppose that S ∈ L(G, N⇒N ′) with #(L(G, N)) =
#(L(G, N ′)) = ∞. By definition, N ′ −→∗G S[N ]. By the above claim, N ′ −→∗G′′ S[N ].
Hence S ∈ L(G′′, N⇒N ′). Since L(G, N) = L(G′′, N) and L(G, N ′) = L(G′′, N ′), we have
#(L(G′′, N)) = #(L(G′′, N ′)) =∞.

By applying the above transformation as much as needed, we obtain a grammar that
satisfies the requirements. What remains is to show the termination of the iterated application
of the above transformation. A termination measure can be given as follows: the measure of
a rule N −→ C[N1, . . . , Nk] is defined as max(|C| − 1, 0) and the measure of a grammar is
the sum of the measures of rules. The measure is by definition a non-negative integer and
decreases by 1 by the above transformation.

Lemma B.3. Let G = (Σ,N ,R) be a regular tree grammar that is semi-canonical, unam-
biguous and essentially strongly-connected. Then one can (effectively) construct a grammar
G′ = (Σ,N ′,R′) and a family (IN )N∈N of subsets IN ⊆ N ′ that satisfy the following
conditions:

• G′ is canonical, unambiguous and essentially strongly-connected.
• L(G, N) =

⊎
N ′∈IN L(G′, N ′) for every N ∈ N .

• S inf(G) ⊆ S inf(G′).
Proof. Let G = (Σ,N ,R) be a grammar that satisfies the assumption. Let N ′ be the subset
of N defined by

N0 ∈ N ′ ⇔ (N0 −→ a(N1, . . . , NΣ(a))) ∈ R for some a,N1, . . . , NΣ(a).

The rewriting rule R′ is defined by

R′ := {N0 −→ a(N ′1, . . . , N
′
Σ(a)) | N0, N

′
1, . . . , N

′
Σ(a) ∈ N ′,

N0 −→G a(N1, . . . , NΣ(a)) −→∗G a(N ′1, . . . , N
′
Σ(a))}.

In other words, N0 −→ a(N ′1, . . . , N
′
Σ(a)) is in R′ if and only if there exists a rule N0 −→

a(N1, . . . , NΣ(a)) in R with Ni −→∗G N ′i for each i = 1, . . . ,Σ(a). Given a nonterminal
N ∈ N , let IN ⊆ N ′ be the subset given by

IN , {N ′ ∈ N ′ | N −→∗G N ′}.
We show that the grammar G′ , (Σ,N ′,R′) together with (IN )N∈N satisfies the requirement.

We can prove the following claims by induction on the length of rewriting sequences:

(1) For N ∈ N and T ∈ T (Σ ∪N ′), if N −→∗G T , then N ′ −→∗G′ T for some N ′ ∈ IN .
(2) For N ′ ∈ N ′ and T ∈ T (Σ ∪N ′), if N ′ −→∗G′ T , then N ′ −→∗G T .

We show that L(G, N) =
⋃
N ′∈IN L(G′, N ′). The above (1) shows that L(G, N) ⊆⋃

N ′∈IN L(G′, N ′). The above (2) shows that L(G′, N ′) ⊆ L(G, N ′) for every N ′ ∈ IN . By

definition of IN , we have N −→∗G N ′ and thus L(G, N ′) ⊆ L(G, N) for every N ′ ∈ IN . So⋃
N ′∈IN L(G′, N ′) ⊆ L(G, N).

We prove by contraposition that, for N1, N2 ∈ IN , if N1 6= N2, then L(G′, N1) ∩
L(G′, N2) = ∅. Suppose that T ∈ L(G′, N1) ∩ L(G′, N2). Then we have

Ni −→G′ a(N ′i,1, . . . , N
′
i,Σ(a)) −→∗G′ T (i = 1, 2)

for some N ′i,j ∈ N ′. By the definition of R′, we have

Ni −→G a(Ni,1, . . . , Ni,Σ(a)) −→∗G a(N ′i,1, . . . , N
′
i,Σ(a)) −→∗G′ T (i = 1, 2).
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Because Ni ∈ IN , we have N −→∗G Ni, for i = 1, 2. By the claim (2), we have

N −→∗G Ni −→G a(Ni,1, . . . , Ni,Σ(a)) −→∗G a(N ′i,1, . . . , N
′
i,Σ(a)) −→∗G T (i = 1, 2).

The above two rewriting sequences of G induce the following two leftmost rewriting sequences:

N −→∗G,` Ni −→G,` a(Ni,1, . . . , Ni,Σ(a)) −→∗G,` T (i = 1, 2),

which are the same by the unambiguity of G. Then the length of the sequence N −→∗G,` N1

and that of N −→∗G,` N2 are the same since just after them the root terminal a occurs, and
hence N1 = N2, as required.

Next we prove the unambiguity of G′, by contradiction: we assume that G′ is not
unambiguous, and show that G is not unambiguous, which is a contradiction. Let N ′0 ∈ N ′
and T ∈ T (Σ) be a pair of a nonterminal and a tree such that there exist two leftmost
rewriting sequences from N ′0 to T in G′. We can assume without loss of generality that
the leftmost rewriting sequences differ on the first step. Assume that the two rewriting
sequences are

N ′0 −→G′,` a(N ′1,1, . . . , N
′
1,Σ(a)) −→∗G′,` a(T1, . . . , TΣ(a)) = T

and
N ′0 −→G′,` a(N ′2,1, . . . , N

′
2,Σ(a)) −→∗G′,` a(T1, . . . , TΣ(a)) = T.

We have N ′1,j 6= N ′2,j for some j. By the definition of R′, there are rules

N ′0 −→G a(N1,1, . . . , N1,Σ(a)) and N ′0 −→G a(N2,1, . . . , N2,Σ(a))

with Ni,j −→∗G N ′i,j for every (i, j) ∈ {1, 2} × {1, . . . ,Σ(a)}. There are two cases:

• Case N1,j 6= N2,j for some j ∈ {1, . . . ,Σ(a)}: By the rewriting sequences above and the
claim (2), we have two sequences

N ′0 −→G a(Ni,1, . . . , Ni,Σ(a)) −→∗G a(N ′i,1, . . . , N
′
i,Σ(a)) −→∗G a(T1, . . . , TΣ(a))

for i = 1, 2. The corresponding leftmost rewriting sequences differ at the first step. So G
is unambiguous.
• Case N1,j = N2,j for every j ∈ {1, . . . ,Σ(a)}: Let j be an index such that N ′1,j 6= N ′2,j

and Nj , N1,j = N2,j . Then Nj −→∗G N ′1,j −→∗G′ Tj and Nj −→∗G N ′2,j −→∗G′ Tj . By the

definition of R′ and the claim (2), we have

Nj −→∗G N ′i,j −→G b(N ′′i,1, . . . , N ′′i,Σ(b)) −→∗G Tj (i = 1, 2)

with N ′1,j 6= N ′2,j . Hence G is not unambiguous.

We show that G′ is essentially strongly-connected. LetN1, N2 ∈ N ′ such that #(L(G′, N1)) =
#(L(G′, N2)) = ∞. We show that N2 is reachable from N1 in G′. By the claim (2),
L(G, N2) ⊇ L(G′, N2) is infinite. Since L(G′, N1) is infinite, we have a rule

N1 −→G′ a(N1,1, . . . , N1,Σ(a))

in R′ such that L(G′, N1,i) is infinite for some i and L(G′, N1,j) 6= ∅ for every j = 1, . . . ,Σ(a).
Again, by the claim (2), L(G, N1,i) ⊇ L(G′, N1,i) is infinite. Since G is essentially strongly-
connected, there exists a linear context S such that N1,i −→∗G S[N2]. By the claim (1), there
exists N ′1,i ∈ IN1,i such that N ′1,i −→∗G′ S[N2]. Since N ′1,i ∈ IN1,i , we have N1,i −→∗G N ′1,i,
and hence by the definition of R′, we find that

N1 −→G′ a(N1,1, . . . , N1,i−1, N
′
1,i, N1,i+1, . . . , N1,Σ(a))
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is in R′. Let us pick T1,j ∈ L(G′, N1,j) for each j 6= i; then we have:

N1 −→G′ a(N1,1, . . . , N1,i−1, N
′
1,i, N1,i+1, . . . , N1,Σ(a))

−→∗G′ a(N1,1, . . . , N1,i−1, S[N2], N1,i+1, . . . , N1,Σ(a))

−→∗G′ a(T1,1, . . . , T1,i−1, S[N2], T1,i+1, . . . , T1,Σ(a)).

Thus N2 is reachable from N1 in G′.
Lastly, we show that S inf(G) ⊆ S inf(G′). Assume that S ∈ L(G, N1⇒N2) and #(L(G, N1)) =

#(L(G, N2)) = ∞. Since L(G, N1) =
⋃
N ′1∈IN1

L(G′, N ′1), there exists N ′1 ∈ IN1 such that

#(L(G′, N ′1)) =∞. Since N2 −→∗G S[N1] and N1 −→∗G N ′1, we have N2 −→∗G S[N ′1]. By the
claim (1), there exists N ′2 ∈ IN2 such that N ′2 −→∗G′ S[N ′1]. Hence S ∈ L(G′, N ′1⇒N ′2). Since
#(L(G′, N ′1)) =∞, we have #(L(G′, N ′2)) =∞ as well.

Proof of Lemma 3.19. Let G be a regular tree grammar that is unambiguous and strongly
connected. Then G is essentially strongly-connected. So by applying Lemmas B.2 and B.3,
we obtain a grammar G′ and a family (IN )N∈N that satisfy the following conditions:

• G′ is canonical, unambiguous and essentially strongly-connected.
• L(G, N) =

⊎
N ′∈IN L(G′, N ′) for every N ∈ N .

• S inf(G) ⊆ S inf(G′).
The grammar G′ and a family (IN )N∈N satisfy the first and second requirements of
Lemma 3.19. We show that #(L(G)) =∞ implies S(G) ⊆ S inf(G′).

Suppose that #(L(G)) =∞. Since L(G) =
⋃
N∈N L(G, N) and N is finite, there exists

N0 ∈ N such that #(L(G, N0)) =∞. By strong connectivity of G, we have #(L(G, N)) =∞
for every N ∈ N . Hence N inf = N , and thus S(G) = S inf(G). We have S(G) = S inf(G) ⊆
S inf(G′) as required.

Appendix C. Proof of Lemma 3.32

We start from the formal definition of periodicity and its basic properties.

Definition C.1 (Period, Basic Period). Let X ⊆ N be a subset of natural numbers. We
say X is periodic with period c (c ∈ N\{0}) if

∃n0 ∈ N. ∀n ≥ n0. ∀k ∈ N. n ∈ X ⇔ (n+ ck) ∈ X.
If X is periodic, we call the minimum period the basic period.

Let G be a regular tree grammar and κ = (N1 . . . Nk⇒N) be a context type of G. We
say κ is periodic with period c if so is the subset of natural numbers

{n ∈ N | Ln(G, κ) 6= ∅},
and call the minimum period the basic period.

Lemma C.2. Let X ⊆ N be a subset of natural numbers and c ∈ N\{0}.
(1) Suppose that

∃n0 ∈ N. ∀n ≥ n0. n ∈ X ⇒ n+ c ∈ X.
Then X is periodic with period c.

(2) Suppose that

∃n0 ∈ N. ∃k0 ∈ N. ∀n ≥ n0. ∀k ≥ k0. n ∈ X ⇒ n+ ck ∈ X.
Then X is periodic with period c.
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(3) Suppose that c and c′ are periods of X. Then gcd(c, c′) is also a period of X, where
gcd(c, c′) is the greatest common divisor.

Proof. (1) Let n0 ∈ N be a witness of the assumption. Then for every n ≥ n0 and k ≥ 0, we
have n ∈ X ⇒ (n+ ck) ∈ X, by induction on k. Let Y ⊆ N be the set of counterexamples
of n+ c ∈ X ⇒ n ∈ X, namely,

Y , {n ∈ N | n+ c ∈ X ∧ n /∈ X}.
Then Y has at most n0 + c elements because, for every n ≥ n0 and k ≥ 1,

n ∈ Y ⇒ n+ c ∈ X ⇒ n+ ck ∈ X ⇒ n+ ck /∈ Y.
Let n′0 ≥ n0 be a natural number that is (strictly) greater than all elements of Y . Then for
every n ≥ n′0,

n ∈ X ⇔ n+ c ∈ X.
By induction on k ≥ 0, we conclude that n ∈ X ⇔ n+ kd ∈ X for every n ≥ n′0.

(2) Let n0 and k0 be witnesses of the assumption and Y ⊆ N be the set of counterexamples
of n ∈ X ⇒ n+ c ∈ X, i.e.,

Y , {n ∈ N | n ∈ X ∧ n+ c /∈ X}.
Then Y has at most n0 + ck0 elements because, for every n ≥ n0 and k ≥ k0,

n ∈ Y ⇒ n ∈ X ⇒ n+ c(k + 1) ∈ X ⇒ n+ ck /∈ Y.
Let n′0 be a natural number that is (strictly) greater than all elements of Y . Then for every
n ≥ n′0,

n ∈ X ⇒ n+ c ∈ X.
Hence by item (1), X is periodic with period c.

(3) The claim trivially holds if gcd(c, c′) = c or c′. We assume that gcd(c, c′) < c, c′. Let
d = gcd(c, c′). There exist integers a, b such that ac+ bc′ = d (by Bézout’s lemma). Since
0 < d < c, c′, exactly one of a and b is negative. Suppose that a > 0 and b < 0.

Let n0 be a constant such that

∀n ≥ n0. ∀k ∈ N. n ∈ X ⇔ (n+ ck) ∈ X
and n′0 be a constant for a similar condition for c′. Let n′′0 = max(n0, n

′
0)− bc′. Then, for

every n ≥ n′′0,

n ∈ X ⇔ n+ bc′ ∈ X (since n+ bc′ ≥ n′0 and b < 0)

⇔ n+ bc′ + ac ∈ X (since n+ bc′ ≥ n0 and a > 0)

⇔ n+ d ∈ X.
By induction on k ≥ 0, we conclude that n ∈ X ⇔ n+ kd ∈ X for every n ≥ n′′0.

We show that N⇒N ′ is periodic for every N,N ′ ∈ N inf and its basic period is indepen-
dent of the choice of N and N ′. We call the basic period of N⇒N ′, which is independent of
N and N ′, the basic period of the grammar G. Further we show that U,U ′ ∈ L(G, N⇒N ′)
implies |U | ≡ |U ′| mod c, where c is the basic period of the grammar G.

Lemma C.3. Let G = (Σ,N ,R) be a regular tree grammar. Assume that G is essentially
strongly-connected and #(L(G)) =∞.

(1) L(G, N⇒N ′) is infinite for every N,N ′ ∈ N inf .
(2) N⇒N is periodic for every N ∈ N inf .
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(3) Let N ∈ N inf and cN be the basic period of N⇒N . Then Ln(G, N⇒N) 6= ∅ implies
n ≡ 0 mod cN .

(4) The basic period cN of N⇒N is independent of N ∈ N inf . Let c = cN .
(5) For every N,N ′ ∈ N inf , if U1, U2 ∈ L(G, N⇒N ′), then |U1| ≡ |U2| mod c.
(6) For every N,N ′ ∈ N inf , N⇒N ′ has the basic period c.

Proof. (1) There exist N1, N2 ∈ N inf such that L(G, N1⇒N2) contains a context of size
greater than 0, because there exists N2 ∈ N with L(G, N2) =∞ due to #(L(G)) =∞. Let
U ∈ L(G, N1⇒N2) be a context with |U | > 0. Let N ∈ N inf . By essential strong-connectivity

there exist SN ∈ L(G, N⇒N1) and S′N ∈ L(G, N2⇒N), and then UN , S′N [U [SN ]] ∈
L(G, N⇒N) with |UN | > 0. Let UnN be the context defined by U0

N = [ ] and Un+1
N = UN [UnN ].

Then UnN ∈ L(G, N⇒N) for every n and |Un| ≥ n; hence L(G, N⇒N) is an infinite set.

Let N ′ ∈ N inf . By essential strong-connectivity there exists SN,N ′ ∈ L(G, N⇒N ′), which
implies L(G, N⇒N ′) is also infinite.

(2) Let N ∈ N inf . By (1), L(G, N⇒N) is an infinite set. In particular, there exists
UN ∈ L(G, N⇒N) with |UN | > 0. Let n ∈ N and assume that Ln(G, N⇒N) 6= ∅. Then U ∈
Ln(G, N⇒N) for some U and thus U [UN ] ∈ Ln+|UN |(G, N⇒N). Therefore Ln(G, N⇒N) 6= ∅
implies Ln+|UN |(G, N⇒N) 6= ∅. By applying Lemma C.2(1), N⇒N is periodic with period
|UN |.

(3) Let N ∈ N inf and cN be the basic period of N⇒N , and suppose that Ln(G, N⇒N) 6=
∅. If n = 0, then the claim trivially holds. Suppose that n > 0 and let U ∈ Ln(G, N⇒N).
Then by the argument of the proof of (1), N⇒N has period |U | = n. By Lemma C.2(3),
N⇒N has period gcd(cN , n), which is smaller than or equal to cN . Since cN is basic, this
implies cN = gcd(cN , n), i.e., n ≡ 0 mod cN .

(4) Let N1, N2 ∈ N inf and c1 and c2 be the basic periods of N1⇒N1 and of N2⇒N2,
respectively. We show that c1 ≡ 0 mod c2. By essential strong-connectivity, there exist
S1,2 ∈ L(G, N1⇒N2) and S2,1 ∈ L(G, N2⇒N1). Since L(G, N1⇒N1) is infinite (by (1)) and
N1⇒N1 has period c1, there exist contexts U,U ′ ∈ L(G, N1⇒N1) such that |U ′| = |U |+ c1.
Let n = |S1,2[U [S2,1]]| and n′ = |S1,2[U ′[S2,1]]|; then n′ = n+ c1. Then both Ln(G, N2⇒N2)
and Ln′(G, N2⇒N2) are non-empty. Hence n ≡ 0 mod c2 and n′ ≡ 0 mod c2 by (3).
Therefore c1 ≡ n′ − n ≡ 0 mod c2.

(5) Let N,N ′ ∈ N inf and assume that U1, U2 ∈ L(G, N⇒N ′). By essential strong-
connectivity, there exists S ∈ L(G, N ′⇒N). Then S[U1], S[U2] ∈ L(G, N⇒N). By (3),

|S|+ |U1| ≡ |S[U1]| ≡ |S[U2]| ≡ |S|+ |U2| mod c.

Hence |U1| ≡ |U2| mod c.
(6) Let N,N ′ ∈ N inf . Recall that c is the basic period of N⇒N . Since c is a period of

N⇒N and by (3), there exists k0 ≥ 0 such that, for every k ≥ k0, we have Lck(G, N⇒N) 6=
∅. Let (Uk)k≥k0 be a family such that Uk ∈ Lck(G, N⇒N). Now Ln(G, N⇒N ′) 6= ∅
implies Ln+ck(G, N⇒N ′) 6= ∅ for every k ≥ k0, since U ′ ∈ Ln(G, N⇒N ′) implies U ′[Uk] ∈
Ln+ck(G, N⇒N ′). By Lemma C.2(2), N⇒N ′ has period c.

Conversely assume that N⇒N ′ has period c′. Since L(G, N⇒N ′) is an infinite set by
(1), we have U1, U2 ∈ L(G, N⇒N ′) such that |U2| = |U1|+ c′. By (5), we have |U1| ≡ |U2|
mod c, which implies c′ ≡ 0 mod c.

We are now ready to prove Lemma 3.32.
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Proof of Lemma 3.32. Let c be the basic period of G. We first define dN,N ′ for each N,N ′ ∈
N inf . Since L(G, N⇒N ′) is infinite (Lemma C.3(1)), there exists UN,N ′ ∈ L(G, N⇒N ′). Let
dN,N ′ be the unique natural number 0 ≤ dN,N ′ < c such that |UN,N ′ | ≡ dN,N ′ mod c. This
definition of dN,N ′ does not depend on the choice of UN,N ′ , by Lemma C.3(5).

We define n0. For every N,N ′ ∈ N inf , since c is a period of L(G, N⇒N ′), there exists

nN,N
′

0 such that:

∀n ≥ nN,N ′0 . ∀k ∈ N. Ln
(
G, N⇒N ′

)
6= ∅ ⇔ Ln+ck

(
G, N⇒N ′

)
6= ∅.

Let n0 , max{nN,N ′0 | N,N ′ ∈ N inf}.
Then:

• (1) follows from Lemma C.3(5).
• (2) follows from the definition of n0, infinity of L(G, N⇒N ′) (Lemma C.3(1)), and

Lemma C.3(5) (given n ≥ n0, pick U ∈ L(G, N⇒N ′) such that |U | ≥ n; then |U | = n+ ck
for some k ≥ 0).
• (3) follows from Lemma C.3(3).
• (4) follows from UN ′,N ′′ [UN,N ′ ] ∈ L(G, N⇒N ′′) and Lemma C.3(5).
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