

Citation for published version

Diskin, Z., Gómez Llana, A. & Cabot, J. (2017). Traceability Mappings as a
Fundamental Instrument in Model Transformations. Lecture Notes in
Computer Science, 10202, 247-263.

DOI
https://doi.org/10.1007/978-3-662-54494-5_14

Document Version

This is the Accepted Manuscript version.
The version in the Universitat Oberta de Catalunya institutional repository,
O2 may differ from the final published version.

Copyright and Reuse

This manuscript version is made available under the terms
of the Creative Commons Attribution Non Commercial No Derivatives
licence (CC-BY-NC-ND)
http://creativecommons.org/licenses/by-nc-nd/3.0/es/​, which permits
others to download it and share it with others as long as they credit you,
but they can’t change it in any way or use them commercially.

Enquiries

If you believe this document infringes copyright, please contact the
Research Team at: repositori@uoc.edu

Universitat Oberta de Catalunya Research archive

https://doi.org/10.1007/978-3-662-54494-5_14
http://creativecommons.org/licenses/by-nc-nd/3.0/es/

Traceability Mappings as a Fundamental
Instrument in Model Transformations

Zinovy Diskin1, Abel Gómez2, and Jordi Cabot2,3

1 McMaster University, Canada
diskinz@mcmaster.ca

2 IN3, Universitat Oberta de Catalunya, Spain
agomezlla@uoc.edu

3 ICREA, Spain
jordi.cabot@icrea.cat

Abstract. Technological importance of traceability mappings for model
transformations is well-known, but they have often been considered as
an auxiliary element generated during the transformation execution and
providing accessory information. This paper argues that traceability map-
pings should instead be regarded as a core aspect of the transformation
definition, and a key instrument in the transformation management.
We will show how a transformation can be represented as the result of
execution of a metamodel mapping, which acts as a special encoding of
the transformation definition. Since mappings enjoy Boolean operations
(as sets of links) and sequential composition (as sets of directed links),
encoding transformations by mappings makes it possible to define these
operations for transformations as well, which can be useful for model
transformation reuse, compositional design, and chaining.

1 Introduction

Translating models from one to another metamodel (also known as model-to-
model transformation, mmt) is ubiquitous in software engineering. The techno-
logical importance of traceability for mmt is well recognized in the mmt commu-
nity. Such widely used transformation languages as ATL [11,16] and ETL [12,17]
automatically create traceability links during the transformation execution in or-
der to resolve dependencies between the rules, and perhaps for debugging and
maintenance. Moreover, a traceability mapping (i.e., a set of links) between
the metamodels can be used as an mmt definition, which may be immediately
executed [7,13,14], or used for automatic transformation code generation [4].

Here, we present a theoretical framework, in which traceability aspects of
mmt are precisely discussed: we specify execution of metatraceability mappings
as an abstract mathematical operation, show the importance of several concepts,
which are underestimated or missing from the literature, and derive some practi-
cal recommendations on mmt management, including transformation chaining.

In Sect. 2, we show that semantics of mmts without traceability mappings
is essentially incomplete: we present an example of two different transforma-
tions indistinguishable in the traceability-free setting. We then demonstrate that

traceability links between the source and the target models work in concert with
the respective links between the source and the target metamodels, which means
commutativity of the respective diagrams. Moreover, execution of a metamodel
mapping for a given source model can be specified as an algebraic operation
(called pullback in category theory), for which commutativity is central.

However, simple traceability mappings considered in Sect. 2, which relate two
metamodels with similar structures, do not cover many practically interesting
cases of structurally different metamodels. To address the problem of executing
metamodel mappings relating metamodels with different structures, several com-
plex approaches have been developed [7,19]. We propose a simpler solution, in
which we first augment the source metamodel with derived elements that make
its structure similar to the target metamodel, and then relate the two by a sim-
ple mapping. The derived elements actually encode operations/queries against
the source metamodel, which can be executed for any model instantiating it.
Hence, a complex metamodel mapping is executed in two steps: first the query
is executed, then the mapping as such is executed. The approach is discussed in
Sect. 3, and in Sect. 5 we show how it can be implemented with ATL.

Thus, even complex mmts are encoded in a unified and transparent way as
mappings relating metamodels with, perhaps, derived elements/queries involved.
An important consequence of this encoding is that we can employ well studied
algebraic operations over mappings for manipulating mmts as black-boxed ob-
jects. Specifically, being sets of links, mappings enjoy intersections and union
operations over them, which can be employed for reuse. Being sets of directed
links, mappings can be sequentially composed, and the respective transforma-
tions chained (which is considered to be a challenging task). Particularly, chain-
ing can be employed for incremental compositional design of mmts. Algebra of
mmts is considered in Sect. 4, and in Sect. 5 we show how it can be applied for
manipulating ATL transformations. Finally, we observe related work in Sect. 6,
and conclude in Sect. 7.

2 Analysing traceability mappings

We show the semantic necessity of traceability mappings in Sect. 2.1, consider
their properties and representation in Sect. 2.2, and execution in Sect. 2.3.

2.1 The semantic necessity of traceability mappings

Semantics of a model-to-model transformation T is commonly considered to be
a function [[T]] : [[M]]→ [[N]], where [[M]] and [[N]] are model spaces defined by,
resp., the source, M , and the target, N , metamodels. However, in this section we
present two different transformations generating the same model space mapping,
and then call traceability mappings to the rescue.

Figure 1(a) presents a toy transformation example. The source metamodel M
specifies two classes, Car and Boat, and the target metamodel N specifies their
possible roles as Commuting and Leisure Vehicles, connected by association same

2

Transformation T1:

c:Car --> cv: CV, lv:LV,
 cv.same = lv
b:Boat --> lv:LV

Model T1 (A)	

Metamod. M	

Car

Boat

Metamod. N	

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

Commut.
Vehicle

same
0..1

:same

lv2:LV	

cv:CV	

Traceability mapping	

lv1:CV	

Model T2 (A)	

Metamod. M	

Car

Boat

:sam
e lv2:LV	

cv:CV	

Metamod. N	

Leisure
Vehicle

1

Model A	

c:Car	

b:Boat	

Traceability mapping	

lv1:CV	

Commut.
Vehicle

same
0..1

Transformation T2:

c:Car --> lv:LV,
b:Boat --> cv:CV, lv:LV
 cv.same = lv

(a) (b)

Fig. 1: Two sample transformations.

if two roles are played by the same physical vehicle; e.g., such a transformation
may be needed for an insurance company. The transformation T1 consists of two
rules specified in Fig. 1(a) in some pseudo MT language. The first rule says that
a car produces a commuting vehicle and a leisure vehicle connected by a same-
link. The second rule says that a boat generates a leisure vehicle. An example
of executing this transformation for a model A consisting of a car and a boat
is shown in the lower half of Fig. 1(a), where T1(A) denotes the target model
produced by the transformation; ignore the mapping from T1(A) to A for the
moment. Here we write T(A) for [[T]] (A). We will often abuse such a notation
and use the same symbol for a syntactic construct and its intended semantics.

Figure 1(b) presents a different transformation T2. Now a boat gives rise to
a commuting and a leisure vehicle, whereas a car only produces a leisure vehicle
(think about people living on an island). Clearly, being executed for the same
source model A, transformation T2 produces the same target model consisting
of three objects and a same-link. More accurately, models T1(A) and T2(A) are
isomorphic rather than equal, but the same transformation T executed twice
for the same model A would also produce isomorphic rather than equal models
as mmts are normally defined up to OIDs. We will always understand equality
of models up to OID isomorphism, and thus can write T1(A) = T2(A). It is
easy to see that such an equality will hold for any source model containing
equal numbers of cars and boats. If wesuppose that the metamodel M includes
a constraint requiring the numbers of cars and boats to be equal (eg, has an
association between classes Car and Boat with multiplicity 1..1 at both ends),
then any instance X of M would necessarily consist of equal numbers of cars
and boats. Hence, T1(X) = T2(X) holds for any source instance X∈ [[M]].

Thus, the common semantics of a model transformation as a model space
mapping [[T]] : [[M]]→ [[N]] is too poor and should be enriched. Comparison of
the two transformations in Fig. 1(a,b), now with traceability mappings, shows
what should be done: we need to include traceability mappings into the semantics
of mmts, and define it as a function [[T]] : [[M]]→ [[N]]×Map([[N]],[[M]]), where
Map([[N]],[[M]]) denotes the set of all mappings from N -models (elements of [[N]])
to M -models (in [[M]]). It is convenient to split semantics into two functions:

[[T]]
•

: [[M]]→ [[N]] and [[T]]
J

: [[M]]→ Map([[N]],[[M]])

3

such that for any source model A, mapping [[T]]
J

(A) is directed from model
[[T]]
•

(A) to A (as suggested by the tringle superindex). Thus, what is missing
in the common mmt-semantics is the mapping-valued function [[T]]

J
. Including

this function into semantics has several important consequences discussed below.
Below we will use a simplified notation with semantic double-brackets omitted.

2.2 Traceability under the microscope

Model T�(A)

Car

Boat

:same
:CV

Commut.
Vehicle

Leisure
Vehicle

1

Model A

c:Car

b:Boat

Traceability map, T◀(A)

lv1:LV

same
0..1

mtr2

mtr1

mtr3

mtr12

Typing
mapping, τA

tr2

tr1

tr3

tr12

Typing
mapping,

τT�(A)
[≤]

Source
Metamodel, M

Metamodel
traceability, T

Target
Metamodel, N

lv2:LV

Fig. 2: Meta-traceability

We discuss properties of
traceability mappings: struc-
ture preservation, commut-
ing with typing, and their
span representation. As an
example, we use transforma-
tion T1 from Fig. 1(a), but
denote it by T to avoid ex-
cessive indexing.

2.2.1 Structure preser-
vation. A mapping is a col-
lection of directed links that
is compatible with mod-
els’ structure. If models are
graphs, then their graph
structure, i.e., the incidence
of nodes and edges, should
be respected. Consider, e.g.,
the lower mapping TJ(A) in
Fig. 2, which reproduces the respective traceability mapping in Fig. 1(a). The
dashed link from edge same to node c:Car in this mapping actually denotes a link
targeted at the identity loop of the node c, which relates c to itself. Such loops
can be added to every graph node, and when we draw a link from an arrow to a
node, it is just a syntactic sugar to specify a link targeted at the node’s identity
loop. With this reservation, it is seen that both traceability mappings in Fig. 1
are correct graph morphisms, which map nodes to nodes and edges to edges so
that the incidence between nodes and edges is preserved.

2.2.2 Meta-traceability and commutativity. Another important condition
to be respected is compatibility of links between model elements with relation-
ships between metamodel elements established by the transformation definition.
To explicate the latter, we need meta-traceability links between metamodels as
shown in the upper half of Fig. 2. The mapping T consists of four links mtr i

(i = 1, 12, 2, 3) “tracing” the origin of the target metamodel elements according
to the (green) transformation definition in Fig. 1(a): commuting vehicles ap-
pear from cars (rule 1) and only from cars (neither of the other rules produce
commuting vehicles), and leisure vehicles appear either from cars (rule 1) or
boats (rule 2). The dashed link to Car again denotes a formal link from edge

4

same to not-shown identity loop link from Car to Car, and encodes the clause
in rule 1 that a same-link appears when a car generates both a commuting and
leisure vehicle. Thus, the upper three meta-links in mapping T “trace” rule 1 in
transformation T, and the lower link “traces” rule 2.

Now recall that a model A is actually a pair (DA, τA) with DA the model’s
datagraph, and τA: DA →M a typing mapping. By a common abuse of notation,
we denote the datagraph by the same letter A as the entire model. In Fig. 2, two
typing mappings (two vertical block-arrows) and two traceability mappings (two
horizontal block-arrows) form a square, and this square is semi-commutative in
the sense that the following two conditions hold. First, each of the four paths
from T•(A) to A (via traceability links tri) to M (via A’s type links) can be
matched by a same-source-same-target path from T•(A) to N (via type links)
to M (via meta-traceability links mtri). Second, there is an upper path without
match, namely, the path from object lv1∈T•(A) to class LeisureVehicle to class
Boat (hence the ≤ symbol denoting this property of the square diagram). As
commutativity rather than semi-commutativity is an important ingredient of
the mapping machinery, we need to fix the commutativity violation. The next
sections shows how to do it.

2.2.3 Traceability mappings via spans. As traceability links are fundamen-
tal, we reify them as model elements, and collect these elements in model |T | in
the upper part of Fig. 3. Three nodes in this model reify links mtr1,2,3 between
nodes in the metamodels (see Fig. 2), and the arrow in |T | reifies the (dashed)
link tr12 between arrows in the metamodels (recall that the actual target of
this link is the identity loop of the targte node). In this way we build a meta-
model |T | consisting of three classes and one association. The special nature of
|T |’s elements (which are, in fact, links) is encoded by mapping each element to
its ends in metamodels M and N . These secondary links form totally-defined
single-valued mappings TM : M ← |T | and TN : |T | → N so that we replaced a
many-to-many mapping T by a pair of single-valued (many-to-one) mappings.
Working with single-valued mappings is usually much simpler technically, and
below we will see that it allows us to fix commutativity.

The triple T = (TM , |T |, TN) is called a span with the head |T |, and legs TM
and TN . We will call the first leg in the triple the source leg, and the second one
the target leg. Thus, span T in Fig. 3 encodes mapping T in Fig. 2 (and they
are thus denoted by the same letter). We will also use the same letter for the
head of the span to reduce the number of symbols in our formulas. Note that
the head of the span is a graph (because mapping T is a graph mapping), and
its legs are correct graph morphisms. This is an accurate formalization of the
structure preservation property discussed in Sect. 2.2.1.

The reification procedure applied to mapping TJ(A) (Fig. 2) provides the
span shown in the lower part of Fig. 3. We denote its head by T •M (A) rather than
by TJ(A), as in the next subsection we will show how this model (and mapping
TJ

M) can be computed from the left half of the upper span and model A, and by
the same reason, these elements are blank (and blue with a color display) rather

5

than shaded (and black)—ignore these details for a moment. We also omitted all
vertical links constituting typong mappings (shown by vertical block arrows).

mtr12Car

Boat

Commut.
Vehicle

Leisure
Vehicle

1

Model A

c:Car

b:Boat

same
0..1

mtr1

mtr3

τA [=]

Source
Metamodel,

M

Target
Metamodel,

N

mtr2

span T

| T |TM TN

:mtr12
:mtr1

:mtr3
:mtr2

:same
:CV

:LV
:LV

[=]

≅

τT�(A)

TM
◀(A)

TM
▲(A)

TM
�(A) T �(A)

Fig. 3: Meta-traceability via spans

Since in contrast to map-
ping T , mapping TJ(A) in
Fig. 2 is many-to-one, the
right leg of the span is
an isomorphism (of graphs),
which we show as a block-
rectangle rather than a
block-arrow (actually we
could identify the two mod-
els). Now it is easy to check
commutativity of the two
square diagrams, which is
recorded by markers [=] at
their centers. Commuting
makes it possible to type
elements in model |TJ(A)|
(i.e., traceability links) by
elements in model |T | (i.e.,
meta-traceability links), and
ensures that typing is a cor-
rect graph morphism. We
have thus obtained an accu-
rate formal specification of mutually consistent traceability mappings.

*

*

1..*

targetsourceElem.

sourceModel targetModel

targetElem.traceLink 1..*
source

traceModeltarget

1..

* 1..*
source

comm.Veh.

same

leisureVeh.

mtr1

mtr12

mtr2

mtr3

Car

self

Boat

:target

:target

:target

:source

:source

:source
:target :source

Fig. 4: Trace-links metamodel

Span T (the upper half
of Fig. 3) is presented
in Fig. 4 in a MOF-
like way via metamodel-
ing. In these terms, meta-
traceability links are clas-
sifiers for model traceabil-
ity links, and commutativ-
ity conditions in Fig. 3 pro-
vide consistency of trace-
ability links’ classification
with model elements’ classi-
fication.

2.3 Meta-traceability links can be executed!

A somewhat surprising observation we can make now is that the meta-traceability
mapping can actually replace the transformation definition T: by applying two
standard categorical operations to the span T and the typing mapping of model
A, we can produce model T•(A) (together with its typing) and the traceability
mapping TJ(A) in a fully mechanized way.

6

The first operation is called (in categorical jargon) pull-back (PB). Its takes
as its input two graph mappings with a common target, TM and τA (such con-
figuration is called a cospan), and outputs a span of graph mapping shown in
Fig. 3 blank and blue (to recall the mechanic nature of the operation) so that
the entire square diagram is commutative. The PB works as follows. For any pair
of elements a∈A and n∈N such that there is an element m∈M together with a
pair of links (`1, `2) targeted at it, `1: a→ m in mapping τA and `2 : m← n in
mapping TM , an object (a, n) is created together with projection links to a and
n. All such pairs (a, n) together with projection links to N make a model T •M (A)
(whose typing mapping is denoted by TN

M (A) – note the tringle pointing upward),
and projection links to A constitute its traceability mapping TJ

M (A). The entire
operation can be seen as pulling the model A together with its typing mapping
back along mapping TM , hence, the name PB. Note that commutativity of the
left square now becomes the very essence of the transformation: we build model
T •M (A) and its traceability mapping in such a way that commutativity holds.
Moreover, we make this model the maximal model that respect commutativity
by collecting in T •M (A) all pairs (a, n) that respect commutativity. For example,
if model A would have three cars and boats, model T •M (A) would have three
commuting and five leisure vehicles with three same-links.

The second operation is fairly easy: we sequentially compose mappings TN
M (A)

and TN by composing their links, and obtain a mapping T •M (A) → N that
provides graph T •M (A) with typing over N . We will denote the model whose
datagraph is T •M (A) (or its isomorphic copy up to OIDs) and typing map is
composition TN

M (A);TN by T •(A). The right square in Fig. 3 illustrates this
specification. It is now seen that PB followed by composition produce exactly
the same model as rule-based definition T1 in Fig. 1(a), and the span with head
T •M (A) is exactly the reified traceability mapping TJ

1 (A) from Fig. 1(a).

3 Transformations via mappings and queries

Pulling a source model A back along a meta-traceability mapping T as described
above covers a useful but not too wide class of transformations; more complex
transformations need a more expressive mechanism. In [5,10], it was proposed
to separate an MT into two parts: first, a complex computation over the source
model is encoded by a query against the source metamodel, and then the result
is relabeled (with, perhaps, multiplication) by the target metamodel according
to the meta-traceability mapping.

We will illustrate how the machinery works by encoding the same transfor-
mation T by a different type of meta-traceability mapping employing queries
against the source metamodel as shown in Fig. 5. The first basic idea of the
transformation—creation of commuting vehicles by cars only—is encoded by
direct linking class Commut.Vehicle to class Car as we did before. The second
idea—creation of leisure vehicles by both cars and boats—is now encoded in two
steps. First, we augment the source metamodel M with a derived class Car +
Boat computed by applying the operation (query) of taking the disjoint union
of two classes; we denote the augmented metamodel by Q(M) with Q referring

7

to the query (or a set of queries) used for augmentation. Second, we link class
LeisureVehicle to the derived class Car + Boat, and association same in meta-
model N is linked to its counterpart in metamodel Q(M), as shown in Fig. 5.

All links have a clear semantic meaning: given a link qmtr from an element
n of N to an element m on Q(M), we declare that n is to be instantiated
exactly as m is instantiated, that is, for any model A, every element instantiating
m in A or Q(A) (see below), generates an element instantiating n in T1

•(A).
Note also that the mapping is of one-to-one type: two classes responsible for
LeisureVehiclegeneration now contribute to a single query, and two respective
links (mtr2 and mtr3 in Fig. 2) are replaced by one link qmtr2 into the query.

Car

Boat

Commut.
Vehicle

Leisure
Vehicle

Augmented model, Q(A)

c:	Car

b:	Boat blv:LVclv:LV

ccv:CV

Car + Boat qmtr2

c’: Car+Boat

b’: Car+Boat

qmtr11

1
0..1

0..1

1
same

0..1qmtr12

:same

Tq
▲(Q(A))

z

Aug. typing
mapping

Q(τA)

same
same

:same

:same

Augmented source
metamodel, Q(M)

Transformation
definition, Tq

Target
metamodel, N

Model Tq�(A)
Traceability map,

Tq◀(Q(A))

Fig. 5: Meta-traceability via queries

Execution of the trans-
formation for a model A
also goes in two steps. First,
the query used in the map-
ping definition is executed
for the model. In our ex-
ample, we take the disjoint
union of Car and Boat in-
stantiations in A, i.e., the
set {c′, b′}. A reasonable im-
plementation would add a
new type Car + Boat to the
same object c rather than
creating a new object c′, but
the pair (c,Car) is still differ-
ent from pair (c,Car +Boat).
Thus, it may happen that
c′ = c and b′ = b, but this is just a special case of a general pattern pre-
sented in Fig. 5. Second, objects c, c′, b′ are retyped according to the respective
meta-traceability links qmtr1 (for c) and qmtr2 (for c′ and b′). The link cc′ is
also retyped along the link qmtr12.

Thus, a model transformation definition is divided into two parts: finding a
query (or a set of queries)Q against the source metamodelM , which captures the
computationally non-trivial part of the transformation, and then mapping the
target metamodel into the augmentation Q(M), which shows how the results
of the computation are to be retyped into the target metamodel. The second
part can capture some simple computations like multiplication of objects (which
often appears in mmt), but not more. In contrast, with a broad understand-
ing of queries as general operations, the first part is Turing complete with the
only reservation that all result of the computation must have new types (which
distinguishes queries from updates).

A formal abstraction of the example is described in Fig. 6(a). A model trans-
formation is considered to be a pair T = (QT ,mT) with QT a query against the
source metamodel M and mT : QT (M)← N a mapping from the target meta-
model N to model M augmented with derived elements specified by the query.
Formally, we have an inclusion ηT : M ↪→ QT (M). Note that construct QT is a

8

ηT
M

:qEexe

A
ηA

τA

QT(M) N

QT(τA)

QT(A)

:PB

mT●(QT(A))mT◀ (QT(A))

mT

mT▲(QT(A))

M N

A

:trExeτA

T�(A)T◀(A)

T▲(A)

T

(b)(a)
Fig. 6: Execution of meta-traceability mappings. Derived elements are blank.

query definition, which can be executed for any data conforming to schema M ,
i.e., for any model properly typed over the metamodel M . Execution is modeled
by an operation qExe, which for a given query QT and model A produces an
augmented model QT (A)4 properly typed over the augmented metamodel by
an augmented typing mapping QT (τA). To complete the transformation, the re-
sult of the query is retyped according to the mapping mT (retyping is given by
pulling back the augmented typing mapping as discussed above). In Fig. 6(b),
an abstract view of Fig. 6(a) is presented, in which the upper double arrow en-
codes the sequential composition of the two upper arrows in diagram (a), and
operation trExe of transformation execution is a composition of two operations
in diagram (a). Paper [6] presents an accurate categorical formalization of this
construction by modeling the query language as a monad and the transforma-
tion definition mapping T as a Kleisli mapping over this monad. We do not need
formal details in this paper, but we will use the term Kleisli mapping to refer to
mappings such as mT : QT (M)← N . By an abuse of notation, we will often use
the same symbol T for both transformation T and its mapping mT .

4 An Algebra for model transformations

Mappings have a dual nature. As sets of links, mappings are amenable to Boolean
operations (union, intersection, difference). As sets of directed link, mappings can
be sequentially composed in the associative way. Hence, representing a model
transformation by a mapping allows us to build an algebra of useful opera-
tions over model transformations. For example, Boolean operations allow for
reuse, and sequential composition establishes a mathematical approach to model
transformation chaining. In this section, we briefly and informally consider, first,
Boolean operations, and then sequential composition.

4.1 Boolean operations for model transformations

Consider our two transformations, T1 and T2, each consisting of two rules,
described in Fig. 1(a,b). Although rules are related, they are all different, and,
formally speaking, for model transformation understood as sets of rules, we have
T1∩T2 = ∅. Hence, specifying commonalities and differences between transfor-
mations needs going inside the rules and working on a finer granularity level,

4We should write [[QT]] (A) but we again use the same symbol for both syntactic
and semantic constructs.

9

T2

1: mtr2

2: mtr2

T2◀(A)

T1◀(A)

mtr2

T1

Car

Boat

Commut.
Vehicle

Leisure
Vehicle

Augmented model, Q(A)

c:	Car

b:	Boat
blv:LV

clv:LV
ccv:CV

Car + Boat

c’: Car+Boat

b’: Car+Boat

mtr1

1

10..1

0..1

1
same

0..1

mtr12
same
same

:same
:same

Augmented source
metamodel, Q(M)

Target
metamodel, N

T1
�(A)

mtr3
mtr23

bcv:CV
:same

:same

T1
�(A)

Fig. 7: BA for traceability mappings

which may be not easy for complex rules. In contrast, encoding transformation
definitions by mappings, i.e., sets of (meta) links, makes them well amenable to
the variability analysis.

Mappings T1,2 encoding transformations T1,2 resp. are shown in Fig. 7 (col-
ored green and resp. orange with a color display). Each mapping consists of three
links, and one link (double-lined and brown) is shared. This link constitutes the
intersection mapping, whose domain consists of the only class LeisureVehicle
(in the categorical jargon, this mapping is called the equalizer of T1 and T2).
Thus, T1∧2 = T1 ∩ T2 = {mtr2}. We can also merge T1 and T2 into mapping
T1∨2 = T1 ∪ T2 consisting of five links. It is easy to see that for our exam-
ple, execution of mappings via pullbacks is compatible with these operations so
that TJ

1∧2(A) = TJ
1(A) ∩ TJ

2(A) and TJ
1∨2(A) = TJ

1(A) ∪ TJ
2(A); particularly

T •1∧2(A) = T •1(A) ∩ T •2(A) and T •1∨2(A) = T •1 (A) ∪ T •2 (A) (note the boot-like
shapes of T •i(A) (i = 1, 2) and their intersection consisting of two objects).

The simple and appealing algebraic picture described above does not hold if
transformations are seen as sets of rules as described in Fig. 1: then, as men-
tioned, T1∩T2 = ∅, and transformation T1∪T2 would translate model A into a
model consisting of six rather than four objects (consider disjoint union of model
T1(A) and T2(A) presented in Fig. 1(a,b)), which seems not well matching the
intuition of how the merged transformation should work. Indeed, the two trans-
formations differ in how commuting vehicles are generated, but agree on leisure
vehicles. This agreement is exactly captured by shared link mtr2 in mappings
T1,2, but is not taken into account in T1∪T2.

Nevertheless, suppose we still want to merge the two transformations in a
disjoint way so that the merged transformation would produce a six element
model from model A. We can do it with the mapping representation as well
by defining a new mapping T1+2 via disjoint union T1 + T2, in which link mtr2
is repeated twice: imagine a version of Fig. 7, in which one copy of link mtr2

10

belongs to mapping T1, and the other copy belongs to T2. It is easy to check that
PB applied to mappings Q(τA) and T1+2 would result in the disjoint union of
models T•1(A) and T•2(A) with the respective disjoint union of their traceability
mappings (see Fig. 1) as required. Thus, (T1 + T2)

•
(A) = T •1 (A) + T •1 (A) and

(T1 + T2)
J

(A) = TJ
1 (A) + TJ

1 (A), and our traceability execution procedure is
compatible with disjoint union as well.

4.2 Sequential composition of model transformations

Suppose that transformation T1 is followed by a transformation T3 from meta-
model N to metamodel O consisting of the only class Vehicle (Fig. 8). This trans-
formation is defined by two rules: every object of class Commut.Vehicle generates
a Vehicle-object, and every LeisureVehicle-object generates a Vehicle-object too.
Mapping T3 encoding this transformation would consist of the only link map-
ping class Vehicle to the disjoint union of Commut.Vehicle and LeisureVehicle . To
chain the transformations, we need to compose mappings T3 and T1 but they are
not composable: mapping T1 is not defined for the target class of mapping T3.

The problem can be fixed if we apply the query Q3 to the augmented meta-
model Q1(M) by replacing arguments of Q3 (classes Commut.Vehicle and Leisure-
Vehicle) by their images in Q1(M) along mapping T1 as shown in the figure. In
this way, mapping T1 can be homomorphically extended to mapping Q3(T1),
and now mappings T3 and Q3(T1) can be composed. The lower part of Fig. 8 is
a “link-full” demonstration that the consecutive composition of two executions
is equal to the execution of the composed mapping:

T •3 (T •1 (A)) = (T3 ◦ T1)•(A) and T3
J(T •1 (A)) = (T3 ◦ T1)

J
(A),

mtr

Car

Boat

Commut.
Vehicle

Leisure
Vehicle

c:	Car

b:	Boat blv:LVclv:LV

ccv:CV

Car + Boat
mtr2

c’: Car+Boat

b’: Car+Boat

mtr1

1
1

0..1

0..1

1
same

0..1mtr12

:sam
e

same

same

CommVeh.+
LeisureVeh.

1
1

0..1

0..1

Q3(N)

Q1(M)

Q3(Q1(M)) Car + (Car+Boat)

Vehicle

Metamod.
O

T1

T3

Q3(T1)

qd2

same’

qd1

ccv’: CV+ LV

clv’: CV+ LV

blv’: CV+ LV

v1: Vehicle

v2: Vehicle

v3: Vehicle

T3
•(T1

•(A))

c* c’* b’*

Q1(A) Q3(Q1(A)) T 1•(A) Q3(T1
•(A))

same’

Augmented NTwice-augmented M

Fig. 8: Model chaining via mapping composition

11

where ◦ denotes sequential mapping composition. In fact, the case is nothing
but an instance of the well known construction of query substitution and view
compositionality: a view of a view is a view of the very first source.

5 From rule-based mmt to Kleisli mappings (and back)

General landscape. Rule-based programs such as in ATL or ETL are good
for effective execution of mmts, but their analysis and manipulation may be
difficult. For example, it is not easy to say whether the result of transformation
always satisfies the constraints of the target metamodel, and chaining rule-based
transformations is difficult too. The Kleisli mapping encoding of mmts can help
by providing a more abstract view that may be better amenable for some analyses
and operations. For instance, it was shown in [9] the Kleisli mapping encoding
converts the target metamodel conformance into to a well-known logical problem
of whether a formula is entailed by a theory, for which a standard theorem prover
or a model checker could be applied. To perform such logical analyses, we need a
translating procedure tl2km: TL→ KMQL, where TL denotes the set of programs
written in the rule-based language at hand, and KMQL denotes the set of Kleisli
mappings over some query language QL. Below we will omit the subindex QL.

To employ the KM approach for operations over rule-based transformations,
we also need an inverse translation km2tl : TL← KM. Suppose that T1: M → N
is a rule-based transformation that maps instances of metamodel M to instances
of metamodel N , and T3: N → O is another transformation that we want to
chain with T1. To do this, we translate both transformations to the respective
Kleisli mappings T1, T3, then perform their sequential composition and obtain
mapping TT = T3 ◦ T1 as it was explained in Sect. 4, and then translate the
result back to TL obtaining a rule-based transformation T = km2tl(TT), which
is semantically equivalent to sequential composition of T1 and T3. In a similar
way, we can perform Boolean operations over rule-based parallel transformations
Ti: M → N , i = 1, 2 (see Sect. 4) and employ them, e.g., for reuse.

Example. Suppose we want to chain two ATL transformations: T1: M → N
and T3: N → O specified in Listings 1.1 and 1.2 resp. The first one is an ATL
encoding of transformation T1 in Fig. 1, and the second transformation, in fact,
merges two classes in N into class Vehicle in O. To chain these transformations,
we first encode them as Kleisli mappings as shown in Fig. 8. Then we compose

Listing 1.1: T1 expressed in ATL

1 module T1 ;
2 create OUT : N from IN : M ;
3 rule car2vehicle {
4 from c : M ! Car
5 to cv : N ! CommutVehicle
6 (same <− lv) ,
7 lv : N ! LeisureVehicle
8 }
9 rule boat2vehicle {

10 from b : M ! Boat
11 to lv : N ! LeisureVehicle
12 }

Listing 1.2: T3 expressed in ATL

1 module T3 ;
2 create OUT : O from IN : N ;
3 rule commutVehicle2vehicle {
4 from cv : N ! CommutVehicle
5 to v : O ! Vehicle
6 }
7 rule leisureVehicle2vehicle {
8 from lv : N ! LeisureVehicle
9 to v : O ! Vehicle

10 }

12

Listing 1.3: Query QQ in ATL

1 module QQ ;
2 create OUT : QQM from IN : M ;
3 rule car2carcarboat {
4 from c : M ! Car
5 to qqc : QQM ! Car
6 (same <− qqccb1) ,
7 (same <− qqccb2) ,
8 qqccb1 : QQM ! CarCarBoat
9 qqccb2 : QQM ! CarCarBoat

10 }
11 rule boat2carcarboat {
12 from b : M ! Boat

13 to qqb : QQM ! Boat
14 (same <− qqccb) ,
15 qqccb : QQM ! CarCarBoat
16 }

Listing 1.4: Mapping mTT in ATL

1 module mTT ;
2 create OUT : O from IN : QQM ;
3 rule carcarboat2vehicle {
4 from ccb : QQM ! CarCarBoat
5 to v : O ! Vehicle
6 }

them using query substitution as explained in Sect. 4.2, and let the resulting
mapping be mTT : QQ(M)← O, where QQ(M) = Q3(Q1(M)) is the composed
query against metamodel M , which augments it with derived class Car + Car +
Boat (see Fig. 8). Now we need to translate Kleisli mapping TT = (QQ,mTT)
into an ATL transformation.

We do the inverse translation in two separate steps. First, we translate query
QQ into an ATL module QQ as shown in Listing 1.3. Then we translate the
mapping mTT : QQ(M)← O into an ATL module mTT as shown in Listing 1.4.
The structure of these modules makes their chaining quite straightforward (in
contrast to chaining the initial two transformation), and the result is shown in
Listing 1.5. Of course, in our trivial example, chaining the initial modules is
also easy, but even in moderately more complex cases, chaining ATL modules
is difficult, whereas with the Kleisli mapping approach, all the complexity is
managed via query substitution, while the final chaining of the query module QQ

and the mapping module mTT remains simple (see Fig. 8).

Automatic translations TL ↔ KM and ATL. Finding general algorithms
for automatization of both translations is a very non-trivial task because of the
conceptual and technical differences between the two views of mmts. Particu-
larly, the TL view is elementwise, ie, based on model elements, while the KM—
view is setwise as queries are typically formulated as operations over sets (cf.
SQL). Bridging the gap is a challenge, and we have began to work in this di-
rection for the case of ATL as a rule-based language. Below we argue why, we
think, ATL should be sufficiently well-amenable for the TL↔ KM translations.

In rule-based transformation languages, rules applied to different parts of the
model may interact in complex ways. However, in ATL, inter-rule communication
is specially constrained by specific properties of the language (cf. [3]), which
make it suitable to express declarative metamodel mappings. Such properties

Listing 1.5: TT as an ATL transformation

1 module TT ;
2 create OUT : O from IN : M ;
3 rule boat2vehicle {
4 from b : M ! Boat
5 to v : N ! Vehicle
6 }

7 rule car2vehicle {
8 from c : M ! Car
9 to v1 : O ! Vehicle

10 v2 : O ! Vehicle
11 }

13

are: 1 forbidden target navigation, 2 locality, 3 non-recursive rule application,
and 4 single assignment on target properties.

Owing these properties, a direct correspondence between a metamodel map-
ping and the ATL constructs can be defined as follows. A meta-traceability
mapping can be completely described using a module in which every inde-
pendent matched rule represents a meta-traceability link between two entities
(e.g. classes) of the source and the target metamodels 1 . This is possible due
to the fact that a matched rule is the only responsible of the computation of
the elements it creates 2 , and model elements that are produced by ATL rules
are not subject to further matches 3 . In such a matched rule, the source of the
link is represented using the to block, and the target of the link is represented
using the from block. On the other hand, in the case of meta-traceability links
between two properties of the source and the target metamodel, the source of
the link is represented by the property being initialised, and the target of the
link is represented by the property on the source metamodel. This assignment is
possible because ATL allows assigning the default target model element of an-
other rule. In this case, meta-traceability links between two properties can only
be defined in the rule that maps the owner of the property, since that rule is the
only responsible of the initialisation of the attributes of the owner 2 , and the
assignment of a single-valued property in a target model element happens only
once in the transformation execution 4 .

6 Related work

Traceability understood broadly is an enormous area [1,15], but in the present
paper we consider its special sub-area connected with mmt, and especially using
traceability mappings as transformation definitions.

Atlas Model Weaver was proposed in [4] as a means to facilitate transfor-
mation design. Weaving models (WMs) represent different kinds of relationships
between model elements, and are comparable to the metamodel mappings consid-
ered in our paper. WMs are executed with higher-order transformations, which
build an ATL transformation from a WM. However, WMs aim to manage mmt’s
complexity in a single step. Hence, as WMs cannot cope with all the semantics
provided by general purpose transformation languages, they may produce in-
complete ATL transformations that must be manually reviewed.

To provide a more structured framework to define executable mappings be-
tween metamodels, Wimmer et al. [19] propose a set of kernel operators, from
which composite mapping operators are built. The building process is performed
by connecting input and output ports. Executability of the composite complex
mappings is achieved by extending the framework proposed in [4].

Since meta-traceability links provide limited semantics compared to generic
mmt, and building rich mappings may imply complex meta-traceability links, a
generic transformation algorithm is proposed in [7] to execute mapping models.
This proposal uses simple mapping models to execute mmt putting the hard
work in the execution of the algorithm. Any ambiguity caused by the semantic
gap between mapping models and mmt is solved by using a “smart” algorithm

14

that analyses the target metamodel. Since the philosophy of this proposal is to
provide a result as good as possible, it does not guarantee that ambiguities are
always correctly resolved (and may even require users’ interaction).

Paper [18] provides an in-depth discussion of traceability in the context of
QVT-rules execution, and hence executability of meta-traceability links. The
machinery employed is described informally, but seems close to our use of pull-
back. The overall picture is broader than ours and includes mapping refinement,
dynamic dispatch, and concurrency. A formalization of these constructs in terms
of our framework would be a useful application; we leave it for future work.

In papers [2,8,9], the authors translate the source and the target metamodels
to Alloy and specify the transformation rules as relations. In terms of our paper,
both queries and mappings are encoded as logical theories, whose execution is
provided by Alloy instance finder. Separating queries and mappings is discussed
in [10], but the expressiveness of pullback seems underestimated; particularly,
the many-to-many traceability mappings are not considered. A precise formal-
ization of traceability mappings with queries in categorical terms as Kleisli map-
pings is provided in [6], sequential composition then follows from Kleisli mapping
composition. However, the general context for paper [6] is general inter-model
relationships (which corresponds to a broad view of traceability as correspon-
dence emphasized in [1]), while in the present paper we consider traceability in
the mmt context and are focused on mapping execution. In neither of the works
mentioned above, operations over transformations are considered, and we are
not aware of their explicit introduction and discussion in the literature.

7 Conclusion

Technological importance of traceability mappings for model transformations is
well-known, but they have often been considered as an auxiliary element gener-
ated during the transformation execution and providing accessory information.
This paper argues that traceability mappings should instead be regarded as a
core aspect of the transformation definition, and a key instrument in the trans-
formation management. We have shown that mmt semantics is essentially in-
complete without traceability links between models, which should be typed by
the respective metalinks between metamodels. Metalinks taken together consti-
tute a traceability mapping between metamodels, which can be executed and
thus appears as a transformation definition. We considered two cases of such
definitions: simple mappings whose execution can be specified by an operation
called pullback, and complex (Kleisli) mappings involving queries against the
source metamodel, whose execution consists of the query execution followed by
pullback. An important consequence of defining transformations via mappings is
that algebraic operations over mappings can be translated into operations over
transformations specified in conventional transformation languages. We argue
that ATL should be well amenable to such translation, and presented a simple
example illustrating these ideas. Of course, a real application of our algebraic
framework requires an automatic translation from ATL to Kleisli mappings and
back. This challenging task is an important future work.

15

References

1. N. Aizenbud-Reshef, B. T. Nolan, J. Rubin, and Y. Shaham-Gafni. Model trace-
ability. IBM Systems Journal, 45(3):515–526, 2006.

2. K. Anastasakis, B. Bordbar, and J. M. Küster. Analysis of model transformations
via alloy. In Proceedings of the 4th MoDeVVa workshop Model-Driven Engineering,
Verification and Validation, pages 47–56, 2007.

3. A. Benelallam, A. Gómez, M. Tisi, and J. Cabot. Distributed model-to-model
transformation with atl on mapreduce. In Proceedings of the 2015 ACM SIGPLAN
International Conference on Software Language Engineering, SLE 2015, pages 37–
48, New York, NY, USA, 2015. ACM.

4. M. Didonet Del Fabro and P. Valduriez. Towards the efficient development of model
transformations using model weaving and matching transformations. Software and
System Modeling, 8(3):305–324, 2009.

5. Z. Diskin. Model synchronization: Mappings, tiles, and categories. In J. M. Fer-
nandes, R. Lämmel, J. Visser, and J. Saraiva, editors, GTTSE, volume 6491 of
LNCS, pages 92–165. Springer, 2009.

6. Z. Diskin, T. Maibaum, and K. Czarnecki. Intermodeling, queries, and kleisli
categories. In J. de Lara and A. Zisman, editors, FASE, volume 7212 of LNCS,
pages 163–177. Springer, 2012.

7. M. Freund and A. Braune. A generic transformation algorithm to simplify the
development of mapping models. In Proceedings of the ACM/IEEE 19th Interna-
tional Conference on Model Driven Engineering Languages and Systems, MODELS
’16, pages 284–294, New York, NY, USA, 2016. ACM.

8. L. Gammaitoni and P. Kelsen. F-alloy: An alloy based model transformation lan-
guage. In Theory and Practice of Model Transformations, pages 166–180. Springer,
2015.

9. H. Gholizadeh, Z. Diskin, S. Kokaly, and T. Maibaum. Analysis of source-to-
target model transformations in quest. In J. Dingel, S. Kokaly, L. Lucio, R. Salay,
and H. Vangheluwe, editors, Proceedings of the 4th Workshop on the Analysis of
Model Transformations co-located with the 18th International Conference on Model
Driven Engineering Languages and Systems (MODELS 2015), Ottawa, Canada,
September 28, 2015., volume 1500 of CEUR Workshop Proceedings, pages 46–55.
CEUR-WS.org, 2015.

10. H. Gholizadeh, Z. Diskin, and T. Maibaum. A query structured approach for
model transformation. In J. Dingel, J. de Lara, L. Lucio, and H. Vangheluwe, edi-
tors, Proceedings of the Workshop on Analysis of Model Transformations co-located
with ACM/IEEE 17th International Conference on Model Driven Engineering Lan-
guages & Systems (MoDELS 2014), Valencia, Spain, September 29, 2014., volume
1277 of CEUR Workshop Proceedings, pages 54–63. CEUR-WS.org, 2014.

11. F. Jouault, F. Allilaire, J. Bézivin, and I. Kurtev. ATL: A model transformation
tool. Sci. Comput. Program., 72(1-2):31–39, 2008.

12. D. S. Kolovos, R. F. Paige, and F. Polack. The epsilon transformation language. In
A. Vallecillo, J. Gray, and A. Pierantonio, editors, Theory and Practice of Model
Transformations, First International Conference, ICMT 2008, Zürich, Switzer-
land, July 1-2, 2008, Proceedings, volume 5063 of Lecture Notes in Computer Sci-
ence, pages 46–60. Springer, 2008.

13. D. Lopes, S. Hammoudi, J. Bézivin, and F. Jouault. Mapping Specification in
MDA: From Theory to Practice, pages 253–264. Springer London, London, 2006.

16

14. F. Marschall and P. Braun. Model transformations for the MDA with BOTL.
In Proceedings of the Workshop on Model Driven Architecture: Foundations and
Applications, pages 25–36, 2003.

15. R. F. Paige, N. Drivalos, D. S. Kolovos, K. J. Fernandes, C. Power, G. K. Olsen,
and S. Zschaler. Rigorous identification and encoding of trace-links in model-driven
engineering. Software and System Modeling, 10(4):469–487, 2011.

16. The Eclipse Foundation. ATL, Oct., 2016. url: http://www.eclipse.org/atl/.
17. The Eclipse Foundation. Epsilon, Oct., 2016. url: http://www.eclipse.org/

epsilon/.
18. E. Willink and N. Matragkas. QVT Traceability: What does it really mean? In

Analysis of model transformations, AMT’15, 4th Workshop Models’15, 2015.
19. M. Wimmer, G. Kappel, A. Kusel, W. Retschitzegger, J. Schoenboeck, and

W. Schwinger. Surviving the heterogeneity jungle with composite mapping op-
erators. In Proceedings of the Third International Conference on Theory and Prac-
tice of Model Transformations, ICMT’10, pages 260–275, Berlin, Heidelberg, 2010.
Springer-Verlag.

17

	Caratula_Article_Postprint_CC_BY-NC-ND_en(2)
	Diskin, Z., Gómez Llana, A. & Cabot, J. (2017). Traceability Mappings as a Fundamental Instrument in Model Transformations. Lecture Notes in Computer Science, 10202

