arXiv:1701.05738v1 [cs.LO] 20 Jan 2017

Index appearance record for transforming
Rabin automata into parity automata

Jan Kfetinsky, Tobias Meggendorfer, Clara Waldmann, and
Maximilian Weininger

Technical University of Munich

Abstract. Transforming deterministic w-automata into deterministic par-
ity automata is traditionally done using variants of appearance records.

We present a more efficient variant of this approach, tailored to Rabin

automata, and several optimizations applicable to all appearance records.

We compare the methods experimentally and find out that our method

produces smaller automata than previous approaches. Moreover, the ex-

periments demonstrate the potential of our method for LTL synthesis,

using LTL-to-Rabin translators. It leads to significantly smaller parity

automata when compared to state-of-the-art approaches on complex for-

mulae.

1 Introduction

Constructing correct-by-design systems from specifications given in linear tem-
poral logic (LTL) [Pnu77] is a classical problem [PR89], called LTL synthesis.
The automata-theoretic solution to this problem is to translate the LTL for-
mula to a deterministic automaton and solve the corresponding game on the
automaton. Although different kinds of automata can be used, a reasonable
choice would be parity automata (DPA) due to the practical efficiency of par-
ity game solvers [FL09,ML16] and the fact they allow for optimal memoryless
strategies. The bottleneck is thus to create a reasonably small DPA. The classi-
cal way to transform LTL formulae into DPA is to first create a non-deterministic
Biichi automaton (NBA) and then determinize it, as implemented in 1t12dstar
[KBOG6]. Since determinization procedures [Pit06,Sch09] based on Safra’s construc-
tion [Saf88] are practically inefficient, many alternative approaches to LTL syn-
thesis arose, trying to avoid determinization and/or focusing on fragments of
LTL, e.g. [KV05,PPS06,AL04]. However, new results on translating LTL directly
and efficiently into deterministic automata [KE12,EK14] open new possibilities
for the automata-theoretic approach. Indeed, tools such as Rabinizer [KK14]
or LTL3DRA [BBKS13] can produce practically small deterministic Rabin au-
tomata (DRA). Consequently, the task is to efficiently transform DRA into DPA,
which is the aim of this paper.

Transformations of deterministic automata into DPA are mostly based on
appearance records [GH82]. For instance, for deterministic Muller automata, we
want to track which states appear infinitely often and which do not. In order to
do that, the state appearance record keeps a permutation of the states, ordered
according to their most recent visits, see e.g. [Sch01]. In contrast, for deterministic

http://arxiv.org/abs/1701.05738v1

Streett automata (DSA) we only want to track which sets of states are visited
infinitely often and which not. Consequently, indez appearance record (IAR) keeps
a permutation of these sets of interest instead, which are typically very few. Such
a transformation has been given first in [Saf92] from DSA to DRA only (not
DPA, which is a subclass of DRA). Fortunately, this construction can be further
modified into a transformation of DSA to DPA, as shown in [Lod99b].

Since 1) DRA and DSA are syntactically the same, recognizing the comple-
ment languages of each other, and 2) DPA can be complemented without any
cost, one can apply the TAR of [L6d99b] to DRA, too. However, we design an-
other TAR, which is more natural from the DRA point of view, as opposed to the
DSA perspective taken in [Lod99b]. This is in spirit more similar to a sketch of
a construction suggested in [FEK11]. Surprisingly, we have found that the DRA
perspective yields an algorithm producing considerably smaller automata than
the DSA perspective.

Our contribution in this paper is as follows:

— We provide an TAR construction transforming DRA to DPA.

— We present optimizations applicable to all appearance records.

— We evaluate all the unoptimized and optimized versions of our TAR and the
TAR of [L6d99b] experimentally, in comparison to the procedure implemented

in GOAL [TTH13).

— We compare our approach LTL Rabinizer, R A DPA to the state-
of-the-art translation of LTL to DPA by Spot 2.1 [DLLF*16], which mixes
the construction of [Red12] with some optimizations of 1tl2dstar [KBO06]
and of their own. The experiments show that for more complex formulae our
method produces smaller automata.

optimized IAR

2 Preliminaries on w-automata

We recall basic definitions of w-automata and establish some notation.

2.1 Alphabets and words

An alphabet is any finite set 2. The elements of X' are called letters. A word is
a (possibly infinite) sequence of letters. The set of all infinite words is denoted
by X¢. A set of words £ C X¥ is called (infinite) language. The i-th letter of a
word w € X is denoted by w;, i.e. w = wowy

2.2 Transition systems

A deterministic transition system (DTS) T is given by a tuple (Q, X, §, qo) where
Q is a set of states, X is an alphabet, § is a transition function § : Q x X — Q
which may be partial (due to technical reasons) and gg € Q is the initial state.
The transition function induces the set of transitions A = {{g,a,¢') | ¢ € Q,a €
Y.q¢ = d(p,a)}. For a transition ¢ = {(q,a,q') € A we say that t starts at g,
moves under a and ends in q'. A sequence of transitions p is a run of a DTS T

on a word w € X% if py starts at qg, p; moves under w; for each ¢ > 0 and p; 1
starts at the same state as p; ends for each ¢ > 0. We write T (w) to denote the
unique run of 7 on w, if it exists. A transition ¢ occurs in p if there is some 7 with
pi = t. By Inf(p) we denote the set of all transitions occurring infinitely often
in p. Additionally, we extend Inf to words by defining Inf7(w) = Inf(7 (w)) if T
has a run on w. If T is clear from the context, we write Inf(w) for Inf7(w).

2.3 Acceptance conditions and w-automata

An acceptance condition for T is a positive Boolean formula over the formal
variables VA = {Inf(T),Fin(T) | T C A}. Acceptance conditions are interpreted
over runs as follows. Given a run p of 7 and such an acceptance condition «,
we consider the truth assignment that sets the variable Inf(T") to true iff p visits
(some transition of) T infinitely often, i.e. Inf(p) N T # 0. Dually, Fin(T) is set
to true iff p visits every transition in T finitely often, i.e. Inf(p) N T = 0. A run
p satisfies « if this truth-assignment evaluates a to true.

A deterministic w-automaton over X is a tuple A = (Q, X, 4, qo, &), where
(Q,X,6,q0) is a DTS and « is an acceptance condition for it. An automaton A
accepts a word w € X if the run of the automaton on w satisfies . The language
of A, denoted by L(.A), is the set of words accepted by .A. An acceptance condition
ais a

Rabin condition {(F;,)}, if « = \/*_, (Fin(F;) A Inf(I;)). Bach (Fy, I;) is
called a Rabin pair, where the F; and I; are called the prohibited set and the
required set respectively.)

generalized Rabin condition {(F;,{I] }521)}521 if the acceptance condition is
of the form o = /", (Fin(F;) /\/\?1':1 Inf(IF)). This generalizes the Rabin con-
dition, where each k; = 1. Furthermore, every generalized Rabin automaton
can be de-generalized into an equivalent Rabin automaton, which however
may incur an exponential blow-up [KE12].

Streett condition {(Fz',fi)}le ifa= /\f:1 (Inf(F;) v Fin(1;)). Note that the
Streett condition is exactly the negation of the Rabin condition and thus an
automaton with a Rabin condition can be interpreted as a Streett automaton
recognizing exactly the complement language.

— Rabin chain condition {(F;, Ii)}le if it is a Rabin condition and Fy C I; C
-+« C Fy C I;. A Rabin chain condition is equivalent to a parity condition,
specified by a priority assignment A : A — N. Such a parity condition is
satisfied by a run p iff the maximum priority of all infinitely often visited
transitions max{A(q) | ¢ € Inf(p)} is even.

A deterministic Rabin, generalized Rabin, Street or parity automaton is a deter-
ministic w-automaton with an acceptance condition of the corresponding kind.
In the rest of the paper we use the corresponding abbreviations DRA, DGRA,
DSA and DPA.

Furthermore, given a DRA with an acceptance set {(F}, Ii)}le and a word
w e XY, we write Fing = {F; | F; NInf(w) # 0} and Zing = {I; | I; N Inf(w) # 0}
to denote the set of all infinitely often visited prohibited and required sets, re-
spectively.

3 Index appearance record

In order to translate (state-based acceptance) Muller automata to parity au-
tomata, a construction called latest appearance record has been devised!. In
essence, the constructed state space consists of permutations of all states in the
original automaton. In each transition, the state which has just been visited is
moved to the front of the permutation. From this, one can deduce the set of all
infinitely often visited states by investigating which states change their position
in the permutation infinitely often along the run of the word. Such a constraint
can be encoded as parity condition.

However, this approach comes with a very fast growing state space, as the
amount of permutations grows exponentially. Moreover, applying this idea to
transition based acceptance leads to even faster growth, as there usually are a
lot more transitions than states. In contrast to Muller automata, the exact set of
infinitely often visited transitions is not needed to decide acceptance of a word by
a Rabin automaton. It is sufficient to know which of the prohibited and required
sets are visited infinitely often. Hence, index appearance record uses the indices
of the Rabin pairs instead of particular states in the permutation construction.
This provides enough information to decide acceptance.

We introduce some formalities regarding permutations: For a given n € N, we
use II" to denote the set of all permutations of N = {1,...,n}, i.e. the set of all
bijective functions 7w : N — N. We identify 7 with its canonical representation
as a vector (m(1),...,m(n)). In the following, we will often say “the position of
F; in 77 or similar to refer to the position of i in a particular 7, i.e. 7=1(i). With
this, we define our variant of the index appearance record construction. Note
that in contrast to previous constructions, ours is transition based, which also
has a positive effect on the size of the produced automata, as discussed in our
experimental results.

Definition 1 (Transition-based index appearance record for Rabin au-
tomata). Let R = (Q, X, 0, qo, {(FZ-,Ii)}f:l) be a Rabin automaton. Then the

index appearance record automaton IAR(R) = (Q, X,8, o,) is defined as the
parity automaton with

- Q=Q x IT*,

G = (g0, (1.,).

— 0((q,m),a) = (6(g,a), ") where 7' is the permutation obtained from m by
moving all indices of prohibited sets visited by the transitiont = (g, a, (g, a))
to the front. Formally, let Move = {i | t € F(;y} be the set of positions of
currently visited prohibited sets. If Move =), define 7' = m, otherwise let
n = |Move| and Move = {i1,...,i,}. With this

w(j —n+|{i € Move |i < j}|) otherwise.

! Originally, it appeared in an unpublished report of McNaughton under the name
“order vector with hit”

Fig.1: An example DRA and its resulting IAR DPA. For the Rabin automaton,
a number in a white box next to a transition indicates that this transition is a
required one of that Rabin pair. A black shape dually indicates membership in
the corresponding prohibited set. For example, with ¢ = (p,a,p) we have t € Fy
and t € I>. In the IAR construction, we shorten the notation for permutations
to save space, so p, 12 corresponds to (p,(1,2)). The priority of a transition is
written next to the transitions letter.

— To define the priority assignment, we first introduce some auziliary nota-
tion. For a transition t = {(q,7),a, (¢, 7)) and its corresponding transition
(q,a,q") in the original automaton, let

maxInd(f) = max({ﬂ'_l(i) |te F;Ul}u{0})

be the mazimal position of acceptance pair in m visited by t (or 0 if none is
visited). Using this, define the priority assignment as follows:

1 if maxInd(f) =0,
)\(t.) =c2- maxInd(f) th € Iﬁ(maxlnd(f)) \Fﬂ'(maxlnd(f))
2 -maxInd(f) + 1 otherwise, i.c. if t € Fr (maxind (i) -

When a transition visits multiple prohibited sets, they can be moved to the front
of the appearance record in arbitrary order. As an optimization we choose existing
states as successors whenever possible.

Before formally proving correctness, i.e. that IAR(R) recognizes the same
language as R, we provide a small example in Figure 1 and explain the general
intuition behind the construction. For a given run, all prohibited sets which are
visited infinitely often will eventually be “in front” of all those only seen finitely
often: After some finite number of steps, none of the finitely often visited ones
will be seen any more. Taking another sufficiently large amount of steps, every
infinitely often visited set has been seen again and all their indices have been
moved to the front.

Lemma 1. Let w € X% be a word on which IAR(R) has a run p. Then, the
positions of all finitely often wvisited prohibited sets stabilize after a finite num-
ber of steps, i.e. their positions are identical in all infinitely often visited states.
Moreover, for any i,j with F; € Fine, F; ¢ Fing we have that the position of F;
is smaller than the position of F; in every infinitely often visited state.

Proof. The position of any F; only changes in two different ways:

— Either F; itself has been visited and thus is moved to the front,
— or some Fy with a position greater than the one of F; has been visited and
is moved to the front, increasing the position of F;.

Let p be the run of R on w. (We prove the existence of such a run in Lemma 3.)
Assume that F; is visited finitely often in some run p, i.e. there is a step in the run
from which on Fj is never visited again. As the amount of positions is bounded,
the second case may only occur finitely often after this step and the position of
F; eventually remains constant. As F; was chosen arbitrarily, we conclude that
all finitely often visited F; are eventually moved to the right and remain on their
position. Trivially, all infinitely often visited F; move to the left, proving the
claim. O

As an immediate consequence we see that if some transition (g,a,q’) € F; is
visited infinitely often, then every F; with a smaller position than F; in ¢ is also
visited infinitely often:

Corollary 1. Lett € Infiar(r)(w) be an infinitely often visited transition with
its corresponding transition t € Fr;) for some i. Then Vj <. Fr ;) € Fint.

Looking back at the definition of the priority function, the central idea of cor-
rectness can be outlined as follows. For every I; which is visited infinitely often
we can distinguish two cases:

— F; is visited finitely often. Then the position of the pair is greater than the one
of every F; € Fint. Hence the priority of every transition t with corresponding
transition ¢ € I; is both even and bigger than every odd priority seen infinitely
often along the run.

— F; is visited infinitely often, i.e. after each visit of I;, F; is eventually visited.
As argued in the proof of Lemma 1, the position of F; can only increase
until it is visited again. Hence every visit of I; which yields an even parity is
followed by a visit of F; yielding an odd parity which is strictly greater.

Using this intuition, we formally show correctness of the construction in Ap-
pendix A.1.

Theorem 1. For any DRA R we have that LIAR(R)) = L(R).

Proposition 1 (Complexity). For every DRA R with n states and k Rabin
pairs, the constructed automaton TAR(R) has at most n - k! states and 2k + 1
priorities.

Moreover, using the [L6d99a], one can show that this is essentially optimal. There
exists a family {£,},~, of languages such that for every n the language L,, can be
recognized by a DRA with O(n) states and O(n) pairs, but cannot be recognized
by a DPA with less than n! states. For details, see Appendix A.2.

Remark 1 (Comparison to previous IAR). Our construction is similar to the in-
dex appearance record of [L6d99b] in that it keeps the information about the
current state and a permutation of pairs, implementing the appearance record.
However, from the point of view of Streett automata, it is very natural to keep
two pointers into the permutation, indicating the currently extreme positions of
both types of sets in the accpetance condition. Indeed, this way we can keep
track of all conjuncts of the form Inf(I;) == Inf(F}). This is also the approach
that [L6d99b] takes. In contrast, we have no pointers at all. From the Rabin
point of view, it is more natural to keep track of the prohibited sets only and the
respective pointer is hidden in the information about the current state together
with the current permutation. Additionally, the pointer for the required set is
hidden into the acceptance status of transitions. In the transition-based setting,
it is not necessary to remember the visit of a required set in the state-space; it
is sufficient to emit the respective priority upon seeing this during the transition
when we know both the source and target states. The absence of these pointers
results in better performance.

Remark 2 (Using IAR for DGRA). The straightforward way to translate a DGRA
to DPA is to first de-generalize the DGRA and then apply the presented TAR
construction. However, one can also apply the TAR idea to directly translate from
DGRA to DPA: Instead of only tracking the pair indices, one could incorporate
all F; and I} into the appearance permutation. With the same reasoning as above,
a parity condition can be used to decide acceptance.

This approach yields a correct algorithm, but compared to de-generalization
combined with IAR, the state space grows much larger. Indeed, given a DGRA
with n states and k accepting pairs with [; required sets each, the de-generalized
DRA has at most n- Hle l; states and k pairs, hence the resulting parity automa-
ton has at most k!-n- Hle l; states and 2k+1 priorities. Applying the mentioned
specific construction gives n - (Zle (I; +1))! states and 2- (Ele (I; +1))+1 pri-
orities. A simple induction on k suffices to show that the worst case upper bound
for the specific construction is always larger. We conjecture that this behaviour
also shows in real-world applications.

4 Optimizations

In general, many states generated by the IAR procedure are often superfluous
and could be omitted. In the following, we present several optimizations of our
construction, which aim to do so. Moreover, these optimizations can be applied
also to the TAR construction of [L6d99b] and in a slighly adjusted way also to the
standard SAR [Sch01]. Further, although the optimizations are transition-based,
they can be of course easily adapted to the state-based setting. Due to space
constraints, the correctness proofs can be found in Appendix A.3.

b4 a2

Fig. 2: Example of a suboptimal initial permutation, using the same notation
as in Figure 1. Only the shaded states are constructed when choosing a better
initial permutation.

4.1 Choosing an initial permutation

The first observation is that the arbitrary choice of (1,...,k) as initial permu-
tation can lead to suboptimal results. It may happen that several states of the
resulting automaton are visited at most once by every run before some “recur-
rent” permutation is reached. These states enlarge the state-space unnecessar-
ily, as demonstrated in Figure 2. Indeed, when choosing (p, (3,1,2)) instead of
(p,(1,2,3)) as the initial state in the example, only the shaded states are built
during the construction, while the language of the resulting automaton is still
equal to that of the input DRA.

We overload the IAR algorithm to be parametrized by the starting permu-
tation, i.e. we write IAR(R, 7o) to denote the IAR construction applied to the
DRA R starting with permutation 7.

Theorem 2. For an arbitrary Rabin automaton R with k pairs we have that
LIAR(R)) = LOAR(R,m)) for all my € IT*.

How to choose a “good” initial permutation is deferred to Section 4.3, as it is
intertwined with the algorithm presented in the following section.

4.2 SCC decomposition

Acceptance of a word by an w-automaton only depends on the set of states visited
infinitely often by its run. This set of states is strongly connected on the underlying
graph structure, i.e. starting from any state in the set, any other state can be
reached with finitely many steps. In general, any strongly connected set belongs

to exactly one strongly connected component (SCC). Therefore, for a fixed SCC,
only the Rabin pairs with required sets intersecting this SCC are relevant.

Using this we can restrict ourselves to the Rabin pairs that can possibly
accept in that SCC while processing it. This reduces the number of indices we
need to track in the appearance record for each SCC, which can lead to significant
savings.

For readability, we introduce some abbreviations. Given a DRA R =
(@, X,90, qo,{(Fi,Ii)};?:l) and a set of states S C Q we write § [S: S x X — S
to denote the restriction of § to S, i.e. § [S(¢,a) = d(q,a) if 6(¢,a) € S and
undefined otherwise. Analogously, we define A [S = ANS x X x S as the set of
transitions in the restricted automaton. Consequently, we define the restriction
of the whole automaton R to the set of states S using g € S as initial state by

RlgS= (82018 ¢{(FENATS),LNATSI))[LN(ATS)#0}).

Furthermore, we call a SCC of an automaton transient, if it is a singleton set with-
out a self-loop. This means that it is visited at most once by any run and it is not
of interest for acceptance. Finally, we use € to denote the “empty” permutation
(of length 0).

Using this notation, we describe the optimized TAR construction, denoted
TAR* in Algorithm 1. The algorithm decomposes the DRA into its SCCs, applies
the formerly introduced IAR procedure to each sub-automaton separately and
finally connects the resulting DPAs back together.

As we apply the TAR construction to each SCC separately, we have to choose
the initial permutation for each state of those SCCs. Theorem 2 shows that
for a particular initial state, correctness of IAR does not depend on the chosen
permutation. We therefore delegate the choice to a function PICKPERM and prove
correctness of the optimized algorithm independent of this function, allowing for
further optimizations. We present an optimal definition of PICKPERM in the next
subsection.

Figure 3 shows an example application and the obtained savings of the con-
struction. Pair 1 is only relevant for acceptance in the SCC {p}, but in the
unoptimized construction it still changes the permutations in the part of the au-
tomaton constructed from {q,r}, as e.g. the transition (r, b, ¢) is contained in Fj.
Similarly, pair 2 is tracked in {p} while actually not being relevant. The optimized
version yields improvements in both state-space size and amount of priorities.

Theorem 3. For any DRA R we have that L(IAR*(R)) = L(R), independent
of PICKPERM.

4.3 Optimal choice of the initial permutation

In Figure 2 we provided a scalable example where the choice of the initial per-
mutation can significantly reduce the size of the generated automaton. In this
subsection, we explain a procedure yielding a permutation which minimizes the
state space of the automaton generated by TAR™.

Input :A DRA R =(Q,%,6,q0,{(F,1:)}}_,)
Output: A DPA recognizing the same language as R

1Q —{}L < {}L =
2 foreach SCC S in R do

3 if S transient or {i| ;N A[S # (0} =0 then // SCC not relevant
4 Add S x {e} to Q*

5 foreach q € S, a € X such that (6 | S)(q,a) is defined do
6 Let ¢ = 6(q,a)

7 Set 5" ((g,€),a) = (¢'>2) and A*({(4,), 0, (¢',€))) = 1
8 end

9 else // SCC relevant, apply IAR to the sub-automaton
10 Pick a starting state ¢ € S

11 (Qs,X,0s,(q,m),As) < IAR(R [4 S, PICKPERM(gq, S))

12 Update Q*, §* and * with Qgs, ds and Ag, respectively
13 end

14 end

// Connect all SCCs
15 foreach (¢,7) € Q" and a € X s.t. ¢ = (q,a) in different SCC of R than q do
16 Pick a «’ with (¢',7') € Q*
17 Set 6*((¢q,m),a) = (¢',7")
18 end
Algorithm 1: The optimized IAR construction IAR*

ad l
a ° 1% 2’& a4 e a2
b b1 b1

b1
O 5
ba b4 a3 b3 a3
A=) =G 5

Example DRA, Result of unoptimized Output of the op-
SCCs shaded IAR applied to the DRA timized TAR™.

Fig. 3: Example application of Algorithm 1

10

First, we recall that PICKPERM is only invoked when processing a particular
(non-transient) SCC of the input automaton. Consequently, we can restrict our-
selves to only deal with Rabin automata forming a single SCC. Let now R be
such an automaton. While IAR (R, 7mp) may contain multiple SCCs, we show that
it contains exactly one bottom SCC (BSCC), i.e. a SCC without outgoing edges.
Additionally, this BSCC is the only SCC which contains all states of the original
automaton R in the first component of its states.

Theorem 4. Let R = (Q, X, 9, qo, {(Fi,Ii)}le) be a Rabin automaton that is
strongly connected. For a fized mo € II*, IAR(R, o) contains ezactly one BSCC
S and for every SCC S’ we have that S = S" iff Q = {q | 37 € IT*.(¢,7) € S'}.
Furthermore the BSCCs for different my are isomorphic.

The proof can be found in Appendix A.4. This result makes defining an optimal
choice of PICKPERM straightforward. By the theorem, there always is a BSCC
of the same size, independent of PICKPERM. If (go,7) is in the BSCC of some
TAR(R, o), IAR(R, 7) will generate the same BSCC and no other states. Hence,
we define PICKPERM(g, S) to return any permutation such that (g,) lies in the
corresponding BSCC. As a trivial consequence of the theorem, this choice is opti-
mal in terms of the state-space size of the generated automaton. In our implemen-
tation, we start exploring the state space using an arbitrary initial permutation
and then prune all states which do not belong into the respective BSCC.

5 Experimental results

In this section, we compare variants of our new approach to the established tools.
All of the benchmarks have been run on a Linux 4.4.3-gentoo x64 virtual machine
with 3.0 GHz per core. We implemented our construction as part of Rabinizer
[KK14] and used the 64 bit Oracle JDK 1.8.0_102 as JVM for our experiments.

5.1 DRA to DPA translation

We present comparisons of different approaches to translate DRA into DPA. As
there are to our knowledge no “standard” DRA datasets for this kind of com-
parison, we use Spot’s tool randaut to produce various Rabin automata. All
executions in this chapter ran with a time-out of five minutes.

We consider both our basic method TAR of Section 3 and the optimized
version IAR* of Section 4. We compare our methods to GOAL? [TTH13] and the
Streett-based construction StreetIAR of [L6d99b]. As we are not aware of any
implementations of StreetIAR, we implemented it ourselves in Haskell®. Both of
these constructions are using state-based acceptance. In order to allow for a fair
comparison, we therefore also implemented sbIAR, a variant of our construction

2 gc batch "\$nba = load -c HOAF /dev/stdin; \$dpa = convert -t dpw \$nba;
save \$dpa -c HOAF /dev/stdout;", executed with OpenJDK IcedTea 2.6.6,
java version 1.7.0_101

® Compiled with GHC 7.10.3.

11

Table 1: Comparison of the DRA to DPA translations on 1000 randomly gen-
erated DRAs. First, we compare the cases where all tools finished successfully,
according to the average size, the number of SCCs and the run-time. Second, we
give the percentage each tool produces an automaton with the least number of
states, and failures, respectively.

GOAL GOALp StreettIAR sbIAR TIARD

#states 1054 281 18.4 15.4 8.83

5 #SCC 73.2 19.2 4.97 4.33 1.61
time (s) 11.7 15.7 0.02 0.02 0.99
smallest (%) 15.5 37.8 7.7 15.5 95.9
failure (%) 8.6 11.9 0 0 0

working directly with state-based acceptance? in Haskell, too. Additionally, we
combine every tool with Spot’s multi-purpose post-processing® and denote this by
a subscript P (for post-processing), e.g. TAR* combined with this post-processing
is written IAR}.

In Table 1 we present a comparison between GOAL, StreettIAR and our
unoptimized state-based implementation sbIAR. Additionally, since GOAL does
not perform too well, we also include its post-processed variant GOALp. For
comparison, we also include our optimized variant IAR}. As test data, we use
1000 state-based DRA over 4 atomic propositions with 5 to 15 states, a transition
density of 0.05 and 2 to 3 Rabin pairs®. We use Spot’s tool autfilt to gather
the statistics. Failures denote either time-outs, out of memory errors or invalid
results, e.g. automata which could not be read by autfilt, which sometimes
occurred with GOAL.

From the results in Table 1 we observe that on this dataset all appearance-
record variants drastically outperform GOAL. We remark that TAR* performs
even better compared to GOAL if more SCCs are involved. However, for reason-
ably complex automata, virtually every execution of GOAL timed out or crashed,
making more specific experiments difficult. Already for the automata in Table 1
with 5-15 states, GOAL regularly consumed around 3 GB of memory and needed
roughly 10 seconds to complete on average, whereas our methods only used a few
hundred MB and less than a second. We could not find a dataset where GOAL
showed a significant advantage over our new methods. Therefore, we exclude
GOAL from further experiments. The remaining methods are investigated more
thoroughly in the next experiment.

4 We also proved correctness for the direct construction, the proof can be obtained by
trivial modifications of the proofs in this paper.

® autfilt --deterministic --generic --small --high

6 randaut 4 --seed=0 -Q 5..15 --acceptance="Rabin 2..3" --density=0.05
--deterministic --acc-probability 0.2 --state-based-acceptance --hoaf
-n1000. The acceptance probability parameter denotes the chance of a particular
transition belonging to a Rabin pair.

12

Table 2: Comparison of StreettIAR and (sb)IAR on 1000 randomly generated
DRAs. We use the same definitions as in Table 1.

StreettIAR sbIAR StreettIARp sbIARp TIARD

#states 4959 1568 4175 1081 833

% #SCC 63.8 42.5 1.35 1.35 1.35
time (s) 1.86 0.34 39.47 3.11 3.38
smallest (%) 0 0 0.4 5.90 95.1
failure (%) 1.3 0 1.4 0 0

Table 3: Evaluation of the presented optimizations on 1000 randomly generated
DRAs, again using the same definitions as in Table 1. No tool failed for any of
the input automata.

sbIAR sbIARp IAR TIARP IAR” IARD

F£states 3431 2530 1668 1655 1302 1296

%3 #SCC 24.8 1.14 8.98 3.5 1.43 1.43
time (s) 0.77 11.47 1.09 48.3 76.5 95.7
smallest (%) 0 0 38.3 48.30 76.5 95.7

In Table 2 we compare StreettIAR to sbIAR on more complex input automata
to demonstrate the advantages of our new method compared to the existing
StreettIAR construction. We consider the methods both in the basic setting and
with post-processing and optimizations. Note that as the presented optimizations
are applicable to appearance records in general, we also added them to our imple-
mentation of StreettIAR. Its optimized version is denoted by StreettIAR*. Again,
we include our best (transition-based) variant TAR} for reference. The dataset
now contains DRA with 20 to 30 states”.

StreettIAR is significantly outperformed by our new methods in this experi-
ment. This is quite surprising, considering that both methods essentially follow
the same idea of index appearance records, only from different perspectives. The
difference is partially due to Remark 1. Besides, we have observed that the discrep-
ancy between StreettIAR and TAR is closely linked to the amount of acceptance
pairs. After increasing the number of pairs further, the gap between the two ap-
proaches grows dramatically. For instance, on a dataset of automata with 8 states
and 8 Rabin pairs, the IAR construction yielded automata roughly an order of
magnitude smaller: sbhIAR needed less than three hundred states compared to
StreettIAR needing over three thousand. Applying the post-processing does not
remedy the situation.

Finally, we demonstrate the significance of the transition-based acceptance
and our optimizations in Table 3. To evaluate the impact of our improvements,
we compare the unoptimized IAR procedure and its post-processed counterpart

" randaut 4 -seed=0 -Q 20..30 -acceptance="Rabin 6" -density=0.05
-acc-probability=0.2 -deterministic -state-based-acceptance -hoaf -n1000

13

to the optimized IAR" and IAR}. Furthermore, we also include our state-based
version in its basic (sbIAR) and best (SIAR%®) form. We run these algorithms
on a dataset of DRA with 20 states each?.

Spot’s generic post-processing algorithms often yield sizeable gains, but they
are marginal compared to the effect of our optimizations on this dataset. Our
optimizations are thus not only significantly beneficial, but also irreplacable by
general purpose optimizations. We furthermore want to highlight the reduction
of SCCs. As a final remark, we emphasize the improvements due to the adoption
of transition-based acceptance, halving the size of the automata.

5.2 Linear Temporal Logic

Motivated by the previous results we concatenated TAR* with Rabinizers LTL-
to-DRA translation, obtaining an LTL-to-DPA translation. We compare this ap-
proach to the established tool 1t12tgba of Spot, which can also produce DPA.
We use Spot’s comparison tool 1tlcross in order to produce the results. Unfor-
tunately, this tool sometimes crashes caused by too many acceptance sets'!. We
alleviated this problem by splitting our datasets into smaller chunks. Time-outs
are set to 15 minutes.

First, we compare the two tools on random LTL formulae. We use rand1tl
and 1t1filt to generate pure LTL formulae'?. The test results are outlined in Ta-
ble 4. On average, our methods are comparable to 1t12tgba, even outperforming
it slightly in the number of states.

Note that the averages have to be compared carefully. As the constructions
used by 1t12tgba are fundamentally different from ours, there are some formulae
where we outperform 1tl2tgba by orders of magnitude and similarly in the
other direction. We conjecture that on some formulae 1t12tgba has an edge
merely due to its rewriting together with numerous pre- and post-processing
steps, whereas our method profits from Rabinizer, which can produce smaller
deterministic automata also for very complex formulae. On many dataset we
tested, median state count over all formulae (including timeouts) is better for
our methods. For more detail, see the histogram in Appendix B, Figure 4.

To give more insight in the difference between the approaches, we list several
classes of formulae where our technique performs particularly well. For instance,

8 We use autfilt --state-based-acceptance to convert the transition based input
DRA to state based.

% randaut 4 -seed=0 -Q 20 -acceptance="Rabin 5" -acc-probability=0.05
-density=0.1 -deterministic -hoaf -n1000

10 By specifying --deterministic --generic on the command line

11 Around 20 acceptance sets. The exact error message emitted is
-terminate called after throwing an instance of ’std::runtime_error’
what(): Too many acceptance sets used.

12 rand1tl -n2000 5 --tree-size=20..25 -seed=0 --simplify=3 -p
--ltl-priorities ’ap=3,false=1,true=1,not=1,F=1,G=1,X=1,equiv=1
,implies=1,xor=0,R=0,U=1,W=0,M=0,and=1,0r=1’ | 1ltlfilt
--unabbreviate="eiMRW"

14

Table 4: Comparison of 1t12tgba to Rabinizer + IAR} on 2000 LTL formulae.

Rabinizer + IAR} 1tl2tgba

o F£states 6.60 7.89
> F#Hacc 2.31 1.79
#SCC 4.49 4.69
timeouts 22 0

Table 5: Fairness formulae: Fairness(k) = /\le(G Fa, = GF,)

Rabinizer+IAR b 1tl2tgba
Formula States Acc. SCCs States Acc. SCCs
Fairness(1) 2 4 1 5 4 3
Fairness(2) 12 9 1 44 8 9
Fairness(3) 1431 17 1 8607 20 546

for fairness-like constraints our toolchain produces significantly smaller automata
than 1t1l2tgba, see Table 5. Further examples, previously investigated in e.g.
[KE12,BBKS13,EK14] can be found in Appendix B, Table 6, including formulae
of the GR(1) fragment [PPS06]. Additionally, our method is performing better
on many practical formulae, for instance complex formulae from SPEC PATTERN
[DAC99]'3.

6 Conclusion

We have presented a new version of index appearance record. In comparison to
the standard Streett-based approach, our new Rabin-based approach produces
significantly smaller automata. Besides, it has a significant potential for LTL
synthesis. For more complex formulae, it makes use of high efficiency of Rabinizer
and thus avoids the blow-up in many cases, compared to determinization-based
methods.

Since we only provided the method for DRA we want to further investigate
whether it can be extended to DGRA more efficiently than by de-generalization.
Besides, a more targeted post-processing of the state space and the priority func-
tion is desirable. For instance, in order to decrease the total number of used
priorities, all non-accepting SCCs can be assigned any odd priority that is al-
ready required elsewhere instead of the one suggested by the algorithm. Further,
one can adopt optimizations of Spot as well as consider optimizations taking the
automaton topology more into account. The whole tool-chain will then be inte-
grated into Rabinizer. Finally, in order to estimate the effect on LTL synthesis
more precisely, we shall link our tool chain to parity-game solvers and apply it
to realistic case studies.

13 Spec Patterns: Property Pattern Mappings for LTL.
http://patterns.projects.cis.ksu.edu/documentation/patterns/1tl.shtml

15

http://patterns.projects.cis.ksu.edu/documentation/patterns/ltl.shtml

References

ALO4.

BBKS13.

DAC99.

DLLFT16.

EK14.

FEK11.

FLO09.
GHS2.

KBO06.

KE12.
KK14.
KVO05.
L6d99a.

L6d99b.

ML16.
Pit06.

Pnu77.
PPSO06.

PRS9.

Rajeev Alur and Salvatore La Torre. Deterministic generators and games
for 1tl fragments. ACM Trans. Comput. Log., 5(1):1-25, 2004.

Tomés Babiak, Frantisek Blahoudek, Mojmir Kretinsky, and Jan Strejcek.
Effective translation of LTL to deterministic rabin automata: Beyond the (f,
g)-fragment. In Dang Van Hung and Mizuhito Ogawa, editors, Automated
Technology for Verification and Analysis - 11th International Symposium,
ATVA 2013, Hanoi, Vietnam, October 15-18, 2013. Proceedings, volume
8172 of Lecture Notes in Computer Science, pages 24—39. Springer, 2013.
Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Patterns in
property specifications for finite-state verification. In ICSE, pages 411-420,
1999.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille, Thibaud
Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 — a framework for
LTL and w-automata manipulation. In ATVA, 2016. To appear.

Javier Esparza and Jan Kftetinsky. From LTL to deterministic automata:
A safraless compositional approach. In CAV, pages 192-208, 2014.

Bernd Finkbeiner, Riidiger Ehlers, and Andrey Kupriyanov. Automata,
games, and verification. https://www.react.uni-saarland.de/teaching/
automata-games-verification-11/downloads/ps9.pdf, 2011. Accessed
30. Aug 2016.

Oliver Friedmann and Martin Lange. Solving parity games in practice. In
ATVA, pages 182-196, 2009.

Yuri Gurevich and Leo Harrington. Trees, automata, and games. In STOC,
pages 60-65, 1982.

Joachim Klein and Christel Baier. Experiments with deterministic w-
automata for formulas of linear temporal logic. Theoretical Computer Sci-
ence, 363(2):182-195, 2006.

Jan Kfetinsky and Javier Esparza. Deterministic automata for the (F, G)-
fragment of LTL. In CAV, pages 7-22, 2012.

Zuzana Komérkova and Jan Kfretinsky. Rabinizer 3: Safraless translation
of LTL to small deterministic automata. In ATVA, pages 235241, 2014.
Orna Kupferman and Moshe Y. Vardi. Safraless decision procedures. In
FOCS, pages 531-542, 2005.

Christof Loding. Optimal bounds for transformations of omega-automata.
In FSTTCS, pages 97-109, 1999.

Christoph Léding. Methods for the transformation of automata: Complexity
and connection to second order logic. Master’s thesis, Institute of Computer
Science and Applied Mathematics, Christian-Albrechts-University of Kiel,
Germany, 1999.

Philipp J. Meyer and Michael Luttenberger. Solving mean-payoft games on
the GPU. In ATVA, 2016. To appear.

Nir Piterman. From nondeterministic buchi and streett automata to deter-
ministic parity automata. In LICS, pages 255-264, 2006.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46-57, 1977.
Nir Piterman, Amir Pnueli, and Yaniv Sa’ar. Synthesis of reactive(1) de-
signs. In VMCAI, pages 364-380, 2006.

Amir Pnueli and Roni Rosner. On the synthesis of a reactive module. In
POPL, pages 179-190, 1989.

16

https://www.react.uni-saarland.de/teaching/
automata-games-verification-11/downloads/ps9.pdf

Red12.

Saf88.

Saf92.

Sch01.

Sch09.

TTH13.

Roman R. Redziejowski. An improved construction of deterministic omega-
automaton using derivatives. Fundam. Inform., 119(3-4):393-406, 2012.
Shmuel Safra. On the complexity of omega-automata. In FOCS, pages
319-327, 1988.

Shmuel Safra. Exponential determinization for omega-automata with
strong-fairness acceptance condition (extended abstract). In STOC, pages
275-282, 1992.

Stefan Schwoon. Determinization and complementation of streett automata.
In Automata, Logics, and Infinite Games: A Guide to Current Research
[outcome of a Dagstuhl seminar, February 2001], pages 79-91, 2001.

Sven Schewe. Tighter bounds for the determinisation of biichi automata. In
FOSSACS, pages 167—-181, 2009.

Ming-Hsien Tsai, Yih-Kuen Tsay, and Yu-Shiang Hwang. GOAL for games,
omega-automata, and logics. In CAV, pages 883-889, 2013.

17

A Proofs

Throughout the section, we write R to denote an arbitrary Rabin automaton
(Q, 2,6, q0, {(Fi, I)}_)), P = IAR(R) = (Q, £,4,d0,\) and P* = IAR*(R) =
(Q*, X, 0%, g%, *) the result of applying IAR and TAR* to R, respectively. Fur-
thermore, whenever we have a transition £ = ((q,7),a, (¢/, 7)) in the P, we use
t = (g, a,q’) to denote the corresponding transition in the original Rabin automa-
ton (analogously for t* in P*).

A.1 Proof of Theorems 1 and 2

We prove that after constructing P from R, the language of any state ¢ € @ (i.e.
the language accepted by the automaton starting at ¢) is equal to the language
of any state (¢,7) € Q. This trivially implies Theorems 1 and 2. We will reuse
this result in another proof.

Given an w-automaton A = (Q, X, 9, qo, &) and ¢ € Q we write A, = (Q, X, 4, ¢,)
to denote the automaton with new initial state q.

Lemma 2. We have that L(P(y ») = L(Ry) for all ¢ € Q and 7' € IT* such
that (¢',7") € Q.

Proof. Let ¢ € Q and 7’ € IT* be as in the assumption and define § = (¢/, 7).
We immediately see from the definition of IAR that for a word w, Ry has a run
p on w iff Py a run p on it. Furthermore, for every p; = (q,a,¢’) we have that
pi = (¢, m),a,(¢,n")) for some 7,7’ € IT*.

L(Ry) C L(Py): Let w € L(Ry) be a word accepted by the Rabin automaton
Ry . Let p and p denote the runs of Ry and Py on it, respectively. We show
that any transition £ € Inf(p) with maximal priority (among all infinitely often
visited transitions) has even priority and thus w is also accepted by Py .

By assumption, there exists an accepting Rabin pair (F,, I,), i.e. I, € Zins(w),
F,, ¢ Fint(w), and an infinitely often visited transition ,, = ((qn, ™), a, (¢,, 7))
with t,, € (Inf(p)N1I,)\ F,. Hence, 7, 1 (n) < maxInd(#,) by definition of maxInd.

Now, fix an arbitrary ¢ = ((¢q,7),a, (¢, 7)) € Inf(p) with maximal maxInd(f)
among all the infinitely often visited transitions, i.e. maxInd(#,) < maxInd(f).
From Lemma 1 we know that the position of pair n stays constant along the in-
finitely often visited states, i.e. 7~!(n) = 7, *(n). Together, this yields 7—1(n) =
71 (n) < maxInd(f,) < maxInd(?).

Assume for contradiction that A(f) is 0dd, i.e. f € Fy(naxina(iy)- By Corollary 1
this yields {Fr(;) | ¢ < maxInd(f)} C Fine. As we previously argued 7! (n) <
maxInd(¢) and therefore F,, € Fiys, contradicting the assumption.

L(Pg) C L(Ry): Let w € L(Py) be a word accepted by the constructed parity
automaton. Again, denote the corresponding runs by p and p. We show that there
exists some n where F,, ¢ Finr and I, € Liy, i.e. Ry accepts w.

By assumption, the maximal priority A of all infinitely often visited states is
even. Let # € Inf(p) be a state with A(f) = A = 2 - maxInd(f), i.e. f is a witness
for the maximal priority. Defining n = m(maxInd(f)) we have that t € I,, \ F,, by

18

definition of the priority assignment. Clearly, ¢ € Inf(p) and hence I, is visited
infinitely often in the Rabin automaton (via t). We now show that F,, is visited
only finitely often.

Assume the contrary, i.e. that F;, is visited infinitely often. This implies that
every time after taking £, some transition {r = ((qr, 7r), a, (¢, 7)) with tp €
F,, is eventually taken. After visiting I,,, the position of F, can not decrease
until it is visited for the first time by definition of 6. Hence for each visit of £
we can choose a {r such that 7" (n) > maxInd(Z). But then also maxInd(fr) >
maxInd(f), as qr € F,. Hence A\(Gr) > A(§), contradicting the assumption of
A(g) being maximal. O

A.2 Proof of Complexity

Proof. It has been shown [L6d99a, Theorem 7] that there exists a family {£,,}, <
of languages such that for every n the language £,, can be recognized by a DSA
with O(n) states and O(n) pairs, but cannot be recognized by a DRA with less
than n! states. By interpreting the DSA as DRA for £,, = ¥\ £L,,, the statement
also holds when transforming DRA to DPA. Let R be the Streett automaton
interpreted as DRA, i.e. it accepts £, with O(n) states and O(n) Rabin pairs.
Assume for contradiction that a DPA P recognizes £, with less than n! states.
One can easily verify that a DPA is complemented by using the priority function
N(t) = A(t) + 1. Applying this to P yields a DPA and thus a DRA recognizing
L, with less than n! states, a contradiction. a

A.3 Proof of Theorem 3

In order to prove correctness of IAR”, we prove some auxiliary lemmas. We use
I, = U?:o IT* to denote all permutations of length up to k including the empty
permutation €. With this, @Q* C Q x II.

First and foremost, we immediately see that the algorithm is well defined in
the sense that §* only gets assigned at most one value for each pair (¢*,a) and
A* gets assigned exactly one value for each ¢* € Q*. Now we show that TAR”
emulates runs on the original automaton, i.e. every run of a Rabin automaton
has a unique corresponding run in its IAR* translation.

Lemma 3. R has a run p on a word w iff P* has a run p* on it. For a given w,
this p* is unique (if it exists) and for every pf = ((¢,7),a, (¢, 7)) we have that
pi = {q,a,q') for some m,x" € II.

Proof. We first establish existence of corresponding runs.

=: We show that for all ¢, ¢’ € Q and a € X with ¢' = §(q, a) and for every 7w € II
such that (g, 7) is reachable from ¢, there is a 7’ € IT with (¢/, 7’) = §*((¢, 7), a),
i.e. the run of P* cannot get “stuck”.

Assume for contradiction that there are such ¢, m, a and ¢’ where 6*((¢,7),a)
is undefined. As by assumption (g,7) is reachable in the resulting automaton,
it has been added to Q* while processing a particular SCC S of the original
automaton. We distinguish multiple cases:

19

— ¢ ¢ S: While processing all SCCs, the algorithm eventually adds (¢’,7")
with some 7’ to @*. As ¢ and ¢’ belong to different SCCs and ¢’ = 6(g, a) by
assumption, Line 1 is visited with these particular values and 6*((¢,7),a) =
(¢’, 7). This yields the contradiction.

— ¢ € S: By definition we have that ¢ = (6 | S)(¢,a). Again, we do a case
distinction:

o {i|;N(A]S)=0}=0: Only (¢,¢) is added to @* (in Line 1) and the
corresponding transition is added in Line 1.

e Otherwise: The algorithm invokes IAR on the sub-automaton (contain-
ing the transition (g, a,q’)). The definition of TAR immediately gives a
contradiction.

By a simple inductive argument, existence of the run on a particular word w
follows.

<: By investigating the algorithm, one immediately sees that if §*((¢,7),a) is
assigned some value (¢, 7’), ¢ = §(q, a) is a precondition to that.

We now prove uniqueness of the run. Assume for contradiction that for some
(g, 7) and letter a the algorithm added both (¢',#’) and (¢”, ") as successors
with 7" # 7" or ¢’ # ¢”. Using the same reasoning as in the “<” proof, we see
that ¢’ = ¢”. Let now S be the SCC in the original DRA with ¢ € S. Again, we
use a case distinction:

— ¢ € S: In the “if”-branch only one successor is added by the algorithm. In
the “else”-branch, the statement follows from the definition of TAR.

— ¢ ¢ S: The for loop connecting the SCCs together is entered exactly once
with the variables ¢, ¢’ and a. The algorithm picks any 7’ as the permutation
of the successor, but only this single one. a

From this we get as immediate consequences that IAR™ indeed outputs a deter-
ministic parity automaton and yields a total automaton if R was total. Further-
more, we show that every SCC in the result corresponds to a subset of a SCC
in the original automaton. In other words, it cannot be the case that a SCC
in the resulting automaton contains states corresponding to states in the Rabin
automaton in two different SCCs.

Corollary 2. For any SCC S* C Q* in P*, we have that its projection {q € Q |
Ir € IIi.(q,m) € S*} to R is a subset of some SCC in R.

Proof. Consider an arbitrary cycle in P*. Projecting the cycle to R again results
in a cycle by Lemma 3.

As a last lemma, we prove that R [, S behaves as it should.

Lemma 4. Let w be a word such that R has a run p on it. Let S be the SCC
containing Inf(w) and pick an arbitrary q € S. Fiz j € N such that p; € A] S for
all i > j. Then w is accepted by R iff w' = wjw;jy1 ... is accepted by (R 4 S),,;-

20

Proof. Fix w, p, S, q, j and w’ as stated. One immediately sees that (R [4 .5),,
has arun p’ = p;p;11 ... on w and Inf(p) = Inf(p’). Hence we only need to show
that there are pairs in both automata accepting the respective runs.

=: As w is accepted by R there is an accepting Rabin pair (F}, I;). By assumption,
Inf(p) C A | S and Inf(p) N I; # 0. Hence, ;N (A 1 S) # 0 and (F; N (A |
S), ;N (A [S)) is a pair of the restricted automaton accepting p’.

<: Trivial. O
With these results, we prove the correctness of the algorithm.

Proof (of Theorem 3). Let w € X be an arbitrary word. By Lemma 3, we have
that R has a run p on w iff P* has a run p* on it. Assume w.l.o.g. that both
automata indeed have such runs (otherwise w trivially is not accepted by neither
automata). Let S and S* be the SCCs containing Inf(p) and Inf(p*), respectively.
We further assume w.l.o.g. that {i | ;N(A [S) # 0} # 0, otherwise w trivially is
not accepted by neither of the automata, as both of them only generate uneven
priorities infinitely often.

By virtue of Corollary 2, the SCC S* is constructed while processing S in the
main loop, i.e. it is a SCC of P’ = IAR(R/, PICKPERM(q, S)) where R’ =R [, S.
As both runs eventually remain in the respective SCCs, there is a j € N such
that p; € A [S and pf € A* | S for all i > j. By Lemma 4 we have that
w' = w;jw;y1 - .. is accepted by R’ iff w is accepted by R. Furthermore, employing
Lemma 2 we have w’ is accepted by ’P;; iff it is accepted by R’. By construction,
w is accepted by P* iff w’ is accepted by ’P;,f. Together, this yields that w is
accepted by R iff it is accepted by P*. ’ O

A.4 Proof of Theorem 4

For increased readability, we extend the notion of runs to finite words: We write
27* to denote the set of all finite words over a given alphabet Y. The length of
such a word w is denoted by |w|. We say that an automaton A = (Q, X, §, qo, @)
has the run p on a finite word w € X* starting from ¢ if p = (po, p1,.. ., Pjw|)
where pg starts at go, p; moves under w; for all 0 < i < |w| and p; starts at the
same state as p;—1 ends for all 0 < i < |w].

Proof. If either |Q| = 1 or k < 1, the graph of the constructed automaton is
isomorphic to the graph of the input automaton. Hence assume that |Q| > 1 and
k > 1. For now, fix an arbitrary initial permutation 7y. Note that the relative
ordering of all positions of pairs with empty prohibited sets stays the same for
all runs as they are never visited.

We first show existence of BSCCs. As @ is assumed to be strongly connected,
every state in R necessarily has a successor. From the definition of TAR it imme-
diately follows that firstly P contains at least one SCC and secondly that there
can be no state without a successor, which implies that there always exists a
BSCC.

21

Next, we show both uniqueness and the given characterization of BSCCs. Let
S be a BSCC of P, S’ a SCC with Q = {¢ | 37 € IT*.(¢,7) € §'} and S # 5.
This implies that S NS’ = 0, as different SCCs are disjoint by definition. Note
that S’ may also be another BSCC.

As we assumed that |@Q| > 1 we also have |S’| > 1. Intuitively, this means
that the graph corresponding to S’ contains a path which visits all states in S’.
Formally, for each state ¢*' € S’ we can find a finite word w such that the run of
P on w starting from ¢*’ € S’ visits each state in S at least once and ends in ¢*'.

Fix any ¢*’ = (g,7’) € S’ and let w be such a word. From the definition of IAR,
we can conclude that each BSCC contains all states of the original automaton
(as we assumed that Q is a SCC). Hence, choose some 7 € IT* such that ¢* =
(¢,7) € S. After following the word w on P starting from the two states ¢* and
q*', we arrive at (¢,7) € S and (q,7) € S, respectively. But, as every state
and thus every non-empty F; was visited along the path, we have that 7 = 7.
Therefore (q,7) = (¢,7) and hence SN S’ # 0, contradicting the assumption.

Finally, we show that the BSCC is essentially unique independently of mg:
Choose 7y € IT* arbitrary and let S be the BSCCs of P = IAR(R, m). Clearly,
for each (¢,) € S the positions of all empty F; in 7 is bigger than any of the
visited ones, i.e. 771(j) < 7~ 1(i) for all i,j s.t. F; # 0, F; = (). Assume for
contradiction that there is some state (¢,7) € S where 77 1(j) > 7=1(i). As Q is
a SCC and F} is not empty by assumption, there exists a run which visits (g,)
and then visits some (¢/, 7") with ¢’ € F;. By definition, j is moved to the front
and can never be moved to behind i. Hence, after visiting (¢’, 7’) no run can visit
(g, 7) again, contradicting the assumption that (¢, 7) and (¢’,7’) are contained
in the same SCC.

Let now 7{, € IT* arbitrary and let S’ be the BSCCs of P’ = IAR(R, 7})). We
prove by contradiction that S and S’ are the same up to their relative ordering of
the empty F; (which trivially always stays the same). Assume w.l.0.g. that there
is some ¢* = (¢,7) € S such that the ¢*' = (¢, ') obtained by reordering the
empty prohibited sets in 7 is not in S’. We can pick a finite word w such that
the run of P on w visits ¢*, then visits all states in S and finally ends in ¢*. The
run of P’ on w ends in some (g, 7"’). By now, after visiting ¢* every non-empty
F;; has been visited by the run of P’. Additionally, we have shown that the empty
prohibited sets are positioned at the end of every 7 in the BSCC. Hence the order
of all the non-empty F; in 7" is determined by the run after its visit of ¢*. In
other words, we have that 7" = 7/, yielding a contradiction. O

22

B DMore testing data

Table 6: Fairness and GR(1) formulae:
Fairness(k) = Ni_,(GFa; = GFb;), Chained(k) = N\'_,(GFa; = GFa;1),
GR(1), = (AL, GFa;) = (AL, GFb;). 1t12tgba timed out on the last for-

mula.

Rab+IARp 1tl2tgba
Formula States Acc. SCCs States Acc. SCCs
Fairness(1) 2 4 1 5 4 3
Fairness(2) 12 9 1 44 8 9
Fairness(3) 1431 17 1 8607 20 546
Chained(2) 6 6 1 15 6 3
Chained(3) 78 11 1 128 8 9
GR(1), 2 4 1 5 4 3
GR(1), 6 4 1 13 4 5
GR(1), 24 4 1 52 4 9
GR(1), 120 4 1 265 4 17
GR(1), 720 4 1 1636 4 33
GR(1), 5040 4 1 - -
Table 7: Spec patterns: “after Q until R” properties
Rab+IARp 1t12tgba
Formula States Acc. SCCs States Acc. SCCs
G(=gV((rv=sV(X((G(rv=t))V(=rU(rA(rv=t))))))U(pVr)) V(G (=sV (X(G=t)))))
4 2 1 27 6 1
G(=qV (Gp) V (=pU(r v (=p A s A (X(—pUt))))))

9 3 4 19 6 7

G(=gV ((mpV (=rU(=r As A (X(=rU1)))))U(r V (G(=p V (s A (X(F1))))))))
13 6 3 11 6 2

G(=q V ((=s V (X((G=t) V (=rU(r A =t)))) V (X(=rU(r A (Fp)))))U(r V (G(=s v
(X(G=t) V (=rU(r A 1)) V (X (=rU(t A (Fp)))))))))
79 10 282 8 4

23

600

—— 1tl2tgba
—0—1t12tgba’
400 |- | —— sbIAR}

200 -

Average number of states

\ . \ \ \ \ \ \ \
0 10 20 30 40 50 75 100 150 200 300400+
1tl2tgba states

Fig. 4: Comparing state based IAR to 1t12tgba on a dataset of 5000 formulae,
grouped by the amount of states 1t12tgba constructs. 1t12tgba® denotes the
conversion of 1t12tgba’s output to state based acceptance. The time out was set
to five minutes. Our observation was that prolonging the time out resulted in fin-
ishing more benchmarks, which were not significantly larger than the previously
obtained average. Therefore, benchmarks where one of the two tools timed out
are simply not considered here. Further, note that the x-axis is not linear. The
missing data points of 1t12tgba® are 976, 2071 and 2855, for 1t12tgba it’s 959.

24

	Index appearance record for transforming Rabin automata into parity automata

