
ar
X

iv
:1

70
2.

00
06

3v
1

 [
cs

.L
O

]
 2

6
Ja

n
20

17

Sequential Convex Programming for the

Efficient Verification of Parametric MDPs⋆

Murat Cubuktepe1, Nils Jansen1, Sebastian Junges2, Joost-Pieter Katoen2,
Ivan Papusha1, Hasan A. Poonawala1, Ufuk Topcu1

1 The University of Texas at Austin, USA
2 RWTH Aachen University, Germany

Abstract. Multi-objective verification problems of parametric Markov
decision processes under optimality criteria can be naturally expressed
as nonlinear programs. We observe that many of these computationally
demanding problems belong to the subclass of signomial programs. This
insight allows for a sequential optimization algorithm to efficiently com-
pute sound but possibly suboptimal solutions. Each stage of this algo-
rithm solves a geometric programming problem. These geometric pro-
grams are obtained by convexifying the nonconvex constraints of the
original problem. Direct applications of the encodings as nonlinear pro-
grams are model repair and parameter synthesis. We demonstrate the
scalability and quality of our approach by well-known benchmarks.

1 Introduction

We study the applicability of convex optimization to the formal verification of
systems that exhibit randomness or stochastic uncertainties. Such systems are
formally represented by so-called parametric Markov models.

In fact, many real-world systems exhibit random behavior and stochastic un-
certainties. One major example is in the field of robotics, where the presence
of measurement noise or input disturbances requires special controller synthesis
techniques [39] that achieve robustness of robot actions against uncertainties in
the robot model and the environment. On the other hand, formal verification
offers methods for rigorously proving or disproving properties about the system
behavior, and synthesizing strategies that satisfy these properties. In particu-
lar, model checking [36] is a well-studied technique that provides guarantees on
appropriate behavior for all possible events and scenarios.

Model checking can be applied to systems with stochastic uncertainties, in-
cluding discrete-time Markov chains (MCs), Markov decision processes (MDPs),
and their continuous-time counterparts [31]. Probabilistic model checkers are
able to verify reachability properties like “the probability of reaching a set of

⋆ Partly funded by the awards AFRL # FA8650-15-C-2546, DARPA # W911NF-16-1-
0001, ARO # W911NF-15-1-0592, ONR # N00014-15-IP-00052, ONR # N00014-16-
1-3165, and NSF # 1550212. Also funded by the Excellence Initiative of the German
federal and state government and the CDZ project CAP (GZ 1023).

http://arxiv.org/abs/1702.00063v1

unsafe states is ≤ 10%” and expected costs properties like “the expected cost of
reaching a goal state is ≤ 20.” A rich set of properties, specified by linear- and
branching-time logics, reduces to such properties [31]. Tools like PRISM [15],
STORM [29], and iscasMc [22] are probabilistic model checkers capable of han-
dling a wide range of large-scale problems.

Key requirements for applying model checking are a reliable system model
and formal specifications of desired or undesired behaviors. As a result, most ap-
proaches assume that models of the stochastic uncertainties are precisely given.
For example, if a system description includes an environmental disturbance, the
mean of that disturbance should be known before formal statements are made
about expected system behavior. However, the desire to treat many applications
where uncertainty measures (e.g., faultiness, reliability, reaction rates, packet
loss ratio) are not exactly known at design time gives rise to parametric prob-
abilistic models [1,30]. Here, transition probabilities are expressed as functions
over system parameters, i.e., descriptions of uncertainties. In this setting, pa-
rameter synthesis addresses the problem of computing parameter instantiations
leading to satisfaction of system specifications. More precisely, parameters are
mapped to concrete probabilities inducing the resulting instantiated model to
satisfy specifications. A direct application is model repair [13], where a concrete
model (without parameters) is changed (repaired) such that specifications are
satisfied.

Dedicated tools like PARAM [11], PRISM [15], or PROPhESY [25] compute
rational functions over parameters that express reachability probabilities or ex-
pected costs in a parametric Markov chain (pMC). These optimized tools work
with millions of states but are restricted to a few parameters, as the necessary
computation of greatest common divisors does not scale well with the number of
parameters. Moreover, the resulting functions are inherently nonlinear and often
of high degree. Evaluation by an SMT solver over nonlinear arithmetic such as
Z3 [17] suffers from the fact that the solving procedures are exponential in the
degree of polynomials and the number of variables.

This paper takes an alternative perspective. We discuss a general nonlin-
ear programming formulation for the verification of parametric Markov decision
processes (pMDPs). The powerful modeling capabilities of nonlinear programs
(NLPs) enable incorporating multi-objective properties and penalties on the pa-
rameters of the pMDP. However, because of their generality, solving NLPs to find
a global optimum is difficult. Even feasible solutions (satisfying the constraints)
cannot always be computed efficiently [37,5]. In contrast, for the class of NLPs
called convex optimization problems, efficient methods to compute feasible solu-
tions and global optima even for large-scale problems are available [38].

We therefore propose a novel automated method of utilizing convex opti-
mization for pMDPs. Many NLP problems for pMDPs belong to the class of
signomial programs (SGPs), a certain class of nonconvex optimization problems.
For instance, all benchmarks available at the PARAM–webpage [26] belong to
this class. Restricting the general pMDP problem accordingly yields a direct and

2

efficient synthesis method—formulated as an NLP—for a large class of pMDP
problems. We list the two main technical results of this paper:

1. We relax nonconvex constraints in SGPs and apply a simple transformation
to the parameter functions. The resulting programs are geometric programs
(GPs) [7], a class of convex programs. We show that a solution to the relaxed
GP induces feasibility (satisfaction of all specifications) in the original pMDP
problem. Note that solving GPs is polynomial in the number of variables.

2. Given an initial feasible solution, we use a technique called sequential convex
programming [7] to improve a signomial objective. This local optimization
method for nonconvex problems leverages convex optimization by solving a
sequence of convex approximations (GPs) of the original SGP.

Sequential convex programming is known to efficiently find a feasible solution
with good, though not necessarily globally optimal, objective values [7,8]. We
initialize the sequence with a feasible solution (obtained from the GP) of the
original problem and compute a trust region. Inside this region, the optimal
value of the approximation of the SGP is at least as good as the objective value
at the feasible solution of the GP. The optimal solution of the approximation is
then the initial point of the next iteration with a new trust region. This procedure
is iterated to approximate a local optimum of the original problem.

Utilizing our results, we discuss the concrete problems of parameter syn-
thesis and model repair for multiple specifications for pMDPs. Experimental re-
sults with a prototype implementation show the applicability of our optimization
methods to benchmarks of up to 105 states. As solving GPs is polynomial in the
number of variables, our approaches are relatively insensitive to the number of
parameters in pMDPs. This is an improvement over state-of-the-art approaches
that leverage SMT, which—for our class of problems—scale exponentially in vari-
ables and the degree of polynomials. This is substantiated by our experiments.

Related work. Several approaches exist for pMCs [11,25,12,23] while the num-
ber of approaches for pMDPs [12,33] is limited. Ceska et al. [21] synthesize rate
parameters in stochastic biochemical networks. Multi-objective model checking
of non-parametric MDPs [9] is a convex problem [14]. Bortolussi et al. [28] de-
veloped a Bayesian statistical algorithm for properties on stochastic population
models. Convex uncertainties in MDPs without parameter dependencies are dis-
cussed in [20]. Parametric probabilistic models are used to rank patches in the
repair of software [32] and to compute perturbation bounds [24,34].

2 Preliminaries

A probability distribution over a finite or countably infinite set X is a function
µ : X → [0, 1] ⊆ R with

∑

x∈X µ(x) = 1. The set of all distributions on X is
denoted by Distr(X).

3

Definition 1 (Monomial, Posynomial, Signomial). Let V = {x1, . . . , xn}
be a finite set of strictly positive real-valued variables. A monomial over V is an
expression of the form

g = c · xa1

1 · · ·xan

n ,

where c ∈ R>0 is a positive coefficient, and ai ∈ R are exponents for 1 ≤ i ≤ n.
A posynomial over V is a sum of one or more monomials:

f =

K∑

k=1

ck · x
a1k

1 · · ·xank

n . (1)

If ck is allowed to be a negative real number for any 1 ≤ k ≤ K, then the expres-
sion (1) is a signomial. The sets of all monomials, posynomials, and signomials
over V are denoted by MonV , PosV , and SigV , respectively.

This definition of monomials differs from the standard algebraic definition where
exponents are positive integers with no restriction on the coefficient sign. A sum
of monomials is then called a polynomial. Our definitions are consistent with [7].

Definition 2 (Valuation). For a set of real-valued variables V , a valuation u
over V is a function u : V → R. The set of all valuations over V is ValV .

Applying valuation u to monomial g over V yields a real number g[u] ∈ R by
replacing each occurrence of variables x ∈ V in g by u(x); the procedure is
analogous for posynomials and signomials using standard arithmetic operations.

Definition 3 (pMDP and pMC). A parametric Markov decision process
(pMDP) is a tuple M = (S, sI ,Act , V,P) with a finite set S of states, an initial
state sI ∈ S, a finite set Act of actions, a finite set of real-valued variables V , and
a transition function P : S×Act×S → SigV satisfying for all s ∈ S : Act(s) 6= ∅,
where Act(s) = {α ∈ Act | ∃s′ ∈ S.P(s, α, s′) 6= 0}. If for all s ∈ S it holds that
|Act(s)| = 1, M is called a parametric discrete-time Markov chain (pMC).

Act(s) is the set of enabled actions at state s; as Act(s) 6= ∅, there are no deadlock
states. Costs are defined using a state–action cost function c : S ×Act → R≥0.

Remark 1. Largely due to algorithmic reasons, the transition probabilities in
the literature [12,25,33] are polynomials or rational functions, i.e., fractions of
polynomials. Our restriction to signomials is realistic; all benchmarks from the
PARAM–webpage [26] contain only signomial transition probabilities.

A pMDPM is aMarkov decision process (MDP) if the transition function is a
valid probability distribution, i.e., P : S×Act×S → [0, 1] and

∑

s′∈S P(s, α, s′) =
1 for all s ∈ S s.t. α ∈ Act(s). Analogously, a Markov chain (MC) is a special
class of a pMC; a model is parameter-free if all probabilities are constant. Apply-
ing a valuation u to a pMDP, denoted M[u], replaces each signomial f in M by
f [u]; we call M[u] the instantiation of M at u. The application of u is to replace

4

s0

s1 s2

s3 s4 s5 s6

p 1−p

q 1−q
p

1−p 1−p p

q 1−q
p

1−p 1−p p

(a) pMC model

s0

s1 s2

s3 s4 s5 s6

0.4 0.6

0.7 0.30.4

0.6 0.6 0.4

0.7 0.30.4

0.6 0.6 0.4

(b) Instantiation using p=0.4
and q=0.7

Fig. 1. A variant of the Knuth–Yao die for unfair coins.

the transition function f by the probability f [u]. A valuation u is well-defined for
M if the replacement yields probability distributions at all states; the resulting
model M[u] is an MDP or an MC.

Example 1 (pMC). Consider a variant of the Knuth–Yao model of a die [2], where
a six-sided die is simulated by successive coin flips. We alternate flipping two
biased coins, which result in heads with probabilities defined by the monomials
p and q, respectively. Consequently, the probability for tails is given by the
signomials 1− p and 1− q, respectively. The corresponding pMC is depicted in
Fig. 1(a); and the instantiated MC for p = 0.4 and q = 0.7 is given in Fig. 1(b).
Note that we omit actions, as the model is deterministic.

In order to define a probability measure and expected cost on MDPs, nonde-
terministic choices are resolved by so-called schedulers. For practical reasons we
restrict ourselves to memoryless schedulers; details can be found in [36].

Definition 4 (Scheduler). A (randomized) scheduler for an MDP M is a
function σ : S → Distr(Act) such that σ(s)(α) > 0 implies α ∈ Act(s). The set
of all schedulers over M is denoted by SchedM.

Applying a scheduler to an MDP yields a so-called induced Markov chain.

Definition 5 (Induced MC). Let MDP M = (S, sI ,Act ,P) and scheduler
σ ∈ SchedM. The MC induced by M and σ is Mσ = (S, sI ,Act ,Pσ) where for
all s, s′ ∈ S,

Pσ(s, s′) =
∑

α∈Act(s)

σ(s)(α) · P(s, α, s′).

We consider reachability properties and expected cost properties. For MC D with
states S, let PrDs (♦T) denote the probability of reaching a set of target states
T ⊆ S from state s ∈ S; simply PrD(♦T) denotes the probability for initial state
sI . We use the standard probability measure as in [36, Ch. 10]. For threshold
λ ∈ [0, 1], the reachability property asserting that a target state is to be reached
with probability at most λ is denoted ϕ = P≤λ(♦T). The property is satisfied
by D, written D |= ϕ, iff PrD(♦T) ≤ λ.

5

The cost of a path through MC D until a set of goal states G ⊆ S is the
sum of action costs visited along the path. The expected cost of a finite path
is the product of its probability and its cost. For PrD(♦G) = 1, the expected
cost of reaching G is the sum of expected costs of all paths leading to G. An
expected cost property EC≤κ(♦G) is satisfied if the expected cost of reaching T
is bounded by a threshold κ ∈ R. Formal definitions are given in e.g., [36].

If multiple specifications ϕ1, . . . , ϕq are given, which are either reachability
properties or expected cost properties of the aforementioned forms, we write the
satisfaction of all specifications ϕ1, . . . , ϕq for an MC D as D |= ϕ1 ∧ . . . ∧ ϕq.

An MDP M satisfies the specifications ϕ1, . . . , ϕq, iff for all schedulers

σ ∈ SchedM it holds that Mσ |= ϕ1 ∧ . . . ∧ ϕq. The verification of multiple
specifications is also referred to as multi-objective model checking [9,16]. We are
also interested in the so-called scheduler synthesis problem, where the aim is
to find a scheduler σ such that the specifications are satisfied (although other
schedulers may not satisfy the specifications).

3 Nonlinear programming for pMDPs

In this section we formally state a general pMDP parameter synthesis problem
and describe how it can be formulated using nonlinear programming.

3.1 Formal problem statement

Problem 1. Given a pMDP M = (S, sI ,Act , V,P), specifications ϕ1, . . . , ϕq

that are either probabilistic reachability properties or expected cost properties,
and an objective function f : V → R over the variables V , compute a well-
defined valuation u ∈ ValV for M, and a (randomized) scheduler σ ∈ SchedM

such that the following conditions hold:

(a) Feasibility: the Markov chain Mσ[u] induced by scheduler σ and instanti-
ated by valuation u satisfies the specifications, i.e., Mσ[u] |= ϕ1∧ . . .∧ϕq.

(b) Optimality: the objective f is minimized.

Intuitively, we wish to compute a parameter valuation and a scheduler such
that all specifications are satisfied, and the objective is globally minimized. We
refer to a valuation–scheduler pair (u, σ) that satisfies condition (a), i.e., only
guarantees satisfaction of the specifications but does not necessarily minimize
the objective f , as a feasible solution to the pMDP synthesis problem. If both
(a) and (b) are satisfied, the pair is an optimal solution to the pMDP synthesis
problem.

6

3.2 Nonlinear encoding

We now provide an NLP encoding of Problem 1. A general NLP over a set of
real-valued variables V can be written as

minimize f (2)

subject to

∀i. 1 ≤ i ≤ m gi ≤ 0, (3)

∀j. 1 ≤ i ≤ p hj = 0, (4)

where f , gi, and hj are arbitrary functions over V , and m and p are the number
of inequality and equality constraints of the program respectively. Tools like
IPOPT [10] solve small instances of such problems.

Consider a pMDP M = (S, sI ,Act , V,P) with specifications ϕ1 = P≤λ(♦T)
and ϕ2 = EC≤κ(♦G). We will discuss how additional specifications of either
type can be encoded. The set V = V ∪W of variables of the NLP consists of the
variables V that occur in the pMDP as well as a set W of additional variables:

– {σs,α | s ∈ S, α ∈ Act(s)}, which define the randomized scheduler σ by
σ(s)(α) = σs,α.

– {ps | s ∈ S}, where ps is the probability of reaching the target set T ⊆ S
from state s under scheduler σ, and

– {cs | s ∈ S}, where cs is the expected cost to reach G ⊆ S from s under σ.

A valuation over V consists of a valuation u ∈ ValV over the pMDP variables
and a valuation w ∈ ValW over the additional variables.

minimize f (5)

subject to

psI ≤ λ, (6)

csI ≤ κ, (7)

∀s ∈ S.
∑

α∈Act(s)

σs,α = 1, (8)

∀s ∈ S ∀α ∈ Act(s). 0 ≤ σs,α ≤ 1, (9)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P(s, α, s′) = 1, (10)

∀s, s′ ∈ S ∀α ∈ Act(s). 0 ≤ P(s, α, s′) ≤ 1, (11)

∀s ∈ T. ps = 1, (12)

∀s ∈ S \ T. ps =
∑

α∈Act(s)

σs,α ·
∑

s′∈S

P(s, α, s′) · ps′ , (13)

∀s ∈ G. cs = 0, (14)

∀s ∈ S \G. cs =
∑

α∈Act(s)

σs,α ·
(

c(s, α) +
∑

s′∈S

P(s, α, s′) · cs′
)

.

(15)

7

The NLP (5)–(15) encodes Problem 1 in the following way. The objective func-
tion f in (5) is any real-valued function over the variables V . The constraints (6)
and (7) encode the specifications ϕ1 and ϕ2, respectively. The constraints (8)–(9)
ensure that the scheduler obtained is well-defined by requiring that the scheduler
variables at each state sum to unity. Similarly, the constraints (10)–(11) ensure
that for all states, parameters from V are instantiated such that probabilities
sum up to one. (These constraints are included if not all probabilities at a state
are constant.) The probability of reaching the target for all states in the target
set is set to one using (12). The reachability probabilities in each state depend on
the reachability of the successor states and the transition probabilities to those
states through (13). Analogously to the reachability probabilities, the cost for
each goal state G ⊆ S must be zero, thereby precluding the collection of infinite
cost at absorbing states, as enforced by (14). Finally, the expected cost for all
states except target states is given by the equation (15), where according to the
strategy σ the cost of each action is added to the expected cost of the successors.

We can readily extend the NLP to include more specifications. If another
reachability property ϕ′ = P≤λ′(♦T ′) is given, we add the set of probability
variables {p′s | s ∈ S} to W , and duplicate the constraints (12)–(13) accordingly.
To ensure satisfaction of ϕ′, we also add the constraint p′sI ≤ λ′. The procedure
is similar for additional expected cost properties. By construction, we have the
following result relating the NLP encoding and Problem 1.

Theorem 1. The NLP (5)–(15) is sound and complete with respect to Prob-
lem 1.

We refer to soundness in the sense that each variable assignment that satisfies the
constraints induces a scheduler and a valuation of parameters such that a feasible
solution of the problem is induced. Moreover, any optimal solution to the NLP
induces an optimal solution of the problem. Completeness means that all possible
solutions of the problem can be encoded by this NLP; while unsatisfiability
means that no such solution exists, making the problem infeasible.

Signomial programs. By Def. 1 and 3, all constraints in the NLP consist of sig-
nomial functions. A special class of NLPs known as signomial programs (SGPs)
is of the form (2)–(4) where f , gi and hj are signomials over V , see Def. 1. There-
fore, we observe that the NLP (5)–(15) is an SGP. We will refer to the NLP as
an SGP in what follows.

SGPs with equality constraints consisting of functions that are not affine
are not convex in general. In particular, the SGP (5)–(15) is not necessarily
convex. Consider a simple pMC only having transition probabilities of the form
p and 1 − p, as in Example 1. The function in the equality constraint (13) of
the corresponding SGP encoding is not affine in parameter p and the probability
variable ps for some state s ∈ S. More generally, the equality constraints (10),
(13), and (15) involving P are not necessarily affine, and thus the SGP may not
be a convex program [38]. Whereas for convex programs global optimal solutions
can be found efficiently [38], such guarantees are not given for SGPs. However,

8

we can efficiently obtain local optimal solutions for SGPs in our setting, as shown
in the following sections.

4 Convexification

We investigate how to transform the SGP (5)–(15) into a convex program by
relaxing equality constraints and a lifting of variables of the SGP. A certain sub-
class of SGPs called geometric programs (GPs) can be transformed into convex
programs [7, §2.5] and solved efficiently. A GP is an SGP of the form (2)–(4)
where f, gi ∈ PosV and hj ∈ MonV . We will refer to a constraint with posynomial
or monomial function as a posynomial or monomial constraint, respectively.

4.1 Transformation and relaxation of equality constraints

As discussed before, the SGP (5)–(15) is not convex because of the presence of
non-affine equality constraints. First observe the following transformation [7]:

f ≤ h⇐⇒
f

h
≤ 1, (16)

for f ∈ PosV and h ∈ MonV . Note that monomials are strictly positive (Def. 1).
This (division-)transformation of f ≤ h yields a posynomial inequality con-
straint.

We relax all equality constraints of SGP (5)–(15) that are not monomials to
inequalities, then we apply the division-transformation wherever possible. Con-
straints (6), (7), (8), (10), (13), and (15) are transformed to

psI
λ

≤ 1, (17)

csI
κ

≤ 1, (18)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (19)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P(s, α, s′) ≤ 1, (20)

∀s ∈ S \ T.

∑

α∈Act(s)

σs,α ·
∑

s′∈S

P(s, α, s′) · ps′

ps
≤ 1, (21)

∀s ∈ S \G.

∑

α∈Act(s)

σs,α ·
(

c(s, α) +
∑

s′∈S

P(s, α, s′) · cs′
)

cs
≤ 1. (22)

These constraints are not necessarily posynomial inequality constraints because
(as in Def. 3) we allow signomial expressions in the transition probability function
P . Therefore, replacing (6), (7), (8), (10), (13), and (15) in the SGP with (17)–
(22) does not by itself convert the SGP to a GP.

9

ss1

s2 sn−1

sn
f1

f2
fn−1

1−
∑

n−1

i=1
fi

. . .

(a) signomial transition functions

ss1

s2 sn−1

sn
f1

f2
fn−1

f̄

. . .

(b) posynomial transition functions

Fig. 2. Lifting of signomial transition probability function.

4.2 Convexification by lifting

The relaxed equality constraints (20)–(22) involving P are signomial, rather
than posynomial, because the parameters enter Problem 1 in signomial form.
Specifically, consider the relaxed equality constraint (21) at s0 in Example 1,

p · ps1 + (1 − p) · ps2
ps0

≤ 1. (23)

The term (1 − p) · ps2 is signomial in p and ps2 . We lift by introducing a new
variable p̄ = 1 − p, and rewrite (23) as a posynomial inequality constraint and
an equality constraint in the lifted variables:

p · ps1 + p̄ · ps2
ps0

≤ 1, p̄ = 1− p. (24)

We relax the (non-monomial) equality constraint to p + p̄ ≤ 1. More generally,
we restrict the way parameters occur in P as follows. Refer to Fig. 2(a). For
every state s ∈ S and every action α ∈ Act(s) we require that there exists at
most one state s̄ ∈ S such that P(s, α, s̄) ∈ SigV and P(s, α, s′) ∈ PosV for all
s′ ∈ S \ {s̄}. In particular, we require that

P(s, α, s̄)
︸ ︷︷ ︸

∈SigV

= 1−
∑

s′∈S\{s̄}

P(s, α, s′)
︸ ︷︷ ︸

∈PosV

.

This requirement is met by all benchmarks available at the PARAM–webpage [26].
In general, we lift by introducing a new variable p̄s,α,s̄ = P(s, α, s̄) for each such
state s ∈ S; refer to Fig. 2(b). We denote this set of lifting variables by L. Lifting
as explained above then creates a new transition probability function P̄ where
for every s, s′ ∈ S and α ∈ Act we have P̄(s, α, s′) ∈ PosV∪L.

We call the set of constraints obtained through transformation, relaxation,
and lifting of every constraint of the SGP (6)–(15) as shown above the convexi-
fied constraints. Any posynomial objective subject to the convexified constraints
forms by construction a GP over the pMDP parameters V , the SGP additional
variables W , and the lifting variables L.

10

4.3 Tightening the constraints

A solution of the GP as obtained in the previous section does not have a direct
relation to the original SGP (5)–(15). In particular, a solution to the GP may
not have the relaxed constraints satisfied with equality. For (19) and (20), the
induced parameter valuation and the scheduler are not well-defined, i.e., the
probabilities may not sum to one. We need to relate the relaxed and lifted GP
to Problem 1. By defining a regularization function F over all parameter and
scheduler variables, we ensure that the constraints are satisfied with equality;
enforcing well-defined probability distributions.

F =
∑

p∈V

1

p
+
∑

p̄∈L

1

p̄
+

∑

s∈S,α∈Act(s)

1

σs,α
. (25)

The function F is monotone in all its variables. We discard the original objective
f in (5) and form a GP with the regularization objective F (25):

minimize F (26)

subject to
psI
λ

≤ 1, (27)

csI
κ

≤ 1, (28)

∀s ∈ S.
∑

α∈Act(s)

σs,α ≤ 1, (29)

∀s ∈ S ∀α ∈ Act(s). σs,α ≤ 1, (30)

∀s ∈ S ∀α ∈ Act(s).
∑

s′∈S

P̄(s, α, s′) ≤ 1, (31)

∀s, s′ ∈ S ∀α ∈ Act(s). P̄(s, α, s′) ≤ 1, (32)

∀s ∈ T. ps = 1, (33)

∀s ∈ S \ T.

∑

α∈Act(s)

σs,α ·
∑

s′∈S

P̄(s, α, s′) · ps′

ps
≤ 1, (34)

∀s ∈ S \G.

∑

α∈Act(s)

σs,α ·
(

c(s, α) +
∑

s′∈S

P̄(s, α, s′) · cs′
)

cs
≤ 1.

(35)

Since the objective F (25) and the inequality constraints (29) and (31) are mono-
tone in V , L, and the scheduler variables, each optimal solution for a feasible
problem satisfies them with equality. We obtain a well-defined scheduler σ and a
valuation u as in Problem 1. Note that variables from (14) are explicitly excluded
from the GP by treating them as constants.

11

The reachability probability constraints (34) and cost constraints (35) need
not be satisfied with equality. However, (34) is equivalent to

ps ≥
∑

α∈Act(s)

σs,α ·
∑

s′∈S

P̄(s, α, s′) · ps′

for all s ∈ S \ T and α ∈ Act . The probability variables ps are assigned upper
bounds on the actual probability to reach the target states T under scheduler σ
and valuation u. Put differently, the ps variables cannot be assigned values that
are lower than the actual probability; ensuring that σ and u induce satisfaction
of the specification given by (27) if the problem is feasible and σ and u are well-
defined. An analogous reasoning applies to the expected cost computation (35).
A solution consisting of a scheduler or valuation that are not well-defined occurs
only if Problem 1 itself is infeasible. Identifying that such a solution has been
obtained is easy. These facts allow us to state the main result of this section.

Theorem 2. A solution of the GP (26)–(35) inducing well-defined scheduler σ
and valuation u is a feasible solution to Problem 1.

Note that the actual probabilities induced by σ and u for the given pMDP
M are given by the MC Mσ[u] induced by σ and instantiated by u. Since all
variables are implicitly positive in a GP, no transition probability function will
be instantiated to probability zero. The case of a scheduler variable being zero
to induce the optimum can be excluded by a previous graph analysis.

5 Sequential Geometric Programming

We showed how to efficiently obtain a feasible solution for Problem 1 by solving
GP (26)–(35). We propose a sequential convex programming trust-region method
to compute a local optimum of the SGP (5)–(15), following [7, §9.1], solving a
sequence of GPs. We obtain each GP by replacing signomial functions in equality
constraints of the SGP (5)–(15) with monomial approximations of the functions.

Definition 6 (Monomial approximation). Given a posynomial f ∈ SigV ,
variables V = {x1, . . . , xn}, and a valuation u ∈ ValV , a monomial approxima-

tion f̂ ∈ MonV for f near u is

∀i.1 ≤ i ≤ n f̂ = f [u]

n∏

i=1

(

xi
u(xi)

)ai

, where ai =
u(xi)

f [u]

∂f

∂xi
[u].

Intuitively, we compute a linearization f̂ of f ∈ SigV around a fixed valuation u.
We enforce the fidelity of monomial approximation f̂ of f ∈ SigV by restricting
valuations to remain within a set known as trust region. We define the following
constraints on the variables V with t > 1 determining the size of the trust region:

∀i.1 ≤ i ≤ n (1/t) · u(xi) ≤ xi ≤ t · u(xi) (36)

12

For a given valuation u, we approximate the SGP (5)–(15) to obtain a local
GP as follows. First, we apply a lifting procedure (Section 4.2) to the SGP
ensuring that all constraints consist of posynomial functions. The thus obtained
posynomial inequality constraints are included in the local GP. After replacing
posynomials in every equality constraint by their monomial approximations near
u, the resulting monomial equality constraints are also included. Finally, we add
trust region constraints (36) for scheduler and parameter variables. The objective
function is the same as for the SGP. The optimal solution of the local GP is not
necessarily a feasible solution to the SGP. Therefore, we first normalize the
scheduler and parameter values to obtain well-defined probability distributions.
These normalized values are used to compute precise probabilities and expected
cost using PRISM. The steps above provide a feasible solution of the SGP.

We use such approximations to obtain a sequence of feasible solutions to
the SGP approaching a local optimum of the SGP. First, we compute a feasible
solution u(0) for Problem 1 (Section 4), forming the initial point of a sequence
of solutions u(0), . . . , u(N), N ∈ N. The solution u(k) for 0 ≤ k ≤ N is obtained
from a local GP defined using u(k−1) as explained above.

The parameter t for each iteration k is determined based on its value for the
previous iteration, and the ratio of f

[
u(k−1)

]
to f

[
u(k−2)

]
, where f is the objec-

tive function in (5). The iterations are stopped when
∣
∣f
[
u(k)

]
− f

[
u(k−1)

]∣
∣ < ǫ.

Intuitively, ǫ defines the required improvement on the objective value for each
iteration; once there is not enough improvement the process terminates.

6 Applications

We discuss two applications and their restrictions for the general SGP (5)–(15).

Model repair. For MC D and specification ϕ with D 6|= ϕ, the model repair
problem [13] is to transform D to D′ such that D′ |= ϕ. The transformation
involves a change of transition probabilities. Additionally, a cost function mea-
sures the change of probabilities. The natural underlying model is a pMC where
parameters are added to probabilities. The cost function is minimized subject
to constraints that induce satisfaction of ϕ. In [13], the problem is given as NLP.
Heuristic [27] and simulation-based methods [19] (for MDPs) were presented.

Leveraging our results, one can readily encode model repair problems for
MDPs, multiple objectives, and restrictions on probability or cost changes di-
rectly as NLPs. The encoding as in [13] is handled by our method in Section 5
as it involves signomial constraints. We now propose a more efficient approach,
which encodes the change of probabilities using monomial functions. Consider an
MDP M = (S, sI ,Act ,P) and specifications ϕ1, . . . , ϕq with M 6|= ϕ1 ∧ . . .∧ϕq.
For each probability P(s, α, s′) = a ∈ R that may be changed, introduce a
parameter p, forming the parameter set V . We define a parametric transition
probability function by P ′(s, α, s′) = p · a ∈ MonV . The quadratic cost function
is for instance f =

∑

p∈V p
2 ∈ PosV . By minimizing the sum of squares of the

parameters (with some regularization), the change of probabilities is minimized.

13

By incorporating these modifications into SGP (5)–(15), our approach is
directly applicable. Either we restrict the cost function f to an upper bound,
and efficiently solve a feasibility problem (Section 4), or we compute a local
minimum of the cost function (Section 5). In contrast to [13], our approach
works for MDPs and has an efficient solution. While [19] uses fast simulation
techniques, we can directly incorporate multiple objectives and restrictions on
the results while offering an efficient numerical solution of the problem.

Parameter space partitioning. For pMDPs, tools like PRISM [15] or PROPh-
ESY [25] aim at partitioning the parameter space into regions with respect to a
specification. A parameter region is given by a convex polytope defined by lin-
ear inequalities over the parameters, restricting valuations to a region. Now, for
pMDP M a region is safe regarding a specification ϕ, if no valuation u inside this
region and no scheduler σ induce Mσ[u] 6|= ϕ. Vice versa, a region is unsafe, if
there is no valuation and scheduler such that the specification is satisfied. In [25],
this certification is performed using SMT solving. More efficiency is achieved by
using an approximation method [33].

Certifying regions to be unsafe is directly possible using our approach. As-
sume pMDPM, specifications ϕ1, . . . , ϕq, and a region candidate defined by a set
of linear inequalities. We incorporate the inequalities in the NLP (5)–(15). If the
feasibility problem (Section 4) has no solution, the region is unsafe. This yields
the first efficient numerical method for this problem of which we are aware. Prov-
ing that a region is safe is more involved. Given one specification ϕ = P≤λ(♦T),
we maximize the probability to reach T . If this probability is at most λ, the
region is safe. For using our method from Section 5, one needs domain specific
knowledge to show that a local optimum is a global optimum.

7 Experiments

We implemented a prototype using the Python interfaces of the probabilistic
model checker STORM [29] and the optimization solver MOSEK [35]. All exper-
iments were run on a 2.6 GHz machine with 32 GB RAM. We used PRISM [15] to
correct approximation errors as explained before. We evaluated our approaches
using mainly examples from the PARAM–webpage [26] and from PRISM [18].
We considered several parametric instances of the Bounded Retransmission Pro-
tocol (BRP) [4], NAND Multiplexing [6], and the Consensus protocol (CONS) [3].
For BRP, we have a pMC and a pMDP version, NAND is a pMC, and CONS
is a pMDP. For obtaining feasibility solutions, we compare to the SMT solver
Z3 [17]. For additional optimality criteria, there is no comparison to another tool
possible as IPOPT [10] already fails for the smallest instances we consider.

Fig. 3(a) states for each benchmark instance the number of states (#states)
and the number of parameters (#par). We defined two specifications consisting
of a expected cost property (EC) and a reachability property (P). For some
benchmarks, we also maximized the probability to reach a set of “good states”
(∗). We list the times taken by MOSEK; for optimality problems we also list

14

Benchmark #states #par specs MOSEK (s) Z3

BRP (pMC) 5382 2 EC, P, ∗ 23.17 (6.48) −

112646 2 EC, P, ∗ 3541.59 (463.74) −

112646 4 EC, P, ∗ 4173.33 (568.79) −

5382 2 EC, P 3.61 904.11
112646 2 EC, P 479.08 TO

NAND (pMC) 4122 2 EC, P, ∗ 14.67 (2.51) −

35122 2 EC, P, ∗ 1182.41 (95.19) −

4122 2 EC, P 1.25 1.14
35122 2 EC, P 106.40 11.49

BRP (pMDP) 5466 2 EC, P, ∗ 31.04 (8.11) −

112846 2 EC, P, ∗ 4319.16 (512.20) −

5466 2 EC, P 4.93 1174.20
112846 2 EC, P 711.50 TO

CONS (pMDP) 4112 2 EC, P, ∗ 102.93 (1.14) −

65552 2 EC, P, ∗ TO −

4112 2 EC, P 6.13 TO
65552 2 EC, P 1361.96 TO

(a) Benchmark results

2 3 4 5 6 7 8

0.1

0.2

0.5

1

2

5

10

20

50

TO

Number of parameters

T
im

e
(s
)

MOSEK Z3

PROPhESY

(b) Sensitivity to #par

Fig. 3. Experiments.

the times PRISM took to compute precise probabilities or costs (Section 5). For
feasibility problems we list the times of Z3. The timeout (TO) is 90 minutes.

We observe that both for feasibility with optimality criteria we can handle
most benchmarks of up to 105 states within the timeout, while we ran into a
timeout for CONS. The number of iterations N in the sequential convex pro-
gramming is less than 12 for all benchmarks with ǫ = 10−3. As expected, simply
solving feasibility problems is faster by at least one order of magnitude. Raising
the number of parameters from 2 to 4 for BRP does not cause a major perfor-
mance hit, contrary to existing tools. For all benchmarks except NAND, Z3 only
delivered results for the smallest instances within the timeout.

To demonstrate the insensitivity of our approach to the number of parame-
ters, we considered a pMC of rolling multiple Knuth–Yao dice with 156 states,
522 transitions and considered instances with up to 8 different parameters. The
timeout is 100 seconds. In Fig. 3(b) we compare our encoding in MOSEK for this
benchmark to the mere computation of a rational function using PROPhESY [25]
and again to Z3. PROPhESY already runs into a timeout for 4 parameters3. Z3
needs around 15 seconds for most of the tests. Using GPs with MOSEK proves
far more efficient as it needs less than one second for all instances.

In addition, we test model repair (Section 6) on a BRP instance with 17415
states for ϕ = P≤0.9(♦T). The initial parameter instantiation violates ϕ. We
performed model repair towards satisfaction of ϕ. The probability of reaching T
results in 0.79 and the associated cost is 0.013. The computation time is 21.93
seconds. We compare our result to an implementation of [19], where the proba-
bility of reaching T is 0.58 and the associated cost is 0.064. However, the time
for the simulation-based method is only 2.4 seconds, highlighting the expected
trade-off between optimality and computation times for the two methods.

3 Due to the costly computation of greatest common divisors employed in PROPhESY.

15

Finally, we encode model repair for the small pMC from Example 1 in IPOPT,
see [13]. For ψ = P≤0.125(♦T) where T represents the outcome of the die being 2,
the initial instantiation induces probability 1/6. With our method, the probabil-
ity of satisfying ψ is 0.1248 and the cost is 0.0128. With IPOPT, the probability
is 0.125 with cost 0.1025, showing that our result is nearly optimal.

8 Conclusion and future work

We presented a way to use convex optimization in the field of parameter synthesis
for parametric Markov models. Using our results, many NLP encodings of related
problems now have a direct and efficient solution.

Future work will concern the integration of these methods into mature tools
like PRISM or PROPhESY to enable large-scale benchmarking by state space
reduction techniques and advanced data structures. Moreover, we will explore
extensions to richer models like continuous-time Markov chains [31].

16

References

1. Jay K. Satia and Roy E. Lave Jr. Markovian decision processes with uncertain
transition probabilities. Operations Research, 21(3):728–740, 1973.

2. Donald E. Knuth and Andrew C. Yao. The complexity of nonuniform random
number generation. In Joseph F. Traub, editor, Algorithms and Complexity: New
Directions and Recent Results, page 375. Academic Press, 1976.

3. James Aspnes and Maurice Herlihy. Fast randomized consensus using shared mem-
ory. Journal of Algorithms, 15(1):441–460, 1990.

4. L. Helmink, M. Sellink, and F. Vaandrager. Proof-checking a data link protocol.
In TYPES, volume 806 of LNCS, pages 127–165. Springer, 1994.

5. Jean B. Lasserre. Global optimization with polynomials and the problem of mo-
ments. SIAM Journal on Optimization, 11(3):796–817, 2001.

6. Jie Han and Pieter Jonker. A system architecture solution for unreliable nanoelec-
tronic devices. IEEE Transactions on Nanotechnology, 1:201–208, 2002.

7. Stephen Boyd, Seung-Jean Kim, Lieven Vandenberghe, and Arash Hassibi. A
tutorial on geometric programming. Optimization and Engineering, 8(1), 2007.

8. Stephen Boyd. Sequential convex programming. Lecture Notes, 2008.
9. Kousha Etessami, Marta Kwiatkowska, Moshe Y. Vardi, and Mihalis Yannakakis.

Multi-objective model checking of Markov decision processes. LMCS, 4(4), 2008.
10. Lorenz T. Biegler and Victor M. Zavala. Large-scale nonlinear programming us-

ing IPOPT: An integrating framework for enterprise-wide dynamic optimization.
Computers & Chemical Engineering, 33(3):575–582, 2009.

11. Ernst Moritz Hahn, Holger Hermanns, Björn Wachter, and Lijun Zhang. PARAM:
A model checker for parametric Markov models. In CAV, volume 6174 of LNCS,
pages 660–664. Springer, 2010.

12. Ernst Moritz Hahn, Holger Hermanns, and Lijun Zhang. Probabilistic reachability
for parametric Markov models. STTT, 13(1):3–19, 2010.

13. Ezio Bartocci, Radu Grosu, Panagiotis Katsaros, CR Ramakrishnan, and Scott A
Smolka. Model repair for probabilistic systems. In TACAS, volume 6605 of LNCS,
pages 326–340. Springer, 2011.

14. Vojtech Forejt, Marta Kwiatkowska, Gethin Norman, David Parker, and Hongyang
Qu. Quantitative multi-objective verification for probabilistic systems. In TACAS,
volume 6605 of LNCS, pages 112–127. Springer, 2011.

15. Marta Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Verification
of probabilistic real-time systems. In CAV, volume 6806 of LNCS, pages 585–591.
Springer, 2011.

16. Vojtech Forejt, Marta Kwiatkowska, and David Parker. Pareto curves for proba-
bilistic model checking. In ATVA, volume 7561 of LNCS, pages 317–332. Springer,
2012.

17. Dejan Jovanovic and Leonardo Mendonça de Moura. Solving non-linear arithmetic.
In IJCAR, volume 7364 of LNCS, pages 339–354. Springer, 2012.

18. Marta Kwiatkowska, Gethin Norman, and David Parker. The PRISM benchmark
suite. In QEST, pages 203–204. IEEE CS, 2012.

19. Taolue Chen, Ernst Moritz Hahn, Tingting Han, Marta Kwiatkowska, Hongyang
Qu, and Lijun Zhang. Model repair for Markov decision processes. In TASE, pages
85–92. IEEE CS, 2013.

20. Alberto Puggelli, Wenchao Li, Alberto L. Sangiovanni-Vincentelli, and Sanjit A.
Seshia. Polynomial-time verification of PCTL properties of MDPs with convex
uncertainties. In CAV, volume 8044 of LNCS, pages 527–542. Springer, 2013.

17

21. Milan Ceska, Frits Dannenberg, Marta Kwiatkowska, and Nicola Paoletti. Precise
parameter synthesis for stochastic biochemical systems. In CMSB, volume 8859 of
LNCS, pages 86–98. LNCS, 2014.

22. Ernst Moritz Hahn, Yong Li, Sven Schewe, Andrea Turrini, and Lijun Zhang. is-
casMc: A web-based probabilistic model checker. In FM, volume 8442 of LNCS,
pages 312–317. Springer, 2014.

23. Nils Jansen, Florian Corzilius, Matthias Volk, Ralf Wimmer, Erika Ábrahám, Joost-
Pieter Katoen, and Bernd Becker. Accelerating parametric probabilistic verifica-
tion. In QEST, volume 8657 of LNCS, pages 404–420. Springer, 2014.

24. Guoxin Su and David S. Rosenblum. Nested reachability approximation for
discrete-time Markov chains with univariate parameters. In ATVA, volume 8837
of LNCS, pages 364–379. Springer, 2014.

25. Christian Dehnert, Sebastian Junges, Nils Jansen, Florian Corzilius, Matthias Volk,
Harold Bruintjes, Joost-Pieter Katoen, and Erika Ábrahám. Prophesy: A proba-
bilistic parameter synthesis tool. In CAV (1), volume 9206 of LNCS, pages 214–231.
Springer, 2015.

26. PARAM Website, 2015. http://depend.cs.uni-sb.de/tools/param/.
27. Shashank Pathak, Erika Ábrahám, Nils Jansen, Armando Tacchella, and Joost-

Pieter Katoen. A greedy approach for the efficient repair of stochastic models. In
NFM, volume 9058 of LNCS, pages 295–309. Springer, 2015.

28. Luca Bortolussi, Dimitrios Milios, and Guido Sanguinetti. Smoothed model check-
ing for uncertain continuous-time Markov chains. Inf. Comput., 247:235–253, 2016.

29. Christian Dehnert, Sebastian Junges, Joost-Pieter Katoen, and Matthias Volk. The
probabilistic model checker storm (extended abstract). CoRR, abs/1610.08713,
2016.

30. Karina Valdivia Delgado, Leliane N. de Barros, Daniel B. Dias, and Scott Sanner.
Real-time dynamic programming for Markov decision processes with imprecise
probabilities. Artif. Intell., 230:192–223, 2016.

31. Joost-Pieter Katoen. The probabilistic model checking landscape. In IEEE Sym-
posium on Logic In Computer Science (LICS). ACM, 2016.

32. Fan Long and Martin Rinard. Automatic patch generation by learning correct
code. In POPL, pages 298–312. ACM, 2016.

33. Tim Quatmann, Christian Dehnert, Nils Jansen, Sebastian Junges, and Joost-
Pieter Katoen. Parameter synthesis for Markov models: Faster than ever. In
ATVA, volume 9938 of LNCS, pages 50–67, 2016.

34. Guoxin Su, David S. Rosenblum, and Giordano Tamburrelli. Reliability of run-
time qos evaluation using parametric model checking. In ICSE. ACM, 2016. to
appear.

35. MOSEK ApS. The MOSEK optimization toolbox for PYTHON. Version 7.1 (Re-
vision 60), 2015.

36. Christel Baier and Joost-Pieter Katoen. Principles of Model Checking. MIT Press,
2008.

37. Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific Belmont, 1999.
38. Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge Uni-

versity Press, New York, NY, USA, 2004.
39. Sebastian Thrun, Wolfram Burgard, and Dieter Fox. Probabilistic Robotics. MIT

Press, 2005.

18

http://depend.cs.uni-sb.de/tools/param/

	Sequential Convex Programming for the Efficient Verification of Parametric MDPs

