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Abstract. Modern websites include various types of third-party con-
tent such as JavaScript, images, stylesheets, and Flash objects in order
to create interactive user interfaces. In addition to explicit inclusion of
third-party content by website publishers, ISPs and browser extensions
are hijacking web browsing sessions with increasing frequency to inject
third-party content (e.g., ads). However, third-party content can also in-
troduce security risks to users of these websites, unbeknownst to both
website operators and users. Because of the often highly dynamic nature
of these inclusions as well as the use of advanced cloaking techniques in
contemporary malware, it is exceedingly difficult to preemptively recog-
nize and block inclusions of malicious third-party content before it has
the chance to attack the user’s system.
In this paper, we propose a novel approach to achieving the goal of
preemptive blocking of malicious third-party content inclusion through
an analysis of inclusion sequences on the Web. We implemented our
approach, called Excision, as a set of modifications to the Chromium
browser that protects users from malicious inclusions while web pages
load. Our analysis suggests that by adopting our in-browser approach,
users can avoid a significant portion of malicious third-party content on
the Web. Our evaluation shows that Excision effectively identifies mali-
cious content while introducing a low false positive rate. Our experiments
also demonstrate that our approach does not negatively impact a user’s
browsing experience when browsing popular websites drawn from the
Alexa Top 500.

Keywords: Web security, Malvertising, Machine learning

1 Introduction

Linking to third-party content has been one of the defining features of the World
Wide Web since its inception, and this feature remains strongly evident today.
For instance, recent research [28] reveals that more than 93% of the most popular
websites include JavaScript from external sources. Developers typically include
third-party content for convenience and performance – e.g., many JavaScript
libraries are hosted on fast content delivery networks (CDNs) and are likely to
already be cached by users – or to integrate with advertising networks, analytics
frameworks, and social media. Third-party content inclusion has also been used
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by entities other than the website publishers themselves. For example, ad injec-
tion has been adopted by ISPs and browser extension authors as a prominent
technique for monetization [25].

However, the inherent feature of content-sharing on the Web is also an
Achilles heel when it comes to security. Advertising networks, as one example,
have emerged as an important vector for adversaries to distribute attacks to a
wide audience [21,22,29,36,43]. Moreover, users are more susceptible to malver-
tising in the presence of ad injection [17,38,42]. In general, linking to third-party
content is essentially an assertion of trust that the content is benign. This as-
sertion can be violated in several ways, however, due to the dynamic nature of
the Web. Since website operators cannot control external content, they cannot
know a priori what links will resolve to in the future. The compromise of linked
content or pure malfeasance on the part of third parties can easily violate these
trust assumptions. This is only exacerbated by the transitive nature of trust on
the Web, where requests for content can be forwarded beyond the first, directly
observable origin to unknown parties.

While the same origin policy (SOP) enforces a modicum of origin-based sep-
aration between code and data from different principals, developers have clam-
ored for more flexible sharing models provided by, e.g., Content Security Policy
(CSP) [7], Cross-Origin Resource Sharing (CORS) [6], and postMessage-based
cross-frame communication. These newer standards permit greater flexibility in
performing cross-origin inclusions, and each come with associated mechanisms
for restricting communication to trusted origins. However, recent work has shown
that these standards are difficult to apply securely in practice [34,40], and do
not necessarily address the challenges of trusting remote inclusions on the dy-
namic Web. In addition to the inapplicability of some approaches such as CSP,
third parties can leverage their power to bypass these security mechanisms. For
example, ISPs and browser extensions are able to tamper with HTTP traffic to
modify or remove CSP rules in HTTP responses [17,38].

In this paper, we propose an in-browser approach called Excision to auto-
matically detect and block malicious third-party content inclusions as web pages
are loaded into the user’s browser or during the execution of browser extensions.
Our approach does not rely on examination of the content of the resources;
rather, it relies on analyzing the sequence of inclusions that leads to the resolu-
tion and loading of a terminal remote resource. Unlike prior work [22], Excision
resolves inclusion sequences through instrumentation of the browser itself, an ap-
proach that provides a high-fidelity view of the third-party inclusion process as
well as the ability to interdict content loading in real-time. This precise view also
renders ineffective common obfuscation techniques used by attackers to evade
detection. Obfuscation causes the detection rate of these approaches to degrade
significantly since obfuscated third-party inclusions cannot be traced using exist-
ing techniques [22]. Furthermore, the in-browser property of our system allows
users to browse websites with a higher confidence since malicious third-party
content is prevented from being included while the web page is loading.
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We implemented Excision as a set of modifications to the Chromium browser,
and evaluated its effectiveness by analyzing the Alexa Top 200K over a period
of 11 months. Our evaluation demonstrates that Excision achieves a 93.39%
detection rate, a false positive rate of 0.59%, and low performance overhead.
We also performed a usability test of our research prototype, which shows that
Excision does not detract from the user’s browsing experience while automati-
cally protecting the user from the vast majority of malicious content on the Web.
The detection results suggest that Excision could be used as a complementary
system to other techniques such as CSP.

The main contributions of this paper are as follows:

– We present a novel in-browser approach called Excision that automatically
detects and blocks malicious third-party content before it can attack the
user’s browser. The approach leverages a high-fidelity in-browser vantage
point that allows it to construct a precise inclusion sequence for every third-
party resource.

– We describe a prototype of Excision for the Chromium browser that can
effectively prevent inclusions of malicious content.

– We evaluate the effectiveness and performance of our prototype, and show
that it is able to automatically detect and block malicious third-party content
inclusions in the wild – including malicious resources not previously identified
by popular malware blacklists – without a significant impact on browser
performance.

– We evaluate the usability of our prototype and show that most users did not
notice any significant quality impact on their browsing experience.

2 Problem Statement

In the following, we first discuss the threats posed by third-party content and
then motivate our work.

2.1 Threats

While the inclusion of third-party content provides convenience for web develop-
ers and allows for integration into advertising distribution, analytics, and social
media networks, it can potentially introduce a set of serious security threats for
users. For instance, advertising networks and social media have been and con-
tinue to be abused as a vector for injection of malware. Website operators, or
publishers, have little control over this content aside from blind trust or security
through isolation. Attacks distributed through these vectors – in the absence of
isolation – execute with the same privileges as all other JavaScript within the
security context of the enclosing DOM. In general, malicious code could launch
drive-by downloads [10], redirect visitors to phishing sites, generate fraudulent
clicks on advertisements [22], or steal user information [16].

Moreover, ad injection has become a new source of income for ISPs and
browser extension authors [25]. ISPs inject advertisements into web pages by
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tampering with their users’ HTTP traffic [9], and browser extension authors have
recently started to inject or replace ads in web pages to monetize their work.
Ad injection negatively impacts both website publishers and users by diverting
revenue from publishers and exposing users to malvertising [38,42]. In addition
to ad injection, malicious browser extensions can also pose significant risks to
users due to the special privileges they have [19].

2.2 Motivation

Publishers can try to isolate untrusted third-party content using iframes (per-
haps enhanced with HTML5 sandboxing features), language-based sandboxing,
or policy enforcement [1,12,15,23,24]. However, these approaches are not com-
monly used in practice; some degrade the quality of ads (from the advertiser’s
perspective), while others are non-trivial to deploy. Publishers could attempt to
use Content Security Policy (CSP) [7] to define and enforce access control lists
for remote inclusions in the browser. However, due to the dynamic nature of
the web, this approach (and similar access control policy-based techniques) has
problems. Recent studies [34,40] indicate that CSP is difficult to apply in prac-
tice. A major reason for this is the unpredictability of the origins of inclusions
for third-party resources, which complicates the construction of a correct, yet
tight, policy.

For example, when websites integrate third-party advertisements, multiple
origins can be contacted in order to deliver an ad to the user’s browser. This is
often due to the practice of re-selling ad space (a process known as ad syndi-
cation) or through real-time ad auctions. Either of these approaches can result
in ads being delivered through a series of JavaScript code inclusions [35]. Addi-
tionally, the growing number of browser extensions makes it a non-trivial task
for website operators to enumerate the set of benign origins from which browser
extensions might include a resource. As an example, for theverge.com website,
the number of unique included domains over a period of 11 months increases
roughly linearly; clearly, constructing an explicit whitelist of domains is a chal-
lenging task.

Even if website publishers can keep pace with origin diversity over time with
a comprehensive list of CSP rules, ISPs and browser extensions are able to
tamper with in-transit HTTP traffic and modify CSP rules sent by the websites.
In addition, in browsers such as Chrome, the web page’s CSP does not apply to
extension scripts executed in the page’s context [2]; hence, extensions are able
to include arbitrary third-party resources into the web page.

Given the challenges described above, we believe that existing techniques such
as CSP can be evaded and, hence, there is a need for an automatic approach to
protect users from malicious third-party content. We do not necessarily advocate
such an approach in isolation, however. Instead, we envision this approach as a
complementary defense that can be layered with other techniques in order to
improve the safety of the Web.
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Fig. 1: An overview of Excision.

3 Excision

In this section, we describe Excision, our approach for detecting and blocking
the inclusion of malicious third-party content in real-time. An overview of our
system is shown in Figure 1. Excision operates by extracting resource inclusion
trees from within the browser. The inclusion tree precisely records the inclusion
relationships between different resources in a web page. When the user requests a
web page, the browser retrieves the corresponding HTML document and passes
it to the rendering engine. The rendering engine incrementally constructs an
inclusion tree for the DOM and begins extracting external resources such as
scripts and frames as it reaches new HTML tags. For inclusion of a new re-
source, the rendering engine consults the CSP engine and the inclusion sequence
classifier in order to decide whether to include the resource. If the resource’s
origin and type are whitelisted in the CSP rules, the rendering engine includes
the resource without consulting the inclusion sequence classifier and continues
parsing the rest of the HTML document. Otherwise, it extracts the inclusion
sequence (path through the page’s inclusion tree) for the resource and forwards
this to the inclusion sequence classifier. Using pre-learned models, the classifier
returns a decision about the malice of the resource to the rendering engine. Fi-
nally, the rendering engine discards the resource if it was identified as malicious.
The same process occurs for resources that are included dynamically during the
execution of extension scripts after they are injected into the page.

3.1 Inclusion Trees and Sequences

A website can include resources in an HTML document from any origin so long as
the inclusion respects the same origin policy, its standard exceptions, or any ad-
ditional policies due to the use of CSP, CORS, or other access control framework.
A first approximation to understanding the inclusions of third-party content for
a given web page is to process its DOM tree [41] while the page loads. However,
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Web Page:a.com/index.html

<html>
  <head><title>...</title></head>
  <body>
    <ul><li>...</li></ul>
    <a href=”…”></a>
    <div>
      <script src=”script.js”></script>
      <img src=”b.net/img.jpg”>
      <script src=”c.org/script.js”></script>
      <link href=”c.org/style.css”>
    </div>
    <img src=”img.jpg”/>
    <script src=”d.com/script.js”></script>
    <iframe src=”e.net/frame.html”>
      <html>
        <head></head>
        <body>
          <script>...</script>
          <object data=”f.org/flash.swf”></object>
        </body>
      </html>
    </iframe>
    <script src=”g.com/script.js”></script>
    <img src=”h.org/img.jpg”/>
  </body>
</html>

a.com/script.js

a.com/index.html

c.org/script.js

b.net/img.jpg

c.org/style.css

(a) (b)

d.com/script.js

inline-script

f.org/flash.swf

a.com/img.jpg

e.net/frame.html

ext-id/script.js

h.org/img.jpg

g.com/script.js

Fig. 2: (a) DOM Tree, and (b) Inclusion Tree

direct use of a web page’s DOM tree is unsatisfactory because the DOM does not
in fact reliably record the inclusion relationships between resources referenced
by a page. This follows from the ability for JavaScript to manipulate the DOM
at run-time using the DOM API.

Instead, in this work we define an inclusion tree abstraction extracted directly
from the browser’s resource loading code. Unlike a DOM tree, the inclusion tree
represents how different resources are included in a web page that is invariant
with respect to run-time DOM updates. It also discards irrelevant portions of
the DOM tree that do not reference remote content. For each resource in the
inclusion tree, there is an inclusion sequence that begins with the root resource
(i.e., the URL of the web page) and terminates with the corresponding resource.
Furthermore, browser extensions can also manipulate the web page by inject-
ing and executing JavaScript code in the page’s context. Hence, the injected
JavaScript is considered a direct child of the root node in the inclusion tree. An
example of a DOM tree and its corresponding inclusion tree is shown in Fig-
ure 2. As shown in Figure 2b, f.org/flash.swf has been dynamically added by
an inline script to the DOM tree, and its corresponding inclusion sequence
has a length of 4 since we remove the inline resources from inclusion sequence.
Moreover, ext-id/script.js is injected by an extension as the direct child of
the root resource. This script then included g.com/script.js, which in turn
included h.org/img.jpg.

3.2 Inclusion Sequence Classification

Given an inclusion sequence, Excision must classify it as benign or malicious
based on features extracted from the sequence. The task of the inclusion sequence
classifier is to assign a class label from the set {benign,malicious} to a given
sequence based on previously learned models from a labeled data set. In our
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definition, a malicious sequence is one that starts from the root URL of a web
page and terminates in a URL that delivers malicious content. For classification,
we used hidden Markov models (HMM) [31]. Models are comprised of states, each
of which holds transitions to other states based on a probability distribution.
Each state can probabilistically emit a symbol from an alphabet. There are
other sequence classification techniques such as Näıve Bayes [20], but we used
an HMM for our classifier because we also want to model the inter-dependencies
between the resources that compose an inclusion sequence.

In the training phase, the system learns two HMMs from a training set of
labeled sequences, one for the benign class and one for the malicious class. We
estimated the HMM parameters by employing the Baum-Welch algorithm which
finds the maximum likelihood estimate of these parameters based on the set of
observed sequences. In our system, we empirically selected 20 for the number of
states that are fully connected to each other. In the subsequent detection phase,
we compute the likelihood of a new sequence given the trained models using
the forward-backward algorithm and assign the sequence to the class with the
highest likelihood. Training hidden Markov models is computationally expensive.
However, computing the likelihood of a sequence is instead very efficient, which
makes it a suitable method for real-time classification [31].

4 Classification Features

Let r0 → r1 → · · · → rn be an inclusion sequence as described above. Feature
extraction begins by converting the inclusion sequence into sequences of feature
vectors. After analyzing the inclusion trees of several thousand benign and mali-
cious websites for a period of 11 months, we identified 12 feature types from three
categories. For each feature type, we compute two different features: individual
and relative features. An individual feature value is only dependent on the cur-
rent resource, but a relative feature value is dependent on the current resource
and its preceding (or parent) resources. Consequently, we have 24 features for
each resource in an inclusion sequence. Individual features can have categorical
or continuous values. All continuous feature values are normalized on [0, 1] and
their values are discretized. In the case of continuous individual features, the
relative feature values are computed by comparing the individual value of the
resource to its parent’s individual value. The result of the comparison is less,
equal, or more. We use the value none for the root resource. To capture the high-
level relationships between different inclusions, we only consider the host part
of the URL for feature calculation.

4.1 DNS-based Features

The first feature category that we consider is based on DNS properties of the
resource host.

Top-Level Domain. For this feature, we measure the types of TLDs from
which a resource is included and how it changes along the inclusion sequence. For
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Value Example

none IPs, Extensions
gen *.com, *.org
gen-subdomain *.us.com
cc *.us, *.de, *.cn
cc-subdomain *.co.uk, *.com.cn
cc-int *.xn--p1ai (ru)
other *.biz, *.info

Table 1: Individual TLD values

Value Example

none root resource
{got,lost}-tld Ext. → *.de, *.us → IP
gen-to-{cc,other} *.org → {*.de, *.info}
cc-to-{gen,other} *.uk → {*.com, *.biz}
other-to-{gen,cc} *.info → {*.net, *.uk}
same-{gen,cc,other} *.com → *.com
diff-{gen,cc,other} *.info → *.biz

Table 2: Relative TLD values.

Value Example

ipv6 2607:f0d0::::4
ipv4-private 192.168.0.1
ipv4-public 4.2.2.4
extension Ext. Scripts
dns-sld google.com
dns-sld-sub www.google.com
dns-non-sld abc.dyndns.org
dns-non-sld-sub a.b.dyndns.org

Table 3: Individual type values

Value Example

none root resource
same-site w.google.com → ad.google.com
same-sld 1.dyndns.org → 2.dyndns.org
same-company ad.google.com → www.google.de
same-eff-tld bbc.co.uk → london.co.uk
same-tld bbc.co.uk → london.uk
different google.com → facebook.net

Table 4: Relative type values.

every resource in an inclusion sequence, we assign one of the values in Table 1
as an individual feature. For the relative feature, we consider the changes that
occur between the top-level domain of the preceding resource and the resource
itself. Table 2 shows 15 different values of the relative TLD feature.

Type. This feature identifies the types of resource hosts and their changes
along the inclusion sequence. Possible values of individual and relative features
are shown in Table 3 and Table 4 respectively.

Level. A domain name consists of a set of labels separated by dots. We say
a domain name with n labels is in level n− 1. For example, www.google.com is
in level 2. For IP addresses and extension scripts, we consider their level to be
1. For a given host, we compute the individual feature by dividing the level by
a maximum value of 126.

Alexa Ranking. We also consider the ranking of a resource’s domain in the
Alexa Top 1M websites. To compute the normalized ranking as an individual
feature, we divide the ranking of the domain by one million. For IP addresses,
extensions, and domains that are not in the top 1M, we use the value none.

4.2 String-based Features

We observed that malicious domain names often make liberal use of digits and
hyphens in combination with alphabetical characters. So, in this feature category,
we characterize the string properties of resource hosts. For IP addresses and
extension scripts, we assign the value 1 for individual features.

Non-Alphabetic Characters. For this feature, we compute the individual
feature value by dividing the number of non-alphabetical characters over the
length of domain.
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Unique Characters. We also measure the number of unique characters that
are used in a domain. The individual feature is the number of unique characters
in the domain divided by the maximum number of unique characters in the
domain name, which is 38 (26 alphabetics, 10 digits, hyphen, and dot).

Character Frequency. For this feature, we simply measure how often a
single character is seen in a domain. To compute an individual feature value,
we calculate the frequency of each character in the domain and then divide the
average of these frequencies by the length of the domain to normalize the value.

Length. In this feature, we measure the length of the domain divided by the
maximum length of a domain, which is 253.

Entropy. In practice, benign domains are typically intended to be memo-
rable to users. This is often not a concern for attackers, as evidenced by the use
of domain generation algorithms [8]. Consequently, we employ Shannon entropy
to measure the randomness of domains in the inclusion sequence. We calculate
normalized entropy as the absolute Shannon entropy divided by the maximum
entropy for the domain name.

4.3 Role-based Features

We observed that identifying the role of resources in the inclusion sequences
can be helpful in detecting malicious resources. For example, recent work [29]
reveals that attackers misuse ad networks as well as URL shortening services
for malicious intent. So far, we consider three roles for a resource:i) ad-network,
ii) content delivery network (CDN), and iii) URL shortening service.

In total, we have three features in this category, as each host can simul-
taneously perform multiple roles. Both individual and relative features in this
category have binary values. For the individual feature, the value is Yes if the
host has the role, and No otherwise. For the relative feature, we assign a value
Yes if at least one of the preceding hosts have the corresponding role, and No
otherwise. For extension scripts, we assign the value No for all of the features.
To assign the roles, we compiled a list of common hosts related to these roles
that contains 5,767 ad-networks, 48 CDNs, and 461 URL shortening services.

5 Implementation

In this section, we discuss our prototype implementation of Excision for de-
tecting and blocking malicious third-party content inclusions. We implemented
Excision as a set of modifications to the Chromium browser1. In order to im-
plement our system, we needed to modify Blink and the Chromium extension
engine to enable Excision to detect and block inclusions of malicious content
in an online and automatic fashion while the web page is loading. The entire
set of modifications consists of less than 1,000 lines of C++ and several lines of
JavaScript.

1 While our implementation could be adopted as-is by any browser vendors that use
WebKit-derived engines, the design presented here is highly likely to be portable to
other browsers.
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5.1 Enhancements to Blink

Blink is primarily responsible for parsing HTML documents, managing script
execution, and fetching resources from the network. Consequently, it is ideally
suited for constructing the inclusion tree for a web page, as well as blocking the
inclusion of malicious content.

Tracking Resource Inclusion. Static resource inclusions that are hard-
coded by publishers inside the page’s HTML are added to the inclusion tree
as the direct children of the root node. For dynamic inclusions (e.g., via the
createElement() and write() DOM API functions), the system must find the script
resource responsible for the resource inclusion. To monitor dynamic resource
inclusions, the system tracks the start and termination of script execution. Any
resources that are included in this interval will be considered as the children of
that script resource in the inclusion tree.

Handling Events and Timers. Events and timers are widely used by
web developers to respond to user interactions (e.g., clicking on an element) or
schedule execution of code after some time has elapsed. To capture the creation
and firing of events and timers, the system tracks the registration of callback
functions for the corresponding APIs.

5.2 Enhancements to the Chromium Extension Engine

The Chromium extension engine handles the loading, management, and execu-
tion of extensions. To access the page’s DOM, the extension injects and executes
content scripts in the page’s context which are regular JavaScript programs.

Tracking Content Scripts Injection and Execution. Content scripts
are usually injected into web pages either via the extension’s manifest file using
the content scripts field or at runtime via the executeScript API. Either way,
content scripts are considered direct children of the root node in the inclusion
tree. Therefore, in order to track the inclusion of resources as a result of content
script execution, the extension engine was modified to track the injection and
execution of content scripts.

Handling Callback Functions. Like any other JavaScript program, con-
tent scripts rely heavily on callback functions. For instance, onMessage and
sendMessage are used by content scripts to exchange messages with their back-
ground pages. To track the execution of callback functions, two JavaScript files
were modified in the extension engine which are responsible for invocation and
management of callback functions.

6 Evaluation

In this section, we evaluate the security benefits, performance, and usability of
the Excision prototype. We describe the data sets we used to train and evaluate
the system, and then present the results of the experiments.
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Item Website Crawl Extension Crawl

Websites Crawled 234,529 20
Unavailable Websites 7,412 0

Unique Inclusion Trees 47,789,268 35,004
Unique Inclusion Sequences 27,261,945 61,489

Unique URLs 546,649,590 72,064
Unique Hosts 1,368,021 1,144
Unique Sites 459,615 749
Unique SLDs 419,119 723
Unique Companies 384,820 719
Unique Effective TLDs 1,115 21
Unique TLDs 404 21
Unique IPs 9,755 3

Table 5: Summary of crawling statistics.

Dataset No. of Inclusion Sequences No. of Terminal hosts

Web. Crawl Ext. Crawl Web. Crawl Ext. Crawl

Benign 3,706,451 7,372 35,044 250
Malicious 25,153 19 1,226 2

Table 6: Data sets used in the evaluation.

6.1 Data Collection

To collect inclusion sequences, we performed two separate crawls for websites
and extensions. The summary of crawling statistics are presented in Table 5.

Website Crawl. We built a crawler based on an instrumented version of
PhantomJS [3], a scriptable open source browser based on WebKit, and crawled
the home pages of the Alexa Top 200K. We performed our data collection from
June 20th, 2014 to May 11th, 2015. The crawl was parallelized by deploying 50
crawler instances on five virtual machines, each of which crawled a fixed sub-
set of the Alexa Top 200K websites. To ensure that visited websites did not
store any data on the clients, the crawler ran a fresh instance of PhantomJS for
each visit. Once all crawlers finished crawling the list of websites, the process
was restarted from the beginning. To thwart cloaking techniques [18] utilized by
attackers, the crawlers presented a user agent for IE 6.0 on Windows and em-
ployed Tor to send HTTP requests from different source IP addresses. We also
address JavaScript-based browser fingerprinting by modifying the internal imple-
mentation of the navigator object to return a fake value for the appCodeName,
appName, appVersion, platform, product, userAgent, and vendor attributes.

Extension Crawl. To collect inclusion sequences related to extensions, we
used 292 Chrome extensions reported in prior work [42] that injected ads into
web pages. Since ad-injecting extensions mostly target shopping websites (e.g.,
Amazon), we chose the Alexa Top 20 shopping websites for crawling to trig-
ger ad injection by those 292 extensions. We built a crawler by instrumenting
Chromium 43 and collected data for a period of one week from June 16th to
June 22nd, 2015. The system loaded every extension and then visited the home
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pages of the Alexa Top 20 shopping websites using Selenium WebDriver [4]. This
process was repeated after crawling the entire set of extensions. In addition, our
crawler triggered all the events and timers registered by content scripts.

6.2 Building Labeled Datasets

To classify a given inclusion sequence as benign or malicious, we trained two hid-
den Markov models for benign and malicious inclusion sequences from our data
set. We labeled collected inclusion sequences as either benign or malicious using
VirusTotal [5]. VirusTotal’s URL scanning service aggregates reports of malicious
URLs from most prominent URL scanners such as Google Safe Browsing [13]
and the Malware Domain List. The malicious data set contains all inclusion se-
quences where the last included resource’s host is reported malicious by at least
three out of the 62 URL scanners in VirusTotal. On the other hand, the benign
data set only contains inclusion sequences that do not contain any host in the
entire sequence that is reported as malicious by any URL scanner in VirusTotal.
To build benign data set, we considered reputable domains such as well-known
search engines and advertising networks as benign regardless of whether they are
reported as malicious by any URL scanner in VirusTotal. Table 6 summarizes
the data sets. The unique number of inclusion sequences and terminal hosts are
shown separately for the website and extension data sets. The terminal hosts
column is the number of unique hosts that terminate inclusion sequences.

6.3 Detection Results

To evaluate the accuracy of our classifier, we used 10-fold cross-validation, in
which we first partitioned each data set into 10 equal-sized folds, trained the
models on nine folds, and then validated the resulting models with the remaining
fold. The process was repeated for each fold and, at the end, we calculated
the average false positive rate and false negative rate. When splitting the data
set into training and testing sets, we made sure that inclusion sequences with
different lengths were present in both. We also ensured that both sets contained
extension-related inclusion sequences.

The results show that our classifier achieved a false positive rate of 0.59% and
false negative rate of 6.61% (detection rate of 93.39%). Most of the false positives
are due to inclusion sequences that do not appear too often in the training sets.
Hence, users are unlikely to experience many false positives in a real browsing
environment (as will be shown in our usability analysis in Section 6.6).

To quantify the contribution of different feature categories to the classifica-
tion, we trained classifiers using different combinations of feature categories and
compared the results. Figure 3a shows the false positive rate and false nega-
tive rate of every combination with a 10-fold cross-validation training scheme.
According to Figure 3a, the best false positive and false negative rates were
obtained using a combination of all feature categories.

12



D S R D & S D & R S & R All
Feature Categories

0

2

4

6

8

10

12

14

16

18

20

Ra
te

 (%
)

False Positive Rate
False Negative Rate

(a) Effectiveness of features for classifica-
tion (D = DNS, S = String, R = Role).

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Detection Delay (Days)

0

10

20

30

40

50

60

70

80

90

100

%
 o

f D
et

ec
te

d 
M

al
ic

io
us

 H
os

ts
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Fig. 3: Feature category contributions and early detection results.

6.4 Comparison with URL Scanners

To evaluate the ability of our system in detecting unreported suspicious hosts,
we ran our classifier on inclusion sequences collected from June 1st until July
14th, 2015. We compared our detection results with reports from URL scanners
in VirusTotal and detected 89 new suspicious hosts. We believe that these hosts
are in fact dedicated malicious hosts that play the role of redirectors and manage
malicious traffic flows as described in prior work [21]. These hosts did not deliver
malicious resources themselves, but they consistently included resources from
other hosts that were flagged as malicious by URL scanners. Out of 89 suspicious
domains, nearly 44% were recently registered in 2015, and more than 23% no
longer resolve to an IP address.

Furthermore, we detected 177 hosts that were later reported by URL scanners
after some delay. Figure 3b shows the early detection results of our system. A
significant number of these hosts were not reported until some time had passed
after Excision initially identified them. For instance, nearly 78% of the malicious
hosts were not reported by any URL scanner during the first week.

6.5 Performance

To assess the performance of Excision, we used Selenium WebDriver to auto-
matically visit the Alexa Top 1K with both original and modified Chromium
browsers. In order to measure our prototype performance with a realistic set
of extensions, we installed five of the most popular extensions in the Chrome
Web Store: Adblock Plus, Google Translate, Google Dictionary, Evernote Web
Clipper, and Tampermonkey.

For each browser, we visited the home pages of the entire list of websites and
recorded the total elapsed time. Due to the dynamic nature of ads and their
influence on page load time, we repeated the experiment 10 times and measured
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the average elapsed time. On average, the elapsed times were 3,065 and 3,438
seconds for the original and modified browsers respectively. Therefore, Excision
incurred a 12.2% overhead on browsing time on average, which corresponds
to a noticeable overhead that is nevertheless acceptable for many users (see
Section 6.6). To measure the overhead incurred by Excision on browser startup
time, we launched the modified browser 10 times and measured the average
browser launch time. Excision caused a 3.2 seconds delay on browser startup
time, which is ameliorated by the fact that this is a one-time performance hit.

6.6 Usability

We conducted an experiment to evaluate the impact of Excision on the user’s
browsing experience. We conducted the study on 10 students that self-reported
as expert Internet users. We provided each participant with a list of 50 websites
that were selected randomly from the Alexa Top 500 and then asked them to
visit at least three levels down in each website. Participants were asked to report
the number of visited pages and the list of domains reported as malicious by our
system. In addition, participants were asked to record the number of errors they
encountered while they browsed the websites. Errors were considered to occur
when the browser crashed, the appearance of a web page was corrupted, or page
load times were abnormally long. Furthermore, in order to ensure that benign
extensions were not prevented from executing as expected in the presence of our
system, the browser was configured to load the five popular extensions listed in
Section 6.5 and participants were asked to report any problem while using the
extensions.

The results of the study show that out of 5,129 web pages visited by the par-
ticipants, only 83 errors were encountered and the majority of web pages loaded
correctly. Most of these errors happened due to relatively high load times. In ad-
dition, none of the participants reported any broken extensions. Furthermore, 31
malicious inclusions were reported by our tool that were automatically processed
(without manual examination, for privacy reasons) using VirusTotal. Based on
the results, we believe that our proof-of-concept prototype is compatible with
frequently used websites and extensions, and can be improved through further
engineering to work completely free of errors.

Ethics. In designing the usability experiment, we made a conscious effort
to avoid collecting personal or sensitive information. In particular, we restricted
the kinds of information we asked users to report to incidence counts for each of
the categories of information, except for malicious URLs that were reported by
our tool. Malicious URLs were automatically submitted to VirusTotal to obtain
a malice classification before being discarded, and were not viewed by us or
manually inspected. In addition, the participants were asked to avoid browsing
websites requiring a login or involving sensitive subject matter.
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7 Related Work

Third-party Content Isolation. Several recent research projects [14,37,39] at-
tempted to improve the security of browsers by isolating browser components in
order to minimize data sharing among software components. The main issue with
these approaches is that they do not perform any isolation between JavaScript
loaded from different domains and web applications, letting untrusted scripts
access the main web application’s code and data. Efforts such as AdJail [23] at-
tempt to protect privacy by isolating ads into an iframe-based sandbox. However,
this approach restricts contextual targeting advertisement in which ad scripts
need to have access to host page content.

Detecting Malicious Domains. There are multiple approaches to auto-
matically detecting malicious web domains. Madtracer [22] has been proposed
to automatically capture malvertising cases. But, this system is not as precise
as our approach in identifying the causal relationships among different domains.
EXPOSURE [8] employs passive DNS analysis techniques to detect malicious
domains. SpiderWeb [36] is also a system that is able to detect malicious web
pages by crowd-sourcing redirection chains. Segugio [32] tracks new malware-
control domain names in very large ISP networks. WebWitness [27] automati-
cally traces back malware download paths to understand attack trends. While
these techniques can be used to automatically detect malicious websites and
update blacklists, they are not online systems and may not be effectively used
to detect malicious third-party inclusions since users expect a certain level of
performance while browsing the Web.

Another effective detection approach is to produce blacklists of malicious
sites by scanning the Internet that can be efficiently checked by the browser
(e.g., Google Safe Browsing [13]). Blacklist construction requires extensive in-
frastructure to continuously scan the Internet and bypass cloaking and general
malware evasion attempts in order to reliably identify malware distribution sites,
phishing pages, and other Web malice. As our evaluation in Section 6 demon-
strates, these blacklists sometimes lag the introduction of malicious sites on the
Internet, or fail to find these malicious sites. However, they are nevertheless ef-
fective, and we view the approach we propose as a complementary technique to
established blacklist generation and enforcement techniques.

Policy Enforcement. Another approach is to search and restrict third-
party code included in web applications [12,15,24]. For example, ADsafe [1] re-
moves dangerous JavaScript features (e.g., eval), enforcing a whitelist of allowed
JavaScript functionality considered safe. It is also possible to protect against
malicious JavaScript ads by enforcing policies at runtime [30,33]. For example,
Meyerovich et al. [26] introduce a client-side framework that allows web applica-
tions to enforce fine-grained security policies for DOM elements. AdSentry [11]
provides a shadow JavaScript engine that runs untrusted ad scripts in a sand-
boxed environment.
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8 Conclusion

In this paper, we presented Excision, an in-browser system to automatically
detect and block malicious third-party content inclusions before they can attack
the user’s browser. Our system is complementary to other defensive approaches
such as CSP and Google Safe Browsing, and is implemented as a set of modifica-
tions to the Chromium browser. Excision does not perform any blacklisting to
detect malicious third-party inclusions. Rather, it incrementally constructs an
inclusion tree for a given web page and automatically prevents loading malicious
resources by classifying their inclusion sequences using a set of pre-built models.

Our evaluation over an 11 month crawl of the Alexa Top 200K demonstrates
that the prototype implementation of Excision detects a significant number of
malicious third-party content in the wild. In particular, the system achieved a
93.39% detection rate with a false positive rate of 0.59%. Excision was also
able to detect previously unknown malicious inclusions. We also evaluated the
performance and usability of Excision when browsing popular websites, and
show that the approach is capable of improving the security of users on the Web
by detecting 31 malicious inclusions during a user study without significantly
degrading the user experience.
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