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Lattice Logic Properly Displayed

Giuseppe Greco Alessandra Palmigiano∗

Abstract

We introduce aproperdisplay calculus for (non-distributive) Lattice Logic
which is sound, complete, conservative, and enjoys cut-elimination and sub-
formula property. Properness (i.e. closure under uniform substitution of all
parametric parts in rules) is the main interest and added value of the present
proposal, and allows for the smoothest Belnap-style proof of cut-elimination.
Our proposal builds on an algebraic and order-theoretic analysis of the se-
mantic environment of lattice logic, and applies the guidelines of the multi-
type methodology in the design of display calculi.
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7 Distributivity fails 29

1 Introduction

In the present paper, a proper (multi-type) display calculus is introduced forlat-
tice logic, by which we indicate the{∧,∨,⊤,⊥}-fragment of classical proposi-
tional logic without distributivity. This work is motivated by and embeds in a
more general theory—that of the so-calledproper multi-type calculi, introduced
in [37, 27, 26] and further developed in [29, 5, 30, 39]—whichaims at creating a
proof-theoretic environment designed on the basis of algebraic and order-theoretic
insights, and encompassing in a uniform and modular way a very wide range of
non-classical logics, spanning from logics such dynamic epistemic logic, PDL,
and inquisitive logic to lattice-based substructural (modal) logics.

Proper multi-type calculi are a natural generalization of Belnap’s display cal-
culi [1] (later refined by Wansing’s notion of proper displaycalculi [50]), the
salient features of which they inherit. Like display calculi, proper multi-type cal-
culi uniformly verify the assumptions of a Belnap-style cutelimination metathe-
orem, which guarantees that a uniform reduction strategy for cut elimination can
be applied to each of them. The uniform applicability of one and the same reduc-
tion strategy is due, both for display calculi and proper multi-type calculi, to a neat
separation of roles enforced between introduction rules for logical connectives and
structural rules. Indeed, introduction rules are defined following a very uniform
and rigid design (the so-calledmultiplicative form) which only allows to capture
the most basic information on the polarity of each coordinate of each logical con-
nective. The uniformity of this design is key to achieving a uniform formulation
of the so-called ‘parametric step’ in the cut-elimination procedure. Indeed, it is
precisely what guarantees that a given application of the cut rule in which at least
one cut formula is not principal can be ‘moved upwards’, without reducing the
complexity of the cut formula, by inserting new cuts where the parametric cut
formula has beenintroduced. However, if all introduction rules are to verify one
and the same design, the information on the distinctive features of each individual
connective must be encoded somewhere else. Encoding the behaviour specific to
each connective, as well as the information about how the connectives interact, is
the specific task of the structural rules. The design of the structural rules is also
required to satisfy certainanalyticity conditions, the definition of which is moti-
vated as well by the metatheorem. The extra expressivity needed to encode the
information on the specific logic purely at the structural level is guaranteed by a
richer language which includesstructural connectives as well aslogical connec-
tives. Typically, in display calculi, each logical connective has a structural coun-
terpart, which encodes its behaviour at a purely structurallevel.

However, in most calculi for (general) lattice-based logics [48, 45], including
display calculi [2], the introduction rules for conjunction and disjunction are given
in so-calledadditiveform, which, unlike the multiplicative form, does not involve
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structural counterparts of conjunction and disjunction inits formulation. The rea-
son for the non-standard treatment of conjunction and disjunction in the setting of
display calculi is the following trade-off: introducing the structural counterpart of
these connectives would require the addition of certain rules (thedisplay postu-
lates) in order to enforce a property (thedisplay property, from which these calculi
are named) which is key to the satisfaction of one of the assumptions of the cut
elimination metatheorem; however, the addition of displaypostulates would make
it possible for the resulting calculus to derive the unwanted distributivity axioms as
theorems. So, the need to block the derivation of distributivity is at the root of the
non-standard design choice of having logical connectives without their structural
counterpart (cf. [3]).

However, as hinted above, from the point of view of the development of a gen-
eral theory, this choice yields significant disadvantages.In particular, one loses
the possibility of expressing the interactions between conjunction and disjunction
and (possibly) other connectives at the structural level, by means ofanalyticstruc-
tural rules. The remarkable property of these rules is that they can be safely and
modularly added to a proper multi-type calculus so as to preserve its cut elim-
ination theorem. The loss in expressive power is all the morea disadvantage,
because a uniform theory of analytic extensions of proper multi-type calculi is
being developed [19], thanks to the systematic connectionsestablished in [38] be-
tween proper display calculi and the algebraic theory of unified correspondence
[15, 16, 20, 13, 11, 21, 22, 23, 31, 46, 47, 42, 43] (which is also available for sub-
structural logics and other logics algebraically capturedby general lattice expan-
sions, cf. [17, 18, 12, 14]). These connections have made it possible to characterize
the syntactic shape of axioms (the so-calledanalytic inductiveaxioms) which can
be equivalently translated into analytic rules of a proper display calculus. Thus,
having conjunction and disjunction as logical connectiveswithout their structural
counterpart blocks the access to the benefits of a general andmodular proof theory
of analytic extensions of lattice-based logics.

The proper display calculus for the logic of lattices discussed in the present
talk enjoys thefull display property, and all its introduction rules are given in the
standardmultiplicativeform. This is made possible thanks to the introduction of a
richer,multi-typelanguage for lattice logic which is motivated and justified seman-
tically by the well known double representation theorem of any complete lattice as
sub
⋂

-semilattice of some powerset algebra (i.e. as the
⋂

-semilattice of the closed
sets of a closure operator on that powerset algebra) and as sub

⋃

-semilattice of
some powerset algebra (i.e. as the

⋃

-semilattice of the open sets of an interior op-
erator on that powerset algebra). Each of these powerset algebras provide the se-
mantics for a differenttype, and their interaction with the original complete lattice
is given as pairs of adjoint connectives, the composition ofwhich yields the closure
operator and the interior operator of the double representation. The proof-theoretic
behaviour of the adjoint connectives is that of standard normal modal operators. In
the multi-type environment, the interpretation of the sequents of the Hilbert-style
axiomatization of lattice logic is then obtained via two translations, the soundness
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of which is justified by the double representations. The translated axiomatization
of lattice logic is then derived in the multi-type proof calculus. The metatheory
of this calculus is smooth and encompassed in a general theory (cf. [19, 29, 10]),
so that one obtains soundness, completeness, conservativity and cut-elimination as
easy corollaries of general facts.

Structure of the paper. In Section 2, we briefly report on a Hilbert-style presen-
tation of lattice logic and its algebraic semantics, and discuss the issue of a mod-
ular account of its axiomatic extensions and expansions. InSection 3, we report
on well known order-theoretic facts related with the representation of complete lat-
tices, which help to introduce an equivalent multi-type semantic environment for
lattice logic. In Section 4, we introduce the multi-type language naturally asso-
ciated with the semantic environment of the previous section. In Section 5, we
introduce the multi-type calculus D.LL for lattice logic which constitutes the core
contribution of the present paper. In Section 6, we discuss the basic properties
verified by D.LL, namely, soundness, completeness, cut-elimination, subformula
property, and conservativity. In Section 7, we prove syntactically that (the transla-
tion of) the distributivity axiom is not derivable in D.LL.

2 Lattice logic and its single-type proof theory

2.1 Hilbert-style presentation of lattice logic and its algebraic seman-
tics

Formulas of the language of lattice logicL over a setAtProp of atomic propositions
are generated as follows:

a ::= p | ⊤ | ⊥ | A∧A | A∨A.

The Hilbert-style presentation of lattice logic consists of the following axioms

A ⊢ A, ⊥ ⊢ A, A ⊢ ⊤,

A ⊢ A∨B, B ⊢ A∨B, A∧B ⊢ A, A∧B ⊢ B,

and the following rules:

A ⊢ B B⊢C
A ⊢C

A ⊢ B
A[C/p] ⊢ B[C/p]

A ⊢ B A⊢C
A ⊢ B∧C

A ⊢C B⊢C
A∨B ⊢C

The algebraic semantics of lattice logic is given by the class ofbounded lattices(cf.
[6, 9]), i.e. (2,2,0,0)-algebrasA= (X,∧,∨,⊤,⊥) validating the following identities:

Commutative laws Associative laws
cC. a∧b= b∧a cA. a∧ (b∧c) = (a∧b)∧c
dC. a∨b= b∨a dA. a∨ (b∨c) = (a∨b)∨c

Identity laws Absorption laws
cI. a∧⊤ = a cAb. a∧ (a∨b) = a
dI. a∨⊥ = a dAb. a∨ (a∧b) = a
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A bounded lattice isdistributive if it validates the following identities:

Distributivity laws
cD. a∧ (b∨c) = (a∧b)∨ (a∨c)
dD. a∨ (b∧c) = (a∨b)∧ (a∨c)

A bounded lattice isresiduated(cf. [32]) if the condition (cR) below holds, and
is dually residuatedif the condition (dR) holds. If a lattice is (dually) residuated
then is distributive.

Residuation laws
cR. a∧b≤ c iff b≤ a→ c
dR. a≤ b∨c iff b> a≤ c

2.2 Towards a modular proof theory for lattice logic

In order to motivate the proposal of a calculus for lattice logic which we will in-
troduce in Section 5, we find it useful to start by discussing the properties of the
following basic Gentzen-style sequent calculus for lattice logic (cf. e.g. [49]):

• Identity and Cut rules

Idp ⊢ p
X ⊢ A A ⊢ Y

Cut
X ⊢ Y

• Operational rules

⊥
⊥ ⊢ I

X ⊢ I
⊥

X ⊢ ⊥

I ⊢ X
⊤
⊤ ⊢ X

⊤
I ⊢ ⊤

Ai ⊢ X
∧i

A1∧A2 ⊢ X
X ⊢ A X ⊢ B

∧
X ⊢ A∧B

A ⊢ X B⊢ X
∨

A∨B ⊢ X
X ⊢ Ai ∨i
X ⊢ A1∨A2

wherei ∈ {1,2} .

The calculus above, which we refer to as L0, is sound w.r.t. the class of lat-
tices, complete w.r.t. the Hilbert-style presentation of lattice logic, and verifies
cut-elimination. Hence, L0 is perfectly adequate as a proofcalculus for lattice
logic, when this logic is regarded in isolation. However, the main interest of lattice
logic lays in it serving as base for a variety of logics, whichare either itsaxiomatic
extensions(e.g. the logics of modular and distributive bounded lattices and their
variations [40]), or its properlanguage-expansions(e.g. the full Lambek calculus
[32], bilattice logic [4], orthologic [35], linear logic [34]). Hence, it is sensible

5



to require of an adequate proof theory of lattice logic to be able to account in a
modular way for these logics as well. The calculus L0 does notseem to be a good
starting point for this purpose. Indeed, axiomatic extensions of lattice logic can be
supported by L0 by adding suitable axioms. For instance, modular and distributive
lattice logic can be respectively captured by adding the following axioms to L0:

((C∧B)∨A)∧B ⊢ (C∧B)∨ (A∧B) A∧ (B∨C) ⊢ (A∧B)∨ (A∨C).

However, the cut elimination theorem needs to be proved for the resulting calculi
from scratch. More in general, we lack uniform principles orproof strategies aimed
at identifying axioms which can be added to L0 so that the resulting calculus still
enjoys cut elimination. Another source of nonmodularity arises from the fact that
L0 lacks structural rules. Indeed, the additive formulation of the introduction rules
of L0 encodes the information which is stored in standard structural rules such as
weakening, contraction, associativity, and exchange. Hence, one cannot use L0
as a base to capture logics aimed at ‘negotiating’ these rules, such as the Lambek
calculus [41] and other substructural logics [32]. To remedy this, one can move
to the following calculus, which we refer to as L1 and which adopts thevisibility
principle1 isolated by Sambin, Battilotti and Faggian in [48] to formulate a general
strategy for cut elimination. The visibility constraint generalizes Gentzen’s seminal
idea to capture intuitionistic logic with his calculus LJ byrestricting the shape
of the sequents in his calculus LK for classical logic so as toadmit at most one
formula in succedent position [33]. The calculus L1 has a structural language,
which consists of one structural constant ‘I’ which is interpreted as⊤ (resp.⊥)
when occurring in precedent (resp. succedent) position, and one binary connective
‘ ,’, which is interpreted as conjunction in precedent position and disjunction in
succedent position.

• Identity and Cut rules

Idp ⊢ p
X ⊢ A (Y ⊢ Z)[A]pre

L-Cut
(X ⊢ Y)[Z/A]pre

(X ⊢ Y)[A]succ A ⊢ Z
R-Cut

(X ⊢ Y)[Z/A]suc

• Structural and operational rules

1A sequent calculus verifies thevisibility property if both the auxiliary formulas and the principal
formula of each operational rule of the calculus occur in anemptycontext. Hence, by design, L1
verifies the visibility property.
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structural operational

X ⊢ Y
I

X , I ⊢ Y
X ⊢ Y

I
X ⊢ Y , I

X ,Y ⊢ Z
E

Y ,X ⊢ Z
X ⊢ Y ,Z

E
X ⊢ Z ,Y

(X ,Y) ,Z ⊢ V
A

X , (Y ,Z) ⊢ V

X ⊢ (Y ,Z) ,V
A

X ⊢ Y , (Z ,V)

X ⊢ Y
W

X ,Z ⊢ Y
X ⊢ Y

W
X ⊢ Y ,Z

X ,X ⊢ Y
C

X ⊢ Y
X ⊢ Y ,Y

C
X ⊢ Y

⊥
⊥ ⊢ I

X ⊢ I
⊥

X ⊢ ⊥

I ⊢ X
⊤
⊤ ⊢ X

⊤
I ⊢ ⊤

A,B ⊢ X
∧

A∧B ⊢ X
X ⊢ A Y ⊢ B

∧
X ,Y ⊢ A∧B

A ⊢ X B⊢ Y
∨

A∨B ⊢ X ,Y
X ⊢ A,B

∨
X ⊢ A∨B

Unlike the operational rules for L0, the operational rules for L1 are formulated in
multiplicative form,2 which is more general than the additive. The more general
formulation of the introduction rules implies that the structural rules of weakening,
exchange, associativity, and contraction are not anymore subsumed by the intro-
duction rules.

The visibility of L1 blocks the derivation of the distributivity axiom. Hence, to
be able to derive distributivity, one option is to relax the visibility constraint both
in precedent and in succedent position. This solution is notentirely satisfactory,
and suffers from the same lack of modularity which prevents Gentzen’s move from
LJ to LK to capture intermediate logics. Specifically, relaxing visibility captures
the logics of Sambin’s cube, but many other logics are left out. Moreover, without
visibility, we do not have a uniform strategy for cut elimination.

To conclude, a proof theory for axiomatic extensions and expansions of gen-
eral lattice logic is comparably not as modular as that of theaxiomatic extensions
and expansions of the logic ofdistributive lattices, which can rely on the theory of
proper display calculi [50, 38]. The idea guiding the approach of the present pa-
per, which we will elaborate upon in the next sections, is that, rather than trying to
work our way up starting from a calculus for lattice logic, wewill obtain a calculus
for lattice logic from the standard proper display calculusfor the logic of distribu-
tive lattices, by endowing it with a suitable mechanism to block the derivation of
distributivity.

2The multiplicative form of the introduction rules is the most important aspect in which L1 departs
from the calculus of [48]. Indeed, the introduction rules for conjunction and disjunction in [48] are
additive.
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3 Multi-type semantic environment for lattice logic

In the present section, we introduce a class ofheterogeneous algebras[7] which
equivalently encodes complete lattices, and which will be useful to motivate the
design of the calculus for lattice logic from a semantic viewpoint, as well as to
establish its properties. This presentation takes its movefrom very well known
facts in the representation theory of complete lattices, which can be found e.g. in
[24, 6], formulated—however—in terms ofcovariant (rather than contravariant)
adjunction. For every partial orderQ = (Q,≤), we letQop := (Q,≤op), where≤op

denotes the converse ordering. IfQ = (Q,∧,∨,⊥,⊤) is a lattice, we letQop :=
(Q,∧op,∨op,⊥op,⊤op) denote the lattice induced by≤op. Moreover, for anyb∈ Q,
we letb↑ := {c | c ∈ Q andb≤ c} andb↓ := {a | a ∈ Q anda≤ b}.

A polarity is a structureP = (X,Y,R) such thatX andY are sets andR⊆ X×Y.
Every polarity induces a pair of mapsρ : P(Y)op→ P(X), λ : P(X) → P(Y)op,
respectively defined byY′ 7→ {x ∈ X | ∀y(y ∈ Y′→ xRy)} andX′ 7→ {y ∈ Y | ∀x(x ∈
X′→ xRy)}. It is well known (cf. [24]) and easy to verify that these mapsform an
adjunction pair, that is, for anyX′ ⊆ X andY′ ⊆ Y,

λ(X′) ⊆op Y′ iff X′ ⊆ ρ(Y′).

The mapλ is the left adjoint, andρ is the right adjoint of the pair. By general order-
theoretic facts, this implies thatλ preserves arbitrary joins andρ arbitrary meets:
that is, for anyS ⊆ P(X) and anyT ⊆ P(Y),

λ(
⋃

S) =
op
⋃

s∈S

λ(s) and ρ(
op
⋂

T) =
⋂

t∈T

ρ(t). (1)

Other well known facts about adjoint pairs are thatρλ : P(X)→P(X) is a closure
operator andλρ :P(Y)op→P(Y)op an interior operator (cf. [24]). Moreover,λρλ =
λ, andρλρ = ρ (cf. [24]). That is,λρ restricted toRange(λ) is the identity map,
and likewise,ρλ restricted toRange(ρ) is the identity map. Hence,Range(ρ) =
Range(ρλ), Range(λ) = Range(λρ) and

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op.

Furthermore,ρλ being a closure operator onP(X) implies thatRange(ρ)=Range(ρλ)
is a complete sub

⋂

-semilattice ofP(X) (cf. [24]), and henceL = Range(ρ) is en-
dowed with a structure of complete lattice, by setting for every S ⊆ L,

∧

L

S :=
⋂

S and
∨

L

S := ρλ(
⋃

S) (2)

Likewise,λρ being an interior operator onP(Y)op implies thatRange(λ) is a com-
plete sub

⋃

-semilattice ofP(Y)op, and henceL = Range(λ) is endowed with a
structure of complete lattice, by setting

∨

L

T :=
op
⋃

T and
∧

L

T := λρ(
op
⋂

T) (3)
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for everyT ⊆ L. Finally, for anyS ⊆ Range(ρ),

λ(
∨

S) = λ(ρλ(
⋃

S)) (2)
= λ(

⋃

S) λρλ = λ

=
⋃op

s∈Sλ(s) (1)
=
∨

s∈Sλ(s), (3)

and
∧

s∈Sλ(s) = λρ(
⋂op

s∈Sλ(s)) (3)
= λ(

⋂

s∈Sρλ(s)) (1)
= λ(

⋂

S) S ⊆ Range(ρ) andρλρ = ρ
= λ(

∧

S), (2)

which shows that the restriction ofλ to Range(ρ) is a complete lattice homomor-
phism. Likewise, one can show that the restriction ofρ to Range(λ) is a complete
lattice homomorphism, which completes the proof that the bijection

P(X) ⊇ Range(ρ) � Range(λ) ⊆ P(X)op

is in fact an isomorphism of complete lattices, and hence theabuse of notation
is justified which we made by denoting both the latticeRange(ρ) and the lattice
Range(λ) by L.

Conversely, for every complete latticeL, consider the polarityPL := (L,L,≤)
whereL is the universe ofL and≤ is the lattice order. Then the mapsλ : P(L)→
P(L)op andρ : P(L)op→ P(L) are respectively defined by the assignmentsS 7→
{a∈ L | ∀b(b∈ S→ b≤ a)} = (

∨

S)↑ andT 7→ {a∈ L | ∀b(b∈ T→ a≤ b)} = (
∧

T)↓
for all S,T ⊆ L. Since

∧

((
∨

S)↑)=
∨

S and
∨

((
∧

T)↓)=
∧

T, the closure operator
ρλ : P(L)→P(L) and the interior operatorλρ : P(L)op→P(L)op are respectively
defined by

S 7→ (
∨

S)↓ and T 7→ (
∧

T)↑. (4)

The latticeL can be mapped injectively both intoRange(ρ) = Range(ρλ) and into
Range(λ)=Range(λρ) by the assignmentsa 7→ a↓ anda 7→ a↑ respectively. More-
over, sinceL is complete, the maps defined by these assignments are alsoonto
Range(ρλ) andRange(λρ). Finally, for anyS ⊆ L,

∧

Range(ρ){a↓ | a ∈ S} =
⋂

{a↓ | a ∈ S} (2)
= (

∧

S)↓

∨

Range(ρ){a↓ | a ∈ S} = ρλ(
⋃

{a↓ | a∈ S}) (2)
= (

∨⋃

{a↓ | a ∈ S})↓ (4)
= (

∨

S)↓,

which completes the verification that the mapL→ Range(ρ) defined by the as-
signmenta 7→ a↓ is a complete lattice isomorphism. Similarly, one verifies that
the mapL→ Range(λ) defined by the assignmenta 7→ a↑ is a complete lattice
isomorphism. The discussion so far can be summarized by the following
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Proposition 3.1. Any complete latticeL can be identified both with the lattice
of closed sets of some closure operator c: D→ D on a complete and completely
distributive latticeD = (D,∩,∪,℘,∅), and with the lattice of open sets of some
interior operator i: E→ E on a complete and completely distributive latticeE =
(E,⊓,⊔,ℑ,∅).

Hence, in what follows,L will be identified both withRange(c) endowed with
its structure of complete lattice defined as in (2) (replacing ρλ by c), and with
Range(i) endowed with its structure of complete lattice defined as in(3) (replacing
λρ by i). Taking these identifications into account, general order-theoretic facts
(cf. [24, Chapter 7]) imply thatc = eℓ ◦ γ, whereγ : D ։ L is defined byα 7→
c(α) andeℓ : L ֒→ D is the natural embedding, and moreover, these maps form an
adjunction pair as follows: for anya ∈ L and anyα ∈ D,

γ(α) ≤ a iff α ≤ eℓ(a),

with the additional property thatγ◦eℓ = IdL. Likewise,i = er ◦ ι, whereι : E։ L is
defined byξ 7→ i(ξ) ander : L ֒→ E is the natural embedding, and moreover, these
maps form an adjunction pair as follows: for anya ∈ L and anyξ ∈ E,

er (a) ≤ ξ iff a≤ ι(ξ),

with the additional property thatι◦er = IdL.

D L E

⊢
⊢

eℓ er

ιγ

Summing up, any complete latticeL can be associated with an heterogeneous al-
gebra (L,D,E,eℓ,γ,er , ι) such that

H1. L = (L,≤) is a bounded poset;3

H2. D andE are complete and completely distributive lattices;

H3. γ : D→ L andeℓ : L→ D are such thatγ ⊣ eℓ andγ ◦eℓ = IdL;

H4. ι : E→ L ander : L→ E are such thater ⊣ ι andι◦er = IdL.

Conversely, for any such an heterogeneous algebra, the poset L can be endowed
with the structure of a complete lattice inherited by being order-isomorphic both to
the poset of closed sets of the closure operatorc := γ ◦eℓ onD and to the poset of
open sets of the interior operatori := ι◦er onE. Finally, no algebraic information

3We overload the symbolL and use it both to denote the complete lattice and its underlying poset.
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is lost when presenting a complete latticeL as its associated heterogeneous alge-
bra. Indeed, the identification ofL with Range(c), endowed with the structure of
complete lattice defined as in (2), implies that for alla,b ∈ L,

a∨b= γ(eℓ(a)∪eℓ(b)).

As discussed above,eℓ being a right adjoint andγ a left adjoint imply thateℓ is
completely meet-preserving andγ completely join-preserving. Therefore,eℓ(⊤) =
℘ and⊥ = γ(∅). Moreover,γ being both surjective and order-preserving implies
that⊤ = γ(℘). Furthermore, for alla,b ∈ L,

a∧b= γ ◦eℓ(a∧b) = γ(eℓ(a)∩eℓ(b)).

Thus, the whole algebraic structure ofL can be captured in terms of the algebraic
structure ofD and the adjoint mapsγ andeℓ as follows: for alla,b ∈ L,

⊥ = γ(∅) ⊤ = γ(℘) a∨b= γ(eℓ(a)∪eℓ(b)) a∧b= γ(eℓ(a)∩eℓ(b)). (5)

Reasoning analogously, one can also capture the algebraic structure ofL in terms
of the algebraic structure ofE and the adjoint mapsι and er as follows: for all
a,b ∈ L,

⊤ = ι(ℑ) ⊥ = ι(∅) a∧b= ι(er (a)⊓er (b)) a∨b= ι(er (a)⊔er (b)). (6)

4 Multi-type Hilbert-style presentation for lattice logic

In Section 3, heterogeneous algebras have been introduced and shown to be equiv-
alent presentations of complete lattices. The toggle between these mathematical
structures is reflected in the toggle between the logical languages which are natu-
rally interpreted in the two types of structures. Indeed, the heterogeneous algebras
of Section 3 provide a natural interpretation for the following multi-type language
LMT over a setAtProp of Lattice-type atomic propositions:

Left ∋ α ::=eℓ(A) | ℘ | ∅ | α∪α | α∩α

Right ∋ ξ ::=er (A) | ℑ | ∅ | ξ⊔ ξ | ξ⊓ ξ

Lattice ∋ A ::= p | γ(α) | ι(ξ) | ⊤ | ⊥

wherep∈ AtProp. The interpretation ofLMT-terms into heterogeneous algebras is
defined as the straightforward generalization of the interpretation of propositional
languages in algebras of compatible signature. At the end ofthe previous section,
we observed that the algebraic structure of the complete lattice L can be captured
in terms of the algebraic structure of its associated heterogeneous algebra. This
observation serves as a base for the definition of the translations (·)ℓ, (·)r :L→LMT

between the original languageL of lattice logic andLMT:
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pℓ = γeℓ(p) pr = ιer (p)⊥

⊤ℓ = γeℓ(⊤) ⊤r = ιer (⊤)
⊥ℓ = γeℓ(⊥) ⊥r = ιer (⊥)

(A∧B)ℓ = γ(eℓ(Aℓ)∩eℓ(Bℓ)) (A∧B)r = ι(er (Ar)⊓er (Br))
(A∨B)ℓ = γ(eℓ(Aℓ)∪eℓ(Bℓ)) (A∨B)r = ι(er (Ar)⊔er (Br))

For every complete latticeL, let L∗ denote its associated heterogeneous algebra as
defined in Section 3. The proof of the following proposition relies on the observa-
tions made at the end of Section 3.

Proposition 4.1. For all L-formulas A and B and every complete latticeL,

L |= A≤ B iff L∗ |= Aℓ ≤ Br .

5 Proper display calculus for lattice logic

In the present section, we introduce the proper multi-type display calculus D.LL
for lattice logic.

5.1 Language

The language of D.LL includes the typesLattice, Left, andRight, sometimes ab-
breviated asL, P, andPop respectively.

L



















A ::= p | _α | �ξ

X ::= p | I | •Γ | •opΠ

P



















α ::= �A

Γ ::= ◦X |s | Γ �Γ | Γ ⊃ Γ

Pop



















ξ ::= ^opA

Π ::= ◦opX |sop | Π �opΠ | Π ⊃opΠ

Our notational conventions assign different variables to different types, and
hence allow us to drop the subscriptsop, given that the parsing of expressions such
as•Γ and•Π is unambiguous.

• Structural and operational pureL-type connectives:4

4We follow the notational conventions introduced in [37]: Each structural connective in the upper
row of the synoptic tables is interpreted as the logical connective in the left (resp. right) slot in the
lower row when occurring in precedent (resp. succedent) position.

12



L connectives

I
⊤ ⊥

• Structural and operational pureP-type andPop-type connectives:

P connectives

s � ⊃

(℘) (∅) ∩ ∪ (⊃ ) ( ⊃ )

Pop connectives

sop �op ⊃op

(℘op) (∅op) ∩op ∪op (⊃ op) ( ⊃op)

• Structural and operational multi-type connectives:

L→ P L→ Pop P→ L Pop→ L

◦ ◦op • •

� ^
op

_ �op

The connectives�, ^op, _ and�op are interpreted in heterogeneous algebras
as the mapseℓ, er , γ, andι, respectively.

5.2 Rules

In what follows, structures of typeL are denoted by the variablesX,Y,Z, andW;
structures of typeP are denoted by the variablesΓ,∆,Θ, andΛ; structures of type
Pop are denoted by the variablesΠ,Σ,Ψ, andΩ. Given the semantic environment
introduced in Section 3, it will come as no surprise that there is a perfect match
between the pureP-type rules and the purePop-type rules. In order to achieve a
more compact presentation of the calculus, in what follows we will also reserve the
variablesS,T,U, andV to denote eitherP-type structures orPop-type structures,
ands, t,u andv to denote operational terms of eitherP-type orPop-type, with the
proviso that they should be interpreted in thesametype in the same pure type-rule.

• Multi-type display rules

Γ ⊢ ◦X
DP-L

•Γ ⊢ X
◦X ⊢ Π

DP-L
X ⊢ •Π

• PureP-type andPop-type display rules

S �T ⊢ U
DP

T ⊢ S ⊃ U
S ⊢ T �U

DP
T ⊃ S ⊢ U

• PureP-type andPop-type rules

13



structural rules

S ⊢ s s⊢ T
Cut

S ⊢ T

S ⊢ T
s

S �s ⊢ T
S ⊢ T

s
S ⊢ T �s

S �T ⊢ U
E

T �S ⊢ U
S ⊢ T �U

E
S ⊢ U �T

(S �T) �U ⊢ V
A

S � (T �U) ⊢ V

S ⊢ (T �U) �V
A

S ⊢ T � (U �V)

S ⊢ T
W

S �U ⊢ T
S ⊢ T

W
S ⊢ T �U

S �S ⊢ T
C

S ⊢ T
S ⊢ T �T

C
S ⊢ T

operational rules

s� t ⊢ S
∩

s∩ t ⊢ S
S ⊢ s T ⊢ t

∩
S �T ⊢ s∩ t

s⊢ S t⊢ T
∪

s∪ t ⊢ S �T
S ⊢ s� t

∪
S ⊢ s∪ t

• PureL-type rules

structural rules operational rules

Id p ⊢ p
X ⊢ A A ⊢ Y

Cut
X ⊢ Y

I ⊢ X
⊤
⊤ ⊢ X

⊤
I ⊢ ⊤

I ⊢ X
I-W

Y ⊢ X
⊥
⊥ ⊢ I

X ⊢ I
⊥

X ⊢ ⊥

• Operational rules for multi-type connectives:

L→ Pop Pop→ L

◦A ⊢ Π
^
^A ⊢ Π

X ⊢ A
^

◦X ⊢ ^A
X ⊢ •ξ

�
X ⊢ �ξ

ξ ⊢ Π
�

�ξ ⊢ •Π

P→ L L→ P

•α ⊢ X
_
_α ⊢ X

Γ ⊢ α
_

•Γ ⊢ _α
Γ ⊢ ◦A

�
Γ ⊢ �A

A ⊢ X
�

�A ⊢ ◦X
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6 Properties

6.1 Soundness

In the present subsection, we outline the verification of thesoundness of the rules
of D.LL w.r.t. the semantics of heterogeneous algebras introduced in Section 3.
The first step consists in interpreting structural symbols as logical symbols accord-
ing to their (precedent or succedent) position,5 as indicated in the synoptic tables
of Section 5.1. This makes it possible to interpret sequentsas inequalities, and
rules as quasi-inequalities. The verification of the soundness of the rules of D.LL
then consists in verifying the validity of their corresponding quasi-inequalities in
heterogeneous algebras. The verification of the soundness of pure-type rules and
of the introduction rules following this procedure is routine, and is omitted. The
only multi-type rules of D.LL are the display rules, the validity of which follows
straightforwardly from the adjunctions between the interpretations of the multi-
type connectives involved.

6.2 Conservativity

To argue that the calculus D.LL introduced in Section 5 adequately captures lattice
logic, we follow the standard proof strategy discussed in [38, 37]. Let|=HA denote
the semantic consequence relation arising from the heterogeneous algebras intro-
duced in Section 3. We need to show that, for all formulasA andB of the original
language of lattice logic, ifAτ ⊢ Bτ is a D.LL-derivable sequent, thenA ⊢ B is a
theorem of the Hilbert-style presentation of lattice logic. This claim can be proved
using the following facts: (a) the rules of D.LL are sound w.r.t. heterogeneous al-
gebras (cf. Section 6.1), (b) lattice logic is strongly complete w.r.t. the class of
complete lattices, and (c) complete lattices are equivalently presented as heteroge-
neous algebras (cf. Section 3), so that the semantic consequence relation arising
from each type of structures preserves and reflects the translation (cf. Proposition
4.1). Then, letA,B be formulas of the original lattice logic language. IfAτ ⊢ Bτ is a
D.LL-derivable sequent, then, by (a),Aτ |=HA Bτ. By (c), this implies thatA |=LL B,
where|=LL denotes the semantic consequence relation arising from (complete) lat-
tices. By (b), this implies thatA ⊢ B is a theorem of the Hilbert-style presentation
of lattice logic, as required.

5For any sequentx ⊢ y, we define the signed generation trees+x and−y by labelling the root
of the generation tree ofx (resp.y) with the sign+ (resp.−), and then propagating the sign to all
nodes according to the polarity of the coordinate of the connective assigned to each node. Positive
(resp. negative) coordinates propagate the same (resp. opposite) sign to the corresponding child node.
Then, a substructurez in x ⊢ y is in precedent(resp.succedent) positionif the sign of its root node as
a subtree of+x or −y is+ (resp.−).
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6.3 Cut elimination and subformula property

In the present section, we outline the proof of cut elimination and subformula prop-
erty for the calculus D.LL introduced in Section 5. As discussed earlier on, the cut
elimination and subformula property do not need to be provedvia the original ar-
gument by Gentzen, but can rather be inferred from a meta-theorem, following the
strategy introduced by Belnap for display calculi. The meta-theorem to which we
will appeal for D.LL was proved in [29], and in [39, Theorem A.2] a restricted ver-
sion of it is stated, which specifically applies toproper multi-type display calculi
(cf. [39, Definition A.1]).

By [39, Theorem A.2], it is enough to verify that D.LL is a proper multi-type
display calculus, i.e. it meets the conditions C1-C8 listed in [39, Definition A.1].
All conditions except C8 are readily satisfied by inspecting the rules. In what fol-
lows we verify C8. This requires to check that reduction steps are available for
every application of the cut rule in which both cut-formulasare principal, which
either remove the original cut altogether or replace it by one or more cuts on for-
mulas of strictly lower complexity.

Atomic propositions:

p ⊢ p p⊢ p
p ⊢ p  p ⊢ p

Constants:

I ⊢ ⊤

... π1

I ⊢ X
⊤ ⊢ X

I ⊢ X  

... π1

I ⊢ X

The case for⊥ is similar to the one above.

Binary connectives:

... π1

S ⊢ s

... π2

T ⊢ t
S �T ⊢ s∩ t

... π3

s� t ⊢ U
s∩ t ⊢ U

S �T ⊢ U  

... π1

S ⊢ s

... π2

T ⊢ t

... π3

s� t ⊢ U
t ⊢ s⊃ U

T ⊢ s⊃ U
s�T ⊢ U
T � s⊢ U

s⊢ T ⊃ U
S ⊢ T ⊃ U

T �S ⊢ U
S �T ⊢ U

The case fors∪ t is similar to the one above.
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Multi-type connectives:

... π1

X ⊢ A
◦X ⊢ ^A

... π2

◦A ⊢ Π
^A ⊢ Π

◦X ⊢ Π  

... π1

X ⊢ A

... π2

◦A ⊢ Π
A ⊢ •Π

X ⊢ •Π
◦X ⊢ Π

The cases for�A,_α, and�ξ are similar to the one above.

6.4 Completeness

In order to translate sequents of the original language of lattice logic into sequents
in the multi-type language of lattice logic, we will make useof the translations
τ1, τ2 :L→LMT so that for allA,B∈ L andA ⊢ B, we write

τ1(A) ⊢ τ2(B) abbreviated as Aτ ⊢ Bτ.

The translationsτ1 andτ2 are defined by simultaneous induction as follows:

⊤τ ::= _�⊤ ⊤τ ::= �op
^

op⊤

⊥τ ::= _�⊥ ⊥τ ::= �op
^

op⊥

pτ ::= _� p pτ ::= �op
^

op p
(A∧B)τ ::= _(�Aτ∩�Bτ) (A∧B)τ ::= �op(^opAτ∩op

^
opBτ)

(A∨B)τ ::= _(�Aτ∪�Bτ) (A∨B)τ ::= �op(^opAτ∪op
^

opBτ)

Proposition 6.1. For every A∈ L, the multi-type sequent Aτ ⊢ Aτ is derivable in
D.LL.

Proof. By simultaneous induction onA ∈ L, α ∈ P, andξ ∈ Pop.

• Base cases:A := ⊤, A := ⊥ andA := p

⊤
I ⊢ ⊤
⊤ ⊢ ⊤
�⊤ ⊢ ◦⊤
•�⊤ ⊢ ⊤
_�⊤ ⊢ ⊤
◦_�⊤ ⊢ ^⊤
_�⊤ ⊢ •^⊤
_�⊤ ⊢ �^⊤

⊥
⊥ ⊢ I
⊥ ⊢ ⊥
�⊥ ⊢ ◦⊥
•�⊥ ⊢ ⊥
_�⊥ ⊢ ⊥
◦_�⊥ ⊢ ^⊥
_�⊥ ⊢ •^⊥
_�⊥ ⊢ �^⊥

Id p ⊢ p
�p ⊢ ◦p
•�p ⊢ p
_�p ⊢ p
◦_�p ⊢ ^p
_�p ⊢ •^p
_�p ⊢ �^p

• Inductive case:A= B∧C
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ind. hyp.
Bτ ⊢ Bτ
�Bτ ⊢ ◦Bτ

W
�Bτ � �Cτ ⊢ ◦Bτ
�Bτ∩�Cτ ⊢ ◦Bτ
•�Bτ∩�Cτ ⊢ Bτ
_(�Bτ∩�Cτ) ⊢ Bτ
◦_(�Bτ∩�Cτ) ⊢ ^Bτ

ind. hyp.
Cτ ⊢ Cτ
�Cτ ⊢ ◦Cτ

W
�Cτ � �Bτ ⊢ ◦Cτ

E
�Bτ � �Cτ ⊢ ◦Cτ
�Bτ∩�Cτ ⊢ ◦Cτ
•�Bτ∩�Cτ ⊢ Cτ
_(�Bτ∩�Cτ) ⊢ Cτ
◦_(�Bτ∩�Cτ) ⊢ ^Cτ

◦_(�Bτ∩�Cτ) �◦_(�Bτ∩�Cτ) ⊢ ^Bτ∩^Cτ
C

◦_(�Bτ∩�Cτ) ⊢ ^Bτ∩^Cτ
_(�Bτ∩�Cτ) ⊢ •^Bτ∩^Cτ
_(�Bτ∩�Cτ) ⊢ �(^Bτ∩^Cτ)

The case in whichA= B∨C is derived symmetrically.

�

In what follows, we only derive the translations of the axioms involving con-
junction, since the axioms involving disjunction can be treated symmetrically.

Commutative laws translation
cC1. (A∧B)τ ⊢ (B∧A)τ  _(�Aτ∩�Bτ) ⊢ �(^Bτ∩^Aτ)
cC2. (B∧A)τ ⊢ (A∧B)τ  _(�Bτ∩�Aτ) ⊢ �(^Aτ∩^Bτ)

Although each connective in succedent position should havethe superscriptop, in
what follows, for the sake of readability, we suppress it both in the translations and
in the derivation trees of the axioms.

Bτ ⊢ Bτ
�Bτ ⊢ ◦Bτ

W
�Bτ � �Aτ ⊢ ◦Bτ

E
�Aτ � �Bτ ⊢ ◦Bτ
�Aτ∩�Bτ ⊢ ◦Bτ
•�Aτ∩�Bτ ⊢ Bτ
_(�Aτ∩�Bτ) ⊢ Bτ
◦_(�Aτ∩�Bτ) ⊢ ^Bτ

Aτ ⊢ Aτ
�Aτ ⊢ ◦Aτ

W
�Aτ � �Bτ ⊢ ◦Aτ
�Aτ∩�Bτ ⊢ ◦Aτ
•�Aτ∩�Bτ ⊢ Aτ
_(�Aτ∩�Bτ) ⊢ Aτ
◦_(�Aτ∩�Bτ) ⊢ ^Aτ

◦_(�Aτ∩�Bτ) �◦_(�Aτ∩�Bτ) ⊢ ^Bτ∩^Aτ
C

◦_(�Aτ∩�Bτ) ⊢ ^Bτ∩^Aτ
_(�Aτ∩�Bτ) ⊢ •^Bτ∩^Aτ
_(�Aτ∩�Bτ) ⊢ �(^Bτ∩^Aτ)
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Associative laws translation
cA1. (A∧ (B∧C))τ ⊢ ((A∧B)∧C)τ  

_(�Aτ∩�_(�Bτ∩�Cτ)) ⊢ �(^�(^Aτ∩^Bτ)∩^Cτ)
cA2. ((A∧B)∧C)τ ⊢ (A∧ (B∧C))τ  

_(�_(�Aτ∩�Bτ)∩�Cτ) ⊢ �(^Aτ∩^�(^Bτ∩^Cτ))

Although each formula variable in precedent (resp. succedent) position should be
written with the superscriptτ (resp. subscriptτ), in what follows, for the sake of
readability, we suppress it in the derivation trees of the axioms.

A ⊢ A
�A ⊢ ◦A

W
�A ��_(�B∩�C) ⊢ ◦A
�A∩�_(�B∩�C) ⊢ ◦A
•�A∩�_(�B∩�C) ⊢ A

_

(

�A∩�_(�B∩�C)
)

⊢ A

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^A

B ⊢ B
�B ⊢ ◦B

W
�B ��C ⊢ ◦B
�B∩�C ⊢ ◦B
•�B∩�C ⊢ B
_(�B∩�C) ⊢ B
�_(�B∩�C) ⊢ ◦B

W
�_(�B∩�C) ��A ⊢ ◦B
�A ��_(�B∩�C) ⊢ ◦B
�A∩�_(�B∩�C) ⊢ ◦B
•�A∩�_(�B∩�C) ⊢ B

_

(

�A∩�_(�B∩�C)
)

⊢ B

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^B

◦_
(

�A∩�_(�B∩�C)
)

�◦_
(

�A∩�_(�B∩�C)
)

⊢ ^A∩^B
C

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^A∩^B

_

(

�A∩�_(�B∩�C)
)

⊢ •^A∩^B

_

(

�A∩�_(�B∩�C)
)

⊢ �(^A∩^B)

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^�(^A∩^B)

C ⊢C
�C ⊢ ◦C

W
�C ��B ⊢ ◦C

E
�B ��C ⊢ ◦C
�B∩�C ⊢ ◦C
•�B∩�C ⊢C
_(�B∩�C) ⊢C
�_(�B∩�C) ⊢ ◦C

W
�_(�B∩�C) ��A ⊢ ◦C
�A ��_(�B∩�C) ⊢ ◦C
�A∩�_(�B∩�C) ⊢ ◦C
•�A∩�_(�B∩�C) ⊢C

_

(

�A∩�_(�B∩�C)
)

⊢C

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^C

◦_
(

�A∩�_(�B∩�C)
)

�◦_
(

�A∩�_(�B∩�C)
)

⊢ ^�(^A∩^B)∩^C
C

◦_
(

�A∩�_(�B∩�C)
)

⊢ ^�(^A∩^B)∩^C

_

(

�A∩�_(�B∩�C)
)

⊢ •^�(^A∩^B)∩^C

_

(

�A∩�_(�B∩�C)
)

⊢ �
(

^�(^A∩^B)∩^C
)
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A ⊢ A
�A ⊢ ◦A

W
�A ��B ⊢ ◦A
�A∩�B ⊢ ◦A
•�A∩�B ⊢ A
_(�A∩�B) ⊢ A
�_(�A∩�B) ⊢ ◦A

W
�_(�A∩�B) ��C ⊢ ◦A
�_(�A∩�B)∩�C ⊢ ◦A
•�_(�A∩�B)∩�C ⊢ A

_

(

�_(�A∩�B)∩�C
)

⊢ A

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^A

B ⊢ B
�B ⊢ ◦B

W
�B ��A ⊢ ◦B

E
�A ��B ⊢ ◦B
�A∩�B ⊢ ◦B
•�A∩�B ⊢ B
_(�A∩�B) ⊢ B
�_(�A∩�B) ⊢ ◦B

W
�_(�A∩�B) ��C ⊢ ◦B
�_(�A∩�B)∩�C ⊢ ◦B
•�_(�A∩�B)∩�C ⊢ B

_

(

�_(�A∩�B)∩�C
)

⊢ B

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^B

C ⊢ C
�C ⊢ ◦C

W
�C ��_(�A∩�B) ⊢ ◦C

E
�_(�A∩�B) ��C ⊢ ◦C
�_(�A∩�B)∩�C ⊢ ◦C
•�_(�A∩�B)∩�C ⊢ C

_

(

�_(�A∩�B)∩�C
)

⊢ C

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^C

◦_
(

�_(�A∩�B)∩�C
)

�◦_
(

�_(�A∩�B)∩�C
)

⊢ ^B∩^C
C

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^B∩^C

_

(

�_(�A∩�B)∩�C
)

⊢ •^B∩^C

_

(

�_(�A∩�B)∩�C
)

⊢ �(^B∩^C)

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^�(^B∩^C)

◦_
(

�_(�A∩�B)∩�C
)

�◦_
(

�_(�A∩�B)∩�C
)

⊢ ^A∩^�(^B∩^C)
C

◦_
(

�_(�A∩�B)∩�C
)

⊢ ^A∩^�(^B∩^C)

_

(

�_(�A∩�B)∩�C
)

⊢ •
(

^A∩^�(^B∩^C)
)

_

(

�_(�A∩�B)∩�C
)

⊢ �
(

^A∩^�(^B∩^C)
)

Identity laws translation whereA= ⊤
cI1. (A∧⊤)τ ⊢ Aτ  _(�_�⊤∩�_�⊤) ⊢ �^⊤
cI2. Aτ ⊢ (A∧⊤)τ  _�⊤ ⊢ �(^�^⊤∩^�^⊤)

I ⊢ ⊤
⊤ ⊢ ⊤
◦⊤ ⊢ ^⊤
⊤ ⊢ •^⊤
⊤ ⊢ �^⊤
�⊤ ⊢ ◦�^⊤
•�⊤ ⊢ �^⊤
_�⊤ ⊢ �^⊤
�_�⊤ ⊢ ◦�^⊤

W
�_�⊤ � �_�⊤ ⊢ ◦�^⊤
�_�⊤∩�_�⊤ ⊢ ◦�^⊤
•�_�⊤∩�_�⊤ ⊢ �^⊤
_(�_�⊤∩�_�⊤) ⊢ �^⊤

I ⊢ ⊤
⊤ ⊢ ⊤
◦⊤ ⊢ ^⊤
⊤ ⊢ •^⊤
⊤ ⊢ �^⊤
◦⊤ ⊢ ^�^⊤

I ⊢ ⊤
⊤ ⊢ ⊤
◦⊤ ⊢ ^⊤
⊤ ⊢ •^⊤
⊤ ⊢ �^⊤
◦⊤ ⊢ ^�^⊤

◦⊤ �◦⊤ ⊢ ^�^⊤∩^�^⊤
C

◦⊤ ⊢ ^�^⊤∩^�^⊤
⊤ ⊢ •^�^⊤∩^�^⊤

⊤ ⊢ �(^�^⊤∩^�^⊤)
�⊤ ⊢ ◦�(^�^⊤∩^�^⊤)
•�⊤ ⊢ �(^�^⊤∩^�^⊤)
_�⊤ ⊢ �(^�^⊤∩^�^⊤)
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Identity laws translation whereA= ⊥
cI1. (A∧⊤)τ ⊢ Aτ  _(�_�⊥∩�_�⊤) ⊢ �^⊥
cI2. Aτ ⊢ (A∧⊤)τ  _�⊥ ⊢ �(^�^⊥∩^�^⊤)

⊥ ⊢ I
⊥ ⊢ ⊥
◦⊥ ⊢ ^⊥
⊥ ⊢ •^⊥
⊥ ⊢ �^⊥
�⊥ ⊢ ◦�^⊥
•�⊥ ⊢ �^⊥
_�⊥ ⊢ �^⊥
�_�⊥ ⊢ ◦�^⊥

W
�_�⊥ � �_�⊤ ⊢ ◦�^⊥
�_�⊥∩�_�⊤ ⊢ ◦�^⊥
•�_�⊥∩�_�⊤ ⊢ �^⊥
_(�_�⊥∩�_�⊤) ⊢ �^⊥

⊥ ⊢ I
⊥ ⊢ ⊥
⊥ ⊢ ⊥
◦⊥ ⊢ ^⊥
⊥ ⊢ •^⊥
⊥ ⊢ �^⊥
◦⊥ ⊢ ^�^⊥

I ⊢ ⊤
I-W
⊥ ⊢ ⊤
◦⊥ ⊢ ^⊤
⊥ ⊢ •^⊤
⊥ ⊢ �^⊤
◦⊥ ⊢ ^�^⊤

◦⊥ �◦⊥ ⊢ ^�^⊥∩^�^⊤
C

◦⊥ ⊢ ^�^⊥∩^�^⊤
⊥ ⊢ •^�^⊥∩^�^⊤

⊥ ⊢ �(^�^⊥∩^�^⊤)
�⊥ ⊢ ◦�(^�^⊥∩^�^⊤)
•�⊥ ⊢ �(^�^⊥∩^�^⊤)
_�⊥ ⊢ �(^�^⊥∩^�^⊤)

Identity laws translation whereA= p
cI1. (A∧⊤)τ ⊢ Aτ  _(�_�p∩�_�⊤) ⊢ �^p
cI2. Aτ ⊢ (A∧⊤)τ  _�p ⊢ �(^�^p∩^�^⊤)

p ⊢ p
◦p ⊢ ^p

p ⊢ •^p
p ⊢ �^p
�p ⊢ ◦�^p
•�p ⊢ �^p
_�p ⊢ �^p
�_�p ⊢ ◦�^p

W
�_�p� �_�⊤ ⊢ ◦�^p
�_�p∩�_�⊤ ⊢ ◦�^p
•�_�p∩�_�⊤ ⊢ �^p
_(�_�p∩�_�⊤) ⊢ �^p

p ⊢ p
p ⊢ p
◦p ⊢ ^p

p ⊢ •^p
p ⊢ �^p
◦p ⊢ ^�^p

I ⊢ ⊤
I-W p ⊢ ⊤
◦p ⊢ ^⊤

p ⊢ •^⊤
p ⊢ �^⊤
◦p ⊢ ^�^⊤

◦p�◦p ⊢ ^�^p∩^�^⊤
C

◦p ⊢ •^�^p∩^�^⊤
p ⊢ •^�^p∩^�^⊤
p ⊢ �(^�^p∩^�^⊤)
�p ⊢ ◦�(^�^p∩^�^⊤)
•�p ⊢ �(^�^p∩^�^⊤)
_�p ⊢ �(^�^p∩^�^⊤)
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Identity laws translation whereA=C∧D
cI1. (A∧⊤)τ ⊢ Aτ  _(�_(�Cτ∩�Dτ)∩�_�⊤) ⊢ �(^Cτ∩^Dτ)
cI2. Aτ ⊢ (A∧⊤)τ  _(�Cτ∩�Dτ) ⊢ �(^�(^Cτ∩^Dτ)∩^�^⊤)

C ⊢ C
◦C ⊢ ^C
C ⊢ •^C
�C ⊢ ◦•^C

W
�C � �D ⊢ ◦•^C
�C∩�D ⊢ ◦•^C
•�C∩�D ⊢ •^C
_(�C∩�D) ⊢ •^C
�_(�C∩�D) ⊢ ◦•^C

W
�_(�C∩�D) � �_�⊤ ⊢ ◦•^C
�_(�C∩�D)∩�_�⊤ ⊢ ◦•^C
•�_(�C∩�D)∩�_�⊤ ⊢ •^C
_(�_(�C∩�D)∩�_�⊤) ⊢ •^C
◦_(�_(�C∩�D)∩�_�⊤) ⊢ ^C

D ⊢ D
◦D ⊢ ^D
D ⊢ •^D
�D ⊢ ◦•^D

W
�D � �C ⊢ ◦•^D

E
�C � �D ⊢ ◦•^D
�C∩�D ⊢ ◦•^D
•�C∩�D ⊢ •^D
_(�C∩�D) ⊢ •^D
�_(�C∩�D) ⊢ ◦•^D

W
�_(�C∩�D) � �_�⊤ ⊢ ◦•^D
�_(�C∩�D)∩�_�⊤ ⊢ ◦•^D
•�_(�C∩�D)∩�_�⊤ ⊢ •^D
_(�_(�C∩�D)∩�_�⊤) ⊢ •^D
◦_(�_(�C∩�D)∩�_�⊤) ⊢ ^D

◦_(�_(�C∩�D)∩�_�⊤) �◦_(�_(�C∩�D)∩�_�⊤) ⊢ ^C∩^D
C

◦_(�_(�C∩�D)∩�_�⊤) ⊢ ^C∩^D
_(�_(�C∩�D)∩�_�⊤) ⊢ •^C∩^D
_(�_(�C∩�D)∩�_�⊤) ⊢ �(^C∩^D)

C ⊢ C
◦C ⊢ ^C
C ⊢ •^C
�C ⊢ ◦•^C

W
�C � �D ⊢ ◦•^C
�C∩�D ⊢ ◦•^C
•�C∩�D ⊢ •^C
_(�C∩�D) ⊢ •^C
◦_(�C∩�D) ⊢ ^C

D ⊢ D
◦D ⊢ ^D
D ⊢ •^D
�D ⊢ ◦•^D

W
�D � �C ⊢ ◦•^D

E
�C � �D ⊢ ◦•^D
�C∩�D ⊢ ◦•^D
•�C∩�D ⊢ •^D
_(�C∩�D) ⊢ •^D
◦_(�C∩�D) ⊢ ^D

◦_(�C∩�D) �◦_(�C∩�D) ⊢ ^C∩^D
C

◦_(�C∩�D) ⊢ ^C∩^D
_(�C∩�D) ⊢ •^C∩^D
_(�C∩�D) ⊢ �(^C∩^D)
◦_(�C∩�D) ⊢ ^�(^C∩^D)

I ⊢ ⊤
I-W
_(�C∩�D) ⊢ ⊤
◦_(�C∩�D) ⊢ ^⊤
_(�C∩�D) ⊢ •^⊤
_(�C∩�D) ⊢ �^⊤
◦_(�C∩�D) ⊢ ^�^⊤

◦_(�C∩�D) �◦_(�C∩�D) ⊢ ^�(^C∩^D)∩^�^⊤
C

◦_(�C∩�D) ⊢ ^�(^C∩^D)∩^�^⊤
_(�C∩�D) ⊢ •^�(^C∩^D)∩^�^⊤
_(�C∩�D) ⊢ �(^�(^C∩^D)∩^�^⊤)
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Identity laws translation whereA=C∨D
cI1. (A∧⊤)τ ⊢ Aτ  _(�_(�Cτ∪�Dτ)∩�_�⊤) ⊢ �(^Cτ∪^Dτ)
cI2. Aτ ⊢ (A∧⊤)τ  _(�Cτ∪�Dτ) ⊢ �(^�(^Cτ∪^Dτ)∩^�^⊤)

C ⊢ C
�C ⊢ ◦C
•�C ⊢ C
◦•�C ⊢ ^C

W
◦•�C ⊢ ^C �^D
◦•�C ⊢ ^C∪^D
•�C ⊢ •^C∪^D
•�C ⊢ �(^C∪^D)
�C ⊢ ◦�(^C∪^D)

D ⊢ D
�D ⊢ ◦D
•�D ⊢ D
◦•�D ⊢ ^D

W
◦•�D ⊢ ^D �^C

E
◦•�D ⊢ ^C �^D
◦•�D ⊢ ^C∪^D
•�D ⊢ •^C∪^D
•�D ⊢ �(^C∪^D)
�D ⊢ ◦�(^C∪^D)

�C∪�D ⊢ ◦�(^C∪^D) �◦�(^C∪^D)
C

�C∪�D ⊢ ◦�(^C∪^D)
•�C∪�D ⊢ �(^C∪^D)
_(�C∪�D) ⊢ �(^C∪^D)
�_(�C∪�D) ⊢ ◦�(^C∪^D)

W
�_(�C∪�D) � �_�⊤ ⊢ ◦�(^C∪^D)
�_(�C∪�D)∩�_�⊤ ⊢ ◦�(^C∪^D)
•�_(�C∪�D)∩�_�⊤ ⊢ �(^C∪^D)
_(�_(�C∪�D)∩�_�⊤) ⊢ �(^C∪^D)

C ⊢ C
◦C ⊢ ^C

W
◦C ⊢ ^C �^D
◦C ⊢ ^C∪^D
C ⊢ •^C∪^D
C ⊢ �(^C∪^D)
◦C ⊢ ^�(^C∪^D)
C ⊢ •^�(^C∪^D)
�C ⊢ ◦•^�(^C∪^D)

D ⊢ D
◦D ⊢ ^D

W
◦D ⊢ ^D �^C

E
◦D ⊢ ^C �^D
◦D ⊢ ^C∪^D
D ⊢ •^C∪^D
D ⊢ �(^C∪^D)
◦D ⊢ ^�(^C∪^D)
D ⊢ •^�(^C∪^D)
�D ⊢ ◦•^�(^C∪^D)

�C∪�D ⊢ ◦•�(^C∪^D) �◦•�(^C∪^D)
C

�C∪�D ⊢ ◦•�(^C∪^D)
•�C∪�D ⊢ •^�(^C∪^D)
_(�C∪�D) ⊢ •^�(^C∪^D)
◦_(�C∪�D) ⊢ ^�(^C∪^D)

I ⊢ ⊤
I-W
_(�C∪�D) ⊢ ⊤
◦_(�C∪�D) ⊢ ^⊤
_(�C∪�D) ⊢ •^⊤
_(�C∪�D) ⊢ �^⊤
◦_(�C∪�D) ⊢ ^�^⊤

◦_(�C∪�D) �◦_(�C∪�D) ⊢ ^�(^C∪^D)∩^�^⊤
C

◦_(�C∪�D) ⊢ ^�(^C∪^D)∩^�^⊤
_(�C∪�D) ⊢ •^�(^C∪^D)∩^�^⊤
_(�C∪�D) ⊢ �(^�(^C∪^D)∩^�^⊤)
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Absorption laws translation whereA= ⊤
cAb1. (A∧ (A∨B))τ ⊢ Aτ  _(�_�⊤∩�_(�_�⊤∪�Bτ)) ⊢ �^⊤
cAb2. Aτ ⊢ (A∧ (A∨B))τ  _�⊤ ⊢ �(^�^⊤∩^�(^�^⊤∪^Bτ))

I ⊢ ⊤
⊤ ⊢ ⊤
◦⊤ ⊢ ^⊤
⊤ ⊢ •^⊤
⊤ ⊢ �^⊤
�⊤ ⊢ ◦�^⊤
•�⊤ ⊢ �^⊤
_�⊤ ⊢ �^⊤
�_�⊤ ⊢ ◦�^⊤

W
�_�⊤ � �_(�_�⊤∪�B) ⊢ ◦�^⊤
�_�⊤∩�_(�_�⊤∪�B) ⊢ ◦�^⊤
•�_�⊤∩�_(�_�⊤∪�B) ⊢ �^⊤
_(�_�⊤∩�_(�_�⊤∪�B)) ⊢ �^⊤

⊤ ⊢ ⊤
�⊤ ⊢ ◦⊤
•�⊤ ⊢ ⊤
_�⊤ ⊢ ⊤
◦_�⊤ ⊢ ^⊤
_�⊤ ⊢ •^⊤
_�⊤ ⊢ �^⊤
◦_�⊤ ⊢ ^�^⊤

I ⊢ ⊤
⊤ ⊢ ⊤
�⊤ ⊢ ◦⊤
•�⊤ ⊢ ⊤
_�⊤ ⊢ ⊤
◦_�⊤ ⊢ ^⊤
_�⊤ ⊢ •^⊤
_�⊤ ⊢ �^⊤
◦_�⊤ ⊢ ^�^⊤

W
◦_�⊤ ⊢ ^�^⊤ �^B
◦_�⊤ ⊢ ^�^⊤∪^B
_�⊤ ⊢ •^�^⊤∪^B
_�⊤ ⊢ �(^�^⊤∪^B)
◦_�⊤ ⊢ ^�(^�^⊤∪^B)

◦_�⊤ �◦_�⊤ ⊢ ^�^p∩^�(^�^⊤∪^B)
C

◦_�⊤ ⊢ ^�^⊤∩^�(^�^⊤∪^B)
_�⊤ ⊢ •^�^⊤∩^�(^�^⊤∪^B)
_�⊤ ⊢ �(^�^⊤∩^�(^�^⊤∪^B))

Absorption laws translation whereA= ⊥
cAb1. (A∧ (A∨B))τ ⊢ Aτ  _(�_�⊥∩�_(�_�⊥∪�Bτ)) ⊢ �^⊥
cAb2. Aτ ⊢ (A∧ (A∨B))τ  _�⊥ ⊢ �(^�^⊥∩^�(^�^⊥∪^Bτ))

⊥ ⊢ I
⊥ ⊢ ⊥
◦⊥ ⊢ ^⊥
⊥ ⊢ •^⊥
⊥ ⊢ �^⊥
�⊥ ⊢ ◦�^⊥
•�⊥ ⊢ �^⊥
_�⊥ ⊢ �^⊥
�_�⊥ ⊢ ◦�^⊥

W
�_�⊥ � �_(�_�⊥∪�B) ⊢ ◦�^⊥
�_�⊥∩�_(�_�⊥∪�B) ⊢ ◦�^⊥
•�_�⊥∩�_(�_�⊥∪�B) ⊢ �^⊥
_(�_�⊥∩�_(�_�⊥∪�B)) ⊢ �^⊥

⊥ ⊢ ⊥
�⊥ ⊢ ◦⊥
•�⊥ ⊢ ⊥
_�⊥ ⊢ ⊥
◦_�⊥ ⊢ ^⊥
_�⊥ ⊢ •^⊥
_�⊥ ⊢ �^⊥
◦_�⊥ ⊢ ^�^⊥

⊥ ⊢ I
⊥ ⊢ ⊥
�⊥ ⊢ ◦⊥
•�⊥ ⊢ ⊥
_�⊥ ⊢ ⊥
◦_�⊥ ⊢ ^⊥
_�⊥ ⊢ •^⊥
_�⊥ ⊢ �^⊥
◦_�⊥ ⊢ ^�^⊥

W
◦_�⊥ ⊢ ^�^⊥ �^B
◦_�⊥ ⊢ ^�^⊥∪^B
_�⊥ ⊢ •^�^⊥∪^B
_�⊥ ⊢ �(^�^⊥∪^B)
◦_�⊥ ⊢ ^�(^�^⊥∪^B)

◦_�⊥ �◦_�⊥ ⊢ ^�^p∩^�(^�^⊥∪^B)
C

◦_�⊥ ⊢ ^�^⊥∩^�(^�^⊥∪^B)
_�⊥ ⊢ •^�^⊥∩^�(^�^⊥∪^B)
_�⊥ ⊢ �(^�^⊥∩^�(^�^⊥∪^B))
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Absorption laws translation whereA= p
cAb1. (A∧ (A∨B))τ ⊢ Aτ  _(�_�p∩�_(�_�p∪�Bτ)) ⊢ �^p
cAb2. Aτ ⊢ (A∧ (A∨B))τ  _�p ⊢ �(^�^p∩^�(^�^p∪^Bτ))

p ⊢ p
◦p ⊢ ^p

p ⊢ •^p
p ⊢ �^p
�p ⊢ ◦�^p
•�p ⊢ �^p
_�p ⊢ �^p
�_�p ⊢ ◦�^p

W
�_�p� �_(�_�p∪�B) ⊢ ◦�^p
�_�p∩�_(�_�p∪�B) ⊢ ◦�^p
•�_�p∩�_(�_�p∪�B) ⊢ �^p
_(�_�p∩�_(�_�p∪�B)) ⊢ �^p

p ⊢ p
�p ⊢ ◦p
•�p ⊢ p
_�p ⊢ p
◦_�p ⊢ ^p
_�p ⊢ •^p
_�p ⊢ �^p
◦_�p ⊢ ^�^p

p ⊢ p
�p ⊢ ◦p
•�p ⊢ p
_�p ⊢ p
◦_�p ⊢ ^p
_�p ⊢ •^p
_�p ⊢ �^p
◦_�p ⊢ ^�^p

W
◦_�p ⊢ ^�^p�^B
◦_�p ⊢ ^�^p∪^B
_�p ⊢ •^�^p∪^B
_�p ⊢ �(^�^p∪^B)
◦_�p ⊢ ^�(^�^p∪^B)

◦_�p�◦_�p ⊢ ^�^p∩^�(^�^p∪^B)
C

◦_�p ⊢ ^�^p∩^�(^�^p∪^B)
_�p ⊢ •^�^p∩^�(^�^p∪^B)
_�p ⊢ �(^�^p∩^�(^�^p∪^B))
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Absorption laws translation whereA=C∧D
cAb1. (A∧ (A∨B))τ ⊢ Aτ  

_

(

�_(�Cτ∩�Dτ)∩�_
(

�_(�Cτ∩�Dτ)∪�Bτ
))

⊢ �(^Cτ∩^Dτ)
cAb2. Aτ ⊢ (A∧ (A∨B))τ  

_(�Cτ∩�Dτ) ⊢ �
(

^�(^Cτ∩^Dτ)∩^�
(

^�(^Cτ∩^Dτ)∪^Bτ
))

C ⊢ C
◦C ⊢ ^C
C ⊢ •^C
�C ⊢ ◦•^C

W
�C ��D ⊢ ◦•^C
�C∩�D ⊢ ◦•^C
•�C∩�D ⊢ •^C
_(�C∩�D) ⊢ •^C
�_(�C∩�D) ⊢ ◦•^C

W
�_(�C∩�D) ��_

(

�_(�C∩�D)∪�B
)

⊢ ◦•^C

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
)

⊢ ◦•^C

•�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
)

⊢ •^C

_

(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ •^C

◦_
(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ ^C

D ⊢ D
◦D ⊢ ^D
D ⊢ •^D
�D ⊢ ◦•^D

W
�D ��C ⊢ ◦•^D

E
�C ��D ⊢ ◦•^D
�C∩�D ⊢ ◦•^D
•�C∩�D ⊢ •^D
_(�C∩�D) ⊢ •^D
�_(�C∩�D) ⊢ ◦•^D

W
�_(�C∩�D) ��_

(

�_(�C∩�D)∪�B
)

⊢ ◦•^D

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
)

⊢ ◦•^D

•�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
)

⊢ •^D

_

(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ •^D

◦_
(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ ^D
+C

◦_
(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ ^C∩^D

_

(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ •^C∩^D

_

(

�_(�C∩�D)∩�_
(

�_(�C∩�D)∪�B
))

⊢ �(^C∩^D)
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C ⊢ C
◦C ⊢ ^C
C ⊢ •^C
�C ⊢ ◦•^C

W
�C ��D ⊢ ◦•^C
�C∩�D ⊢ ◦•^C
•�C∩�D ⊢ •^C
_(�C∩�D) ⊢ •^C
◦_(�C∩�D) ⊢ ^C

D ⊢ D
◦D ⊢ ^D
D ⊢ •^D
�D ⊢ ◦•^D

W
�D ��C ⊢ ◦•^D

E
�C ��D ⊢ ◦•^D
�C∩�D ⊢ ◦•^D
•�C∩�D ⊢ •^D
_(�C∩�D) ⊢ •^D
◦_(�C∩�D) ⊢ ^D

◦_(�C∩�D) �◦_(�C∩�D) ⊢ ^C∩^D
C

◦_(�C∩�D) ⊢ ^C∩^D
_(�C∩�D) ⊢ •^C∩^D
_(�C∩�D) ⊢ �(^C∩^D)
◦_(�C∩�D) ⊢ ^�(^C∩^D)

C ⊢C
◦C ⊢ ^C
C ⊢ •^C
�C ⊢ ◦•^C

W
�C ��D ⊢ ◦•^C
�C∩�D ⊢ ◦•^C
•�C∩�D ⊢ •^C
_(�C∩�D) ⊢ •^C
◦_(�C∩�D) ⊢ ^C

D ⊢ D
◦D ⊢ ^D
D ⊢ •^D
�D ⊢ ◦•^D

W
�D ��C ⊢ ◦•^D

E
�C ��D ⊢ ◦•^D
�C∩�D ⊢ ◦•^D
•�C∩�D ⊢ •^D
_(�C∩�D) ⊢ •^D
◦_(�C∩�D) ⊢ ^D

◦_(�C∩�D) �◦_(�C∩�D) ⊢ ^C∩^D
C

◦_(�C∩�D) ⊢ ^C∩^D
_(�C∩�D) ⊢ •^C∩^D
_(�C∩�D) ⊢ �(^C∩^D)
◦_(�C∩�D) ⊢ ^�(^C∩^D)

W
◦_(�C∩�D) ⊢ ^�(^C∩^D) ��B
◦_(�C∩�D) ⊢ ^�(^C∩^D)∩�B
_(�C∩�D) ⊢ •^�(^C∩^D)∩�B

_(�C∩�D) ⊢ �
(

^�(^C∩^D)∩�B
)

◦_(�C∩�D) ⊢ ^�
(

^�(^C∩^D)∩�B
)

◦_(�C∩�D) �◦_(�C∩�D) ⊢ ^�(^C∩^D)∩^�
(

^�(^C∩^D)∩�B
)

C
◦_(�C∩�D) ⊢ ^�(^C∩^D)∩^�

(

^�(^C∩^D)∩�B
)

_(�C∩�D) ⊢ •^�(^C∩^D)∩^�
(

^�(^C∩^D)∩�B
)

_(�C∩�D) ⊢ �
(

^�(^C∩^D)∩^�
(

^�(^C∩^D)∩�B
))
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Absorption laws translation whereA=C∨D
cAb1. (A∧ (A∨B))τ ⊢ Aτ  

_

(

�_(�Cτ∪�Dτ)∩�_
(

�_(�Cτ∪�Dτ)∪�Bτ
))

⊢ �(^Cτ∪^Dτ)
cAb2. Aτ ⊢ (A∧ (A∨B))τ  

_(�Cτ∪�Dτ) ⊢ �
(

^�(^Cτ∪^Dτ)∩^�
(

^�(^Cτ∪^Dτ)∪^Bτ
))

C ⊢ C
�C ⊢ ◦C
•�C ⊢ C
◦•�C ⊢ ^C

W
◦•�C ⊢ ^C �^D
◦•�C ⊢ ^C∪^D
•�C ⊢ •^C∪^D
•�C ⊢ �(^C∪^D)
�C ⊢ ◦�(^C∪^D)

D ⊢ D
�D ⊢ ◦D
•�D ⊢ D
◦•�D ⊢ ^D

W
◦•�D ⊢ ^D �^C

E
◦•�D ⊢ ^C �^D
◦•�D ⊢ ^C∪^D
•�D ⊢ •^C∪^D
•�D ⊢ �(^C∪^D)
�D ⊢ ◦�(^C∪^D)

�C∪�D ⊢ ◦�(^C∪^D) �◦�(^C∪^D)
C

�C∪�D ⊢ ◦�(^C∪^D)
•�C∪�D ⊢ �(^C∪^D)
_(�C∪�D) ⊢ �(^C∪^D)
�_(�C∪�D) ⊢ ◦�(^C∪^D)

W
�_(�C∪�D) ��_

(

�_(�C∪�D)∪�B
))

⊢ ◦�(^C∪^D)

�_(�C∪�D)∩�_
(

�_(�C∪�D)∪�B
))

⊢ ◦�(^C∪^D)

•�_(�C∪�D)∩�_
(

�_(�C∪�D)∪�B
))

⊢ �(^C∪^D)

_

(

�_(�C∪�D)∩�_
(

�_(�C∪�D)∪�B
)))

⊢ �(^C∪^D)
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C ⊢ C
◦C ⊢ ^C

W
◦C ⊢ ^C �^D
◦C ⊢ ^C∪^D
C ⊢ •^C∪^D
C ⊢ �(^C∪^D)
◦C ⊢ ^�(^C∪^D)
C ⊢ •^�(^C∪^D)
�C ⊢ ◦•^�(^C∪^D)

D ⊢ D
◦D ⊢ ^D

W
◦D ⊢ ^D �^C

E
◦D ⊢ ^C �^D
◦D ⊢ ^C∪^D
D ⊢ •^C∪^D
D ⊢ �(^C∪^D)
◦D ⊢ ^�(^C∪^D)
D ⊢ •^�(^C∪^D)
�D ⊢ ◦•^�(^C∪^D)

�C∪�D ⊢ ◦•�(^C∪^D) �◦•�(^C∪^D)
C

�C∪�D ⊢ ◦•�(^C∪^D)
•�C∪�D ⊢ •^�(^C∪^D)
_(�C∪�D) ⊢ •^�(^C∪^D)
◦_(�C∪�D) ⊢ ^�(^C∪^D)

C ⊢C
◦C ⊢ ^C

W
◦C ⊢ ^C �^D
◦C ⊢ ^C∪^D
C ⊢ •^C∪^D
C ⊢ �(^C∪^D)
◦C ⊢ ^�(^C∪^D)
C ⊢ •^�(^C∪^D)
�C ⊢ ◦•^�(^C∪^D)

D ⊢ D
◦D ⊢ ^D

W
◦D ⊢ ^D �^C

E
◦D ⊢ ^C �^D
◦D ⊢ ^C∪^D
D ⊢ •^C∪^D
D ⊢ �(^C∪^D)
◦D ⊢ ^�(^C∪^D)
D ⊢ •^�(^C∪^D)
�D ⊢ ◦•^�(^C∪^D)

�C∪�D ⊢ ◦•�(^C∪^D) �◦•�(^C∪^D)
C

�C∪�D ⊢ ◦•�(^C∪^D)
•�C∪�D ⊢ •^�(^C∪^D)
_(�C∪�D) ⊢ •^�(^C∪^D)
◦_(�C∪�D) ⊢ ^�(^C∪^D)

W
◦_(�C∪�D) ⊢ ^�(^C∪^D) �^B
◦_(�C∪�D) ⊢ ^�(^C∪^D)∪^B
_(�C∪�D) ⊢ •^�(^C∪^D)∪^B

_(�C∪�D) ⊢ �
(

^�(^C∪^D)∪^B
)

◦_(�C∪�D) ⊢ ^�
(

^�(^C∪^D)∪^B
)

+C
◦_(�C∪�D) ⊢ ^�(^C∪^D)∩^�

(

^�(^C∪^D)∪^B
)

_(�C∪�D) ⊢ •^�(^C∪^D)∩^�
(

^�(^C∪^D)∪^B
)

_(�C∪�D) ⊢ �
(

^�(^C∪^D)∩^�
(

^�(^C∪^D)∪^B
))

7 Distributivity fails

In the present section, we show that the translation of the distributivity axiom is
not derivable in D.LL.

Distributivity laws translation
cD1. (A∩ (B∪C))τ ⊢ ((A∩B)∪ (A∪C))τ  

_

(

�Aτ∩�_(�Aτ∪�Bτ)
)

⊢ �
(

^�(^Aτ∩^Bτ)∪^�(^Aτ∩^Cτ)
)

Our strategy will be to show that all the possible paths in thebackward proof
search always end in deadlocks. First, we apply exhaustively backward all invert-
ible operational rules (modulo applications of display postulates):
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???
...

•
(

�A � �_(�B∪�C)
)

⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

�A � �_(�B∪�C) ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�A∩�_(�B∪�C) ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

•
(

�A∩�_(�B∪�C)
)

⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

◦•
(

�A∩�_(�B∪�C)
)

⊢ ^�(^A∩^B) �^�(^A∩^C)

◦•
(

�A∩�_(�B∪�C)
)

⊢ ^�(^A∩^B)∪^�(^A∩^C)

•
(

�A∩�_(�B∪�C)
)

⊢ •
(

^�(^A∩^B)∪^�(^A∩^C)
)

•
(

�A∩�_(�B∪�C)
)

⊢ �
(

^�(^A∩^B)∪^�(^A∩^C)
)

_

(

�A∩�_(�B∪�C)
)

⊢ �
(

^�(^A∩^B)∪^�(^A∩^C)
)

There are no structural rules in which• and� interact, therefore we are reduced
to the following possibilities: either we isolate the structure

X = �A � �_(�B∪�C)

in precedent position by means of a backward application of adisplay postulate, or
we similarly isolate the structure

Y= ^�(^A∩^B) �^�(^A∩^C)

in succedent position.
In what follows, we treat the first case, since the argument for the second case is

analogous. Once the structureX is in isolation, we can act onX only via Exchange,
Weakening or Residuation. However, each of these moves willlead us to a dead
end, as we show below.

• Case 1: (Exchange or) Residuation.

As an intermediate step, we can try to isolate any of the substructures ofX via
Residuation, as follows:

???
...

�_(�B∪�C) ⊢ �A⊃ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�A � �_(�B∪�C) ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

or via Exchange and Residuation, as follows:
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???
...

�A ⊢ �_(�B∪�C) ⊃ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�_(�B∪�C) � �A ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�A � �_(�B∪�C) ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

However, in each case we reach a dead end.

• Case 2: (Exchange or) Weakening.

As an intermediate step, we can try to isolate an immediate substructure ofX
by applying backward Weakening. By directly applying Weakening, we obtain

�A ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

,

and by applying Exchange and Weakening, we obtain

�_(�B∪�C) ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

.

In each subcase, this choice leads us to a dead end. Indeed, wepreliminarily
observe that the second subcase can be reduced to the first oneby expanding the
tree as follows:

??
...

�B ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

??
...

�C ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�B∪�C ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

�B∪�C ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

•(�B∪�C)
)

⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

_(�B∪�C)
)

⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

_(�B∪�C)
)

⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

�_(�B∪�C)
)

⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)

As to the proof of first subcase, let us preliminarily performthe following steps:

??
...

◦A ⊢ ^�(^A∩^B) �^�(^A∩^C)

A ⊢ •
(

^�(^A∩^B) �^�(^A∩^C)
)

�A ⊢ ◦•
(

^�(^A∩^B) �^�(^A∩^C)
)
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Again, we are in a situation in which we can act on the structure Y only via
Exchange, Weakening or Residuation, and also in this case any option leads us to
a dead end. Indeed:

- Case 2.1: Exchange or Weakening.

As an intermediate step, we can try to delete one of the immediate substruc-
tures ofY. By applying Weakening or, respectively, Exchange and Weaken-
ing, we obtain

◦A ⊢ ^�(^A∩^B) and ◦A ⊢ ^�(^A∩^C).

In each case, we reach a dead end, as we show below:

?
...

◦A ⊢ ^A∩^B
A ⊢ •(^A∩^B)
A ⊢ �(^A∩^B)
◦A ⊢ ^�(^A∩^B)

?
...

◦A ⊢ ^A∩^C
A ⊢ •(^A∩^C)
A ⊢ �(^A∩^C)
◦A ⊢ ^�(^A∩^C)

- Case 2.2: Residuation. As an intermediate step, we can try to isolate any of
the substructures ofY via Residuation, as follows:

?
...

^�(^A∩^B) ⊃ ◦A ⊢ ^�(^A∩^C)
◦A ⊢ ^�(^A∩^B) �^�(^A∩^C)

or via Exchange and Residuation, as follows:

?
...

^�(^A∩^C) ⊃ ◦A ⊢ ^�(^A∩^B)
◦A ⊢ ^�(^A∩^C) �^�(^A∩^B)
◦A ⊢ ^�(^A∩^B) �^�(^A∩^C)

However, in each case we reach a dead end.
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