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Abstract. Formulae of the Lambek calculus are constructed using three
binary connectives, multiplication and two divisions. We extend it using
a unary connective, positive Kleene iteration. For this new operation, fol-
lowing its natural interpretation, we present two lines of calculi. The first
one is a fragment of infinitary action logic and includes an omega-rule
for introducing iteration to the antecedent. We also consider a version
with infinite (but finitely branching) derivations and prove equivalence of
these two versions. In Kleene algebras, this line of calculi corresponds to
the *-continuous case. For the second line, we restrict our infinite deriva-
tions to cyclic (regular) ones. We show that this system is equivalent to
a variant of action logic that corresponds to general residuated Kleene
algebras, not necessarily *-continuous. Finally, we show that, in contrast
with the case without division operations (considered by Kozen), the first
system is strictly stronger than the second one. To prove this, we use a
complexity argument. Namely, we show, using methods of Buszkowski
and Palka, that the first system is Π

0
1 -hard, and therefore is not re-

cursively enumerable and cannot be described by a calculus with finite
derivations.

Keywords: Lambek calculus, positive iteration, infinitary action logic,
cyclic proofs

1 The Infinitary Lambek Calculus with Positive Iteration

The Lambek calculus L [12] deals with formulae that are built using three con-
nectives, · (product), \, and / (left and right divisions). These connectives enjoy
a natural interpretation as operations on formal languages (completeness shown
by Pentus [17]). There are, however, also other interesting and well-respected
operations on formal languages, and it is quite natural to try to extend L by
adding these operations as new connectives.

One of the most common of such operations is iteration, or Kleene star: for
a language M over an alphabet Σ its iteration is defined as follows:

M∗ = {u1 . . . un | n ≥ 0, ui ∈ M}.
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As one can notice, M∗ always includes the empty word, ε. The original Lam-
bek calculus, however, obeys so-called Lambek’s non-emptiness restriction, that
is, the empty sequence is never allowed in L (this restriction is motivated by
linguistic applications; from the algebraic point of view, this means that we’re
considering residuated semigroups instead of residuated monoids). Therefore,
throughout this paper we consider a modified version of Kleene star, called pos-
itive iteration:

M+ = {u1 . . . un | n ≥ 1, ui ∈ M} = M∗ − {ε}.

In this paper, we introduce several extensions of the Lambek calculus with
this new connective, establish connections between them, and prove some com-
plexity bounds.

Formulae of the Lambek calculus with positive iteration, usually called types,
are built from a countable set of variables (primitive types) Pr = {p1, p2, p3, . . . }
using three binary connectives, ·, \, and /, and one unary connective, + (written
in the postfix form, A+). The set of all types is denoted by Tp. Types are
denoted by capital Latin letters; capital Greek letters stand for finite linearly
ordered sequences of types.

Derivable objects are sequents of the form Π → A, where A ∈ Tp and Π is
a non-empty finite sequence of types.

Now let’s define the first calculus for positive iteration, L+ω . The axioms and
the rules for ·, \, and / are the same as in the original Lambek calculus L:

A → A
(ax)

A,Π → B

Π → A \B
(→ \), where Π is non-empty

Π → A Γ,B,∆ → C

Γ,Π,A \B,∆ → C
(\ →)

Π,A → B

Π → B /A
(→ /), where Π is non-empty

Π → A Γ,B,∆ → C

Γ,B /A,Π,∆ → C
(/ →)

Γ → A ∆ → B
Γ,∆ → A · B

(→ ·)
Γ,A,B,∆ → C

Γ,A · B,∆ → C
(· →)

For +, this calculus includes a countable set of right rules:

Π1 → A . . . Πn → A

Π1, . . . , Πn → A+
(→ +)n, for n ≥ 1

and one left rule

Γ,A,∆ → C Γ,A,A,∆ → C Γ,A,A,A,∆ → C . . .

Γ,A+, ∆ → C
(+ →)ω

This rule is an ω-rule, or an infinitary rule. Application of such a rule makes the
proof tree infinite. This is somewhat unpleasant from the computational point
of view, but, as we show later on, it appears to be inevitable.

The rules (→ +)n and (+ →)ω come from the rules for iteration in infinitary
action logic, ACTω [4]. Our system L+ω differs from ACTω in the following two
points.



1. L+ω enriches the “pure” (multiplicative) Lambek calculus L, while ACTω is
based on the full Lambek calculus FL, including also additive conjunction
(∧) and disjunction (∨). This means that complexity lower bounds for L+ω
are stronger results than lower bounds for ACTω.

2. In contrast to ACTω, in L+ω we have Lambek’s non-emptiness restriction,
and therefore use positive iteration instead of Kleene star.

The cut rule of the form

Π → A Γ,A,∆ → C

Γ,Π,∆ → C
(cut)

is admissible in L+ω . This fact is proved by the same transfinitary cut-elimination
procedure, as presented by Palka [14] for ACTω (for a restricted fragment of L+ω
cut elimination was independently shown by Ryzhkova [21]).

The admissibility of (cut) yields the fact that the rules (→ \), (→ /), (· →),
and, most interestingly, (+ →)ω are invertible.

The Lambek calculus L, defined by axioms (ax) and rules (→ \), (\ →),
(→ /), (/ →), (→ ·), and (· →), is a conservative fragment of L+ω. Cut elimination
for L was known already by Lambek [12].

The calculus L+ω defined in this section is sound with respect to the intended
interpretation on formal languages, where + is interpreted as positive iteration:

M+ = {u1 . . . un | n ≥ 1, ui ∈ M},

and the Lambek connectives are interpreted in the same way as for L:

M ·N = {uv | u ∈ M, v ∈ N},

M \N = {u ∈ Σ+ | (∀v ∈ M) vu ∈ N},

N /M = {u ∈ Σ+ | (∀v ∈ M)uv ∈ N}.

The arrow, →, is interpreted as the subset relation.
Completeness with respect to this interpretation is an open problem.

2 Π
0
1
-completeness of L+

ω

In this section we prove that derivability in L+ω is Π0
1 - (co-r.e.-) hard. Basically,

we follow the same strategy as Buszkowski [4], namely, encoding the totality
problem for context-free grammars. Our construction, however, is more involved:
instead of embedding context-free grammars into the Lambek environment as
Ajdukiewicz – Bar-Hillel basic categorial grammars, we use another transla-
tion by Safiullin [22] which yields a categorial grammar that assigns exactly one
type to each letter of the alphabet. This trick allows us to avoid using addi-
tive operations, and prove the complexity lower bound for the extension of the
original, purely multiplicative Lambek calculus L. For the purely multiplicative
fragment of ACTω, the lower complexity bound was left as an open problem by



Buszkowski in [4]. Here we solve not that problem exactly, but its version with
Lambek’s restriction.

Throughout this paper, all languages do not contain the empty word. Accord-
ingly, all context-free grammars do not contain ε-rules. By total

+ we denote
the set of all context-free grammars G such that the language generated by G
is the set of all non-empty words, Σ+. The problem total

+ is Π0
1 -hard. In-

deed, as shown in [4], total, the totality problem for context-free grammars
possibly using the empty word, reduces to total

+. In its turn, total itself is
known to be undecidable, and standard proofs of this fact actually yield more:
they reduce a well-known Σ0

1- (r.e.-) complete problems, e.g., Post’s correspon-
dence problem [7, Theorem 9.22] or halting problem for Turing machines [5,
Example 5.43], to the complement of total. This makes total and total

+

themselves Π0
1 -complete.

We can further restrict ourselves to context-free grammars over a two-letter
alphabet, {b, c}. Denote the ε-free totality problem over {b, c} by total

+
2 . The

original problem total
+ is reduced to total

+
2 in the following way. Let G be

a context-free grammar that defines a language L(G) over Σ = {a0, a1, . . . , an}.
The homomorphism h : ai 7→ bic is a one-to-one correspondence between Σ+

and {u ∈ {b, c}+ | u ends on c and doesn’t contain bn+1 as a subword}. Now
we can computably transform G into a new context-free grammar G′ for the
language h(L(G)) ∪ {u ∈ {b, c}+ | u ends on b or contains bn+1 as a subword}
over {b, c}. Clearly, G ∈ total

+ ⇐⇒ G′ ∈ total
+
2 . This establishes the

necessary reduction and Π0
1 -hardness of total

+
2 .

Finally, we consider the alternation problem for context-free grammars over
{b, c}, denoted by alt2. A context-free grammar G belongs to alt2 if the lan-
guage it generates includes the language ({b}+{c}+)+ = {bm1ck1 . . . bmnckn |
n ≥ 1,mi ≥ 1, kj ≥ 1} (as a subset). Clearly, alt2 is also Π0

1 -hard by reduction
of total+2 , since M = {b, c}+ ⇐⇒ {b} ·M · {c} ⊇ ({b}+{c}+)+.

Now we need an encoding of context-free grammars in the Lambek calculus.
A Lambek categorial grammar with unique type assignment over the alphabet
{a1, . . . , an} consists of (n+ 1) types (without the + connective) A1, . . . , An, H
(H is called the target type), and a word w = ai1 . . . aim belongs to the language
generated by this grammar iff the sequent Ai1 , . . . , Aim → H is derivable in
L. These grammars have the same expressive power as context-free grammars
(without ε-rules).

Theorem 1 (A. Safiullin, 2007). For every context-free language there ex-
ists, and can be effectively constructed from the original context-free grammar,
a Lambek categorial grammar with unique type assignment. [22]

The inverse translation, from Lambek categorial grammars to context-free gram-
mars, is also available due to Pentus [15] (in this paper we don’t need it). In
order to make this paper logically self-contained, we revisit Theorem 1 and give
its full proof in the Appendix (in Safiullin’s paper [22], the proof is only briefly
sketched).

Now we’re ready to prove the main result of this section.



Theorem 2. The derivability problem for L+ω is Π0
1 -complete.

Proof. The fact that this problem belongs to class Π0
1 (the upper bound) is

established by the same argument as for ACTω in [14].
To prove Π1

0 -hardness of the derivability problem in L+ω (the lower bound),
we encode alt2. For every context-free grammar G over {b, c} we algorithmically
construct an L+ω-sequent E → H such that

G ∈ alt2 ⇐⇒ E → H is derivable in L+ω .

First we apply Theorem 1 to G and obtain a Lambek categorial grammar with
unique type assignment. In this case, it consists of three types, B, C, and H .
Next, let E = (B+ · C+)+.

Now, since the (· →) and (+ →) rules are invertible, the sequent E → H
is derivable in L+ω iff for any positive natural numbers n, m1, . . . , mn, k1, . . . ,
kn the sequent Bm1 , Ck1 , . . . , Bmn , Ckn → H is derivable in L+ω, and, since it
doesn’t contain +, by conservativity also in the Lambek calculus L. By definition
of Lambek grammar, this is equivalent to bm1ck1 . . . bmnckn ∈ L(G). Therefore,
E → H is derivable iff the language generated by G includes all words of the
form bm1ck1 . . . bmnckn , i.e., G ∈ alt2.

3 The Calculus with Infinite Derivation Branches

In this section we define L+
∞
, another infinitary calculus that extends L with

positive iteration, in the spirit of sequent systems with non-well-founded deriva-
tions for other logics [2][13][24]. Compared to L+ω , L

+
∞

has a finite number of
rules and each rule has a finite number of premises. The tradeoff is that now
derivation trees are allowed to have infinite depth.

The Lambek part (rules for \, /, and ·) is taken from L. The rules for positive
iteration are as follows:

Π → A
Π → A+

(→ +)1
Π1 → A Π2 → A+

Π1, Π2 → A+
(→ +)L

Γ,A,∆ → C Γ,A,A+, ∆ → C

Γ,A+, ∆ → C
(+ →)L

As said before, we allow infinitely deep derivations. For the cut-free version,
any trees with possibly infinite paths are allowed, but for the calculus with (cut)
one has to be extremely cautious. Clearly, allowing arbitrary infinite proofs would
yield dead circles without actually using rules for +:

p → p

p → p
. .
.

p → q
(cut)

p → q
(cut)

p → q
(cut)



Such “derivations” should be ruled out. There are, however, trickier cases like
the following:

p → p

p → p p+ → p+

p, p+ → p+
(→ +)L

. .
.

p+ → p
(+ →)L

p, p+ → p
(cut)

p+ → p
(+ →)L

Here in the only infinite path we can see an infinite number of (+ →) applications.
However, the resulting sequent, p+ → p, is not valid under the formal language
interpretation (e.g., {a}+ 6⊆ {a}) and therefore should not be derivable.

For the calculus with (cut), we impose the following constraint on the infi-
nite derivation tree: in each infinite path there should be an infinite number of
applications of (+ →)L with the same active occurrence of A+ (the occurrence
is tracked by individuality from bottom to top), cf. [2, Definition 5.5].

In our example that “derives” p+ → p, the occurrence of p+ that is active
in the lower application of (+ →)L tracks to the left premise, and the p+ that
goes further to the infinite path is another occurrence generated by cut. For the
cut-free system, this constraint holds automatically.

Also notice that the rules in L+
∞

are asymmetric: we don’t introduce the
rules where A appears to the right of A+. Yet, this calculus is equivalent to
the symmetric system L+ω (Proposition 1). A motivation for this asymmetry is
explained in the end of Section 4.

We generalize both L+
∞

and L+ω by adding the additive disjunction, ∨, gov-
erned by the following rules:

Γ,A1, ∆ → C Γ,A2, ∆ → C

Γ,A1 ∨ A2, ∆ → C
(∨ →)

Γ → Ai

Γ → A1 ∨ A2

(→ ∨)

and denote the extensions by L+
∞
(∨) and L+ω(∨) respectively.

The cut-free calculi L+ω(∨) and L+
∞
(∨) (and, therefore, their conservative

fragments L+ω and L+
∞
) are equivalent.

Proposition 1. A sequent is derivable in L+ω(∨) iff it is derivable in L+
∞
(∨).

Proof (sketch of). The “only if” part is trivial: the ω-rule is derivable in L+
∞
(∨)

and so are the (→ +)n rules. All other rules are the same.
For the “if” part, we make use of the ∗-elimination result by Palka [14]. We

consider the n-th negative mapping that replaces any negative occurrence of A+

(polarity is defined as usual) by A ∨ A2 ∨ . . . ∨ An and show that if a sequent
is derivable in L+

∞
(∨), than all its negative mappings are also derivable. In the

negative mapping, however, there are no negative occurrences of +, and therefore
its cut-free derivation doesn’t have infinite branches. Moreover, we replace each
(→ +)L rule application with the following subderivation:

Π1 → A Π2 → A+

Π1, Π2 → A ·A+

A,A+ → A+

A · A+ → A+

Π1, Π2 → A+
(cut)



The sequent A,A+ → A+ is derivable in L+ω(∨), using the ω-rule. Thus, the
negative mapping of the original is derivable in L+ω(∨) using cut, and, by cut
elimination, has a cut-free derivation. Then we go backwards and show, following
the argument of Palka [14], that the original sequent is derivable in L+ω(∨).

4 The Cyclic Calculus

Now let’s consider the following example:

p, p \p → p

p → p

. .
.

p, (p \ p)+ → p

p, p \ p, (p \ p)+ → p
(\ →)

p, (p \ p)+ → p
(+ →)

(p \ p)+ → p \ p
(→ \)

We see that actually we don’t have to develop the derivation tree further, since
the sequent p, (p \ p)+ → p on top already appears lower in the derivation, and
now this tree can be built up to an infinite one in a regular way.

We define the notion of cyclic proof as done in [24][25] (for GL, the Gödel
– Löb logic) and call this system L+circ. In contrast to the situation with GL,
however, here L+

circ
is strictly weaker than L+ω (L+

∞
) due to complexity reasons.

Indeed, L+ω is Π0
1 -hard, while in L+

circ
derivations are finite and the derivability

problem is recursively enumerable (belongs to Σ0
1). This is true even in the

signature without ∨.
For the extension of L+

circ
with additive disjunction, we show that the cyclic

system L+
circ

(∨) is equivalent to the corresponding variant of action logic consid-
ered by Pratt [19], Kozen [10], and Jipsen [9]. The difference is due to Lambek’s
non-emptiness restriction and the use of positive iteration instead of Kleene star.

Formally, cyclic derivations are defined as follows. The system L+
circ

(∨) has
the same axioms and rules as L+

∞
(∨), but infinite derivations are not allowed.

Instead, for each application of the (+ →)L rule that yields Γ,A+, ∆ → B we
trace the active occurrence of A+ upwards and are allowed to stop if we again
get the same sequent, Γ,A+, ∆ → B with the same occurrence of A+. This
sequent is backlinked to the original one, forming a cycle. The cut rule is also
allowed. Note that in the bottom of each cycle we always have the (+ →)L
rule with the active occurrence of A+ which is traced through the cycle, thus
satisfying the constraint needed for infinite derivations with cut. Clearly, every
cyclic derivation can be expanded into an infinite one. On the other hand, the
cyclic system L+circ is not equivalent to L+

∞
due to complexity reasons.

This system L+
circ

appears to have much in common with various coinductive
proof systems [1][8][11][18][20]. These connections are worth further investiga-
tion.

The cyclic system L+
circ

(∨) happens to be equivalent to a non-sequential cal-
culus ACT+ defined below, which is the positive iteration variant of the axioms
for action algebras by Pratt [19]:



A → A (A · B) · C → A · (B · C) A · (B · C) → (A · B) · C

A → C /B

A · B → C
A · B → C
A → C /B

B → A \C

A · B → C
A · B → C
B → A \C

A → B B → C
A → C

A → Bi

A → B1 ∨B2

A1 → B A2 → B

A1 ∨ A2 → B

A ∨ (A+ ·A+) → A+

A ∨ (B ·B) → B

A+ → B

The rules for \, /, and · correspond to the non-sequential formulation of the
Lambek calculus [12].

Lemma 1. The following rule is admissible in ACT+:

A → C C ·A → C
A+ → C

This lemma is actually a modification of a well-known alternative formulation
of the calculus for action logic (connecting it to Kleene algebra). The difference,
again, is in using positive iteration instead of Kleene star.

Proof. The second premise yields A → C \C, and since (C \C)·(C \C) → C \C
is derivable, we get A ∨ ((C \C) · (C \C)) → C \C, and therefore A+ → C \C
and then C → C /A+. By transitivity with A → C this yields A → C /A+, and
therefore A · A+ → C. Combining this with A → C, we get A ∨ (A · A+) → C,
and it is sufficient to show A+ → A ∨ (A · A+). Denote A ∨ (A · A+) by B.
We have A → B and also B · B → B. Indeed, using distributivity conditions:
(E∨F )·G ↔ (E ·G)∨(E ·G) and G·(E∨F ) ↔ (G·E)∨(G·F ), that are derivable
in ACT+, we replace B ·B with (A·A)∨(A·A·A+)∨(A·A+ ·A)∨(A·A+ ·A·A+),
and applying the axiom for + and monotonicity, we see that all four disjuncts
here yield A ·A+, and therefore B. Hence, by the rule for +, we obtain A+ → B.

Lemma 2. The following rule is admissible in ACT+:

A → C A2 → C . . . Ak → C Ak · C → C
A+ → C

Lemma 2 is essential for emulating cyclic reasoning in the non-sequential
calculus ACT+. The k parameter corresponds to the number of (+ →)L appli-
cations in the cycle.

Proof. First we prove that

A+ → A ∨ A2 ∨ . . . ∨ Ak ∨ (Ak)+ ∨ (Ak)+ ·A ∨ . . . ∨ (Ak)+ · Ak−1



is derivable in this calculus. We denote the right-hand side of this formula by B
and show A → B and B · A → B (this yields A+ → B by Lemma 1). The first
is trivial. For the second, using distributivity conditions, we replace B · A with

A2∨A3∨ . . .∨Ak∨Ak+1∨(Ak)+ ·A∨(Ak)+ ·A2∨ . . .∨(Ak)+ ·Ak∨(Ak)+ ·Ak+1.

All types in this long disjunction, except Ak+1 and (Ak)+ · Ak+1, belong to
the disjunction B (and therefore yield B). For the two exceptions we have the
following: Ak+1 → (Ak)+ · A and (Ak)+ · Ak+1 → (Ak)+ · A.

Now we prove the lemma itself by deriving B → C. To do this, we need to
show H → C for any disjunct H in B. For H = A, . . . , H = Ak this is stated in
the premises. Since that (C /C) · (C /C) → C /C is derivable and Ak → C /C
follows from the last premise, we get Ak ∨ ((C /C) · (C /C)) → (C /C), and
therefore (Ak)+ → C /C. Thus, (Ak)+ · C → C, then C → (Ak)+ \C, and by
transitivity with Ai → C we get (Ak)+ · Ai → C for any i = 1, . . . , k − 1. It
remains to show (Ak)+ → C. We have (Ak)+ · Ak → C and also Ak → C as
a premise. One can easily prove (Ak)+ → Ak ∨ ((Ak)+ · Ak) and thus establish
(Ak)+ → C.

Finally, by transitivity from A+ → B and B → C we obtain A+ → C.

Theorem 3. A sequent (of the form E → F ) is derivable in L+
circ

(∨) iff it is
derivable in ACT+.

Proof. The “if” part is easier. The rules operating Lambek connectives (·, /, and
\) can be emulated in the sequential calculus due to Lambek [12]. The rules for
∨ in ACT+ directly correspond to the rules for ∨ in L+

circ
(∨).

The following cyclic derivation yields A+ → B from A → B and B,B → B,
thus establishing the rule for + from ACT+:

A → B

A → B

...
A+ → B B,B → B

B,A+ → B
(cut)

A,A+ → B
(cut)

A+ → B
(+ →)L

The track of A+ goes through the cycle, and the (+ →)L rule is applied to it at
every round.

Finally, for A+ · A+ → A+, we first derive A · A+ → A+ (using (→+)L and
(· →)), and then, following Pratt [19], transform it into A+ · A+ → A+:

A,A+ → A+

A → A+ \A+ A+ \A+, A+ \A+ → A+ \A+

A ∨ ((A+ \A+) · (A+ \A+)) → A+ \A+

A+ → A+ \A+

A+ · A+ → A+



In this derivation we’ve used other rules of ACT+, which were previously shown
to be valid in L+

circ
(∨). Together with A → A+ (derivable using (→ +)1), this

yields the last axiom of ACT+, A ∨ (A+ · A+) → A+.
For “only if” part, we first replace all cycles in the L+

circ
(∨) derivation by

applications of the rule from Lemma 2. We proceed by induction on the number
of cycles. For the induction step, let the derivation end with an application of
(+ →)L, involved in a cycle. Let k be the number of applications of (+ →)L to
the active occurrence of A+ that is tracked along this cycle. Let the goal sequent
be Γ,A+, ∆ → B; the same sequent appears on top of the cycle:

Γ,A,∆ → B

Γ,A+, ∆ → B

...
Γ,A,A+, ∆ → B

Γ,A+, ∆ → B
(+ →)L

Let C = Γ \B /∆ (if Γ or ∆ contains more than one formula, we add ·’s
between them; if Γ or ∆ is empty, we omit the corresponding division). The
sequent Γ,C,∆ → B is derivable in the Lambek calculus. Then we go down
the cycle path, replacing the active A+ with Ai, C. We start with i = 0 and
increase i each time we come across (+ →)L applied to the active A+. After this
substitution, this application becomes trivial: instead of

Γ ′, A,∆′ → B′ Γ ′, A,A+, ∆′ → B′

Γ ′, A+, ∆′ → B′
(+ →)L

we get
Γ ′, A,Ai, C,∆′ → B′

Γ ′, Ai+1, C,∆′ → B′

and actually forget about the left premise of the rule. All other rules remain
valid. In the end, this gives us Γ,Ak, C,∆ → B, or Ak · C → C. Moreover,
the derivation of this sequent was obtained by substitution and cutting some
branches from the original derivation, and therefore contains less cycles. By
induction, we can suppose that Ak · C → C was derived without cycles, using
the rule from Lemma 2.

Next, for an arbitrary j from 1 to k, we go upwards along the trace of the
active A+ and find the j-th application of (+ →)L:

Γ ′, A,∆′ → B′ Γ ′, A,A+, ∆′ → B′

Γ ′, A+, ∆′ → B′

Now we cut off the right (cyclic) derivation branch and replace A+ in the goal
with A. Next, we trace it down back to the original sequent, replacing A+ with
Ai. The index i starts from 1 and gets increased each time we pass through the
(+ →)L rule with the active A+. Again, these applications trivialize, all other
rules remain valid. In the end, we get Γ,Aj , ∆ → B derivable with a less number
of cycles. This yields Aj → C.



Finally, having A → C, A2 → C, . . . , Ak → C, and Ak · C → C, we apply
Lemma 2 and obtain A+ → C. Using cut, we invert (· →), (→ /), and (→ \),
decompose C and arrive at the original goal sequent Γ,A+, ∆ → B.

This finishes the non-trivial part of the proof: now we have a normal, non-
cyclic derivation, and it remains to show that other rules of L+

circ
(∨) used in

it are admissible in ACT+. (Formally speaking, the languages of L+
circ

(∨) and
ACT+ are different. In ACT+, instead of sequents of the form A1, . . . , An → B,
we consider A1 · . . . ·An → B.)

The rules for Lambek connectives (\, /, and ·), and also the cut rule, are
admissible in ACT+ due to Lambek [12]. The rules for ∨ correspond directly.
Finally, the (→ +)1 and (→ +)L are validated as follows (here we use previously
validated Lambek rules):

Π → A

A → A
A → A ∨ (A+ ·A+) A ∨ (A+ ·A+) → A+

A → A+

Π → A+

Π1 → A

Π1 → A+ Π2 → A+

Π1, Π2 → A+ ·A+

A+ ·A+ → A+ ·A+

A+ · A+ → A ∨ (A+ ·A+) A ∨ (A+ ·A+) → A+

A+ · A+ → A+

Π1, Π2 → A+

Note that, despite the fact that the calculus for ACT+ is symmetric, the
asymmetry in the rules of L+

circ
(∨) is essential for our reasoning, because if we

allow both left and right rules for +, the rule from Lemma 2, that is used to
emulate cyclic derivation, would transform into

A → C A2 → C . . . Ak → C Aℓ · C · Ak−ℓ → C
A+ → C

and for this rule we don’t know whether it is admissible in ACT+.

5 Further Work and Open Questions

In this section we summarize the questions that are still (to the author’s best
knowledge) unsolved.

1. Though we don’t claim cut elimination for L+
∞

in this paper, it looks plausible
that it could be proven using continuous cut elimination (cf. [13][23]). For
L+
circ

, however, the problem looks harder, since if one unravels the cyclic
derivation into an infinite one and eliminates cut, the resulting derivation
could be not cyclic anymore.

2. In this paper we use complexity arguments to show that L+ω is strictly more
powerful than any its subsystem with finite derivations. This doesn’t yield
any examples of concrete sequents derivable in L+ω and not derivable, say, in
L+
circ

. Constructing such examples is yet an open problem.



3. We don’t know whether the rule in the end of Section 4 is admissible if
ACT+. If yes, we could allow both left and right rules for + is cyclic deriva-
tions, and this system would be still equivalent to ACT+.

4. Safiullin’s construction (see Appendix) essentially uses Lambek’s non-empti-
ness restriction. The question whether any context-free language can be gen-
erated by a categorial grammar with unique type assignment, based on the
variant of the Lambek calculus allowing empty left-hand sides of sequents, is
still open. From our perspective, a positive answer to this question (maybe,
by modification of Safiullin’s construction) would immediately yield Π0

1 -
hardness of the Lambek calculus allowing empty left-hand sides of sequents,
enriched with Kleene star (but without additive conjunction and disjunc-
tion), thus solving a problems posed by Buszkowski [4].

5. An open (and, in the view of the sophisticatedness of Pentus’ completeness
proof [17], very hard) question is the completeness of L+ω w.r.t. language
interpretation (see Section 1). A partial completeness result, for the fragment
where + is allowed only in the denominators of \ and /, was obtained by
Ryzhkova [21], using Buszkowski’s canonical model construction [3].
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Appendix: Safiullin’s Construction Revisited

Theorem 1 by Safiullin is a crucial component of our Π0
1 -hardness proof for L

+
ω .

Unfortunately, Safiullin’s paper [22] is very brief and, moreover, includes this
theorem (which is probably the most interesting result of that paper) as a side-
effect of a more complicated construction. This makes it very hard to follow
Safiullin’s ideas and arrive at a complete proof. Therefore, in this Appendix we
present Safiullin’s proof clearly and in detail.

In this Appendix, the + connective is never used, and Tp stands for the set
of types constructed from primitive ones using ·, \, and /.

Define the top of a Lambek type in the following way: top(q) = q for q ∈ Pr;
top(A \B) = top(B /A) = top(B). Note that the A · B case is missing. Thus,
not every type has a top.

For types with tops, the (→ ·) rule is invertible (proof by induction):

Lemma 3. If all types of Π have tops and Π → A1 · . . . · An is derivable in L,
then Π = Π1, . . . , Πn and Πi → Ai is derivable for every i = 1, . . . , n.

If a sequent of the form Π → q, q ∈ Pr, has a cut-free derivation in L, trace
the occurrence of q back to the axiom of the form q → q, and then trace the left
q back to its occurrence in Π . This occurrence of q will be called the principal
occurrence (for different derivations, the principal occurrences could differ).



Lemma 4. The principal occurrence has the following properties:

1. if all types in Π have tops, then the principal occurrence is one of them;
2. if in a derivation of Π, q, Φ → q the occurrence of q between Π and Φ is

principal, then Π and Φ are empty;
3. if in a derivation of Π, q /A, Φ → q the occurrence of q in q /A is principal,

then Π is empty;
4. if in a derivation of Π,A \ q, Φ → q the occurrence of q in A \ q is principal,

then Φ is empty.

Proof. For statement 1, proceed by induction on derivation. For statements 2–4,
suppose the contrary and also proceed by induction on derivation.

Lemma 5. If all types of Π have tops, and these tops are not q, then Π → q / q
is not derivable in L.

Proof. Since (→ /) is invertible, we get Π, q → q, and by Lemma 4 Π should be
empty. But → q / q is not derivable due to Lambek’s restriction.

Lemma 6. If in a derivation of q /A, Φ → q the leftmost occurrence of q is
principal or in a derivation of Φ,A \ q → q the rightmost occurrence of q is
principal, then Φ → A is derivable.

Proof. Induction on the derivation.

Lemma 7. If Π, q / q, Φ → q / q is derivable in L, all types from Π and Φ have
tops, and these tops are not q, then Π and Φ are empty.

Proof. Again, by inverting (→ /) we get Π, q / q, Φ, q → q. The rightmost q
cannot be principal, because otherwise Π, q / q, Φ is empty (Lemma 4). The sec-
ond possibility is the top of q / q. Then, again by Lemma 4, Π is empty, and
by Lemma 6 Φ, q → q is derivable. Since tops of Φ are not q, the rightmost
occurrence of q is principal. By Lemma 4, Φ is empty.

By F we denote the free group generated by the set of primitive types Pr.
For every A ∈ Tp we define its interpretation in this free group, [[A]], as follows:
[[q]] = q for q ∈ Pr; [[A · B]] = [[A]][[B]]; [[A \B]] = [[A]]−1[[B]]; [[B /A]] = [[B]][[A]]−1.
If [[A]] is the unit of F, A is called a zero-balance type.

The primitive type count, #q(A), for q ∈ Pr and A ∈ Tp, is defined as follows:
#q(q) = 1; #q(q

′) = 0, if q′ ∈ Pr and q′ 6= q; #q(A · B) = #q(A) + #q(B);
#q(A \B) = #q(B /A) = #q(B) − #q(A). Notice that if A is a zero-balance
type, then #q(A) = 0 for every q ∈ Pr.

If the sequent A1, . . . , An → B is derivable in L, then it is balanced, namely,
#q(B) = #q(A1) + . . .+#q(An) for every q ∈ Pr, and [[A1]] . . . [[An]] = [[B]].

Theorem 4 (M. Pentus, 1994). If [[A1]] = [[A2]] = . . . = [[An]], then there
exists such B ∈ Tp, that all sequents A1 → B, A2 → B, . . . , An → B are
derivable in L. [16]



For a set of zero-balance types U = {A1, . . . , An}, we construct an ersatz of
their additive disjunction, A1 ∨ . . . ∨ An, in the following way. In the notations
for types, we sometimes omit the multiplication sign, ·, if this doesn’t lead to
misunderstanding. Let u, t, and s be fresh primitive types, not occurring in Ai.
By Theorem 4, there exist such types F and G that the folllowing sequents are
derivable for all i = 1, . . . , n:

(t / t)Ai(t / t) . . . (t / t)An(t / t) → F, (t / t)A1(t / t) . . . (t / t)Ai(t / t) → G.

Now let

E = (t / t)A1(t / t)A2(t / t) . . . (t / t)An(t / t),

B = E (((u /F ) \u) \(t / t)), C = ((t / t) /(u /(G \ u)))E.

We omit the multiplication sign, ·, if this doesn’t lead to misunderstanding.
Finally, is(U) = ((s /E) ·B) \ s /C.

Lemma 8. For each Ai ∈ U , the sequent Ai → is(U) is derivable in L.

Proof. The derivation is straightforward.

Lemma 9. If the sequent Π → is(U) is derivable in L, all types in Π have tops,
and these tops are not s or t, then for some Aj ∈ U the sequent B2, Π,C1 → Aj,
where B2 is either empty or is a type such that B = B2 or B = B1 ·B2 for some
B1, and C1 is either empty or is a type such that C = C1 or C = C1 · C2 for
some C2 (up to associativity of ·).

Using the invertibility of (· →), we replace ·’s in B2 and C1 by commas, and thus
consider them as sequences of types that have tops. Actually, we want them to
be empty, and it will be so in our final construction.

Proof. Let Π → is(U) be derivable. Then one can derive (s /E), B,Π,C → s,
and then by Lemma 6 we get B,Π,C → E (since the leftmost s is the only top
s, and it is the principal occurrence). Recall that E = (t / t)A1 . . . (t / t)An(t / t)
and apply Lemma 3. It is sufficient so show that, after decompositon, the whole
Π comes to one part of the left-hand side of the sequent. Suppose the contrary,
then locate the principal occurrence of t (it should be in B). Then proceed by
induction: finally we run out of t’s in B and get a contradiction.

Proof (of Theorem 1). Given a context-free grammar G without ε-rules, we need
to construct an equivalent Lambek grammar with unique type assignment. Let
Σ = {a1, . . . , aµ} be the alphabet, N = {N0, N1, N2, . . . , Nν} be the set of
non-terminal symbols of G, N0 is the starting symbol.

First we algorithmically transform G into Greibach normal form [6] with rules
of the following three forms: Ni ⇒ ajNkNℓ, Ni ⇒ ajNk, or Ni ⇒ aj .

Now we construct the Lambek grammar. Let Pr include distinct primitive
types p, p1, . . . , pν , r, u, t, and s. For each i = 0, . . . , ν let Hi = p /((pi / pi) · p)



(this type corresponds to the non-terminal Ni). Next, for each j = 1, . . . , µ, we
form a set Uj in the following way:

add Ki,k,ℓ = r /
(

(Hk ·Hℓ · (pi / pi)) \ r
)

for each rule Ni ⇒ ajNkNℓ,

add Ki,k = r /
(

(Hk · (pi / pi)) \ r
)

for each rule Ni ⇒ ajNk,

add Ki = r /
(

(pi / pi) \ r
)

for each rule Ni ⇒ aj .

Now let Dj = is(Uj) and Aj = p /(Dj · p) be the type corresponding to aj .
For the target type H we take H0. Our claim is that ai1 . . . ain ∈ L(G) iff the
sequent Ai1 , . . . , Ain → H0 is derivable in L.

For the easier “only if” part, we prove a more general statement: if γ ∈
(N ∪Σ)+ can be generated from Nm in G, then the sequent Γ → Hm is derivable
in L, where Γ is a sequence of types corresponding to letters of γ, Aj for aj ∈ Σ
and Hi for Ni ∈ N . To establish this, it is sufficient to prove that the following
sequents are derivable (each step of the context-free generation maps to a (cut)
with the corresponding sequent):

Aj , Hk, Hℓ → Hi for each rule Ni ⇒ ajNkNℓ,

Aj , Hk → Hi for each rule Ni ⇒ ajNk,

Aj → Hi for each rule Ni ⇒ aj .

Consider sequents of the first type (the second and the third types are handled
similarly). Since Dj = is(Uj) and Ki,k,ℓ = r /

(

(Hk · Hℓ · (pi / pi)) \ r
)

∈ Uj , we
have Ki,k,ℓ → Dj by Lemma 8. Then the derivation is as follows:

Hk, Hℓ, pi / pi, (Hk ·Hℓ · (pi / pi)) \ r → r

Hk, Hℓ, pi / pi → Ki,k,ℓ Ki,k,ℓ → Dj

Hk, Hℓ, pi / pi → Dj

(cut)
p → p

Hk, Hℓ, pi / pi, p → Dj · p p → p

p /(Dj · p), Hk, Hℓ, pi / pi, p → p

p /(Dj · p), Hk, Hℓ → p /((pi / pi) · p)

For the “if” part, let Ai1 , . . . , Ain → Hi be derivable and proceed by in-
duction on the cut-free derivation (i is arbitrary here for induction; in the
end i = 0). Since Hi = p /((pi / pi) · p) and (→ /) and (· →) are invert-
ible, we get Ai1 , . . . , Ain , pi / pi, p → p. Locate the principal occurrence of p.
By Lemma 4, it is the p in Ai1 = p /(Di1 · p), and by Lemma 6 the sequent
Ai2 , . . . , Ain , pi / pi, p → Di1 · p is derivable. Let j = i1. Since all our types have
tops, apply Lemma 3.

Case 1 (good). The sequent decomposes into Ai2 , . . . , Ain , pi / pi → Dj and
p → p. Consider the former sequent. Tops on the left side are p and pi, we can
apply Lemma 9 and get B2, Ai2 , . . . , Ain , pi / pi, C1 → K for some K ∈ Uj .

Let’s prove that B2 and C1 in this case are empty. Suppose K = Ki′,k,ℓ (the
cases of Ki′,k and Ki′ are handled similarly). Then, by invertibility of (→ /),



we get B2, Ai2 , . . . , Ain , pi / pi, C1, (Hk · Hℓ · (pi′ / pi′)) \ r → r. Now locate the
principal occurrence of r.

Subcase 1.1. The principal occurrence of r is the rightmost one. By Lemma 6,
we get B2, Ai2 , . . . , Ain , pi / pi, C1 → Hk ·Hℓ · (pi′ / pi′). Apply Lemma 3. First,
by Lemma 5, i = i′, otherwise there’s no pi in tops of the left-hand side. Next,
the part of the left-hand side that yields (pi / pi), by Lemma 7, contains only
(pi / pi). Therefore, C1 is empty. Now, for some part Π we have Π → Hk, and,
decomposing Hk, we get Π, pi / pi, p → p. By Lemma 4, the principal occurrence
of p is not the rightmost one. Since B2 doesn’t have p in tops, Π should include
also some of the Ai2 , . . . , and the principal p is the top of one of them. But,
since Am is of the form p / . . . , by Lemma 4 the part to the left of this Am, and,
therefore, B2 should be empty.

Subcase 1.2. The principal occurrence of r is somewhere in B2 or C1, in a
type K ∈ Uj. By Lemma 4, it is then the leftmost occurrence of r, because K
has the form r / . . .. This rules out the possibility of it being in C1 (we defi-
nitely have pi / pi to the left of it). If it is in B2, again by Lemma 6, we get
B′

2, Ai2 , . . . , Ain , pi / pi, C1 → Hk′ ·Hℓ′ · (pi / pi) (Hk′ and Hℓ′ are optional), and
we’re in the same situation, as Subcase 1.1. Thus, B′

2 and C1 should be empty.
However, B′

2 now should contain the last type of B, (((u /F ) \ u) /(t / t)). Con-
tradiction. Subcase 1.2 impossible.

Now we have Ai2 , . . . , Ain , pi / pi → Hk ·Hℓ · (pi / pi) (the only choice for the
principal r now is the rightmost one, and we’ve applied Lemma 6). By Lemma 3,
we get Ai2 , . . . , Aiz → Hk, Aiz+1

, . . . , Ain → Hℓ, pi / pi → pi / pi (the last left
side is pi / pi alone by Lemma 7).

Apply induction hypothesis. In the context-free grammar, we now haveNk ⇒∗

ai2 . . . aiz and Nℓ ⇒∗ aiz+1
. . . ain . Since i′ = i, we also have the rule Ni ⇒

ajNkNℓ (Nk and Nℓ are optional) in the grammar (since the corresponding K
type was in Uj). Thus, Ni ⇒ ajai2 . . . aizaiz+1

. . . ain . Recall that j = i1.

Case 2 (bad). The sequent decomposes in another way, yieldingAi2 , . . . , Aiz →
Dj and . . . , pi / pi, p → p. Again, by Lemma 9, we get B2, Ai2 , . . . , Aiz , C1 → K
for some K ∈ Uj , and further B2, Ai2 , . . . , Aiz , C1, (Hk ·Hℓ · (pi′ / pi′)) \ r → r.
Now we locate the principal occurrence of r and proceed as in Case 1. The only
difference, however, is that now there is no pi / pi in the left-hand side, and for
that reason derivation fails by Lemma 5. Thus, Case 2 is impossible.
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Sbornik: Math. 207(9): 1344–1360 (2016)


	The Lambek Calculus with Iteration: Two Variants

