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Abstract. We present a sequent calculus for the modal Grzegorczyk
logic Grz allowing non-well-founded proofs and obtain the cut-elimination
theorem for it by constructing a continuous cut-elimination mapping act-
ing on these proofs.
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1 Introduction

The Grzegorczyk logic Grz is a well-known modal logic [3], which can be char-
acterized by reflexive partially ordered Kripke frames without infinite ascending
chains. This logic is complete w.r.t. the arithmetical semantics, where the modal
connective � corresponds to the strong provability operator ”... is true and

provable” in Peano arithmetic.
Recently a new proof-theoretic description for the Gödel-Löb provability logic

GL in the form of a sequent calculus allowing so-called cyclic, or circular, proofs
was given in [6]. A feature of cyclic proofs is that the graph underlying a proof is
not a finite tree but is allowed to contain cycles. Since GL and Grz are closely con-
nected, we wonder whether cyclic and, more generally, non-well-founded proofs
can be fruitfully considered in the case of Grz.

In this paper, we present a sequent calculus for the modal Grzegorczyk logic
allowing non-well-founded proofs and obtain the cut-elimination theorem for it
by constructing a continuous cut-elimination mapping acting on these proofs.

In Section 2, we recall an ordinary sequent calculus for Grz. In Section 3
we introduce the infinitary proof system Grz∞. In Section 4 we establish the
cut elimination result for Grz∞ syntactically. Then, in Section 5 we prove the
equivalence of the two systems. In Section 6 we discuss possible applications of
the new system.

2 Preliminaries

In this section we recall the modal Grzegorczyk logic Grz and define an ordinary
sequent calculus for it.

Formulas of Grz, denoted by A, B, C, are built up as follows:

A ::= ⊥ | p | (A → A) | �A ,

http://arxiv.org/abs/1704.03258v1


where p stands for atomic propositions. We treat other boolean connectives and
the modal operator ♦ as abbreviations:

¬A := A → ⊥, ⊤ := ¬⊥, A ∧B := ¬(A → ¬B),

A ∨B := (¬A → B), ♦A := ¬�¬A.

The Hilbert-style axiomatization of Grz is given by the following axioms and
inference rules:

Axioms:

(i) Boolean tautologies;
(ii) �(A → B) → (�A → �B);
(iii) �A → ��A;
(iv) �A → A;
(v) �(�(A → �A) → A) → �A.

Rules: modus ponens, A/�A.

Now we define an ordinary sequent calculus for Grz. A sequent is an expression
of the form Γ ⇒ ∆, where Γ and∆ are finite multisets of formulas. For a multiset
of formulas Γ = A1, . . . , An, we set �Γ := �A1, . . . ,�An.

The system GrzSeq, which is a variant of the sequent calculus from [2], is
defined by the following initial sequents and inference rules:

Γ,A ⇒ A,∆ , Γ,⊥ ⇒ ∆ ,

Γ,B ⇒ ∆ Γ ⇒ A,∆
→L

Γ,A → B ⇒ ∆
,

Γ,A ⇒ B,∆
→R

Γ ⇒ A → B,∆
,

Γ,B,�B ⇒ ∆
refl

Γ,�B ⇒ ∆
,

�Π,�(A → �A) ⇒ A
�Grz Γ,�Π ⇒ �A,∆

.

Fig. 1. The system GrzSeq

The cut rule has the form

Γ ⇒ A,∆ Γ,A ⇒ ∆
cut ,

Γ ⇒ ∆

where A is called the cut formula of the given inference.

Lemma 21 GrzSeq + cut ⊢ Γ ⇒ ∆ if and only if Grz ⊢
∧
Γ →

∨
∆.

Proof. Standard transformations of proofs.

Theorem 22 If GrzSeq + cut ⊢ Γ ⇒ ∆, then GrzSeq ⊢ Γ ⇒ ∆.

A syntactic cut-elimination for the logic Grz was obtained by M. Borga and
P. Gentilini in [2]. In this paper, we will give another proof of this cut-elimination
theorem in the next sections.



3 Non-well-founded proofs

Now we define a sequent calculus for the logic Grz allowing non-well-founded
proofs. The cut-elimination theorem for it will be proved in the next section.

Inference rules and initial sequents of the sequent calculus Grz∞ have the
following form:

Γ, p ⇒ p,∆ , Γ,⊥ ⇒ ∆ ,

Γ,B ⇒ ∆ Γ ⇒ A,∆
→L

Γ,A → B ⇒ ∆
,

Γ,A ⇒ B,∆
→R

Γ ⇒ A → B,∆
,

Γ,A,�A ⇒ ∆
refl

Γ,�A ⇒ ∆
,

Γ,�Π ⇒ A,∆ �Π ⇒ A
�

Γ,�Π ⇒ �A,∆
.

Fig. 2. The system Grz∞

The system Grz∞ + cut is defined by adding the rule (cut) to the system Grz∞.
An ∞–proof in Grz∞ (Grz∞ + cut) is a (possibly infinite) tree whose nodes are
marked by sequents and whose leaves are marked by initial sequents and that
is constructed according to the rules of the sequent calculus. In addition, every
infinite branch in an ∞–proof must pass through a right premise of the rule �

infinitely many times. A sequent Γ ⇒ ∆ is provable in Grz∞ (Grz∞ + cut) if
there is an ∞–proof in Grz∞ (Grz∞ + cut) with the root marked by Γ ⇒ ∆.

The main fragment of an ∞–proof is a finite tree obtained from the ∞–proof
by cutting every infinite branch at the nearest to the root right premise of the
rule (�). The local height |π| of an ∞–proof π is the length of the longest branch
in its main fragment. An ∞–proof only consisting of an initial sequent has height
0.

For instance, consider an ∞–proof of the sequent �(�(p → �p) → p) ⇒ p:

Ax

F, p ⇒ p

Ax

F, p ⇒ �p, p
→R

F ⇒ p → �p, p

Ax

p, F ⇒ p

...
F ⇒ p

�
p, F ⇒ �p

→R
F ⇒ p → �p

�
F ⇒ �(p → �p), p

→L
�(p → �p) → p, F ⇒ p

refl
,

F ⇒ p

where F = �(�(p → �p) → p). The local height of this ∞–proof equals to 4
and its main fragment has the form

Ax

F, p ⇒ p

Ax

F, p ⇒ �p, p
→R

F ⇒ p → �p, p
�

F ⇒ �(p → �p), p
→L

�(p → �p) → p, F ⇒ p
refl .

F ⇒ p



By P denote the set of all ∞-proofs in Grz∞ + cut. For n ∈ N, we define
binary relations ∼n on P by simultaneous induction:

1. π ∼0 τ for any π, τ ;
2. if |π| = 0, then π ∼n π;
3. if π and τ are obtained by the same instance of inference rules (→L), (cut)

from π′, π′′ and τ ′, τ ′′, where π′ ∼n τ ′ and π′′ ∼n τ ′′, then π ∼n τ ;
4. if π and τ are obtained by the same instance of inference rules (→R), (refl)

from π′ and τ ′, where π′ ∼n τ ′, then π ∼n τ ;
5. if π and τ are obtained by the same instance of an inference rule (�) from

π′, π′′ and τ ′, τ ′′, where π′, τ ′ are ∞-proofs for the left premises of (�), and
π′ ∼n+1 τ ′, π′′ ∼n τ ′′, then π ∼n+1 τ .

Notice that π ∼1 τ if and only if π and τ have the same main fragment.

Lemma 31 For any n ∈ N, we have that

1. the relation ∼n is an equivalence relation;

2. the relation ∼n+1 is finer than the relation ∼n.

In addition, the intersection of all relations ∼n is exactly the equality relation

over P.

Now we define a sequence Pn of subsets of P by simultaneous induction:

1. π ∈ P0 for any π;
2. if |π| = 0, then π ∈ Pn;
3. if π is obtained by an instance of an inference rule (→L) from π′ and π′′,

where π′, π′′ ∈ Pn, then π ∈ Pn;
4. if π is obtained by an instance of inference rules (→R), (refl) from π′, where

π′ ∈ Pn, then π ∈ Pn;
5. if π is obtained by an instance of an inference rule (�) from π′ and π′′, where

π′ is an ∞-proof for the left premise of (�), and π′ ∈ Pn+1, π
′′ ∈ Pn, then

π ∈ Pn+1.

Notice that P0 = P and P1 consists of the ∞-proofs that do not contain the cut
rule in their main fragment.

Lemma 32 We have that Pn ⊂ Pn+1 for any n ∈ N. In addition, the intersec-

tion of all sets Pn consists exactly of the ∞-proofs in Grz∞.

For π, τ ∈ P , we define d(π, τ) = 2− sup{n∈N | π∼nτ}, where by convention 2−∞ =
0. We see that an equivalence π ∼n τ holds if and only if d(π, τ) 6 2−n.

Proposition 33 (P , d) is a complete metric space.

A mapping U : Pk
m → Pm is nonexpansive if for any n ∈ N

π1 ∼n τ1, . . . , πk ∼n τk ⇒ U(π1, . . . , πk) ∼n U(τ1, . . . , τk) ,



which is equivalent to the standard condition

d(U(π1, . . . , πk),U(τ1, . . . , τk)) 6 max{d(π1, τ1), . . . , d(πk, τk)} .

Trivially, any nonexpansive mapping is continuous.
A nonexpansive mapping U : P → P is called adequate if U(P1) ⊂ P1 and

|U(π)| 6 |π| for any π ∈ P .
Recall that an inference rule is called admissible (in a given proof system) if,

for any instance of the rule, the conclusion is provable whenever all premises are
provable. In Grz∞+cut, we call a single-premise inference rule strongly admissible

if there is an adequate mapping U : P → P that maps any∞-proof of the premise
of the rule to an ∞-proof of the conclusion.

Lemma 34 For any finite multisets of formulas Π and Σ, the inference rule

Γ ⇒ ∆
wkΠ,Σ

Π,Γ ⇒ ∆,Σ

is strongly admissible in Grz∞ + cut.

Lemma 35 For any formulas A and B, the rules

Γ,A → B ⇒ ∆
liA→B Γ,B ⇒ ∆

Γ,A → B ⇒ ∆
riA→B Γ ⇒ A,∆

Γ ⇒ A → B,∆
iA→B Γ,A ⇒ B,∆

Γ ⇒ ⊥, ∆
i⊥ Γ ⇒ ∆

Γ ⇒ �A,∆
li�A Γ ⇒ A,∆

are strongly admissible in Grz∞ + cut.

Lemma 36 For any atomic proposition p, the rules

Γ, p, p ⇒ ∆
aclp

Γ, p ⇒ ∆

Γ ⇒ p, p,∆
acrp

Γ ⇒ p,∆

are strongly admissible in Grz∞ + cut.

These lemmata can be obtained in a standard way, so we omit the proofs.

4 Cut elimination

In this section we construct a continuous cut elimination mapping from P to P ,
which eliminates all applications of the cut rule from any ∞-proof in Grz∞+cut.
In what follows, we use nonexpansive mappings wkΠ,Σ , liA→B , riA→B, iA→B ,
i⊥, li�A, aclp, acrp from Lemma 34, Lemma 35 and Lemma 36.

For a modal formula A, a nonexpansive mapping R from P1 × P1 to P1 is
called A-reducing ifR(π′, π′′) is an∞-proof of Γ ⇒ ∆ whenever π′ is an∞-proof
of Γ ⇒ ∆,A and π′′ is an ∞-proof of A,Γ ⇒ ∆.



Lemma 41 For any atomic proposition p there is a p-reducing mapping Rp.

Lemma 42 Given a B-reducing mapping RB , there is a �B-reducing mapping

R�B.

The proof of these two Lemmas can be found in the Appendix.

Lemma 43 For any formula A, there is an A-reducing mapping RA.

Proof. We define RA by induction on the structure of the formula A.
Case 1: A has the form p. In this case, Rp is defined in Lemma 41.
Case 2: A has the form ⊥. Then we put R⊥(π

′, π′′) := i⊥(π
′), where i⊥ is a

nonexpansive mapping from Lemma 35.
Case 3: A has the form B → C. Then we put

RB→C(π
′, π′′) := RC(RB(wk∅,C(riB→C(π

′′)), iB→C(π
′)), liB→C(π

′′)) ,

where riB→C , iB→C , liB→C are nonexpansive mappings from Lemma 35 and
wk∅,C is a nonexpansive mapping from Lemma 34.

Case 4: A has the form �B. By the induction hypothesis, there is a B-
reducing mapping RB . By Lemma 42 there is a �B-reducing mapping R�B.

A mapping U : P → P is called root-preserving if it maps ∞-proofs to ∞-
proofs of the same sequents. The set of all root-preserving nonexpansive map-
pings from P to P is denoted by N . We consider N as a metric space with the
uniform metric:

d(U ,V) = sup
π∈P

d(U(π),V(π)) .

Lemma 44 (N , d) is a non-empty complete metric space.

Proof. By Lemma 33, P is a complete metric space. Consequently the setC (P ,P)
of all continuous mappings from P to P with the uniform metric forms a com-
plete metric space. The reader will easily prove that N is a closed subset of
C (P ,P). In addition, the set N is non-empty, because the identity mapping
belongs to N . Thus (N , d) is a non-empty complete metric space.

We define Nn := {U ∈ N | U(P) ⊂ Pn}.

Lemma 45 There exists a mapping E∗ ∈ N1.

Proof. Assume we have an ∞-proof π. We define E∗(π) by induction on |π|.
If |π| = 0, then we put E∗(π) = π. Otherwise, consider the last application

of an inference rule in π and define E∗ as follows:

π1

Γ,B ⇒ ∆

π2

Γ ⇒ A,∆
→L

Γ,A → B ⇒ ∆
7−→

E∗(π1)

∆,A

E∗(π2)

Γ ⇒ A,∆
→L ,

Γ,A → B ⇒ ∆



π0

Γ,A ⇒ B,∆
→R

Γ ⇒ A → B,∆
7−→

E∗(π0)

Γ,A ⇒ B,∆
→R ,

Γ ⇒ A → B,∆

π0

Γ,A,�A ⇒ ∆
refl

Γ,�A ⇒ ∆
7−→

E∗(π0)

Γ,A,�A ⇒ ∆
refl

,
Γ,�A ⇒ ∆

π1

Γ,�Π ⇒ A,∆

π2

�Π ⇒ A
�

Γ,�Π ⇒ �A,∆
7−→

E∗(π1)

Γ,�Π ⇒ A,∆

π2

�Π ⇒ A
� ,

Γ,�Π ⇒ �A,∆

π1

Γ ⇒ ∆,A

π2

A,Γ ⇒ ∆
cut

Γ ⇒ ∆
7−→ RA(E

∗(π1), E
∗(π2)) .

Clearly, the mapping E∗ is root-preserving, and E∗(P) ⊂ P1. We also see
that E∗ is nonexpansive, i.e. for any n ∈ N and any π, τ ∈ P

π ∼n τ ⇒ E∗(π) ∼n E∗(τ) .

Nowwe define a contractive operatorF : N → N . The required cut-elimination
mapping will be obtained as the fixed-point of F .

For a root-preserving nonexpansive mapping U and an∞-proof π of a sequent
Γ ⇒ ∆, we define F(U)(π). In the case π ∈ P1, F(U)(π) is introduced by
induction on |π|. If |π| = 0, then we put F(U)(π) = π. Otherwise, consider the
last application of an inference rule in π and define F(U) as follows:

π1

Γ,B ⇒ ∆

π2

Γ ⇒ A,∆
→L

Γ,A → B ⇒ ∆
7−→

F(U)(π1)

∆,A

F(U)(π2)

Γ ⇒ A,∆
→L ,

Γ,A → B ⇒ ∆

π0

Γ,A ⇒ B,∆
→R

Γ ⇒ A → B,∆
7−→

F(U)(π0)

Γ,A ⇒ B,∆
→R ,

Γ ⇒ A → B,∆

π0

Γ,A,�A ⇒ ∆
refl

Γ,�A ⇒ ∆
7−→

F(U)(π0)

Γ,A,�A ⇒ ∆
refl

,
Γ,�A ⇒ ∆

π1

Γ,�Π ⇒ A,∆

π2

�Π ⇒ A
�

Γ,�Π ⇒ �A,∆
7−→

F(U)(π1)

Γ,�Π ⇒ A,∆

U(π2)

�Π ⇒ A
� .

Γ,�Π ⇒ �A,∆



The mapping F(U) is well defined on the set P1. If π /∈ P1, then we put
F(U)(π) := F(U)(E∗(π)).

It can easily be checked that F(U) is a root-preserving nonexpansive map-
ping.

Lemma 46 We have that d(F(U),F(V)) 6 1
2
·d(U ,V) for any mappings U ,V ∈

N .

Proof. Let us write U ∼n V if U(π) ∼n V(π) for any π ∈ P . We claim that for
any n ∈ N

U ∼n V ⇒ F(U) ∼n+1 F(V) .

Assume we have an ∞-proof π and U ∼n V . Now it can be easily proved by
induction on |π| that F(U)(π) ∼n+1 F(V).

Further, we see that U ∼n V if and only if d(U ,V) 6 2−n. Thus, the condition

∀n (U ∼n V ⇒ F(U) ∼n+1 F(V))

is equivalent to d(F(U),F(V)) 6 1
2
· d(U ,V).

Lemma 47 If U ∈ Nn, then F(U) ∈ Nn+1.

Proof. Assume we have an ∞-proof π and U ∈ Nn. We claim F(U)(π) ∈ Pn.
If π ∈ P1, then it is not hard to prove by induction on |π| that F(U)(π) ∈ Pn.

If π /∈ P1, then E∗(π) ∈ P1 by Lemma 45. Thus F(U)(π) = F(U)(E∗(π)) ∈ Pn

by the previous case.

Lemma 48 There exists a mapping E such that E ∈ Nn for any n ∈ N.

Proof. We have that F : N → N is a contractive operator. By the Banach fixed-
point theorem, there exists a root-preserving nonexpansive mapping E such that
F(E) = E . Trivially, E ∈ N0 = N . Hence E belongs to the intersection of all Nn

for n ∈ N by Lemma 47.

Theorem 49 (cut-elimination) If Grz∞+cut ⊢ Γ ⇒ ∆, then Grz∞ ⊢ Γ ⇒ ∆.

Proof. Take an ∞-proof of the sequent Γ ⇒ ∆ in the system Grz∞ + cut and
apply the mapping E to it. You will get an ∞-proof of the same sequent in the
system Grz∞.

5 Ordinary and non-well-founded proofs

In this section we define two translations that connect ordinary and non-well-
founded sequent calculi for Grz.

Lemma 51 We have Grz∞ ⊢ Γ,A ⇒ A,∆ for any sequent Γ ⇒ ∆ and any

formula A.



Proof. Standard induction on the structure of A.

Lemma 52 We have Grz∞ ⊢ �(�(A → �A) → A) ⇒ A for any formula A.

Proof. Consider an example of ∞–proof for the sequent �(�(p → �p) → p) ⇒
p from Section 3. We transform this example into an ∞–proof for �(�(A →
�A) → A) ⇒ A by replacing p with A and adding required ∞–proofs instead of
initial sequents using Lemma 51.

Theorem 53 If GrzSeq + cut ⊢ Γ ⇒ ∆, then Grz∞ + cut ⊢ Γ ⇒ ∆.

Proof. Assume π is a proof of Γ ⇒ ∆ in GrzSeq + cut. By induction on the size
of π we prove Grz∞ + cut ⊢ Γ ⇒ ∆.

If Γ ⇒ ∆ is an initial sequent of GrzSeq+cut, then it is provable in Grz∞+cut

by Lemma 51. Otherwise, consider the last application of an inference rule in π.
The only non-trivial case is when the proof π has the form

π′

�Π,�(A → �A) ⇒ A
�Grz

,
Σ,�Π ⇒ �A,Λ

where Σ,�Π = Γ and �A,Λ = ∆. By the induction hypothesis there is an
∞–proof ξ of �Π,�(A → �A) ⇒ A in Grz∞ + cut.

We have the following ∞–proof λ of �Π ⇒ A in Grz∞ + cut:

ξ′

�Π,�(A → �A) ⇒ A,A
→R

�Π ⇒ G,A

ξ

�Π,�(A → �A) ⇒ A
→R

�Π ⇒ G
�

�Π ⇒ �G,A
θ

�Π,�G ⇒ A
cut ,

�Π ⇒ A

where G = �(A → �A) → A, ξ′ is an ∞–proof of �Π,�(A → �A) ⇒ A,A
obtained from ξ by Lemma 34 and θ is an ∞–proof of �Π,�G ⇒ A, which
exists by Lemma 52 and Lemma 34.

The required ∞–proof for Σ,�Π ⇒ �A,∆ has the form

λ′

Σ,�Π ⇒ A,Λ
λ

�Π ⇒ A
� ,

Σ,�Π ⇒ �A,Λ

where λ′ is an ∞–proof for the sequent Γ,�Π ⇒ A,∆ obtained from λ by
Lemma 54.

The cases of other inference rules being last in π are straightforward, so we
omit them.

Lemma 54 The rule

Γ ⇒ ∆
weak

Π,Γ ⇒ ∆,Σ

is admissible in GrzSeq.



Proof. Standard induction on the structure of a proof of Γ ⇒ ∆.

For a sequent Γ ⇒ ∆, let Sub(Γ ⇒ ∆) be the set of all subformulas of the
formulas from Γ ∪∆. For a finite set of formulas Λ, set Λ∗ := {�(A → �A) |
A ∈ Λ}.

Lemma 55 If Grz∞ ⊢ Γ ⇒ ∆, then GrzSeq ⊢ Λ∗, Γ ⇒ ∆ for any finite set of

formulas Λ.

Proof. Assume π is an ∞–proof of the sequent Γ ⇒ ∆ in Grz∞ and Λ is a
finite set of formulas. By induction on the number of elements in the finite set
Sub(Γ ⇒ ∆) \ Λ with a subinduction on |π|, we prove GrzSeq ⊢ Λ∗, Γ ⇒ ∆.

If |π| = 0, then Γ ⇒ ∆ is an initial sequent. We see that the sequent Λ∗, Γ ⇒
∆ is an initial sequent and it is provable in GrzSeq. Otherwise, consider the last
application of an inference rule in π.

Case 1. Suppose that π has the form

π′

Γ,A ⇒ B,Σ
→R ,

Γ ⇒ A → B,Σ

where A → B,Σ = ∆. Notice that |π′| < |π|. By the induction hypothesis for
π′ and Λ, the sequent Λ∗, Γ, A ⇒ B,Σ is provable in GrzSeq. Applying the rule
(→R) to it, we obtain that the sequent Λ∗, Γ ⇒ ∆ is provable in GrzSeq.

Case 2. Suppose that π has the form

π′

Σ,B ⇒ ∆
π′′

Σ ⇒ A,∆
→L ,

Σ,A → B ⇒ ∆

where Σ,A → B = Γ . We see that |π′| < |π|. By the induction hypothesis for
π′ and Λ, the sequent Λ∗, Σ,B ⇒ ∆ is provable in GrzSeq. Analogously, we have
GrzSeq ⊢ Λ∗, Σ ⇒ A,∆. Applying the rule (→L), we obtain that the sequent
Λ∗, Σ,A → B ⇒ ∆ is provable in GrzSeq.

Case 3. Suppose that π has the form

π′

Σ,A,�A ⇒ ∆
refl

,
Σ,�A ⇒ ∆

where Σ,�A = Γ . We see that |π′| < |π|. By the induction hypothesis for π′

and Λ, the sequent Λ∗, Σ,A,�A ⇒ ∆ is provable in GrzSeq. Applying the rule
(refl), we obtain GrzSeq ⊢ Λ∗, Σ,�A ⇒ ∆.

Case 4. Suppose that π has the form

π′

Φ,�Π ⇒ A,Σ
π′′

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ



where Φ,�Π = Γ and �A,Σ = ∆.
Subcase 4.1: the formula A belongs to Λ. We see that |π′| < |π|. By the

induction hypothesis for π′ and Λ, the sequent Λ∗, Φ,�Π ⇒ A,Σ is provable in
GrzSeq. Then we see

Ax

Λ∗,�A,Φ,�Π ⇒ �A,Σ

Λ∗, Φ,�Π ⇒ A,Σ
weak

Λ∗, Φ,�Π ⇒ A,�A,Σ
→L

(Λ\{A})∗, A → �A,�(A → �A), Φ,�Π ⇒ �A,Σ
refl

,
(Λ\{A})∗,�(A → �A), Φ,�Π ⇒ �A,Σ

where the rule (weak) is admissible by Lemma 54.
Subcase 4.2: the formula A doesn’t belong to Λ. We have that the number

of elements in Sub(�Π ⇒ A) \ (Λ ∪ {A}) is strictly less than the number of
elements in Sub(Φ,�Π ⇒ �A,Σ) \ Λ. Therefore, by the induction hypothesis
for π′′ and Λ∪{A}, the sequent Λ∗,�(A → �A),�Π ⇒ A is provable in GrzSeq.
Then we have

Λ∗,�(A → �A),�Π ⇒ A
�Grz

.
Λ∗, Φ,�Π ⇒ �A,Σ

From Lemma 55 we immediately obtain the following theorem.

Theorem 56 If Grz∞ ⊢ Γ ⇒ ∆, then GrzSeq ⊢ Γ ⇒ ∆.

Theorem 22 is now established as a direct consequence of Theorem 53, The-
orem 49, and Theorem 56.

6 Conclusion and Future Work

Recall that the Craig interpolation property for a logic L says that if A implies
B, then there is an interpolant, that is, a formula I containing only common
variables of A and B such that A implies I and I implies B. The Lyndon in-
terpolation property is a strengthening of the Craig one that also takes into
consideration negative and positive occurrences of the shared propositional vari-
ables; that is, the variables occurring in I positively (negatively) must also occur
both in A and B positively (negatively).

Though the Grzegorczyk logic has the Lyndon interpolation property [4],
there were seemingly no syntactic proofs of this result. It is unclear how Lyndon
interpolation can be obtained from previously introduced sequent systems for Grz
[1,2,5] by direct proof-theoretic arguments because these systems contain infer-
ence rules in which a polarity change occurs under the passage from the principal
formula in the conclusion to its immediate ancestors in the premise. Using our
system Grz∞ we believe that we can obtain a syntactic proof of Lyndon interpo-
lation for the modal Grzegorczyk logic as an application of our cut-elimination
theorem.

We also believe that every provable Grz∞ sequent has a proof that is a regular
tree (has only finite amout of distinct subtrees). This gives a possibility of proof
system for the logic Grz with cyclical proofs, like the system introduced in [6].
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Appendix.

Proof of Lemma 41

Assume we have two∞-proofs π′ and π′′ from P1. If there is no application of the
cut rule to these ∞-proofs with the cut formula p, then we put Rp(π

′, π′′) := π′.
In the converse case, there is a sequent Γ ⇒ ∆ such that π′ is an ∞-proof of
Γ ⇒ ∆, p and π′′ is an ∞-proof of p, Γ ⇒ ∆. We define Rp(π

′, π′′) by induction
on |π′|.

If |π′| = 0, then Γ ⇒ ∆, p is an initial sequent. Suppose that Γ ⇒ ∆ is also
an initial sequent. Then Rp(π

′, π′′) is defined as the ∞-proof consisting only of
this initial sequent. Otherwise, Γ has the form p, Φ, and π′′ is an ∞-proof of
p, p, Φ ⇒ ∆. Applying the nonexpansive mapping aclp from Lemma 36, we put
Rp(π

′, π′′) := aclp(π
′′).

Now suppose that |π′| > 0. We consider the last application of an inference
rule in π′.

Case 1. The ∞-proof π′ has the form

π′
0

Γ,A ⇒ B,Σ, p
→R ,

Γ ⇒ A → B,Σ, p

where A → B,Σ = ∆. Notice that |π′
0| < |π′|. In addition, π′′ is an ∞-proof of

p, Γ ⇒ A → B,Σ. We define Rp(π
′, π′′) as

Rp(π
′
0, iA→B(π

′′))

Γ,A ⇒ B,Σ
→R ,

Γ ⇒ A → B,Σ

where iA→B is a nonexpansive mapping from Lemma 35.
Case 2. The ∞-proof π′ has the form

π′
0

Σ,B ⇒ ∆, p

π′
1

Σ ⇒ A,∆, p
→L ,

Σ,A → B ⇒ ∆, p

where Σ,A → B = Γ . We see that |π′
0| < |π′| and |π′

1| < |π′|. Also, π′′ is an
∞-proof of p,Σ,A → B ⇒ ∆. We define Rp(π

′, π′′) as

Rp(π
′
0, liA→B(π

′′))

Σ,B ⇒ ∆, p

Rp(π
′
1, riA→B(π

′′))

Σ ⇒ A,∆, p
→L ,

Σ,A → B ⇒ ∆, p

where liA→B and riA→B are nonexpansive mappings from Lemma 35.
Case 3. The ∞-proof π′ has the form

π′
0

Σ,A,�A ⇒ ∆, p
refl

,
Σ,�A ⇒ ∆, p



where Σ,�A = Γ . We have that |π′| < |π|. Define Rp(π
′, π′′) as

Rp(π
′
0,wkA,∅(π

′′)

Σ,A,�A ⇒ ∆
refl

,
Σ,�A ⇒ ∆

where wkA,∅ is the nonexpansive mapping from Lemma 34.
Case 4. Now consider the final case when π′ has the form

π′
0

Φ,�Π ⇒ A,Σ, p

π′
1

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ, p

where Φ,�Π = Γ and �A,Σ = ∆. Notice that |π′
0| < |π′|. In addition, π′′ is an

∞-proof of p, Φ,�Π ⇒ �A,Σ. We define Rp(π
′, π′′) as

Rp(π
′
0, li �A(π

′′))

Φ,�Π ⇒ A,Σ

π′
1

�Π ⇒ A
� ,

Φ,�Π ⇒ �A,Σ

where li �A is a nonexpansive mapping from Lemma 35.
The mapping Rp is well defined. It remains to check that Rp is nonexpansive,

i.e. for any n ∈ N and any π′, π′′, τ ′, τ ′′ from P0

(π′ ∼n τ ′ ∧ π′′ ∼n τ ′′) ⇒ Rp(π
′, π′′) ∼n Rp(τ

′, τ ′′) .

This condition is checked by structural induction on the inductively defined
relation π′ ∼n τ ′ in a straightforward way. So we omit further details.

Proof of Lemma 42

Assume we have two∞-proofs π′ and π′′ from P1. If there is no application of the
cut rule to these ∞-proofs with the cut formula �B, then we put R�B(π

′, π′′) :=
π′. In the converse case, we define R�B(π

′, π′′) by induction on |π′|+ |π′′|.
If |π′| = 0 or |π′′| = 0, then Γ ⇒ ∆ is an initial sequent. Then R�B(π

′, π′′)
is defined as the ∞-proof consisting only of this initial sequent.

Now suppose that |π′| > 0. We consider the last application of an inference
rule in π′. If the principal formula of this inference is not �B, then R�B(π

′, π′′)
is defined similarly to the four cases of Lemma 41.

We can now assume that π′ has the form

π′
0

Φ,�Π ⇒ B,Σ

π′
1

�Π ⇒ B
� ,

Φ,�Π ⇒ �B,Σ

Consider the last application of an inference rule in π′′. If the rule used was
→L, →R, refl with the principal formula being not �B, or the rule � without the



formula �B in the right premise, then R�B(π
′, π′′) can also be defined similarly

to the previous case.
Otherwise, we have the following cases.
Case A. The ∞-proof π′′ has the form

π′′
0

Γ,B,�B ⇒ ∆
refl .

Γ,�B ⇒ ∆

Since that |π′′
0 | < |π′′|, we can define R�B(π

′, π′′) as

RB(π
′
0,R�B(π

′, π′′
0 )).

Case B. The ∞-proof π′′ has the form

π′′
0

Φ′,�B,�Π ′ ⇒ C,Σ′

π′′
1

�B,�Π ′ ⇒ C
� ,

Φ′,�B,�Π ′ ⇒ �C,Σ′

Since |π′′
0 | < |π′′| and the sequents Φ′,�Π ′ ⇒ �C,Σ′ and Γ ⇒ ∆ are equal,

we can define R�B(π
′, π′′) as

R�B(π
′, π′′

0 )

Φ′,�Π ′ ⇒ C,Σ′

wk�Π ′\�Π ,C (π′
1)

�Π ∪�Π ′ ⇒ B,C

wk�Π ′\�Π ,∅(π
′
1)

�Π ∪�Π ′ ⇒ B
�

�Π ∪�Π ′ ⇒ �B,C

wk�Π\�Π ′,∅(π
′′
1 )

�Π ∪�Π ′,�B ⇒ C
cut

�Π ∪�Π ′ ⇒ C
�

Φ′,�Π ′ ⇒ �C,Σ′

where wk−,− is a nonexpansive mapping from Lemma 34. Since the instance
of the rule cut is not in the main fragment, this proof is in P1.
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