Skip to main content

An Extended First-Order Belnap-Dunn Logic with Classical Negation

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10455))

Abstract

In this paper, we investigate an extended first-order Belnap-Dunn logic with classical negation. We introduce a Gentzen-type sequent calculus FBD+ for this logic and prove theorems for syntactically and semantically embedding FBD+ into a Gentzen-type sequent calculus for first-order classical logic. Moreover, we show the cut-elimination theorem for FBD+ and prove the completeness theorems with respect to both valuation and many-valued semantics for FBD+.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Another system which is equivalent to BD+ is PŁ4 of Méndez and Robles (cf. [11]).

  2. 2.

    Belnap-Dunn logic with \(\triangle \) is equivalent to the expansion of Belnap-Dunn logic by what is sometimes called exclusion negation (cf. [5, p. 829]).

  3. 3.

    By using the strong equivalence substitution property, we can show the Herbrand theorem for FBD+, although we omit the details due to space limitations.

  4. 4.

    Another interesting property of BD+ is the maximality with respect to the set of theorems (but not with respect to the rules of inference) which is proved in [5, Sect. 3.3]. Maximality does not hold for Nelson logics (even for “classical” extensions) since there are extensions, obtained by adding some axioms, that are not classical logic.

  5. 5.

    In FBD+, we can replace the multiplicative (context splitting) type inference rules (cut) and (\(\rightarrow \)left) with their additive (non context splitting) type modifications. But, we adopt the multiplicative type inference rules since these are compatible in the system LK (for the classical logic) presented in [17].

  6. 6.

    Note that \(\varGamma \not \vdash _\mathrm{FBD+} \varPi \) is defined as \(\varGamma \not \vdash _\mathrm{FBD+} \alpha _1 \, \vee \dots \vee \alpha _n\) for some \(\alpha _1, \dots , \alpha _n\in \varPi \).

  7. 7.

    For connexive logic in general, see [21].

References

  1. Almukdad, A., Nelson, D.: Constructible falsity and inexact predicates. J. Symbol. Logic 49(1), 231–233 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  2. Belnap, N.D.: A useful four-valued logic. In: Epstein, G., Dunn, J.M. (eds.) Modern Uses of Multiple-Valued Logic, pp. 5–37. Reidel, Dordrecht (1977)

    Google Scholar 

  3. Belnap, N.D.: How a computer should think. In: Ryle, G. (ed.) Contemporary Aspects of Philosophy, pp. 30–56. Oriel Press, Stocksfield (1977)

    Google Scholar 

  4. Béziau, J.Y.: A new four-valued approach to modal logic. Logique et Analyse 54(213), 109–121 (2011)

    MathSciNet  MATH  Google Scholar 

  5. De, M., Omori, H.: Classical negation and expansions of Belnap-Dunn logic. Stud. Logica 103(4), 825–851 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  6. Dunn, J.M.: Intuitive semantics for first-degree entailment and ‘coupled trees’. Philos. Stud. 29(3), 149–168 (1976)

    Article  MathSciNet  Google Scholar 

  7. Gentzen, G.: Collected papers of Gerhard Gentzen. In: Szabo, M.E. (ed.) Studies in Logic and the Foundations of Mathematics. North-Holland (English translation) (1969)

    Google Scholar 

  8. Gurevich, Y.: Intuitionistic logic with strong negation. Stud. Logica 36, 49–59 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  9. Kamide, N.: Paraconsistent double negation that can simulate classical negation. In: Proceedings of the 46th IEEE International Symposium on Multiple-Valued Logic (ISMVL 2016), pp. 131–136 (2016)

    Google Scholar 

  10. Kamide, N., Shramko, Y.: Embedding from multilattice logic into classical logic and vice versa. J. Logic Comput. 27(5), 1549–1575 (2017)

    Google Scholar 

  11. Méndez, J.M., Robles, G.: A strong and rich 4-valued modal logic without Łukasiewicz-type paradoxes. Log. Univers. 9(4), 501–522 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Nelson, D.: Constructible falsity. J. Symbol. Logic 14, 16–26 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  13. Omori, H.: From paraconsistent logic to dialetheic logic. In: Andreas, H., Verdée, P. (eds.) Logical Studies of Paraconsistent Reasoning in Science and Mathematics. TL, vol. 45, pp. 111–134. Springer, Cham (2016). doi:10.1007/978-3-319-40220-8_8

    Chapter  Google Scholar 

  14. Omori, H., Sano, K.: Generalizing functional completeness in Belnap-Dunn logic. Stud. Logica 103(5), 883–917 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  15. Rautenberg, W.: Klassische und nicht-klassische Aussagenlogik. Vieweg, Braunschweig (1979)

    Book  MATH  Google Scholar 

  16. Sano, K., Omori, H.: An expansion of first-order Belnap-Dunn logic. Logic J. IGPL 22(3), 458–481 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. Takeuti, G.: Proof Theory, 2nd edn. Dover Publications, Inc., Mineola (2013)

    MATH  Google Scholar 

  18. Vorob’ev, N.N.: A constructive propositional calculus with strong negation. Dokl. Akad. Nauk SSSR 85, 465–468 (1952). (in Russian)

    Google Scholar 

  19. Wansing, H.: The Logic of Information Structures. LNCS, vol. 681, 163 pages. Springer, Heidelberg (1993)

    Google Scholar 

  20. Wansing, H.: Informational interpretation of substructural propositional logics. J. Logic Lang. Inform. 2(4), 285–308 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  21. Wansing, H.: Connexive logic, Stanford Encyclopedia of Philosophy (2014). http://plato.stanford.edu/entries/logic-connexive/

  22. Zaitsev, D.: Generalized relevant logic and models of reasoning. Moscow State Lomonosov University doctoral dissertation (2012)

    Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous referees for their valuable comments. Norihiro Kamide was partially supported by JSPS KAKENHI Grant Number JP26330263. Hitoshi Omori is a Postdoctoral Research Fellow of Japan Society for the Promotion of Science (JSPS), and was partially supported by JSPS KAKENHI Grant Number JP16K16684.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norihiro Kamide .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

Kamide, N., Omori, H. (2017). An Extended First-Order Belnap-Dunn Logic with Classical Negation. In: Baltag, A., Seligman, J., Yamada, T. (eds) Logic, Rationality, and Interaction. LORI 2017. Lecture Notes in Computer Science(), vol 10455. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55665-8_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55665-8_6

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55664-1

  • Online ISBN: 978-3-662-55665-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics