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Abstract. Given two k-independent sets I and J of a graph G, one can
ask if it is possible to transform the one into the other in such a way
that, at any step, we replace one vertex of the current independent set by
another while keeping the property of being independent. Deciding this
problem, known as the Token Jumping (TJ) reconfiguration problem, is
PSPACE-complete even on planar graphs. Ito et al. proved in 2014 that
the problem is FPT parameterized by k if the input graph is K3,ℓ-free.
We prove that the result of Ito et al. can be extended to any Kℓ,ℓ-free
graphs. In other words, if G is a Kℓ,ℓ-free graph, then it is possible to
decide in FPT-time if I can be transformed into J . As a by product,
the TJ-reconfiguration problem is FPT in many well-known classes of
graphs such as any minor-free class.

1 Introduction

Reconfiguration problems arise when, given an instance of a problem and a so-
lution to it, we make elementary changes to transform the current solution into
another. The objective can be to sample a solution at random, to generate all
possible solutions, or to reach a certain desired solution. Many types of reconfig-
uration problems have been introduced and studied in various fields. For instance
reconfiguration of graph colorings [1,10], Kempe chains [4,11], shortest paths [5],
satisfiability problems [13] or dominating sets [20] have been studied. For a sur-
vey on reconfiguration problems, the reader is referred to [25]. Our reference
problem is the independent set problem.

In the whole paper, G = (V,E) is a graph where n denotes the size of V , and
k is an integer. For standard definitions and notations on graphs, we refer the
reader to [9]. A k-independent set of G is a subset of vertices of size k such that
no two elements of S are adjacent. The k-independent set reconfiguration graph
is a graph where vertices are k-independent sets and two independent sets are
adjacent if they are “close” to each other.

Three possible definitions of adjacency between independent sets have been
introduced. In the Token Addition Removal (TAR) model [2,23], two indepen-
dent sets I, J are adjacent if they differ on exactly one vertex (i.e. if there exists
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a vertex u such that I = J ∪ {u} or the other way round). In the Token Sliding

(TS) model [3,8,14], vertices are moved along edges of the graph. In the Token

Jumping (TJ) model [6,15,17,18], two k-independent sets I, J are adjacent if the
one can be obtained from the other by replacing a vertex with another one. In
other words there exist u ∈ I and v ∈ J such that I = (J \ {v}) ∪ {u}. In this
paper, we concentrate on the Token Jumping model.

The k-TJ-reconfiguration graph of G, denoted TJk(G), is the graph whose
vertices are all k-independent sets of G (of size exactly k), with the adjacency
defined above. The TJ-reconfiguration problem is defined as follows:

Token Jumping (TJ)-reconfiguration
Input: A graph G, an integer k, two k-independent sets I and J .
Output: YES if and only if I and J are in the same connected compo-
nent of TJk(G).

The TJ-reconfiguration problem is PSPACE-complete even for planar
graphs with maximum degree 3 [14], for perfect graphs [18], and for graphs of
bounded bandwidth [26]. On the positive side, Bonsma et al. [6] proved that it
can be decided in polynomial time in claw-free graphs. Kaminski et al. [18] gave
a linear-time algorithm on even-hole-free graphs.

Parameterized algorithm. A problem Π is FPT parameterized by a parameter
k if there exists a function f and a polynomial P such that for any instance I
of Π of size n and of parameter k, the problem can be decided in f(k) · P (n).
A problem Π admits a kernel parameterized by k (for a function f) if for any
instance I of size n and parameter k, one can find in polynomial time, an instance
I ′ of size f(k) such that I ′ is positive if and only if I is positive. A folklore result
ensures that the existence of a kernel is equivalent to the existence of an FPT
algorithm, but the function f might be exponential. A kernel is polynomial if f
is a polynomial function.

Ito et al. [17] proved that the TJ-reconfiguration problem is W[1]-hard4 pa-
rameterized by k. On the positive side they show that the problem becomes FPT
parameterized by both k and the maximum degree of G. Mouawad et al. [22]
proved that the problem is W[1]-hard parameterized by the treewidth of the
graph but is FPT parameterized by the length of the sequence plus the treewidth
of the graph. In [16], the authors showed that the TJ-reconfiguration prob-
lem is FPT on planar graphs parameterized by k. They actually remarked that
their proof can be extended to K3,ℓ-free graphs, i.e. graphs that do not contain
any copy of K3,ℓ as a subgraph. In this paper (Sections 2 and 3), we prove that
the result of [16] can be extended to any Kℓ,ℓ-free graphs. More formally we
show the following:

Theorem 1. TJ-reconfiguration is FPT parameterized by k in Kℓ,ℓ-free

graphs. Moreover there exists a function h such that TJ-reconfiguration

admits a polynomial kernel of size O(h(ℓ) · kℓ3
ℓ

) if ℓ is a fixed constant.

4 Under standard algorithmic assumptions, W[1]-hard problems do not admit FPT
algorithms.
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As a consequence, Theorem 1 ensures that TJ-reconfiguration admits
a polynomial kernel on many classical graph classes such as bounded degree
graphs, bounded treewidth graphs, graphs of bounded genus or H-(topological)
minor free graphs where H is a finite collection of graphs.

The proof of [16] consists in partitioning the graph into classes according to
its neighborhood in I∪J (two vertices lie in the same class if they have the same
neighborhood in I ∪J). The authors showed that (i) some classes have bounded
size (namely those with at least 3 neighbors in I ∪ J); (ii) if some classes are
large enough, one can immediately conclude (namely those with at most one
neighbor in I ∪ J); (iii) we can “reduce” classes with two neighbors in I ∪ J
if they are too large. As they observed, this proof cannot be directly extended
to Kℓ,ℓ-free graphs for ℓ ≥ 4. In this paper, we develop new tools to “reduce”
classes. Namely, we iteratively apply a lemma of Kövári, Sós, Turán [19] to find
a subset X of vertices such that X has size at most f(k, ℓ), contains I ∪ J and
is such that for every Y ⊂ X , if the set of vertices with neighborhood Y in X is
too large, then it can be replaced by an independent set of size k.

Note finally that the TJ-reconfiguration problem is W[1]-hard parame-
terized only by ℓ since graphs of treewidth at most ℓ are Kℓ+1,ℓ+1-free graphs.
And the TJ-reconfiguration problem is W[1]-hard parameterized by the
treewidth [22]. We left the existence of an FPT algorithm parameterized by
k + ℓ as an open question.

Hardness for graphs of bounded VC-dimension. A natural way of extending our
result would consist in proving it for graphs of bounded VC-dimension. The
VC-dimension is a classical way of defining the complexity of a hypergraph that
received considerable attention in various fields, from learning to discrete geom-
etry. Informally, the VC-dimension is the maximum size of a set on which the
hyperedges of the hypergraph intersect on all possible ways. A formal definition
will be provided in Section 4. In this paper, we define the VC-dimension of a
graph as the VC-dimension of its closed neighborhood hypergraph, which is the
most classical definition used in the literature (see [7] for instance).

Bounded VC-dimension graphs generalize Kℓ,ℓ-free graphs since Kℓ,ℓ-free
graphs have VC-dimension at most ℓ+log ℓ. One can naturally ask if our results
can be extended to graphs of bounded VC-dimension. Unfortunately the answer
is negative since we can obtain as simple corollaries of existing results that the
TJ-reconfiguration problem is NP-complete on graphs of VC-dimension 2
and W [1]-hard parameterized by k on graphs of VC-dimension 3. We complete
these results in Section 4 by showing that the problem is polynomial on graphs of
VC-dimension 1. The parameterized complexity status remains open on graphs
of VC-dimension 2.

2 Density of Kℓ,ℓ-free graphs

Kövári, Sós, Turán [19] proved that any Kℓ,ℓ-free graph has a sub-quadratic
number of edges. The initial bound of [19] was later improved, see e.g. [12].
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Theorem 2 (Kövári, Sós, Turán [19]). Let G be a Kℓ,ℓ-free graph on n
vertices. Then G has at most ex(n,Kℓ,ℓ) edges, with

ex(n,Kℓ,ℓ) ≤
( ℓ− 1

2

)1/ℓ

· n2−1/ℓ +
1

2
(ℓ− 1)n.

As a corollary, for every ℓ, there exists a polynomial function Pℓ such that
every Kℓ,ℓ-free graph with at least n ≥ Pℓ(k) vertices contains a stable set of size
at least k. Note that in the following statements, we did not make any attempt
in order to optimize the functions.

Corollary 1. Every Kℓ,ℓ-free graph with kℓ(4k)ℓ vertices contains an indepen-

dent set of size k.

Proof. Let us first prove the following fact. Every Kℓ,ℓ-free graph G′ on at least
n(k, ℓ) = ℓ(4k)ℓ vertices has a vertex of degree less than n

k . Assume by contra-
diction that every vertex has degree at least n

k . So the number of edges of the

graph is at least n2

2k . Since n ≥ ℓ(4k)ℓ, we have in particular n > 2kℓ and thus
1
2ℓn < n2

4k . We also have n > ℓ(4k)ℓ

2 and thus ( ℓ
2n )

1/ℓ < 1
4k . Using Theorem 2, we

obtain the following upper bound on the number of edges:

|E| ≤
( ℓ− 1

2

)1/ℓ

· n2−1/ℓ +
1

2
(ℓ − 1)n <

(

ℓ

2n

)1/ℓ

· n2 +
1

2
ℓn

<
n2

4k
+

n2

4k
=

n2

2k

which gives a contradiction with the lower bound on the number of edges.

To conclude, let us prove the corollary by induction on k. For k = 1, the
result is straightforward. Consider a graph G on at least n′(k, ℓ) = k · ℓ(4k)ℓ

vertices with k ≥ 2. Let z be a vertex of minimum degree. Since the graph has
size at least n′(k, ℓ) ≥ n(k, ℓ), there exists a vertex of degree less than n

k . Add z
in the independent set and delete N(z)∪ {z} from G. The remaining graph has
size at least (k − 1)nk ≥ (k − 1) · ℓ(4k)ℓ ≥ n′(k − 1, ℓ). By induction, it has an
independent set I of size (k − 1). Then I ∪ {z} is an independent set since all
the neighbors of z in C have been deleted, which concludes the proof. ⊓⊔

We will also need a “bipartite version” of both Theorem 2 and Corollary 1.

Theorem 3 (Kövári, Sós, Turán [19]). Let G = ((A,B), E) be a Kℓ,ℓ-free

bipartite graph where |A| = n and |B| = m. The number of edges of G is at most

ex(n,m,Kℓ,ℓ) ≤ (ℓ − 1)1/ℓ · (n− ℓ+ 1) ·m1−1/ℓ + (ℓ − 1)m.

Corollary 2. Let ℓ ≥ 3. Let G be a Kℓ,ℓ-free graph and C be a subset of vertices

of size at least (3ℓ)4ℓ. There are at most (3ℓ)2ℓ vertices of G incident to a fraction

of at least 1
8ℓ of the vertices of C.
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Proof. Assume by contradiction that at least m(ℓ) = (3ℓ)2ℓ vertices of G are
incident to at least 1

8ℓ |C| vertices of C. Let X be a subset of size (3ℓ)2ℓ that
satisfies this property. Let us consider the bipartite (X,C \ X). Let us denote
by n the size of C.

Let us first give a lower bound on the number of edges. Since all the vertices of
X are incident to a fraction of at least 1

8ℓ of the vertices of C, the bipartite graph
induced by (X,C \X) has at least m · n

8ℓ −m2 ≥ m ·( n
8ℓ −m) ≥ mn( 1

8ℓ −
1

(9ℓ)2ℓ ) ≥
1
9ℓmn edges. The negative term is due to the fact that some vertices of X might
be included in C, and then some of the edges from X to C might be edges from
X to X rather than edges from X to C \X .

Conversely, let us provide an upper bound on the number of edges to obtain
a contradiction. By Theorem 3, the number of edges is at most

(ℓ− 1)1/ℓ · (n− ℓ+ 1) ·m1−1/ℓ + (ℓ− 1)m <
(ℓ− 1)1/ℓ

m1/ℓ
·mn+ (ℓ− 1)m

≤
ℓ1/ℓ

m1/ℓ
·mn+ ℓm

n

(3ℓ)4ℓ

≤
( ℓ1/ℓ

(3ℓ)2ℓ/ℓ
+

ℓ

(3ℓ)4ℓ

)

·mn

≤
1

9ℓ
·mn

which contradicts the lower bound on the number of edges. ⊓⊔

3 Polynomial kernel on Kℓ,ℓ-free graphs

In this section we prove the following that implies Theorem 1.

Theorem 4. The TJ-reconfiguration problem admits a kernel of size h(ℓ) ·

kℓ·3
ℓ

.

Let G be a Kℓ,ℓ-free graph and k be an integer. Let I and J be two distinct
independent sets of size k. Two vertices a and b are similar for a subset X of
vertices if both a and b have the same neighborhood in X . A similarity class

(for X) is a maximum subset of vertices of V \X with the same neighborhood
in X .

In Section 3.1, we present basic facts and describe the kernel algorithm. In
Section 3.2, we bound the size of the graph returned by the algorithm. It will
be almost straightforward to see that the size of this graph is a function of k
and ℓ. However, we will need additional lemmas to prove that its size is at most

h(ℓ) · kℓ·3
ℓ

and that the algorithm is polynomial when ℓ is a fixed constant.
Section 3.3 is devoted to prove that the algorithm is correct.
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3.1 The algorithm

Let us first briefly informally describe the behavior of Algorithm 1. During the
algorithm, we will update a set X of important vertices. At the beginning of
the algorithm we set X = I ∪ J . At each step of the algorithm, at most f(k, ℓ)
vertices will be added to X . So each similarity class of the previous step will be
divided into at most 2f(k,ℓ) parts. The main ingredient of the proof (essentially)
consists in showing that, at the end of the algorithm, either the size of a class is
bounded or the whole class can be replaced by an independent set of size k. As
a by-product, the size of the graph can be bounded by a function of k and ℓ.

Let X be a set of vertices containing I ∪ J . The rank of a similarity class
C for X is the number of neighbors of C in X . Our proof consists in applying
different arguments depending on the rank of the similarity classes. We actually
consider the 3 distinct types of classes: classes of rank at least ℓ, classes of rank
at most 1 and classes of rank at least 2 and at most ℓ− 1. The size of the class
C in the first two cases can be bounded as shown in [16] for ℓ = 3.

Lemma 1. The size of a class C of rank at least ℓ is at most ℓ− 1.

Proof. All the vertices of C have the same neighbors in X . Let Y be the set of
neighbors of C in X . The set (C, Y ) is a complete bipartite graph. Since G is
Kℓ,ℓ-free, the size of C is at most ℓ− 1 since Y has size at least ℓ. ⊓⊔

Lemma 2. Let X be a set of vertices containing I ∪ J . If the size of a class C
of rank at most 1 for X is at least kℓ(4k)ℓ, then it is possible to transform I into

J .

Proof. By Corollary 1, the graph G[C] admits an independent set {z1, . . . , zk}
of size k. Let us denote by respectively x1, . . . , xk and y1, . . . , yk the vertices of
I and J . Moreover, since |N(C) ∩ X | ≤ 1 and that I ∪ J ⊆ X , we can assume
without loss of generality that no vertex of C is incident to I ∪ J \ {x1}.

We can now transform I into J . We first move the token from x1 to z1
and we continue by moving tokens from xi to zi for every i ≥ 2. At each step
{z1, . . . , zi, xi+1, . . . , xk} is an independent set. We can similarly prove that Z
can be transformed into J which concludes the proof. ⊓⊔

Our approach to deal with the remaining classes consists in adding vertices
in X to increase their ranks. Since it is simple to deal with a class of rank at
least ℓ, it provides a way to simplify classes. However, some vertices might not
be incident to the new vertices of X , and then their ranks do not increase. The
central arguments of the proof consists in proving that we can deal with these
vertices if we repeat a “good” operation at least 2k + 1 steps (see Lemma 5).

The set X is called the set of important vertices. Initially, X = I ∪ J . We
denote by Xt the set X at the beginning of step t and X0 = I ∪J . A class D for
Xt′ is inherited from a class C of Xt if t

′ > t and D ⊆ C. We say that C is an
ancestor of D. Note that the rank of C is at most the rank of D since when we
add vertices in X the rank can only increase and the set X is increasing during
the algorithm.
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A similarity class is big for Xt if its size is at least g(k, ℓ) := 4 · kℓ(4k)ℓ. We
say that we reduce a class C when we replace all the vertices of the class C by
an independent set of size k with the same neighborhood in V \ C: N(c) ∩ X
where c is any vertex of the class C.

Algorithm 1 Kernel algorithm

Let X0 = I ∪ J Initially important vertices are I ∪ J

if a class of rank 1 is big then

Return a YES instance Valid operation, see Lemma 2

end if

for every j = 2 to ℓ− 1 do

for s = 0 to 2k do

Ct := big similarity classes of rank j for Xt. We treat big classes of the current

rank j

Z = ∅

for every C ∈ Ct do

Y := {y ∈ V \Xt such that |N(y) ∩ C| ≥ |C|
8ℓ

}. |Y | is bounded, Corollary 2

if |(N(Y ) ∪ Y ) ∩ C| ≤ |C|/2 then

Reduce the class C. Valid operation by Lemma 4

else

Z = Z ∪ Y
end if

end for

Xt+1 := Xt ∪ Z. Update the important vertices (and the classes)

end for

Reduce all the big classes of rank j. Valid operation by Lemma 5

end for

Return the reduced graph.

The classes that are in Ct are said to be treated at round t. For these classes,
we add in Xt all the vertices that are incident to a 1/8ℓ-fraction of the vertices
of the class. When we say that we refine the classes at step t, it means that we
partition the vertices of the classes according to their respective neighborhood
in the new set Xt+1.

3.2 Size of the reduced graph

This part is devoted to prove that the size of the graph output by the algorithm

is h(ℓ) · kℓ·3
ℓ

. When we have finished to treat classes of rank j, j < ℓ, (i.e. when
the index of the first loop is at least j + 1) then either all the classes of rank j
have size less than g(k, ℓ) or they are replaced by an independent set of size k.
Since classes of rank j cannot be created further in the algorithm, any class of
rank at most j has size at least g(k, ℓ) at the end of the algorithm. Moreover,
any class of rank ℓ has size at most ℓ− 1 by Lemma 1.

7



A step of the algorithm is an iteration of the second loop (variable s) in the
algorithm. The value of j at a given step of the algorithm is called the index of
the step and the value of s is called the depth of the step.

Note that at the last step of depth 2k and of index i, all the classes of rank
i are reduced. So at the end of this step, no class of rank i is big anymore. Since
the set Xt+1 contains Xt for every t, the classes at step t+1 are subsets of classes
of rank t. So there does not exist any big class of rank i at any step further in
the algorithm. In particular we have the following:

Remark 1. At any step of index j, no class of rank i < j is big. Moreover, at the
end of the algorithm, no class is big.

The structure of the algorithm ensures that the algorithm ends. Actually, we
have the following:

Remark 2. The number of steps is equal to (2k + 1) · (ℓ− 2).

Using Corollary 2, it is simple to prove that the final size of X is bounded by
a function of k and ℓ. Since the number of classes only depends on k and ℓ and
each class has bounded size by Remark 1, the final size of the graph is bounded
in terms of k and ℓ. The rest of this subsection is devoted to prove a better
bound on the size of the final graph. We show that it is actually polynomial if ℓ
is a fixed constant. The proof will be a consequence of the following lemma.

Lemma 3. The size of X at the end of the algorithm is at most h′(ℓ) · k3
ℓ

.

Proof. Let us denote by Nj an upper bound on the maximum number of big
classes of rank j at any step of the algorithm. Let us first determine an upper
bound on the number of vertices that are added in X during the steps of index j.
Let t be a step of index j. The number of classes in Ct is at most Nj . Moreover,
for each class in Ct, Corollary 2 ensures that at most (3ℓ)2ℓ vertices are added
in X . So the size of Xt+1 \Xt is at most Nj · (3ℓ)2ℓ. Since there are 2k+1 steps
of index j, the number of vertices that are added in X during all the steps of
index j is at most Nj · (2k + 1) · (3ℓ)2ℓ. Thus the set of important vertices X at
the end of the algorithm satisfies the following:

|X | ≤ 2k +

ℓ−1
∑

j=2

(

Nj · (3ℓ)
2ℓ
)

· (2k + 1).

The remainder of the proof is devoted to find a bound onNj that immediately
provides an upper bound on |X |. Let us prove by induction on j that Nj =

fj(ℓ) · k3
j

, with f2(ℓ) = 4 and fj(ℓ) =
(

fj−1(ℓ) · (3ℓ)2ℓ
)j

is a valid upper bound.

Since classes are refinement of previous classes and by Remark 1, the number
of big classes of rank r is non increasing when we are considering steps of index
r. As an immediate consequence, there are at most (2k)2 big classes of rank 2,
which is the maximum number of classes of rank 2 when X = I ∪ J . So the
results holds for j = 2.

8



Let j > 2 and assume that fi(ℓ) · k3
i

is an upper bound on Ni for any
2 ≤ i < j. We say that a class of rank j is created at step t if it is inherited from
a class (at step t) of rank smaller than j. The maximum number of big classes
of rank j is at most the initial number of big classes of rank j plus the number
of big classes of rank j created at any step of the algorithm. Let us count how
many big classes of rank j can be created at each step t. By Remark 1, if the
index of the step is at least j, no new big classes of rank j can be created. So if
a class of rank j is created at step t, then the index of t is j − i with i > 0.

Consider a big class C of rank j − i at step t. Let us count how many big
classes of rank j can be inherited from this class. Since C is big, the index r of
the step t is at most j − i. As we already noticed, the set Z = Xt+1 \ Xt has
size at most Nr · (3ℓ)

2ℓ ≤ Nj−i · (3ℓ)
2ℓ since (Nr)r is an increasing sequence.

Each class of rank j inherited from C must have i neighbors in Z. Since there
are at most (Nj−i · (3ℓ)2ℓ)i ways of selecting i vertices in Z, the class C can lead
to the creation of at most (Nj−i · (3ℓ)2ℓ)i big classes of rank j. By induction
hypothesis, the number of big classes of rank j − i is at most Nj−i. So at step t,
the number of classes of rank j that are created from classes of rank j − i is at
most Nj−i · (Nj−i · (3ℓ)2ℓ)i ≤ (Nj−i · (3ℓ)2ℓ)i+1.

The total number of rounds of the algorithm is at most (2k + 1) · (ℓ − 2) by
Remark 2. So the number of big classes of rank j that are created all along the
algorithm from (big) classes of rank j−i is at most (Nj−i ·(3ℓ)

2ℓ)i ·(2k+1)·(ℓ−2).
And then the number of big classes of rank j is at most:

(2k)j +

j−2
∑

i=1

(

Nj−i · (3ℓ)
2ℓ
)i+1

· (2k + 1) · (ℓ− 2).

Let us prove that this is bounded by fj(ℓ) · k3
j

. Using the induction hypoth-
esis, and since 3(j−i) · (i+ 1) is maximal for i = 1, we have, for 1 ≤ i ≤ j − 2,

(2k)j +

j−2
∑

i=1

(

Nj−i · (3ℓ)
2ℓ
)i+1

· (2k + 1) · (ℓ− 2) ≤(2k)j +

j−2
∑

i=1

(

fj−i(ℓ) · k
3j−i

· (3ℓ)2ℓ
)i+1

· 3kℓ

≤j ·
(

fj−1(ℓ) · (3ℓ)
2ℓ
)j−1

· k2·3
j−1

· 3kjℓ

≤
(

fj−1(ℓ) · (3ℓ)
2ℓ
)j

· k3
j

≤fj(ℓ) · k
3j

Hence, Nj = fj(ℓ) · k3
j

is an upper bound on the number of big classes of
rank j.

Finally, the size of X at the end of the algorithm is at most

2k +

ℓ−1
∑

j=2

(

Nj · (3ℓ)
2ℓ
)

· (2k + 1) = h′(ℓ) · k3
ℓ

.
⊓⊔

9



We have all the ingredients to determine the size of the graph at the end of
the algorithm. Let us denote by X the set of important vertices at the end of
the algorithm. For every subset of X of size ℓ, there exist at most ℓ− 1 vertices
incident to them by Lemma 1. So the number of vertices with at least ℓ neighbor
on X is at most (ℓ − 1) · |X |ℓ. Moreover every class of rank 0 or 1 contains less
than g(k, ℓ) := k · ℓ · (4k)ℓ vertices by Lemma 2. And every class of rank between
2 and ℓ− 1 has size at most g(k, ℓ) by Remark 1. Since there are |X |ℓ−1 classes
of rank at most ℓ− 1, Lemma 3 ensures that the size s of the graph returned by
the algorithm is at most

s ≤(ℓ − 1) ·
(

h′(ℓ) · k3
ℓ
)ℓ

+
(

h′(ℓ) · k3
ℓ
)ℓ−1

· k · ℓ · (4k)ℓ ≤ h(ℓ) · kℓ·3
ℓ

.

So the size of the reduced graph has the size of the claimed kernel.

Complexity of the algorithm. Let us now briefly discuss the complexity of the
algorithm. By Lemma 3, the size of X is bounded by a function of k and ℓ and
is polynomial in k if ℓ is a fixed constant. The only possible non polynomial step
of the algorithm would consist in maintaining an exponential number of classes.
But Lemma 1 ensures that the number of classes of rank at least ℓ is at most
ℓ ·

(

ℓ
|X|

)

which is polynomial if ℓ is a constant. So the total number of classes is

at most (ℓ+1) · |X |ℓ which ensures that this algorithm runs in polynomial time.

3.3 Equivalence of transformations

This section is devoted to prove that Algorithm 1 is correct. To do it, we just
have to prove that reducing classes does not modify the existence of a transfor-
mation. In other words we have to show that I can be transformed into J in the
original graph if and only if I can be transformed into J in the reduced graph.
In Algorithm 1, there are two cases where we reduce a class. Lemmas 4 and 5
ensure that in both cases these reductions are correct.

Lemma 4. Let C be a big class of Ct. Assume moreover that the set Y of vertices

of V \ X incident to a fraction 1
8ℓ of the vertices of C satisfies |N(Y ) ∩ C| ≤

|C|/2. Then there is a transformation of I into J in G if and only if there is a

transformation in the graph where C is reduced.

Proof. Let G be the original graph and G′ be the graph where the class C has
been replaced by an independent set of size k. We denote by C′ the independent
set of size k that replaces C in G′.

Assume that there exists a transformation from I to J in G. Let us prove
that such a sequence also exists in G′. Either no independent set in the sequence
contains a vertex of C, and then the sequence still exists in the graph G′. So
we may assume that at least one independent set contains vertices of C. Let us
denote by I ′ the last independent set of the sequence between I and J such that
the sequence between I and I ′ does not contain any vertex of C. In other words,
it is possible to move a vertex of I ′ to a vertex of C. Similarly let J ′ be the first
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independent set such that the sequence between J ′ and J does not contain any
vertex of C. Note that in the graph G′, the transformations of I into I ′ and of
J ′ into J still exist since all the independent sets are in G[V \ C] that is not
modified.

Let us denote by c the vertex of C in the independent set after I ′ in the
sequence and i0 the vertex deleted from I ′. No vertex of (I ′ \ i0) ∩ X has a
neighbor in C. Otherwise it would not be possible to move i0 on c since sets have
to remain independent. Thus in G′ we can move the vertex i0 to any vertex of C′

and then move the remaining vertices of I ′ to C′. These operations are possible
since for every vertex c′ of C′, we have N(c′) ⊆ N(c) ∩X and (I ∪ {c}) \ {i0} is
an independent set. Free to reverse the sequence, a similar argument holds for
J ′. So there is a transformation from I to J in the graph G′.

Assume now that there exists a transformation from I to J in G′. As in
the previous case, we can assume that an independent set of the transformation
sequence contain a vertex of C′. Let us denote by I ′ the last independent set
such that the sequence between I and I ′ does not contain any vertex of C′.
Similarly J ′ is the first independent set such that the sequence between J ′ and
J does not contain any vertex of C′. Let us denote by i0 and j0 the vertices
respectively deleted between I ′ and the next independent set and added between
the independent before J ′ and J ′.

Note that no vertex of (I ′ \ i0) ∩ X has a neighbor in C. Otherwise the
independent set after I ′ in the sequence would not be independent. Similarly no
vertex of (J ′ \j0)∩X has a neighbor in C. Let us partition F = (I ′∪J ′)\{i0, j0}
into two sets A and B. The set A is the subset of vertices of F incident to a
fraction of at least 1

8ℓ of the vertices of C in G. By hypothesis on C, N(A) ∩ C
covers at most half of the vertices of C. Let B be the complement of A in F .
Every vertex of B is incident to a fraction of at most 1

8ℓ of the vertices of C in
G. So N(B) covers at most a quarter of the vertices of C. Let us denote by D
the set C \N(I ′∪J ′). The size of D is at least one quarter of the size of C. Since
C is big, the size of D is at least k · ℓ · (4k)ℓ. Theorem 1 ensures that exists an
independent set of size I ′′ at least k in D. By construction of D, one can move
i0 to any vertex of I ′′. And then the remaining vertices of I ′ to I ′′. Similarly,
one can transform I ′′ into J ′. So there exists a transformation from I to J in
the graph G that concludes this proof. ⊓⊔

Lemma 5. Let C be a class of rank j when the index of the step equals j and

the depth of the step equals 2k. Assume moreover that the size of C is at least

4kℓ · (4k)ℓ. Then there is a transformation of I into J in G if and only if there

is a transformation in the graph where C is reduced.

Proof. Let G be the original graph and G′ be the graph where C is reduced. We
will denote by C′ the independent set of size k that replaces C in G′.

Assume that there exists a transformation from I to J in G. A sequence also
exists in G′. The proof works exactly as the proof of the first part of Lemma 4.

Assume now that there exists a transformation from I to J in G′. Let us prove
that a transformation from I to J also exists on G. If none of the independent
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sets of the sequence contains a vertex of C′, the sequence still exists in G. So
we can assume that an independent set of the sequence contains a vertex of C′.
Let us denote by I ′ the last independent set such that the sequence between I
and I ′ does not contain any vertex of C′ and J ′ the first independent set such
that the sequence between J ′ and J does not contain any vertex of C′. Let us
denote by i0 and j0 the vertices respectively deleted between I ′ and the next
independent set and added between the independent before J ′ and J ′. We denote
by I0 and J0 the sets I ′ \ i0 and J ′ \ j0. Note that no vertex of (I ′ \ i0) ∩X has
a neighbor in C. Otherwise the independent set after I ′ in the sequence would
not be independent. Similarly no vertex of (J ′ \ j0) ∩X has a neighbor in C.

Let us denote by t0 the step of index j and depth 0. And let t be the step
of index j and depth 2k. In other words t = t0 + 2k. Let C0, C1, . . . , C2k = C
be the ancestors of C at round t0, . . . , t0 + 2k. All these classes have rank j and
C2k ⊆ C2k−1 ⊆ · · ·C0. Since |C2k| ≥ g(k, ℓ), the same holds for any class Ci. In
particular, the class Ci is big at step t0 + i. Since the class Ci is not reduced at
step t0 + i, the subset of vertices incident to a 1

8ℓ -fraction of the vertices of Ci

covers at least half of the vertices of Ci. In particular, for every i < 2k, we have

|Ci+1| ≤ |Ci|/2. (1)

Let i ≤ 2k. Let us denote by Yi the set of vertices of V \ Xt0+i that are
incident to at least 1

8ℓ of the vertices of Ci. Any vertex y of Yi has no neighbor in
Ch for h > i. Indeed the set Yi is added in Xt0+i+1 at the end of step t0+ i. And
by definition of Ch, the rank of Ch is still j. Note moreover that, if i 6= h then
Yi and Yh are disjoint. Since a vertex in Yh is not incident to a 1

8ℓ -fraction of the
vertices of Ci, Equation (1) ensures for every i < 2k and every vertex x /∈ Yi

|N(x) ∩ (Ci \ Ci+1)| ≤
|Ci \ Ci+1|

4ℓ

Moreover, by definition of Y2k, every vertex x which is not in Y2k satisfies

|N(x) ∩C2k| ≤
|C2k|

8ℓ

Since the sets Y0, . . . , Y2k are disjoint, there exists an index i such that I ′∪J ′

does not contain any vertex of Yi. Let C′
i = Ci \ Ci+1 (or C′

i = Ci if i = 2k).

Every vertex of I ′ ∪ J ′ is incident to at most
|C′

i|
4ℓ of the vertices of C′

i. So the
complement of N(I0 ∪ J0) in C′

i, denoted by C′′
i has size at least

|C′′
i | ≥

|C′
i|

2
≥

|Ci|

4
≥

|C2k|

4
≥ g(k, ℓ) ≥ kℓ · (4k)ℓ.

By Corollary 1, C′′
i contains an independent set S of size k. Since I ′ and S are

anticomplete (up to one vertex, namely i0), one can transform the independent
set from I ′ into S. Similarly, one can transform S into J ′ which completes the
proof. ⊓⊔

12



4 Bounded VC-dimension

Let H = (V,E) be a hypergraph. A set X of vertices ofH is shattered if for every
subset Y of X there exists a hyperedge e such that e ∩X = Y . An intersection
between X and a hyperedge e of E is called a trace (on X). Equivalently, a set
X is shattered if all its 2|X| traces exist. The VC-dimension of a hypergraph is
the maximum size of a shattered set.

Let G = (V,E) be a graph. The closed neighborhood hypergraph of G is
the hypergraph with vertex set V where X ⊆ V is a hyperedge if and only if
X = N [v] for some vertex v ∈ V (where N [v] denotes the closed neighborhood of
v). The VC-dimension of a graph is the VC-dimension of its closed neighborhood
hypergraph. The VC-dimension of a class of graphs C is the maximum VC-
dimension of a graph of C.

There is a correlation between VC-dimension and complete bipartite sub-
graphs. Namely, a Kℓ,ℓ-free graph has VC-dimension at most O(ℓ). Since the
TJ-reconfiguration problem is W[1]-hard for general graphs and FPT on
Kℓ,ℓ-free graphs, one can naturally ask if this result can be extended to graphs
of bounded VC-dimension. Let us remark that the problem is W[1]-hard even
on graphs of VC-dimension 3. This is a corollary of two simple facts. First, to
prove that the TJ-reconfiguration problem is W[1]-hard on general graphs,
Ito et al. [17] showed that if the Independent Set problem is W[1]-hard on a
class of graph G, then the TJ-reconfiguration problem is W[1]-hard on the
class G′ where graphs of G′ consist in the disjoint union of a graph of G and a
complete bipartite graph. Note that the VC-dimension of a complete bipartite
graph equals 1. Moreover, if G is a class closed by disjoint union, then the VC-
dimension of the class G′ is equal to the VC-dimension of G. Hence we have the
following:

Remark 3. If C is a class of graphs of VC-dimension at most d closed by disjoint
union, then the TJ-reconfiguration problem on graphs of VC-dimension at
most d is at least as hard as the Independent Set problem on C.

So any hardness result for Independent Set provides a hardness result for
TJ-reconfiguration. The Independent Set problem is W[1]-hard on graphs
of VC-dimension at most 3. Indeed, Marx proved in [21] that the Independent
Set problem is W [1]-hard on unit disk graphs, and unit disk graphs have VC-
dimension at most 3 (see for instance [7]). To complete the picture, we have to
determine the complexity of the problem for k = 1 and k = 2. For graphs of VC-
dimension 2, the problem is NP-hard. Indeed the Independent Set problem is
NP-complete on graphs of girth at least 5 [24] and this class has VC-dimension
at most 2 (see for instance [7]).

The remaining of this section is devoted to prove that TJ-reconfiguration
can be decided in polynomial time on graphs of VC-dimension at most 1.

Theorem 5. The TJ-reconfiguration problem can be solved in polynomial

time on graphs of VC-dimension at most 1.
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Let us give the three lemmas that permits to prove Theorem 5 whose proofs
are not included in this extended abstract.

Lemma 6. Let G be a graph of VC-dimension at most 1 and let u and v be two

vertices of G. Then one of the following holds:

1. The closed neighborhoods of u and v are disjoint.

2. One of the closed neighborhoods is included in the other.

3. u and v form a dominating pair.

Proof. Since the pair {u, v} is not shattered, at least one of the traces from
{∅, {u} , {v} , {u, v}} is missing. If the trace ∅ is missing, it means that for every
vertex w, N [w] ∩ {u, v} 6= ∅ and then u, v forms a dominating pair. If the trace
{u} is missing, then for every vertex w such that u ∈ N [w] we have v ∈ N [w].
Thus N [u] is included in N [v]. Similarly, if the trace {v} is missing, then N [v]
is included in N [u]. Finally if the trace {u, v} is missing then no vertex w has
both u and v in its neighborhood and then the neighborhood of u and v are
disjoint. ⊓⊔

The following lemma ensures that if the graph contains a vertex satisfying
the second point of Lemma 6, then it can be deleted.

Lemma 7. Let G be a graph of VC-dimension at most 1 and let u and v be

two vertices such that N [u] ⊆ N [v]. Let I, J be two independent set that do not

contain v. Then there exists a TJ-transformation from I to J in G if and only

if there exists a TJ-transformation from I to J in G′ := G \ {v}.

Proof. (⇐) Any transformation in G′ also is a transformation in G since G
contains G′.

(⇒) Consider a transformation from I to J in G. Either no independent set
contain v and the same transformation exists in G′. Or some independent sets
contain v. Now replace in all the independent sets of the sequence the vertex
v by the vertex u. Note that all these sets still have size k. Indeed (u, v) is an
edge of G and then no independent set contain both u and v. Moreover after
this replacement, all the sets are still independent since N [u] ⊆ N [v]. ⊓⊔

Note moreover that if I (or J) contains v then we can transform I into
I ∪ {u} \ {v} in one step. Lemma 7 combined with this remark ensures that
we can reduce the graph in such a way no vertex satisfies the second point of
Lemma 6.

Lemma 8. Let G be a graph of VC-dimension at most 1 such that no pair of

vertices satisfies the second point of Lemma 6. Let I and J be two independent

sets of size at least 3, then I ∪ J is an independent set.

Proof. Let u ∈ I and v ∈ J and assume that uv ∈ E. Since there is no inclusion
between the closed neighborhoods of u and v, and since their closed neighbor-
hoods are not disjoint, by Lemma 6, u, v forms a dominating pair. Now since I is
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independent and u ∈ I, v is adjacent to every vertices of I. Now let w be a vertex
of I different from u. We have v ∈ N [u] ∩N [w], so the closed neighborhoods of
u and w are not disjoint. Thus by Lemma 6 u,w is also a dominating pair. So if
I contains a vertex different from u and w, it should be adjacent to at least one
of them, contradicting the fact that I is independent. ⊓⊔

This completes the proof of Theorem 5 since either I and J have size at most
2 and the problem is obviously polynomial. Or I ∪ J is an independent set and
one can simply move every vertex from I to J one by one.

Question 1. Is theTJ-reconfiguration problem FPT on graphs of VC-dimension
at most 2?
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