Skip to main content

Subquadratic Non-adaptive Threshold Group Testing

  • Conference paper
  • First Online:
Fundamentals of Computation Theory (FCT 2017)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10472))

Included in the following conference series:

Abstract

We consider threshold group testing – a generalization of a well known and thoroughly examined problem of combinatorial group testing. In the classical setting, the goal is to identify a set of positive individuals in a population, by performing tests on pools of elements. The output of each test is an answer to the question: is there at least one positive element inside a query set Q ? The threshold group testing is a natural generalization of this classical setting which arises when the answer to a test is positive if at least \(t>0\) elements under test are positive.

We show that there exists a testing strategy for the threshold group testing consisting of \(O(d^{3/2}\log (N/d))\) tests, for d positive items in a population of size N. For any value of the threshold t, we also provide a lower bound of order \(\varOmega \left( \min \left\{ \left( \frac{d}{t}\right) ^2,\frac{N}{t}\right\} \right) \). Our subquadratic bound shows a complexity separation with the classical group testing (which corresponds to \(t = 1\)) where \(\varOmega (d^2 \log _d N)\) tests are needed [25].

Next, we introduce a further generalization, the multi-threshold group testing problem. In this setting, we have a set of \(s > 0\) thresholds, \(t_1,t_2, \ldots , t_s\). The output of each test is an integer between 0 and s which corresponds to which thresholds get passed by the number of positives in the queried pool. Here, one may be interested in minimizing not only the number of tests, but also the number of thresholds which is related to the accuracy of the tests. We show the existence of two strategies for this problem. The first one of size \(O(d^{3/2}\log (N/d))\) is an extension of the above-mentioned result. The second strategy is more general and works for a range of parameters. As a consequence, we show that \(O(\frac{d^2}{t}\log (N/d))\) tests are sufficient for \(t\le d/2\). Both strategies use respectively \(O(\sqrt{d})\) and \(O(\sqrt{t})\) thresholds.

This work was supported by the Polish National Science Centre grants DEC-2012/06/M/ST6/00459 and 2014/13/N/ST6/01850.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alon, N., Hod, R.: Optimal monotone encodings. IEEE Trans. Inf. Theory 55(3), 1343–1353 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Chen, H.-B., Fu, H.-L.: Nonadaptive algorithms for threshold group testing. Discrete Appl. Math. 157(7), 1581–1585 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  3. Cheraghchi, M.: Improved constructions for non-adaptive threshold group testing. Algorithmica 67(3), 384–417 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Chlebus, B.S., De Marco, G., Kowalski, D.R.: Scalable wake-up of multi-channel single-hop radio networks. Theoret. Comput. Sci. 615, 23–44 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  5. Chlebus, B.S., De Marco, G., Kowalski, D.R.: Scalable wake-up of multi-channel single-hop radio networks. In: Aguilera, M.K., Querzoni, L., Shapiro, M. (eds.) OPODIS 2014. LNCS, vol. 8878, pp. 186–201. Springer, Cham (2014). doi:10.1007/978-3-319-14472-6_13

    Google Scholar 

  6. Chlebus, B.S., De Marco, G., Talo, M.: Naming a channel with beeps. Fundam. Inf. 153(3), 199–219 (2017)

    Article  Google Scholar 

  7. Chlebus, B.S., Kowalski, D.R.: Almost optimal explicit selectors. In: Liśkiewicz, M., Reischuk, R. (eds.) FCT 2005. LNCS, vol. 3623, pp. 270–280. Springer, Heidelberg (2005). doi:10.1007/11537311_24

    Chapter  Google Scholar 

  8. Chrobak, M., Gasieniec, L., Rytter, W.: Fast broadcasting and gossiping in radio networks. In: FOCS 2009, pp. 575–584 (2000)

    Google Scholar 

  9. Clementi, A.E.F., Monti, A., Silvestri, R.: Distributed broadcast in radio networks of unknown topology. Theor. Comput. Sci. 302(1–3), 337–364 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  10. Clifford, R., Efremenko, K., Porat, E., Rothschild, A.: Pattern matching with don’t cares and few errors. J. Comput. Syst. Sci. 76(2), 115–124 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Cormode, G., Muthukrishnan, S.: Combinatorial algorithms for compressed sensing. In: 40th Annual Conference on Information Sciences and Systems, pp. 198–201 (2006)

    Google Scholar 

  12. Cormode, G., Muthukrishnan, S.: What’s hot and what’s not: tracking most frequent items dynamically. ACM Trans. Database Syst. 30(1), 249–278 (2005)

    Article  Google Scholar 

  13. Damaschke, P.: Threshold group testing. Electron. Notes Discrete Math. 21, 265–271 (2005)

    Article  MATH  Google Scholar 

  14. DasGupta, A.: Fundamentals of Probability: A First Course. Springer Texts in Statistics. Springer, New York (2010). doi:10.1007/978-1-4419-5780-1

    Book  MATH  Google Scholar 

  15. De Bonis, A., Gasieniec, L., Vaccaro, U.: Optimal two-stage algorithms for group testing problems. SIAM J. Comput. 34(5), 1253–1270 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  16. De Marco, G.: Distributed broadcast in unknown radio networks. In: SODA 2008, pp. 208–217 (2008)

    Google Scholar 

  17. De Marco, G.: Distributed broadcast in unknown radio networks. SIAM J. Comput. 39(6), 2162–2175 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  18. De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized multiple access channel. Theor. Comput. Sci. (2017). https://doi.org/10.1016/j.tcs.2017.05.014

  19. De Marco, G., Kowalski, D.R.: Fast nonadaptive deterministic algorithm for conflict resolution in a dynamic multiple-access channel. SIAM J. Comput. 44(3), 868–888 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  20. De Marco, G., Kowalski, D.R.: Contention resolution in a non-synchronized multiple access channel. In: IPDPS 2013, pp. 525–533 (2013)

    Google Scholar 

  21. De Marco, G., Kowalski, D.R.: Towards power-sensitive communication on a multiple-access channel. In: 30th International Conference on Distributed Computing Systems (ICDCS 2010), Genoa, Italy, May 2010

    Google Scholar 

  22. De Marco, G., Pellegrini, M., Sburlati, G.: Faster deterministic wakeup in multiple access channels. Discrete Appl. Math. 155(8), 898–903 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  23. De Marco, G., Kowalski, D.R.: Searching for a subset of counterfeit coins: randomization vs determinism and adaptiveness vs non-adaptiveness. Random Struct. Algorithms 42(1), 97–109 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  24. Dorfman, R.: The detection of defective members of large populations. Ann. Math. Stat. 14(4), 436–440 (1943)

    Article  Google Scholar 

  25. Dyachkov, A.G., Rykov, V.V.: Bounds on the length of disjunctive codes. Probl. Pereda. Informatsii 18(3), 7–13 (1982)

    MathSciNet  MATH  Google Scholar 

  26. Farach, M., Kannan, S., Knill, E., Muthukrishnan, S.: Group testing problems with sequences in experimental molecular biology. In: Proceedings of the Compression and Complexity of Sequences, SEQUENCES 1997, p. 357 (1997)

    Google Scholar 

  27. Fu, H.-L., Chang, H., Shih, C.-H.: Threshold group testing on inhibitor model. J. Comput. Biol. 20(6), 464–470 (2013)

    Article  MathSciNet  Google Scholar 

  28. Indyk, P.: Deterministic superimposed coding with applications to pattern matching. In: FOCS 1997, pp. 127–136 (1997)

    Google Scholar 

  29. Indyk, P., Ngo, H.Q., Rudra, A.: Efficiently decodable non-adaptive group testing. In: SODA, pp. 1126–1142 (2010)

    Google Scholar 

  30. Kautz, W., Singleton, R.: Nonrandom binary superimposed codes. IEEE Trans. Inf. Theory 10(4), 363–377 (1964)

    Article  MATH  Google Scholar 

  31. Ngo, H.Q., Du, D.-Z.: A survey on combinatorial group testing algorithms with applications to DNA library screening. In: Discrete Mathematical Problems with Medical Applications. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, vol. 55, pp. 171–182. American Mathematical Society (2000)

    Google Scholar 

  32. Ngo, H.Q., Porat, E., Rudra, A.: Efficiently decodable error-correcting list disjunct matrices and applications. In: Aceto, L., Henzinger, M., Sgall, J. (eds.) ICALP 2011. LNCS, vol. 6755, pp. 557–568. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22006-7_47

    Chapter  Google Scholar 

  33. Porat, E., Rothschild, A.: Explicit nonadaptive combinatorial group testing schemes. IEEE Trans. Inf. Theory 57(12), 7982–7989 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wolf, J.: Born again group testing: multiaccess communications. IEEE Trans. Inf. Theory 31(2), 185–191 (1985)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Darek Kowalski for his comments to the paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gianluca De Marco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer-Verlag GmbH Germany

About this paper

Cite this paper

De Marco, G., Jurdziński, T., Różański, M., Stachowiak, G. (2017). Subquadratic Non-adaptive Threshold Group Testing. In: Klasing, R., Zeitoun, M. (eds) Fundamentals of Computation Theory. FCT 2017. Lecture Notes in Computer Science(), vol 10472. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-55751-8_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-55751-8_15

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-55750-1

  • Online ISBN: 978-3-662-55751-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics