
ar
X

iv
:1

70
5.

03
67

3v
1

 [
cs

.C
C

]
 1

0
M

ay
 2

01
7

The Complexity of Routing with Few Collisions∗

Till Fluschnik†,1, Marco Morik1, and Manuel Sorge‡,1,2

1Institut für Softwaretechnik und Theoretische Informatik, TU Berlin, Germany,
till.fluschnik@tu-berlin.de,marco.morik@campus.tu-berlin.de

2Ben Gurion University of the Negev, Be’er Sheva, Israel, sorge@post.bgu.ac.il

Abstract

We study the computational complexity of routing multiple objects through
a network in such a way that only few collisions occur: Given a graph G with
two distinct terminal vertices and two positive integers p and k, the question is
whether one can connect the terminals by at least p routes (e.g. paths) such
that at most k edges are time-wise shared among them. We study three types
of routes: traverse each vertex at most once (paths), each edge at most once
(trails), or no such restrictions (walks). We prove that for paths and trails the
problem is NP-complete on undirected and directed graphs even if k is constant
or the maximum vertex degree in the input graph is constant. For walks, how-
ever, it is solvable in polynomial time on undirected graphs for arbitrary k and
on directed graphs if k is constant. We additionally study for all route types
a variant of the problem where the maximum length of a route is restricted by
some given upper bound. We prove that this length-restricted variant has the
same complexity classification with respect to paths and trails, but for walks it
becomes NP-complete on undirected graphs.

1 Introduction

We study the computational complexity of determining bottlenecks in networks. Con-
sider a network in which each link has a certain capacity. We want to send a set
of objects from point s to point t in this network, each object moving at a constant
rate of one link per time step. We want to determine whether it is possible to send
our (predefined number of) objects without congestion and, if not, which links in the
network we have to replace by larger-capacity links to make it possible.

Apart from determining bottlenecks, the above-described task arises when securely
routing very important persons [15], or packages in a network [2], routing container
transporting vehicles [18], and generally may give useful insights into the structure
and robustness of a network. A further motivation is congestion avoidance in routing

∗Major parts of this work done while all authors were with TU Berlin.
†Supported by the DFG, project DAMM (NI 369/13-2).
‡Supported by the DFG, project DAPA (NI 369/12-2), the People Programme (Marie Curie Ac-

tions) of the European Union’s Seventh Framework Programme (FP7/2007-2013) under REA grant
agreement number 631163.11 and by the Israel Science Foundation (grant no. 551145/14).

1

http://arxiv.org/abs/1705.03673v1

fleets of vehicles, a problem treated by recent commercial software products (e.g.
http://nunav.net/) and poised to become more important as passenger cars and
freight cars become more and more connected. Assume that we have many requests
on computing a route for a set of vehicles from a source location to a target location,
as it happens in daily commuting traffic. Then the idea is to centrally compute these
routes, taking into account the positions in space and time of all other vehicles. To
avoid congestion, we try to avoid that on two of the routes the same street appears at
the same time.

A first approximation to determine such bottlenecks would be to compute the set
of minimum cuts between s and t. However, by daisy chaining our objects, we may
avoid such “bottlenecks” and, hence, save on costs for improving the capacity of our
links. Apart from the (static) routes we have to take into account the traversals in
time that our objects take.

Formally, we are given an undirected or directed graph with marked source and
sink vertex. We ask whether we can construct routes between the source and the sink
in such a way that these routes share as few edges as possible. By routes herein we
mean either paths, trails, or walks, modeling different restrictions on the routes: A
walk is a sequence of vertices such that for each consecutive pair of vertices in the
sequence there is an edge in the graph. A trail is a walk where each edge of the graph
appears at most once. A path is a trail that contains each vertex at most once. We
say that an edge is shared by two routes, if the edge appears at the same position
in the sequence of the two routes. The sequence of a route can be interpreted as the
description of where the object taking this route is at which time. So we arrive at the
following core problem:

Routing with Collision Avoidance (RCA)
Input: A graph G = (V,E), two distinct vertices s, t ∈ V , and two inte-

gers p ≥ 1 and k ≥ 0.
Question: Are there p s-t routes that share at most k edges?

This definition is inspired by the Minimum Shared Edges (MSE) problem [6,
15, 20], in which an edge is already shared if it occurs in two routes, regardless of the
time of traversal. Finally, note that finding routes from s to t also models the general
case of finding routes between a set of sources and a set of sinks.

Considering our introductory motivating scenarios, it is reasonable to restrict the
maximal length of the routes. For instance, when routing vehicles in daily commuting
traffic while avoiding congestion, the routes should be reasonably short. Motivated by
this, we study the following variant of RCA.

Fast Routing with Collision Avoidance (FRCA)
Input: A graph G = (V,E), two distinct vertices s, t ∈ V , and three integers

p, α ≥ 1 and k ≥ 0.
Question: Are there p s-t routes each of length at most α that share at most

k edges?

In the problem variants Path-RCA, Trail-RCA, and Walk-RCA, the routes are
restricted to be paths, trails, or walks, respectively (analogously for FRCA).

2

http://nunav.net/

Table 1: Overview of our results: DAGs abbreviates directed acyclic graphs; NP-
c., W[2]-h., P abbreviate NP-complete, W[2]-hard, and containment in the class P ,
respectively; ∆ denotes the maximum degree; ∆i/o denotes the maximum over the in-
and outdegrees. a (Thm. 1) b (Thm. 3) c (Cor. 2) d (even on planar graphs)

Undirected, with k Directed, with k DAGs, with k

constant arbitrary constant arbitrary const. arbitrary

Path-(F)RCA NP-c.d, Thm. 4 (Cor. 3) NP-c.d, Thm. 4 (Cor. 3) Pa NP-c.,

each k ≥ 0 each ∆ ≥ 4 each k ≥ 0 each ∆i/o ≥ 4 W[2]-hb/c

Trail-(F)RCA NP-c.d, Thm. 5 (Cor. 4) NP-c.d, Thm. 6 (Cor. 5) Pa NP-c.,

each k ≥ 0 each ∆ ≥ 5 each k ≥ 0 each ∆i/o ≥ 3 W[2]-hb/c

Walk-RCA P (Thm. 7) P (Thm. 9) NP-c., Pa NP-c.,

W[2]-h.b W[2]-h.b

Walk-FRCA open NP-c., W[2]-h. P (Thm. 9) NP-c., Pa NP-c.,

(Thm. 8) W[2]-h.c W[2]-h.c

Our Contributions. We give a full computational complexity classification of
RCA and FRCA (except Walk-FRCA) with respect to the three mentioned route
types; with respect to undirected, directed, and directed acyclic input graphs; and dis-
tinguishing between constant and arbitrary budget. Table 1 summarizes our results.

To our surprise, there is no difference between paths and trails in our classification.
Both Path-RCA (Section 4) and Trail-RCA (Section 5) are NP-complete in all of
our cases except on directed acyclic graphs when k ≥ 0 is constant (Section 3). We
show that the problems remain NP-complete on undirected and directed graphs even
if k ≥ 0 is constant or the maximum degree is constant. We note that the Minimum
Shared Edges problem is solvable in polynomial time when the number of shared
edges is constant, highlighting the difference to its time-variant Path-RCA.

The computational complexity of the length-restricted variant FRCA for paths and
trails equals the one of the variant without length restrictions. The variant concerning
walks (Section 6) however differs from the other two variants as it is tractable in more
cases, in particular on undirected graphs. (We note that almost all of our tractability
results rely on flow computations in time-expanded networks (see, e.g., Skutella [19]).)
Remarkably, the tractability does not transfer to the length-restricted variant Walk-
FRCA, as it becomes NP-complete on undirected graphs. This is the only case where
RCA and FRCA differ with respect to their computational complexity.

Related Work. As mentioned, Minimum Shared Edges inspired the definition
of RCA. MSE is NP-hard on directed [15] and undirected [5, 6] graphs. In con-
trast to RCA, if the number of shared edges equals zero, then MSE is solvable in
polynomial time. Moreover, MSE is W[2]-hard with respect to the number of shared
edges and fixed-parameter tractable with respect to the number of paths [6]. MSE is

3

polynomial-time solvable on graphs of bounded treewidth [20, 1].
There are various tractability and hardness results for problems related to RCA

with k = 0 in temporal graphs, in which edges are only available at predefined time
steps [3, 10, 14, 13]. The goal herein is to find a number of edge or vertex-disjoint
time-respecting paths connecting two fixed terminal vertices. Time-respecting means
that the time steps of the edges in the paths are nondecreasing. Apart from the fact
that all graphs that we study are static, the crucial difference is in the type of routes:
vehicles moving along time-respecting paths may wait an arbitrary number of time
steps at each vertex, while we require them to move at least one edge per time step
(unless they already arrived at the target vertex).

Our work is related to flows over time, a concept already introduced by Ford and
Fulkerson [7] to measure the maximal throughput in a network over a fixed time period.
This and similar problems were studied continually, see Skutella [19] and Köhler et
al. [12] for surveys. In contrast, our throughput is fixed, our flow may not stand
still or go in circles arbitrarily, and we want to augment the network to allow for our
throughput.

2 Preliminaries

We define [n] := {1, . . . , n} for every n ∈ N. Let G = (V,E) be an undirected (directed)
graph. Let the sequence P = (v1, . . . , vℓ) of vertices in G be a walk, trail, or path. We
call v1 and vℓ the start and end of P . For i ∈ [ℓ], we denote by P [i] the vertex vi at
position i in P . Moreover, for i, j ∈ [ℓ], i < j, we denote by P [i, j] the subsequence
(vi, . . . , vj) of P . By definition, P has an alternative representation as sequence of
edges (arcs) P = (e1, . . . , eℓ−1) with ei := {vi, vi+1} (ei := (vi, vi+1)) for i ∈ [ℓ − 1].
Along this representation, we say that P contains/uses edge (arc) e at time step i if
edge (arc) e appears at the ith position in P represented as sequence of edges (arcs)
(analogue for vertices). We call an edge/arc shared if two routes uses the edge/arc at
the same time step. We say that a walk/trail/path Q is an s-t walk/trail/path, if s
is the start and t is the end of Q. The length of a walk/trail/path is the number of
edges (arcs) contained, where we also count multiple occurrences of an edge (arc) (we
refer to a path of length m as an m-chain). (We define the maximum over in- and
outdegrees in G by ∆i/o(G) := maxv∈V (G){outdeg(v), indeg(v)}.)

A parameterized problem P is a set of tuples (x, ℓ) ∈ Σ∗ × N, where Σ denotes a
finite alphabet. A parameterized problem P is fixed-parameter tractable if it admits an
algorithm that decides every input (x, ℓ) in f(ℓ) · |x|O(1) time (FPT-time), where f is a
computable function. The class FPT is the class of fixed-parameter tractable problems.
The classes W[q], q ≥ 1, contain parameterized problems that are presumably not
fixed-parameter tractable. For two parameterized problems P and P ′, a parameterized
reduction from P to P ′ is an algorithm that maps each input (x, ℓ) to (x′, ℓ′) in FPT-
time such that (x, ℓ) ∈ P if and only if (x′, ℓ′) ∈ P ′, and ℓ′ ≤ g(ℓ) for some function g.
A parameterized problem P is W[q]-hard if for every problem contained in W[q] there
is a parameterized reduction to P .

4

Preliminary Observations on RCA and FRCA. We state some preliminary
observations on RCA and FRCA. If there is a shortest path between the terminals s

and t of length at most k, then routing any number of paths along the shortest path
introduces at most k shared edges. Hence, we obtain the following.

Observation 1. Let (G, s, t, p, k) be an instance of RCA with dist(s, t) < ∞. If
k ≥ distG(s, t), then (G, s, t, p, k) is a yes-instance.

If we consider walks, the length of an s-t walk in a graph can be arbitrarily large.
We prove, however, that for paths, trails, and walks, RCA and FRCA are contained
in NP, that is, each variant allows for a certificate of size polynomial in the input size
that can be verified in time polynomial in the input size.

Lemma 1. RCA and FRCA on undirected and on directed graphs are contained
in NP.

Proof. Given an instance (G, s, t, p, k) of Path-RCA and a set of p s-t paths, we
can check in polynomial time whether they share at most k edges. The same holds
for Trail-RCA and Walk-RCA (the latter follows from Theorem 7). This is still
true for all variants on directed graphs (for walks we refer to Lemma 12). Moreover,
we can additionally check in linear time whether the length of each path/trail/walk is
at most some given α ∈ N. Hence, the statement follows.

3 Everything is Equal on DAGs

Note that on directed acyclic graphs, every walk contains each edge and each vertex
at most once. Hence, every walk is a path in DAGs, implying that all three types of
routes are equivalent in DAGs.

We prove that RCA is solvable in polynomial time if the number k of shared arcs
is constant, but NP-complete if k is part of the input. Moreover, we prove that the
same holds for the length-restricted variant FRCA. We start the section with the case
of constant k ≥ 0.

3.1 Constant Number of Shared Arcs

Theorem 1. RCA and FRCA on n-vertex m-arc DAGs are solvable in O(mk+1 ·
n3) time and O(mk+1 · α2 · n) time, respectively.

We prove Theorem 1 as follows: We first show that RCA and FRCA on DAGs
are solvable in polynomial time if k = 0 (Theorem 2 below). We then show that an
instance of RCA and FRCA on directed graphs is equivalent to deciding, for all k-
sized subsets K of arcs, the instance with k = 0 and a modified input graph in which
each arc in K has been copied p times:

Theorem 2. If k = 0, RCA on n-vertex m-arc DAGs is solvable in O(n3 ·m) time.

We need the notion of time-expanded graphs.

5

Definition 1. Given a directed graph G, we denote a directed graph H the (directed)
τ-time-expanded graph of G if V (H) = {vi | v ∈ V (G), i = 0, . . . , τ} and A(H) =
{(vi−1, wi) | i ∈ [τ], (v, w) ∈ A(G)}.

Note that for every directed n-vertex m-arc graph the τ -time-expanded graph can
be constructed in O(τ · (n+m)) time. We prove that we can decide RCA and FRCA
by flow computation in the time-expanded graph of the input graph:

Lemma 2. Let G = (V,A) be a directed graph with two distinct vertices s, t ∈ V .
Let p ∈ N and τ := |V |. Let H be the τ-time-expanded graph of G with p additional
arcs (ti−1, ti) between the copies of t for each i ∈ [τ]. Then, G allows for at least p

s-t walks of length at most τ not sharing any arc if and only if H allows for an s0-tτ

flow of value at least p.

Proof. (⇒) Let G allow for p s-t walks W1, . . . ,Wp not sharing any arc. We construct
an s0-tτ flow of value p in H as follows. Observe that Wi = (v0, . . . , vℓ) corresponds
to a path P = (v00 , v

1
1 , . . . , v

ℓ
ℓ) in H . If ℓ < τ , then extend this path to the path P =

(v00 , . . . , v
ℓ
ℓ , t

ℓ+1, , . . . , tτ) (observe that vℓℓ = tℓ). Set the flow on the arcs of P to one.
From the fact that W1, . . . ,Wp are not sharing any arc in G, we extend the flow as
described above for each walk by one, hence obtaining an s0-tτ flow of value p.

(⇐) Let H allow an s0-tτ flow of value p. It is well-known that any s0-tτ flow of value p
in H can be turned into p arc-disjoint s0-tτ paths in H [11]. Let P = (v00 , v

1
1 , . . . , v

ℓ
ℓ)

be an s0-tτ path in H . Let ℓ′ be the smallest index such that vℓ
′

ℓ′ = tℓ
′

. Then
W = (v1, v2, . . . , vℓ′) is an s-t walk in G. Let P be the set of p s0-tτ paths in H

obtained from an s0-tτ flow of value p, and let W be the set of p s-t walks in G

obtained from P as described above. As every pair of paths in P is arc-disjoint, no
pair of walks in W share any arc in G.

Proof of Theorem 2. Let (G = (V,A), s, t, p, 0) be an instance of Walk-RCA with G

being a directed acyclic graph. Let n := |V |. We construct the directed n-time-
expanded graph H of G with p additional arcs (ti−1, ti) for each i ∈ [τ]. Note that
any s-t path in G is of length at most n− 1 due to G being directed and acyclic. The
statement then follows from Lemma 2.

Lemma 2 is directly applicable to FRCA, by constructing an α-expanded graph.

Corollary 1. If k = 0, then FRCA on n-vertex m-arc DAGs is solvable in O(α2 ·n ·
m) time.

Let G = (V,A) be a directed graph and let K ⊆ A and x ∈ N. We denote
by G(K,x) the graph obtained from G by replacing each arc (v, w) ∈ K in G by x

copies (v, w)1, . . . , (v, w)x.

Lemma 3. Let (G = (V,A), s, t, p, k) be an instance of Walk-RCA with G being
a directed graph. Then, (G, s, t, p, k) is a yes-instance of Walk-RCA if and only if
there exists a set K ⊆ A with |K| ≤ k such that (G(K, p), s, t, p, 0) is a yes-instance
of Walk-RCA. The same statement holds true for Walk-FRCA.

6

Proof. (⇒) Let G allow for a set of p s-t walks W = {W1, . . . ,Wp} sharing at most
k edges. Let K ⊆ A denote the set of at most k arcs shared by the walks in W . We
construct a set of p s-t walks W ′ = {W ′

1, . . . ,W
′
p} in G(K, p) from W as follows. For

each i ∈ [p], let W ′
i = Wi. Whenever an arc (v, w) ∈ K appears in W ′

i , we replace
the arc by its copy (v, w)i. Observe that (i) W ′

i forms an s-t walk in G(K, p), (ii) the
positions of the arcs in A \ K in the walks remain unchanged, and (iii) for each arc
(v, w) ∈ K, no walk contains the same copy of the arc. As the arcs in K are the only
shared arcs of the walks in W , the walks in W ′ do not share any arc in G(K, p).

(⇐) Let K ⊆ A be a subset of arcs in G with |K| ≤ k such that G(K, p) allows for
a set of p s-t walks W ′ = {W ′

1, . . . ,W
′
p} with no shared arc. We construct a set of p

s-t walks W = {W1, . . . ,Wp} in G from W ′ as follows. For each i ∈ [p], let Wi = W ′
i .

Whenever an arc (v, w)x, for some x ∈ [p], with (v, w) ∈ K appears in W ′
i , we replace

the arc by its original (v, w). Observe that (i) Wi forms an s-t walk in G, (ii) the
positions of the arcs in A\K in the walks remain unchanged. As the arcs in the set K
of at most |K| ≤ k arcs can appear at the same positions in any pair of two walks
in W , the s-t walks in P share at most k arcs in G.

Note that as the length of the walks do not change in the proof, the statement of the
lemma also holds for Walk-FRCA.

Proof of Theorem 1. Let (G = (V,A), s, t, p, k) be an instance of Walk-RCA with G

being a directed acyclic graph. For each k-sized subset K ⊆ A of arcs in G, we decide
the instance (G(K, p), s, t, p, 0). The statement for RCA then follows from Lemma 3
and Theorem 2. We remark that the value of a maximum flow between two terminals
in an n-vertex m-arc graph can be computed in O(n·m) time [16]. The running time of
the algorithm is in O(|A|k · (|V |3 · |A|)). The statement for FRCA follows analogously
with Lemma 3 and Corollary 1.

3.2 Arbitrary Number of Shared Arcs

If the number k of shared arcs is part of the input, then both RCA and FRCA are
NP-complete and W[2]-hard with respect to k.

Theorem 3. RCA on DAGs is NP-complete and W[2]-hard with respect to k.

The construction in the reduction for Theorem 3 is similar to the one used by
Omran et al. [15, Theorem 2]. Herein, we give a (parameterized) many-one reduction
from the NP-complete [9] Set Cover problem: given a set U = {u1, . . . , un}, a set of
subsets F = {F1, . . . , Fm} with Fi ⊆ U for all i ∈ [m], and an integer ℓ ≤ m, is there
a subset F ′ ⊆ F with |F ′| ≤ ℓ such that

⋃

F∈F ′ F = U . We say that F ′ is a set cover
and we say that the elements in F ∈ F are covered by F . Note that Set Cover
is W[2]-complete with respect to the solution size ℓ in question [4]. In the following
Construction 1, given a Set Cover instance, we construct the DAG in an equivalent
RCA or FRCA instance.

Construction 1. Let a set U = {u1, . . . , un}, a set of subsets F = {F1, . . . , Fm} with
Fi ⊆ U for all i ∈ [m], and an integer ℓ ≤ m be given. Construct a directed acyclic
graph G = (V,A) as follows. Initially, let G be the empty graph. Add the vertex sets

7

VU = {v1, . . . , vn} and VF = {w1, . . . , wm}, corresponding to U and F , respectively.
Add the edge (vi, wj) to G if and only if ui ∈ Fj . Next, add the vertex s to G. For
each w ∈ VF , add an (ℓ + 2)-chain to G connecting s with w, and direct all edges in
the chain from s towards w. For each v ∈ VU , add an (ℓ + 1)-chain to G connecting
s with v, and direct all edges in the chain from s towards v. Finally, add the vertex t

to G and add the arcs (w, t) for all w ∈ VF .

Lemma 4. Let U , F , ℓ, and G as in Construction 1. Then there are at most ℓ sets
in F such that their union is U if and only if G admits n + m s-t walks sharing at
most ℓ arcs in G.

Proof. (⇒) Suppose there are ℓ sets F ′
1, . . . , F

′
ℓ ∈ F such that

⋃

i∈[ℓ] F
′
i = U . Let

w′
1, . . . , w

′
ℓ be the vertices in VF corresponding to F ′

1, . . . , F
′
k. We construct n + m

s-t walks as follows. Each outgoing chain on s corresponds to exactly one s-t walk.
Those walks that start with the chains connecting s with a w ∈ VF are extended
directly to t (there is no other choice). For all the other walks, as F ′

1, . . . , F
′
k cover

U , for each vi ∈ VU there is at least one arc towards {w′
1, . . . , w

′
k}. Route the walks

arbitrarily towards one out of {w′
1, . . . , w

′
k} and then forward to t. Observe that all

walks contain exactly one vertex in VF at time step ℓ + 3. Moreover, only the arcs
(w′

i, t) for i ∈ [ℓ] are contained in more than one walk. As they are at most ℓ, the
claim follows.

(⇐) Suppose G admits a set W of n+m s-t walks sharing at most ℓ arcs in G. Observe
first that the arcs of the form (w, t), w ∈ VF , are the only arcs that can be shared
whenever at most ℓ arcs are shared, due to the fact that each outgoing chain on s is
of length longer than k. Moreover, each arc (w, t), w ∈ VF is contained in at least one
s-t walk in W , because no two walks in W can share a chain outgoing from s, and
for each w ∈ VF the only outgoing arc on w has endpoint t. Denote by W ⊆ VF the
set of vertices such that the set {(w, t) | w ∈ W} is exactly the set of shared arcs by
the n +m s-t walks in W . Observe that |W | ≤ ℓ. We claim that the set of sets F ′,
containing the sets that by construction correspond to the vertices in W , forms a set
cover for U . We show that for each element u ∈ U there is a w ∈ W such that the set
corresponding to w is containing u.

Let u ∈ U be an arbitrary element of U . Consider the walk P ∈ W containing the
vertex v ∈ VU corresponding to element u. As P forms an s-t walk in G, walk P con-
tains a vertex w′ ∈ VF . As discussed before, there is a walk P ′ containing the chain
from s to w′ not containing any vertex in VU . By construction, w′ is at time step ℓ+3
in both P and P ′. As the only outgoing arc on w′ is (w′, t), both P and P ′ use
the arc (w′, t) at time step ℓ + 3, and hence (w, t) is shared by P and P ′. It follows
that w′ ∈ W , and hence u is covered by the set in F ′ corresponding to w′.

Proof of Theorem 3. We give a (parameterized) many-one reduction from Set Cover
to RCA. Let (U,F , ℓ) be an instance of Set Cover. We construct the instance
(G, s, t, p, k), where G is obtained by applying Construction 1, p = |U | + |F|, and
k = ℓ. The correctness of the reduction then follows from Lemma 4. Finally, note
that as k = ℓ and Set Cover is W[2]-hard with respect to the size ℓ of the set cover,
it follows that RCA is W[2]-hard with respect to the number k of shared arcs.

8

Observe that each s-t walk in the graph obtained from Construction 1 is of length
at most ℓ + 3. Hence, in the proof of Theorem 3, we can instead reduce to an
instance (G, s, t, p, k, α) of FRCA, where G is obtained by applying Construction 1,
p = |U |+ |F|, and k = ℓ, and α = ℓ+ 3. Therewith, we obtain the following.

Corollary 2. FRCA on DAGs is NP-complete and W[2]-hard with respect to k + α.

4 Path-RCA

In this section, we prove the following theorem.

Theorem 4. Path-RCA both on undirected planar and directed planar graphs is
NP-complete, even if k ≥ 0 is constant or ∆ ≥ 4 is constant.

In the proof of Theorem 4, we reduce from the following NP-complete [8] problem
(a cubic graph is a graph where every vertex has degree exactly three):

Planar Cubic Hamiltonian Cycle (PCHC)

Input: An undirected, planar, cubic graph G.

Question: Is there a cycle in G that visits each vertex exactly once?

Roughly, the instance of Path-RCA obtained in the reduction consists of the original
graph G connected to the terminals s, t via a bridge (see Figure 1). We ask for con-
structing roughly n paths connecting the terminals, where n is the number of vertices
in the input graph of PCHC. All but one of these paths will use the bridge to t in
the constructed graph for n time steps in total, each in a different time step. Thus,
this bridge is occupied for roughly n time steps, and the final path is forced to stay
in the input graph of PCHC for n time steps. For a path, this is only possible by
visiting each of the n vertices in the graph exactly once, and hence it corresponds to
a Hamiltonian cycle.

The reduction to prove Theorem 4 uses the following Construction 2.

Construction 2. Let G = (V,E) be an undirected, planar, cubic graph with n = |V |.
Construct in time polynomial in the size of G an undirected planar graph G′ as follows
(refer to Figure 1 for an illustration of the constructed graph). Let initially G′ be the
empty graph. Add a copy of G to G′. Denote the copy of G in G′ by H . Next,
add the new vertices s, t, v, w to G. Connect s with v, and w with t by an edge. For
each m ∈ {4, 5, . . . , n+1}, add an m-chain connecting s with w. Next, consider a fixed
plane embedding φ(G) of G. Let x1 denote a vertex incident to the outer face in φ(G).
Then, there are two neighbors x2 and x3 of x1 also incident to the outer face in φ(G).
Add the edges {v, x1}, {x2, w} and {x3, w} to G′ completing the construction of G′.
We remark that G′ is planar as it allows a plane embedding (see Figure 1) using φ as
an embedding of H .

Lemma 5. Let G and G′ be as in Construction 2. Then G admits a Hamiltonian
cycle if and only if G′ allows for at least n− 1 s-t paths with no shared edge.

9

s
v x1

x2

x3

w
t

4-chain

5-chain
...(n+ 1)-ch

ain

H

Figure 1: Graph G′ obtained in Construction 2. The gray part represents the graph H .
Dashed lines represent chains.

Proof. (⇐) Let P denote a set of n − 1 s-t paths in G′ with no shared edge. Note
that the degree of s is equal to n − 1. As no two paths in P share any edge in G′,
each path in P uses a different edge incident to s. This implies that n− 2 paths in P
uniquely contain each of the chains connecting s with w, and one path P ∈ P contains
the edge {s, v}. Note that each of the n− 2 paths contain the vertex w at most once,
and since they contain the chains connecting s with w, the edge {w, t} appears at
the time steps {5, 6, . . . , n + 2} in these n − 2 paths P . Hence, the path P has to
contain the edge {w, t} at a time step smaller than five or larger than n+ 2. Observe
that, by construction, the shortest path between s and w is of length 4 and, thus, P
cannot contain the edge {w, t} on any time step smaller than five. Hence, P has to
contain the edge at time step at least n + 3. Since the distance between s and x1 is
two, and the distance from x2, x3 to w is one, P has to visit each vertex in H exactly
once, starting at x1, and ending at one of the two neighbors x2 or x3 of x1. Hence,
P restricted to H describes a Hamiltonian path in H , which can be extended to an
Hamiltonian cycle by adding the edge {x1, x2} in the first or {x1, x3} in the second
case.

(⇒) Let G admit a Hamiltonian cycle C. Since C contains every vertex in G exactly
once, it contains x1 and its neighbors x2 and x3. Since C forms a cycle in G and G

is cubic, at least one of the edges {x1, x2} or {x1, x3} appears in C. Let C′ denote an
ordering of the vertices in C such that x1 appears first and the neighbor x ∈ {x2, x3}
of x1 with {x1, x} contained in C appears last. We construct n− 1 s-t paths without
sharing an edge. First, we construct n− 2 s-t paths, each containing a different chain
connecting s with w and the edge {w, t}. Observe that since the lengths of each chain
is unique, no edge (in particular, not {w, t}) is shared. Finally, we construct the one
remaining s-t path P as follows. We lead P from s to x1 via v, then following C′

in H to x, and then from x to t via w. Observe that P has length n+ 3 and contains
the edge {w, t} at time step n + 3. Hence, no edge is shared as the path containing
the (n+ 1)-chain contains the edge {w, t} at time step (n+ 2). We constructed n− 1
s-t paths in G′ with no shared edge.

Note that the maximum degree of the graph obtained in the Construction 2 de-
pends on the number of vertices in the input graph. In what follows, we give a second
construction where the obtained graph has constant maximum degree ∆ = 4.

10

s
v

x1

x2

x3

u w
t

H log(η)-chain

(η + log(η) + (η − n))-chain

Ts Tw(η + 1)-chain

(η + 2)-chain

...

(η + η)-chain

Figure 2: Ts and Tw refer to complete binary trees with η leaves.

Construction 3. Let G = (V,E) be an undirected, planar, cubic graph with n = |V |.
Construct in time polynomial in the size of G an undirected planar graph G′ as follows
(refer to Figure 2 for an illustration of the constructed graph). Let initially G′ be the
graph obtained from Construction 2. Remove s, w, and the chains connecting s with w

from G′. Add a vertex u to G′ and add the edges {x2, u} and {x3, u} to G′. Let η be
the smallest power of two larger than n (note that n ≤ η ≤ 2n− 2). Add a complete
binary tree Ts with η leaves to G′, and denote its root by s. Denote the leaves by
a1, . . . , aη, ordered by a post-order traversal on Ts. Next add a copy of Ts to G′, and
denote the copy by Tw and its root by w. If ai is a leaf of Ts, denote by a′i its copy
in Tw. Next, for each i ∈ [η], connect ai and a′i via a (η + i)-chain. Finally, connect s

with v via an (η + log(η) + (η − n))-chain, connect u with w via a log(η)-chain, and
add the edge {w, t} to G′, which completes the construction of G′. Note that Ts

and Tw allow plane drawings, and the chains connecting the leaves can be aligned as
illustrated in Figure 2. It follows that G′ allows for a plane embedding.

Lemma 6. Let G and G′ be as in Construction 3. Then G admits a Hamiltonian
cycle if and only if G′ allows for at least η + 1 s-t paths with at most η − 2 shared
edges.

Proof. (⇒) Let G admit a Hamiltonian cycle C. As discussed in the proof of Lemma 5,
there is an ordering C′ of the vertices in C such that x1 appears first and x ∈ {x2, x3}
appears last in C′. We construct η s-t paths as follows. We route them from s in Ts

to the leaves of Ts in such a way that each path contains a different leaf of Ts. Herein,
η − 2 edges are shared. Next, route each of them via the chain connecting the leaf to
the corresponding leaf in Tw, then to w, and finally to t. In this part, no edge is shared,
as the lengths of the chains connecting the leaves of Ts and Tw are pairwise different.
Hence, the η s-t paths contain the edge {w, t} at the time steps 2 log(η) + η + i + 1

11

for each i ∈ [η]. We construct the one remaining s-t path P as follows. The path P

contains the chain connecting s with v, the edge {v, x1}. Then P follows C′ in H to
x ∈ {x2, x3}, via the edge {x, u} to u, via the chain connecting u with w to w, and
finally to t via the edge {w, t}. Observe that P contains the edge {w, t} at the time
step 2η + 2 log(η) + 2, and hence no sharing any further edge in G′.

(⇐) Let P be a set of η + 1 s-t paths in G′ sharing at most k := η − 2 edges. First
observe that no two paths contain the chain connecting s with v, as otherwise more
that k edges are shared. Hence, at most one s-t path leaves s via the chain to v. It
follows that at least η paths leave s via the edges in Ts. By the definition of paths,
observe that each of s-t paths arrive at a leaf of Ts at same time step. Suppose at
least two s-t paths contain the same leaf of Ts. As each leaf is of degree two, the
s-t paths follow the chain towards a leaf of Tw simultaneously. This introduces at
least η + 1 > k shared edges, contradicting the choice of P . It follows that exactly η

s-t paths leave s via Ts (denote the set by P ′), and they arrive each at a different
leaf of Ts at time step log(η). Moreover, by construction, each path in P ′ arrives at a
different leaf of Tw at the time steps log(η) + η + i+ 1 for every i ∈ [η].

We next discuss why no path in P ′ contains more than one chain connecting a
pair (a, a′) of leaves, where a and a′ are leaves of Ts and Tw, respectively. Assume
that there is a path P ′ ∈ P ′ containing at least two chains connecting the pairs (a, a′)
and (b, b′) of leaves, where a, b and a′, b′ are leaves of Ts and Tw, respectively, and
vertex a appears at smallest time step over all such leaves of Ts in P ′ and b′ appears
at smallest time step over all such leaves of Tw in P ′ (recall that P ′ must contain a
leaf of Ts at smaller time step than every leaf in Tw). By construction, a′ and b′ are
the copies of a and b in Tw. Let r denote the vertex in Ts such that r is the root of
the subtree of minimum height in Ts containing a and b as leaves. Let r′ denote its
copy in Tw. Observe that by construction, r′ is the root of the subtree of minimum
height in Tw containing a′ and b′ as leaves. As P ′ starts at vertex s, and the path
from s to a in Ts is unique, P ′ contains the vertex r at smallest time step among the
vertices in X := {r, a, a′, r′, b′, b}. As vertex a appears at smallest time step over all
leaves of Ts and a is of degree two, P ′ contains the vertices a and a′ at second and
third smallest time step, respectively, among the vertices in X . As in any tree, the
unique path between every two leaves contains the root of the subtree of minimum
height containing the leaves, P ′ contains the vertex r′ at fourth smallest time step
among the vertices in X . Finally, as vertex b′ appears at smallest time step over all
leaves of Tw and b′ is of degree two, P ′ contains the vertices b′ and b at fifth and sixth
smallest time steps, respectively, among the vertices in X . In summary, the vertices
in X appear in P ′ in the order (r, a, a′, r′, b′, b). Now, observe that {r, r′} forms a b-t
separator in G′, that is, there is no b-t path in G′ −{r, r′}. As P ′ contains r and r′ at
smaller time steps than b, P ′ contains a vertex different to t at last time step. This
contradict the fact that P ′ is an s-t path in G′. It follows that no path in P ′ contains
more than one chain connecting a pair consisting of leaf of Ts and a leaf of Tw.

It follows that the paths in P ′ contain the edge {w, t} at the time steps 2 log(η)+η+
i+1 for each i ∈ [η]. Hence, the remaining s-t path containing the chain connecting s

with v, denoted by P , has to contain the edge {w, t} at time step at most 2 log(η) +
η + 1 or at least 2 log(η) + 2η + 2. At the earliest P can contain the edge {w, t} at
time step 2 log(η)+ η+(η−n)+ 3 > 2 log(η)+ η+1, and thus, path P has to contain

12

edge {w, t} at time step 2 log(η)+ 2η+2. This is only possible if P forms a path in H

that visits each vertex in H , starting at x1 and ending at vertex x ∈ {x2, x3}. As the
edge {x1, x} is contained in H , it follows that P restricted to H forms a Hamiltonian
cycle in G.

Proof of Theorem 4. We provide a many-one reduction from PCHC to Path-RCA
on undirected graph via Construction 2 (for constant number k of shared edges) on
the one hand, and Construction 3 (for constant maximum degree ∆) on the other. Let
(G) be an instance of PCHC with n = |V (G)|.

Via Construction 2. Let (G′, s, t, p, 0) be an instance of Path-RCA where G′ is ob-
tained from G by applying Construction 2 and p = n − 1. Note that (G′, s, t, p, 0) is
constructed in polynomial time and, by Lemma 5, G is a yes-instance of PCHC if and
only if (G′, s, t, p, 0) is a yes-instance of Path-RCA.

The case of constant k > 0. Reduce (G′, s, t, p, 0) to an equivalent instance
(G′

k, s
′, t, p, k) of Path-RCA with k > 0 as follows. Let G′

k denote the graph ob-
tained from G′ by the following modification: Add a chain of length k to G′, and
identify one endpoint with s and denote by s′ the other endpoint. Set s′ as the new
source. Observe that any s′-t path in G′

k contains the k-chain appended on s, and
hence, any solution introduces exactly k shared edges.

The directed case. Direct the edges in G′ as follows. Direct each chain connecting s

with w from s towards t. (In the case of k > 0, also direct the chain from s′ towards s.)
Direct the edges {s, v}, {v, x1}, {x2, w}, {x3, w}, and {w, t} as (s, v), (v, x1), (x2, w),
(x3, w), and (w, t). Finally, replace each edge {a, b} in H by two (anti-parallel) arcs
(a, b), (b, a) to obtain the directed variant of H . The correctness follows from the fact
that we consider paths that are not allowed to contain vertices more than once. Note
that the planarity is not destroyed.

Via Construction 3. Let (G′, s, t, p, k) be an instance of Path-RCA where G′ is
obtained from G by applying Construction 3, p = η + 1, and k = η − 2. Note
that (G′, s, t, p, k) is constructed in polynomial time and, by Lemma 6, G is a yes-
instance of PCHC if and only if (G′, s, t, p, k) is a yes-instance of Path-RCA.

The directed case. Direct the edges in G′ as follows. Direct the edges in Ts from s

towards the leaves, and the edges in Tw from the leaves towards w. Direct each chain
connecting Ts with Tw from Ts towards Tw. Direct the edges {v, x1}, {x2, u}, {x3, u},
and {w, t} as (v, x1), (x2, u), (x3, u), and (w, t). Direct the chain connecting s with v

from s towards v, and the chain connecting u with w from u towards w. Finally,
replace each edge {a, b} in H by two (anti-parallel) arcs (a, b), (b, a) to obtain the
directed variant of H . The correctness follows from the fact that we consider paths
that are not allowed to contain vertices more than once. Note that the planarity is
not destroyed.

As the length of every s-t path is upper bounded by the number of vertices in the
graph, we immediately obtain the following.

Corollary 3. Path-FRCA both on undirected planar and directed planar graphs is
NP-complete, even if k ≥ 0 is constant or ∆ ≥ 4 is constant.

13

s

v

x w
t

H ′

. . .

n− 1

Figure 3: Graph G′ obtained in Construction 4. The gray part represents the
graph H ′.

5 Trail-RCA

We now show that Trail-RCA has the same computational complexity fingerprint
as Path-RCA. That is, Trail-RCA (Trail-FRCA) is NP-complete on undirected
and directed planar graphs, even if the number k ≥ 0 of shared edges (arcs) or the
maximum degree ∆ ≥ 5 (∆i/o ≥ 3) is constant. The reductions are slightly more
involved, because it is harder to force trails to take a certain way.

5.1 On Undirected Graphs

In this section, we prove the following.

Theorem 5. Trail-RCA on undirected planar graphs is NP-complete, even if k ≥ 0
is constant or ∆ ≥ 5 is constant.

We provide two constructions supporting the two subresults for constants k,∆.
The reductions are again from Planar Cubic Hamiltonian Cycle (PCHC).

Construction 4. Let G = (V,E) be an undirected planar cubic graph with n = |V |.
Construct an undirected planar graph G′ as follows (refer to Figure 3 for an illustration
of the constructed graph). Initially, let G′ be the empty graph. Add a copy of G

to G′ and denote the copy by H . Subdivide each edge in H and denote the resulting
graph H ′. Note that H ′ is still planar. Consider a plane embedding φ(H ′) of H ′ and
and let x ∈ V (H ′) be a vertex incident to the outer face in the embedding. Next, add
the vertex set {s, v, w, t} to G. Add the edges {s, x}, {s, v}, {v, w}, and {w, t} to G.
Finally, add n− 1 vertices B = {b1, . . . , bn−1} to G and connect each of them with s

by two edges (in the following, we distinguish these edges as {s, bi}1 and {s, bi}2, for
each i ∈ [n− 1]). Note that the graph is planar (see Figure 3 for an embedding, where
H ′ is embedded as φ(H ′)) but not simple.

Lemma 7. Let G and G′ as in Construction 4. Then G admits a Hamiltonian cycle
if and only if G′ admits 2n s-t trails with no shared edge.

Proof. (⇒) Let G admit a Hamiltonian cycle C. Observe that H ′ allows for a cycle C′

in H ′ that contains each vertex corresponding to a vertex in H exactly once. We
construct 2n trails in G′ as follows.

We group the trails in two groups. The first group of trails first visits some of
the vertices b1, . . . , bn−1 by each time first using the edge {s, bi}1, i ∈ [n − 1], and

14

then proceeding to t via v. The second group of trails first visits some of the ver-
tices b1, . . . , bn−1 by each time first using the edge {s, bi}2, i ∈ [n − 1], and then
proceeding via x, then following the cycle C′, and finally again via x towards t. Let
T i
1, . . . , T

i
n denote the trails of group i ∈ {1, 2}. For each j < n, the trail T i

j first visits
the vertices bj , . . . , bn−1 in that order before proceeding as described above. The trails
T i
n, i ∈ {1, 2}, do not contain any of the vertices b1, . . . , bn−1, and directly approach t

as described above.
Observe that, within each of the two groups, no two trails share an edge. Between

trails of different groups, only edge {w, t} can possibly be shared. Note that any cycle
in H ′ is of even length. Hence, the trails of group 1 contain the edge {w, t} at each of
the time steps 2j + 1 for every j ∈ [n]. The trails of group 2 contain the edge {w, t}
at each of the time steps 2n+ 2j + 1 for every j ∈ [n]. Hence, no two trails share an
edge.

(⇐) Let G′ admit 2n s-t trails with no shared edge. First note that s has exactly 2n
incident edges. Observe that, for each β = 0, . . . , |B|, no more than two trails contain
β vertices of B, as otherwise any of the edges {s, v} or {s, x} would be shared. By
the pigeon hole principle it follows that, for each β = 0, . . . , |B|, there are exactly
two trails that contain β vertices of B. Hence, for each even time step, there are two
trails leaving s via the edges {s, v} and {s, x}, respectively. Observe that those trails
that proceed towards t via v use the edges {w, t} exactly at the time steps 2j + 1
for every j ∈ [n]. Because each trial in H ′ that starts and ends at the same vertex
has even length, those trials that proceed towards t via x can use {w, t} only at odd
time steps. Hence, since the edge {w, t} is not shared, the trails proceeding towards t
via x need to stay in H ′ for 2n time steps. As H ′ − x has maximum degree three, no
vertex in H ′ beside x is contained more than once in all of these trails. As the length
between every two vertices in H ′ corresponding to vertices in H , it follows that every
of these trails visits the vertices in H ′ corresponding to the vertices in H . It follows
that each of these trails forms a Hamiltonian cycle C′ in H ′. As C′ can easily turned
into a Hamiltonian cycle C in G (consider the sequence when deleting all vertices that
do not correspond to a vertex in H), the statement follows.

To deal with the parallel edges in graph G′ in Construction 4, we now subdivide
edges, maintaining an equivalent statement as in Lemma 7.

Lemma 8. Let G be an undirected graph (not necessarily simple) with two distinct
vertices s and t. Obtain graph G′ from G by replacing each edge {u, v} ∈ E in G by
a path of length three, identifying its endpoints with u and v. Then G admits p ∈ N

s-t trails with no shared edge if and only if G′ admits p s-t trails with no shared edge.

Proof. For each edge e ∈ E(G) in G denote by P (e) the corresponding path of length
three in G′ . By definition, for all e, f ∈ E(G′) it holds that e 6= f if and only if
P (e) 6= P (f).

(⇒) Let P = {Pi | i ∈ [p]} be a set of p s-t trails in G with no shared edge. Each Pi

as an edge sequence representation Pi = (ei1, . . . , e
i
ℓi
), where ℓi is the number of edges

in Pi. For each Pi, consider the corresponding trail P ′
i = (P (ei1), . . . , P (eiℓi)) in G′,

and the set P ′ = {P ′
i | i ∈ [p]}. Suppose that two trails P ′

i and P ′
j share an edge.

15

s

b0

v

x w
t

H ′′

2n-chain

2n-chain

u1

ℓ1

b1

u2

ℓ2

b2bn−2

un−1

ℓn−1

bn−1
. . .

n− 1

Figure 4: Graph G′ obtained in Construction 5. The gray part represents the
graph H ′.

Then the shared edge is contained in subpaths P (eix) and P (ejx). As P (eix) and P (ejx)
are not edge-disjoint (as they share an edge), it follows that eix = ejx, and hence Pi

and Pj share the edge eix in G. This contradicts the fact that P = {Pi | i ∈ [p]} is a
set of p s-t trails in G with no shared edge. It follows that P ′ is a set of p s-t trails
in G′ with no shared edge.

(⇐) Let P ′ = {P ′
i | i ∈ [p]} be a set of p s-t trails in G′ with no shared edge. Observe

that, by the construction of G′, each s-t trail in G′ is composed of paths of length
three with endpoints corresponding to vertices in G. Hence, for each i ∈ [p], let P ′

i be
represented as P ′

i = (P (ei1), . . . , P (eiℓi)), where 3 · ℓi is the number of edges in P ′
i . For

each P ′
i , consider the corresponding trail Pi = (ei1, . . . , e

i
ℓi
) in G, and the set P = {Pi |

i ∈ [p]}. Suppose that two trails Pi and Pj share an edge, that is, there is an index x

such that eix = ejx. It follows that P (eix) = P (ejx). Let eix = {v, w} =: e. If both
trails P ′

i and P ′
j traverse P (e) in the same “direction”, i.e. either from v to w or from w

to v, then P ′
i and P ′

j share at least three edges (all edges in P (e)). This contradicts the
definition of P ′. Consider the case that the trails P ′

i and P ′
j traverse P (e) in opposite

“directions”, i.e. one from v to w and the other from w to v. As P (e) is of length three,
the edge in P (e) with no endpoint in {v, w} is then used by P ′

i and P ′
j at the same

time step, yielding that the edge is shared. This contradicts the definition of P ′. It
follows that P = {Pi | i ∈ [p]} is a set of p s-t trails in G with no shared edge.

We now show how to modify Construction 4 for maximum degree five, giving up,
however, a constant upper bound on the number of shared edges.

Construction 5. Let G = (V,E) be an undirected planar cubic graph with n = |V |.
Construct an undirected planar graph G′ as follows (see Figure 4 for an illustration of
the constructed graph). Let initially G′ be the graph obtained from Construction 4.
Subdivide each edge in H ′ and denote the resulting graph by H ′′. Observe that the
distance in H ′′ between any two vertices in V (H ′′)∩ V (H ′) is divisible by four. Next,
delete all edges incident with vertex s. Connect s with v via a 2n-chain, and connect s
with x via a 2n-chain. Connect s with b1 via two P2’s. Denote the two vertices on
the P2’s by ℓ1 and u1. Finally, for each i ∈ [n− 2], connect bi with bi+1 via two P2’s.
For each i ∈ [n− 2], denote the two vertices on the P2’s between bi and bi+1 by ℓi+1

and ui+1. For an easier notation, we denote vertex s also by b0.

16

Lemma 9. Let G and G′ as in Construction 5. Then G admits a Hamiltonian cycle
if and only if G′ has 2n s-t trails with at most 2n− 4 shared edges.

Proof. (⇐) Let G′ admit a set P of 2n s-t trails with at most 2n− 4 shared edges. At
each time step, at most two trails leave s towards v and x. Otherwise, all the edges in at
least one of the 2n-chains connecting s with v and s with x are shared, contradicting
the fact that the trails in P share at most 2n − 4 edges. Note that every s-t trail
contains vertex s at the first time step and at most once more at time step 4j+1, for
some j ∈ N (indeed, we will show that j ∈ [n− 1]). This follows on the one hand from
the fact that s has degree four and hence every trail can contain s at most twice, and
on the other hand from the fact that for each i ∈ [n − 1], every s-bi path is of even
length.

We show that at each time step 4j + 1, 0 ≤ j ≤ n − 1, exactly one s-t trial
leaves s towards v and exactly one s-t trial leaves s towards x. First, observe that
|{bi, ui, ℓi | i ∈ [n − 1]}| = 3(n − 1) and each trail can contain each vertex in {ui, ℓi |
i ∈ [n − 1]} ∪ {bn−1} at most once (as each vertex in this set is of degree two)
and each vertex bi, i ∈ [n − 2], at most twice (as they are of degree four). Hence,
any trail starting on s and returning to s after visiting the vertices in B contains at
most 3(n−1)+(n−2)+2 = 4(n−1)+1 vertices. It follows that every s-t trail contains s
at the first time step and at most once more at time step 4j + 1 for some j ∈ [n− 1].
As there are 2n s-t trails and at each time step at most two trails leave s towards v

and x, together with the pigeon hole principle it follows that exactly one s-t trial
leaves s towards v and exactly one s-t trial leaves s towards x at each time step 4j+1,
0 ≤ j ≤ n − 1. Moreover, note that each bi, i ∈ [n − 1], appears in at least two
s-t trails.

We claim that there are exactly 2n− 4 shared edges and that every shared edge is
incident with a vertex in {ui, ℓi | i ∈ [n− 1]}. This follows from the fact that at least
three trails going at the same time from bi to bi+1, 0 ≤ i ≤ n− 3, share at least two
edges. As four trails contain bn−2 (those four which leave s towards v and x at the
time steps 4j + 1 with j ∈ {n− 2, n− 1}), it follows that at least 2(n− 2) edges are
shared. Hence, no two trails share an edge after they have left s for v or x.

There is a trail P ∈ P that contains the vertex x and that contains vertex s only
once at the first time step, because at each time step, two trails leave s for v or x.
Observe that vertex w is contained in the trails containing v at the time steps 4j+2n+2
for all j ∈ [n − 1] ∪ {0} whence edge {w, t} is occupied at time steps 4j + 2n+ 3 for
all j ∈ [n− 1]∪ {0}. Hence, the edge {w, t} is contained at time step 2n+ 2 in a trail
different to P and, thus, trail P contains at least one vertex in H ′′. Furthermore, P
can contain x a second time only at time steps of the form 4j + 2n + 1, 3 ≤ j ≤ n,
because each path in H ′′ between two vertices that correspond to vertices in G has
length four. However, as mentioned, {w, t} is occupied at time steps 4j + 2n + 3,
j ∈ [n− 1]. Hence, P has to stay in H ′′ for 4n time steps. Recall that G is cubic, and
hence no vertex in H ′′ − {x} corresponding to a vertex in G appears more than once
in any trail. That is, P follows a cycle in H ′′ containing each vertex corresponding to
vertex in G exactly once. It follows that G admits a Hamiltonian cycle.

(⇒) Let G admit a Hamiltonian cycle C. Let C′ be C, ordered such that x is the
first and last vertex in C′. Let C′′ denote the cycle in H ′′ following the order of the

17

vertices in C′. We construct 2n s-t trails in G′ sharing at most 2n−4 edges as follows.
We denote the trails by P x

i , 0 ≤ i ≤ n− 1, x ∈ {u, ℓ}. The trails are divided into two
groups according to their superscript x ∈ {u, ℓ}. For i ≥ 1, the trails Pu

i and P ℓ
i start

with the sequences

Pu
i : (s, ℓ1, b1, . . . , ℓi−1, bi−1, ui, bi, ℓi, bi−1, ℓi−1, . . . , b1, ℓ1, s),

P ℓ
i : (s, ℓ1, b1, . . . , ℓi−1, bi−1, ℓi, bi, ui, bi−1, ℓi−1, . . . , b1, ℓ1, s).

Trails Pu
0 and P ℓ

0 do not visit any vertex in B and simply start at s. Then, for each
i = 0, . . . , n− 1, trail Pu

i follows the chain to v, the edge to w, and then to t. For each
i = 0, . . . , n−1, trail P ℓ

i follows the chain to x, then the cycle C′′ in H ′′, then the edge
from x to w, then to t. Observe that trail P x

i , x ∈ {u, ℓ}, contains s at time step one
and 4i+ 1. Hence, Pu

i contains the vertex w at time step 4i + 2n+ 2. Moreover, P ℓ
i

contains the vertex x at time steps 4i+ 2n+ 1 and 4i+ 2n+ 4n+ 1. From the latter
it follows that P ℓ

i contains the vertex w at time step 4i+2n+4n+2. Altogether, the
edge {w, t} is not shared by any pair of trails.

Next, we count the number of edges shared between the two visits of s. Denote by
X ⊆ E(G′) the set {{bi, ℓi} | 1 ≤ i ≤ n − 2} ∪ {{bi, ℓi+1} | 0 ≤ i < n − 2}. Observe
that |X | = n − 2 + n − 2 = 2(n − 2). We claim that the edges in X are the only
shared edges by the trails P x

i , 0 ≤ i ≤ n − 1, x ∈ {u, ℓ}. As P ℓ
n−1 and Pu

n−1 contain
the set X at the same time steps, every edge in X is shared. For each i ≥ 1, the
edges {ui, bi−1} and {ui, bi} are only contained in the trails P x

i , x ∈ {u, ℓ}. Recall
that Pu

i and P ℓ
i contain bi exactly once and at the same time step. The subsequence

around bi of P ℓ
i and Pu

i is (bi−1, ℓi, bi, ui, bi−1) and (bi−1, ui, bi, ℓi, bi−1), respectively.
It follows that both edges {ui, bi−1} and {ui, bi} appear at two different time steps
in Pu

i and P ℓ
i . The same argument holds for the edges {bn−2, ℓn−1} and {bn−1, ℓn−1}

as Pu
n−1 and P ℓ

n−1 are the only trails containing the two edges.
Altogether, it follows that X is the set of shared edges of the s-t trails P x

i , x ∈
{u, ℓ}, and the claim follows. Finally, as |X | = 2n− 4, the statement follows.

Proof of Theorem 5. We provide a many-one reduction from Planar Cubic Hamil-
ton Circuit (PCHC) to Trail-RCA on undirected graph via Construction 4 on
the one hand, and Construction 5 on the other. Let (G = (V,E)) be an instance of
PCHC and let n := |V | vertices.

Via Construction 4. Let (G′, s, t, p, 0) an instance of Trail-RCA where G′ is obtained
from G by applying Construction 4 and p = 2n. Note that (G′, s, t, p, 0) can be
constructed in polynomial time and by Lemma 7, (G) is a yes-instance of PCHC if
and only if (G′, s, t, p, 0) is a yes-instance of Trail-RCA. However, G′ is not simple
in general. Hence, replace each edge {u, v} ∈ E(G′) in G′ by a path of length three
and identify its endpoints with u and v. Denote by G′′ the obtained graph. Due
to Lemma 8, (G′′, s, t, p, 0) is a yes-instance of Trail-RCA if and only if (G′, s, t, p, 0)
is a yes-instance of Trail-RCA.

The case of constant k > 0 works analogously as in the proof of Theorem 4.

Via Construction 5. Let (G′, s, t, p, k) an instance of Trail-RCA where G′ is ob-
tained from G by applying Construction 5 and p = 2n. Instance (G′, s, t, p, k) can be

18

s
v

x

w
t

3-chain
4-chain

...

(n+ 2)-chain

H

Figure 5: Sketch of the graph G′ obtained in Construction 6. The enclosed gray part
represents the graph H . Dashed lines represent directed chains.

constructed in polynomial time. By Lemma 9, (G) is a yes-instance of PCHC if and
only if (G′, s, t, p, k) is a yes-instance of Trail-RCA.

As the length of each s-t trail is upper bounded by the number of edges in the
graph, we immediately obtain the following.

Corollary 4. Trail-FRCA on undirected planar graphs is NP-complete, even if k ≥
0 is constant or ∆ ≥ 5 is constant.

5.2 On Directed Graphs

We know that Trail-RCA and Trail-FRCA are NP-complete on undirected graphs,
even if the number of shared edges or the maximum degree is constant. In what
follows, we show that this is also the case for Trail-RCA and Trail-FRCA on
directed graphs.

Theorem 6. Trail-RCA on directed planar graphs is NP-complete, even if k ≥ 0 is
constant or ∆i/o ≥ 3 is constant.

To prove Theorem 6, we reduce from the following NP-complete [17] problem.

Directed Planar 2/3-In-Out Hamiltonian Circuit (DP2/3HC)

Input: A directed, planar graph G = (V,A) such that, for each v ∈ V ,
max{outdeg(v), indeg(v)} ≤ 2 and outdeg(v) + indeg(v) ≤ 3.

Question: Is there a directed Hamiltonian cycle in G?

Construction 6. Let G = (V,A) be a directed, planar graph where for each vertex
v ∈ V holds max{outdeg(v), indeg(v)} ≤ 2 and outdeg(v)+indeg(v) ≤ 3, and n = |V |.
Construct a directed graph G′ as follows (refer to Figure 5for an illustration of the
constructed graph). Initially, let G′ be the empty graph. Add a copy of the graph G to
G′ and denote the copy by H . Add the vertex set {s, t, v, w} to G′. Consider a plane
embedding φ(G) and choose a vertex x ∈ V (H) incident to the outer face. Add the
arcs (s, v), (v, x), (x,w), and (w, t) to G′. Moreover, add n chains connecting s with v

of lengths 3, 4, . . . , n+2 respectively to G′, and direct the edges from s towards v. Note
that G′ is planar (see Figure 5 for an embedding where H is embedded as φ(H)).

19

s
v x

w
t

T ↑
s T ↓

w(η + 1)-chain

(η + 2)-chain

...

(η + η)-chain

H

log(η)-chain(log(η) + η + (η − n))-chain

Figure 6: Sketch of the graph G′ obtained in Construction 7. The enclosed gray part
represents the graph H . Dashed lines represent directed chains. T ↑

s and T ↓
w refer to

the complete binary (directed) trees with η leaves and rooted at s and w, respectively.

Lemma 10. Let G and G′ as in Construction 6. Then G admits a Hamiltonian cycle
if and only if G′ admits n+ 1 s-t trails with no shared arc.

Proof. (⇒) Let G admit a Hamiltonian cycle C. We construct n s-t trails in G′, each
using a chain connecting s with w, where no two use the same chain. By construction,
the n s-t trails do not introduce any shared arc. Moreover, the trails contain the
arc (w, t) at every time step in {4, . . . , n+ 3}. The remaining trail contains no chain,
but the vertices v, x, w as well as C. As C is a Hamiltonian cycle, the trail uses the
arc (w, t) at time step n+ 4.

(⇐) Let G′ admit a set P of n+1 s-t trails with no shared arc. As s has outdegree n+1,
in P n trails contain a chain connecting s with w, where no two contain the same
chain. As there is no shared arc, the remaining trail cannot use the arc (w, t) before
time step n+3. As the shortest s-w path containing v is of length three, the remaining
trail has to contain n arcs in the copy H of G. As for each vertex v ∈ V (G) holds
that max{outdeg(v), indeg(v)} ≤ 2 and outdeg(v) + indeg(v) ≤ 3, no vertex despite x

is visited twice by the trail. Hence, the trail restricted to the copy H of G forms an
Hamiltonian cycle in G.

We provide another construction where the obtained graph has constant maximum
in- and out-degree.

Construction 7. Let G = (V,A) be a directed, planar graph where for each vertex
v ∈ V holds max{outdeg(v), indeg(v)} ≤ 2 and outdeg(v) + indeg(v) ≤ 3, and let
n := |V |. Construct a directed graph G′ as follows (refer to Figure 6 for an illustration
of the constructed graph). Let initially G′ be the graph obtained from Construction 6.
Remove s, w, and the directed chains connecting s with w from G′. Let η be the
smallest power of two larger than n (note that n ≤ η ≤ 2n − 2). Add a complete
binary tree Ts with η leaves to G′, and denote its root by s. Denote the leaves by
a1, . . . , aη, ordered by a post-order traversal on Ts. Next add a copy of Ts to G′,
and denote the copy by Tw and its root by w. For each leaf ai of Ts, denote by a′i

20

its copy in Tw. Next, for each i ∈ [η], connect ai and a′i via a (η + i)-chain. Direct
all edges in Ts away from s towards the leaves of Ts. Direct all edges in Tw away
from the leaves of Tw towards w. Next, direct all chains connecting the leaves of Ts

and Tw from the leaves of Ts towards the leaves of Tw. To complete the construction
of G′, connect s with v via a (log(η) + η + (η − n))-chain, and connect x with w via
a log(η)-chain. Note that Ts and Tw allow plane drawings, and the chains connecting
the leaves can be aligned as illustrated in Figure 2. It follows that G′ allows for an
plane embedding.

Lemma 11. Let G and G′ as in Construction 7. Then G admits a Hamiltonian cycle
if and only if G′ admits η + 1 s-t trails with at most η − 2 shared arcs.

Proof. (⇒) Let G admit a Hamiltonian cycle C. First, we construct η s-t trails in G′

as follows. For each leaf of Ts, there is a trail containing the unique path from s to
the leaf in Ts. This part introduces η − 2 shared arcs. Next, each trail follows the
chain connecting the leaf of Ts with a leaf of Tw, then the unique path from the leaf
of Tw to w, and finally the arc (w, t). Observe that the trails contain the leaves of Tw

at different time steps log(η)+ η+ i+1, i ∈ [η], and hence no shared arc is introduced
in this part. Moreover, the arc (w, t) appears in the time steps 2 log(η) + η + i + 1,
i ∈ [η]. The remaining trail P contains the chain connecting s with v, the edge {v, x},
follows the cycle C in H , starting and ending at vertex x. Trail P then contains the
chain connecting x with w, and the arc (w, t). Observe that the arc (w, t) appears
in P at time step 2 log(η) + 2η + 2 (recall that C is a Hamiltonian cycle in H), and
hence (w, t) is not shared.

(⇐) Let G′ admit η + 1 s-t trails with at most η − 2 shared arcs.
First observe that the chain connecting s with v is not contained in more than one s-

t trail. Hence, at least η trails leave s through Ts. Note that no chain connecting the
leaves of Ts with the leaves of Tw is contained in more than one s-t trail. It follows
that exactly η s-t trails (denote the set by P ′) leave s via Ts and each contains a
different leaf of Ts. Herein, η − 2 arcs are shared by the trails in P ′. Note that the
path from a leaf of Ts to t is unique, each trail in P ′ follows the unique path to t. The
arc (w, t) appears in the trails in P ′ at time steps 2 log(η) + η+ i+1 for every i ∈ [η].

The remaining s-t trail P 6∈ P contains the chain connecting s with v. Note that
arc (w, t) is not shared, as all shared arcs are contained in Ts. As the shortest s-
t path via x is of length 2 log(η) + η + (η − n) + 2 ≥ 2 log(η) + η + 2, trail P has
to contain a cycle C in H . As the arc (w, t) is not shared and appears in the trails
in P ′ at the time steps 2 log(η) + η + i + 1, for every i ∈ [η], the cycle C must be of
length n. As for each vertex v ∈ V (G) holds that max{outdeg(v), indeg(v)} ≤ 2 and
outdeg(v) + indeg(v) ≤ 3, no vertex in H despite x is visited twice by the trail P .
Hence, trail P restricted to the copy H of G forms a Hamiltonian cycle in G.

Proof of Theorem 6. We provide a many-one reduction from DP2/3HC to Trail-
RCA on directed graphs via Construction 6 on the one hand, and Construction 7 on
the other. Let (G) be an instance of DP2/3HC where G consists of n vertices.

Via Construction 6. Let (G′, s, t, p, 0) an instance of Trail-RCA where G′ is ob-
tained from G by applying Construction 6 and p = n + 1. Note that (G′, s, t, p, 0) is

21

constructed in polynomial time and by Lemma 10, (G) is a yes-instance of DP2/3HC
if and only if (G′, s, t, p, 0) is a yes-instance of Trail-RCA.

The case of constant k > 0 works analogously as in the proof of Theorem 4.

Via Construction 7. Let (G′, s, t, p, k) an instance of Trail-RCA where G′ is obtained
from G by applying Construction 7, p = η+1, and k = η−2. Note that (G′, s, t, p, k) is
constructed in polynomial time and maxv∈V (G′){outdeg(v)+indeg(v)} ≤ 5. By Lemma 11,
(G) is a yes-instance of DP2/3HC if and only if (G′, s, t, p, k) is a yes-instance of
Trail-RCA.

As the length of each s-t trail is upper bounded by the number of edges in the
graph, we immediately obtain the following.

Corollary 5. Trail-FRCA on directed planar graphs is NP-complete, even if k ≥ 0
is constant or ∆i/o ≥ 3 is constant.

6 Walk-RCA

Regarding their computational complexity fingerprint, Path-RCA and Trail-RCA
are equal. In this section, we show that Walk-RCA differs in this aspect. We prove
that the problem is solvable in polynomial time on undirected graphs (Section 6.1)
and on directed graphs if k ≥ 0 is constant(Section 6.2).

6.1 On Undirected Graphs

On a high level, the tractability on undirected graphs is because a walk can alternate
arbitrarily often between two vertices. Hence, we can model a queue on the source
vertex s, where at distinct time steps the walks leave s via a shortest path towards t.
However, if the time of staying in the queue is upper bounded, that is, if the length-
restricted variant Walk-FRCA is considered, the problem becomes NP-complete.

Theorem 7. Walk-RCA on undirected graphs is solvable in linear time.

Proof. Let I := (G, s, t, p, k) be an instance of Walk-RCA with G being connected.
Let P be a shortest s-t path in G. We assume that p ≥ 2, since otherwise P witnesses
that I is a yes-instance. We can assume that the length of P is at least k+1, otherwise
we can output that I is a yes-instance. Let {s, v} be the edge in P incident to the
endpoint s. We distinguish the two cases whether k is positive or k = 0. In this proof,
we represent a walk as a sequence of edges.

Case k > 0: We can construct p s-t walks P1, . . . , Pp sharing at most one edge as
follows. We set P1 := P and Pi = ({s, v}, . . . , {s, v}

︸ ︷︷ ︸

2i-times

, P) for i ∈ [p], that is, the s-

t walk Pi alternates between s and v i times. We show that the set P := {P1, . . . , Pp}
share exactly edge {s, v}. It is easy to see that {s, v} is shared by all of the walks. Let
us consider an arbitrary edge e = {x, y} 6= {s, v} in P , which appears in P at time step
ℓ > 1 (ordered from s to t). By construction, e appears in Pi at position 2i+ ℓ. Thus,
no two walks in P contain an edge in P , that is on time step ℓ > 1 in P , at the same

22

time step. Since each walk in P only contains edges in P , it follows that {s, v} is
exactly the shared edges by all walks in P . As k ≥ 1, it follows that we can output
that I is a yes-instance.

Case k = 0: Let v1, . . . , vℓ be the neighbors of s, and suppose that v1 = v (that is, the
vertex incident to s appearing in P). If ℓ < p, then we can immediately output that I
is a no-instance, as by the pigeon hole principle at least one edge has to appear in at
least two walks at time step one in any set of p s-t walks in G. If ℓ ≥ p, we construct
ℓ s-t walks P1, . . . , Pℓ that do not share any edge in G as follows. We set P1 = P , and
Pi = ({s, vi}, . . . , {s, vi}

︸ ︷︷ ︸

2i-times

, P) for i ∈ [ℓ], that is, the s-t walk Pi alternates between s

and vi i times. Following the same argumentation as in preceding case, it follows that
no edge is shared by the constructed walks P1, . . . , Pp.

In summary, if k > 0, then we can output that I is a yes-instance. If k = 0, then
we first check the degree of s in linear time, and then output that I is a yes-instance
if deg(s) ≥ p, and that I is a no-instance, otherwise.

The situation changes for Walk-FRCA, that is, when restricting the length of the
walks.

Theorem 8. Walk-FRCA on undirected graphs is NP-complete and W[2]-hard with
respect to k + α.

Given a directed graph G, we call an undirected graph H the undirected version
of G if H is obtained from G by replacing each arc with an undirected edge.

Proof. We give a (parameterized) many-one reduction from Set Cover. Let (U,F , ℓ)
be an instance of Set Cover. Let G′ the graph obtained from applying Construction 1
given (U,F , ℓ). Moreover, let G be the undirected version of G′. Let (G, s, t, p, k, α)
be the instance of Walk-FRCA, where p = n+m, k = ℓ, and α = ℓ+ 3. Note that
any shortest s-t path in G is of length α, and hence every s-t walk of length at most α
behaves as in the directed acyclic case. That is, each walk contains a vertex of VF at
time step k+2. The correctness follows then analogously as in the proof of Lemma 4.

It remains open whether Walk-FRCA is NP-complete when k is constant.

6.2 On Directed Graphs

Due to Theorems 2 and 3, we know that Walk-RCA is NP-complete on directed
graphs and is solvable in polynomial time on directed acyclic graphs when k = 0,
respectively. In this section, we prove that if k ≥ 0 is constant, then Walk-RCA
remains tractable on directed graphs (this also holds true for Walk-FRCA). Note
that for Path-RCA and Trail-RCA the situation is different, as both become NP-
complete on directed graphs, even if k ≥ 0 is constant.

Theorem 9. Walk-RCA and Walk-FRCA on directed n-vertex m-arc graphs is
solvable in O(mk+1 · n · (p · n)2) time and O(mk+1 · n · α2) time, respectively.

23

Our proof of Theorem 9 follows the same strategy as our proof of Theorem 1. That
is, we try to guess the shared arcs, make them infinite capacity in some way, and then
solve the problem with zero shared arcs via a network flow formulation in the time-
expanded graph. The crucial difference is that here we do not have at first an upper
bound on the length of the walks in the solution.

Theorem 10. If k = 0, then Walk-RCA on directed n-vertex m-arc graphs is solv-
able in O(n ·m · (p · n)2) time.

Lemma 12. Every yes-instance (G, s, t, p, k) of Walk-RCA on directed graphs ad-
mits a solution in which the longest walk is of length at most p · dt, where dt =
maxv∈V : distG(v,t)<∞ distG(v, t).

Observe that dt is well-defined on every yes-instance of Walk-RCA. Moreover, it
holds that dt ≤ |V (G)|. In the subsequent proof, we use the following notation: For
two walks P1 = (v1, . . . , vℓ) and P2 = (w1, . . . , wℓ′) with vℓ = w1, denote by P1 ◦ P2

the walk (v1, . . . , vℓ, w2, . . . , wℓ′) obtained by the concatenation of the two walks.

Proof of Lemma 12. Let P be a solution to (G, s, t, p, k) with |P| = p where the sum of
the lengths of the walks in P is minimum among all solutions to (G, s, t, p, k). Suppose
towards a contradiction that the longest walk P ∗ ∈ P is of length |P ∗| > p · dt. Then,
by the pigeon hole principle, there is an i ∈ [p] such that there is no walk in P of
length ℓ with (i− 1) · dt < ℓ ≤ i · dt.

Let v = P ∗[(i − 1) · dt + 1], that is, v is the ((i − 1) · dt + 1)th vertex on P ∗, and
let S be a shortest v-t path. Observe that the length of S is at most dt. Consider the
walk P ′ := P ∗[1, (i−1)·dt+1]◦S, that is, we concatenate the length-((i−1)·dt) initial
subpath of P ∗ with S to obtain P ′. Observe that (i−1)·dt < |P ′| ≤ i·dt. If P\P ∗∪P ′

forms a solution to (G, s, t, p, k), then, since |P ′| < |P ∗|, P \ P ∗ ∪ P ′ is a solution of
smaller sum of the lengths of the walks, contradicting the choice of P . Otherwise,
P ′ introduce additional shared arcs and let A′ ⊆ A(G) denote the corresponding set.
Observe that A′ is a subset of the arcs of S. Let a = (x, y) ∈ A′ be the shared arc such
that distS(y, t) is minimum among all shared arcs in A′, and let P ′[j] = y. Let P ∈ P
be a walk sharing the arc with P ′. Then P ′′ := P [1, j] ◦ P ′[j + 1, |P ′|] is a walk of
shorter length than P .Moreover, P\P∪P ′′ is a solution to (G, s, t, p, k). As |P ′′| < |P |,
P \ P ∪ P ′′ is a solution of smaller sum of the lengths of the walks, contradicting the
choice of P . As either case yields a contradiction, it follows that |P ∗| ≤ p · dt.

The subsequent proof of Theorem 10 relies on time-expanded graphs. Due to
Lemma 12, we know that the time-horizon is bounded polynomially in the input size.

Proof of Theorem 10. Let (G, s, t, p, 0) be an instance of Walk-RCA where G =
(V,A) is an directed graph. We first compute dt in linear time. Let τ := p · dt. Next,
we compute the τ -time-expanded (directed) graph H = (V ′, A′) of G with p additional
arcs (ti−1, ti) for each i ∈ [τ]. We compute in O(τ2 · (|V | · |A|) ⊆ O(p2 · (|V |3 · |A|) time
the value of a maximum s0-tτ flow in H . Due to Lemma 12 together with Lemma 2,
the theorem follows.

Restricting to α-time-expanded graphs yields the following.

24

Corollary 6. If k = 0, Walk-FRCA on directed n-vertex m-arc graphs is solvable
in O(n ·m · α2) time.

Proof of Theorem 9. Let (G = (V,E), s, t, p, k) be an instance of Walk-RCA with G

being a directed graph. For each k-sized subset K ⊆ A of arcs in G, we decide the in-
stance (G(K, p), s, t, p, 0). The statement for Walk-RCA then follows from Lemma 3
and Theorem 10. The running time of the algorithm is in O(|A|k · p2 · (|V |3 · |A|)).
The statement for Walk-FRCA then follows from Lemma 3 and Corollary 6.

7 Conclusion and Outlook

Some of our results can be seen as a parameterized complexity study of RCA focusing
on the number k of shared edges. It is interesting to study the problem with respect to
other parameters. Herein, the first natural parameterization is the number of routes.
Recall that the Minimum Shared Edges problem is fixed-parameter tractable with
respect to the number of path [6]. A second parameterization we consider as interesting
is the combined parameter maximum degree plus k. In our NP-completeness results for
Path-RCA and Trail-RCA it seemed difficult to achieve constant k and maximum
degree at the same time.

Another research direction is to further investigate on which graph classes Path-
RCA and Trail-RCA become tractable. We proved that that both problems remain
NP-complete even on planar graphs. Do both Path-RCA and Trail-RCA remain
NP-complete on graphs of bounded treewidth? Recall that the Minimum Shared Edges
problem is tractable on this graph class [20, 1].

Finally, we proved that on undirected graphs, Walk-RCA is solvable in polyno-
mial time while Walk-FRCA is NP-complete. However, we left open whether Walk-
FRCA on undirected graphs is NP-complete or polynomial-time solvable when k is
constant.

References

[1] Yusuke Aoki, Bjarni V. Halldórsson, Magnús M. Halldórsson, Takehiro Ito, Chris-
tian Konrad, and Xiao Zhou. The minimum vulnerability problem on graphs. In
Proc. 8th International Conference on Combinatorial Optimization and Applica-
tions (COCOA ’14), volume 8881 of LNCS, pages 299–313. Springer, 2014. 4,
25

[2] Sepehr Assadi, Ehsan Emamjomeh-Zadeh, Ashkan Norouzi-Fard, Sadra Yazdan-
bod, and Hamid Zarrabi-Zadeh. The minimum vulnerability problem. Algorith-
mica, 70(4):718–731, 2014. 1

[3] Kenneth A. Berman. Vulnerability of scheduled networks and a generalization of
Menger’s theorem. Networks, 28(3):125–134, 1996. 4

[4] Rodney G. Downey and Michael R. Fellows. Fundamentals of Parameterized
Complexity. Texts in Computer Science. Springer, 2013. 7

25

[5] Till Fluschnik. The parameterized complexity of finding paths with shared
edges. Master thesis, Institut für Softwaretechnik und Theoretische Informatik,
TU Berlin, 2015. 3

[6] Till Fluschnik, Stefan Kratsch, Rolf Niedermeier, and Manuel Sorge. The param-
eterized complexity of the minimum shared edges problem. In Proceedings of the
35th IARCS Annual Conference on Foundation of Software Technology and The-
oretical Computer Science (FSTTCS’15), volume 45 of LIPIcs, pages 448–462.
Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2015. 2, 3, 25

[7] Lester Randolph Ford and D. R. Fulkerson. Flows in Networks. Princeton Uni-
versity Press, 1962. 4

[8] M. R. Garey, David S. Johnson, and Robert Endre Tarjan. The planar Hamilto-
nian circuit problem is NP-complete. SIAM Journal on Computing, 5(4):704–714,
1976. 9

[9] Richard M. Karp. Reducibility among combinatorial problems. In Proceedings of
a symposium on the Complexity of Computer Computations, The IBM Research
Symposia Series, pages 85–103. Plenum Press, New York, 1972. 7

[10] David Kempe, Jon M. Kleinberg, and Amit Kumar. Connectivity and inference
problems for temporal networks. Journal of Computer and System Sciences,
64(4):820–842, 2002. 4

[11] Jon M. Kleinberg and Éva Tardos. Algorithm Design. Addison-Wesley, 2006. 6

[12] Ekkehard Köhler, Rolf H. Möhring, and Martin Skutella. Traffic networks and
flows over time. In Algorithmics of Large and Complex Networks - Design, Anal-
ysis, and Simulation, volume 5515 of LNCS, pages 166–196. Springer, 2009. 4

[13] George B. Mertzios, Othon Michail, Ioannis Chatzigiannakis, and Paul G. Spi-
rakis. Temporal Network Optimization Subject to Connectivity Constraints. In
Automata, Languages, and Programming, pages 657–668. Springer, 2013. 4

[14] Othon Michail. An Introduction to Temporal Graphs: An Algorithmic Perspec-
tive. Internet Mathematics, 12(4):239–280, 2016. 4

[15] Masoud T. Omran, Jörg-Rüdiger Sack, and Hamid Zarrabi-Zadeh. Finding paths
with minimum shared edges. Journal of Combinatorial Optimization, 26(4):709–
722, 2013. 1, 2, 3, 7

[16] James B. Orlin. Max flows in O(nm) time, or better. In Proceedings of the 45th
ACM Symposium on Theory of Computing (STOC’13), pages 765–774. ACM,
2013. 7

[17] Ján Plesník. The NP-completeness of the Hamiltonian cycle problem in planar
digraphs with degree bound two. Information Processing Letters, 8(4):199–201,
1979. 19

26

[18] Hassan Rashidi and Edward Tsang. Vehicle Scheduling in Port Automation: Ad-
vanced Algorithms for Minimum Cost Flow Problems, Second Edition. CRC Press,
2015. 1

[19] Martin Skutella. An introduction to network flows over time. In Research Trends
in Combinatorial Optimization: Bonn 2008, pages 451–482. Springer, 2009. 3, 4

[20] Zhi-Qian Ye, Yi-Ming Li, Hui-Qiang Lu, and Xiao Zhou. Finding paths with
minimum shared edges in graphs with bounded treewidths. In Proc. Frontiers of
Computer Science (FCS ’13), pages 40–46, 2013. 2, 4, 25

27

	1 Introduction
	2 Preliminaries
	3 Everything is Equal on DAGs
	3.1 Constant Number of Shared Arcs
	3.2 Arbitrary Number of Shared Arcs

	4 Path-RCA
	5 Trail-RCA
	5.1 On Undirected Graphs
	5.2 On Directed Graphs

	6 Walk-RCA
	6.1 On Undirected Graphs
	6.2 On Directed Graphs

	7 Conclusion and Outlook

