
Parikh Image of Pushdown Automata

Pierre Ganty1,? and Elena Gutiérrez1,2,??

1 IMDEA Software Institute, Madrid, Spain
2 Universidad Politécnica de Madrid, Spain
{pierre.ganty,elena.gutierrez}@imdea.org

Abstract. We compare pushdown automata (PDAs for short) against
other representations. First, we show that there is a family of PDAs
over a unary alphabet with n states and p ≥ 2n + 4 stack symbols
that accepts one single long word for which every equivalent context-
free grammar needs Ω(n2(p− 2n− 4)) variables. This family shows that
the classical algorithm for converting a PDA to an equivalent context-
free grammar is optimal even when the alphabet is unary. Moreover, we
observe that language equivalence and Parikh equivalence, which ignores
the ordering between symbols, coincide for this family. We conclude that,
when assuming this weaker equivalence, the conversion algorithm is also
optimal. Second, Parikh’s theorem motivates the comparison of PDAs
against finite state automata. In particular, the same family of unary
PDAs gives a lower bound on the number of states of every Parikh-
equivalent finite state automaton. Finally, we look into the case of unary
deterministic PDAs. We show a new construction converting a unary
deterministic PDA into an equivalent context-free grammar that achieves
best known bounds.

1 Introduction

Given a context-free language which representation, pushdown automata or
context-free grammars, is more concise? This was the main question studied
by Goldstine et al. [8] in a paper where they introduced an infinite family of
context-free languages whose representation by a pushdown automaton is more
concise than by context-free grammars. In particular, they showed that each lan-
guage of the family is accepted by a pushdown automaton with n states and p
stack symbols, but every context-free grammar needs at least n2p+1 variables if
n > 1 (p if n = 1). Incidentally, the family shows that the translation of a push-
down automaton into an equivalent context-free grammar used in textbooks [9],

? Pierre Ganty has been supported by the Madrid Regional Government project
S2013/ICE-2731, N-Greens Software - Next-GeneRation Energy-EfficieNt Secure
Software, and the Spanish Ministry of Economy and Competitiveness project No.
TIN2015-71819-P, RISCO - RIgorous analysis of Sophisticated COncurrent and dis-
tributed systems.

?? Elena Gutiérrez is partially supported by BES-2016-077136 grant from the Spanish
Ministry of Economy, Industry and Competitiveness.

ar
X

iv
:1

70
6.

08
31

5v
1

 [
cs

.F
L

]
 2

6
Ju

n
20

17

2

which uses the same large number of n2p + 1 variables if n > 1 (p if n = 1), is
optimal in the sense that there is no other algorithm that always produces fewer
grammar variables.

Today we revisit these questions but this time we turn our attention to the
unary case. We define an infinite family of context-free languages as Goldstine et
al. did but our family differs drastically from theirs. Given n ≥ 1 and k ≥ 1, each
member of our family is given by a PDA with n states, p = k+2n+4 stack sym-
bols and a single input symbol.3 We show that, for each PDA of the family, every
equivalent context-free grammar hasΩ(n2(p− 2n− 4)) variables. Therefore, this
family shows that the textbook translation of a PDA into a language-equivalent
context-free grammar is optimal4 even when the alphabet is unary. Note that
if the alphabet is a singleton, equality over words (two words are equal if the
same symbols appear at the same positions) coincides with Parikh equivalence
(two words are Parikh-equivalent if each symbol occurs equally often in both
words5). Thus, we conclude that the conversion algorithm is also optimal for
Parikh equivalence. We also investigate the special case of deterministic PDAs
over a singleton alphabet for which equivalent context-free grammar represen-
tations of small size had been defined [3, 10]. We give a new definition for an
equivalent context-free grammar given a unary deterministic PDA. Our defini-
tion is constructive (as far as we could tell the result of Pighizzini [10] is not)
and achieves the best known bounds [3] by combining two known constructions.

Parikh’s theorem [11] states that every context-free language has the same
Parikh image as some regular language. This allows us to compare PDAs against
finite state automata (FSAs for short) for Parikh-equivalent languages. First, we
use the same family of PDAs to derive a lower bound on the number of states
of every Parikh-equivalent FSA. The comparison becomes simple as its alphabet
is unary and it accepts one single word. Second, using this lower bound we
show that the 2-step procedure chaining existing constructions: (i) translate the
PDA into a language-equivalent context-free grammar [9]; and (ii) translate the
context-free grammar into a Parikh-equivalent FSA [4] yields optimal6 results
in the number of states of the resulting FSA.

As a side contribution, we introduce a semantics of PDA runs as trees that we
call actrees. The richer tree structure (compared to a sequence) makes simpler
to compare each PDA of the family with its smallest grammar representation.

Structure of the paper. After preliminaries in Section 2 we introduce the tree-
based semantics in 3. In Section 4 we compare PDAs and context-free grammars
when they represent Parikh-equivalent languages. We will define the infinite
family of PDAs and establish their main properties. We dedicate Section 4.2 to
the special case of deterministic PDAs over a unary alphabet. Finally, Section 5
focuses on the comparison of PDAs against finite state automata for Parikh-
equivalent languages.

3 Their family has an alphabet of non-constant size.
4 In a sense that we will precise in Section 4 (Remark 10).
5 But not necessarily at the same positions, e.g. ab and ba are Parikh-equivalent.
6 In a sense that we will precise in Section 5 (Remark 16).

3

2 Preliminaries

A pushdown automaton (or PDA) is a 6-tuple (Q,Σ, Γ, δ, q0, Z0) where Q is
a finite nonempty set of states including q0, the initial state; Σ is the input
alphabet ; Γ is the stack alphabet including Z0, the initial stack symbol; and δ
is a finite subset of Q × Γ × (Σ ∪ {ε}) × Q × Γ ∗ called the actions. We write
(q,X) ↪→b (q′, β) to denote an action (q,X, b, q′, β) ∈ δ. We sometimes omit the
subscript to the arrow.

An instantaneous description (or ID) of a PDA is a pair (q, β) where q ∈ Q
and β ∈ Γ ∗. We call the first component of an ID the state and the second
the stack content. The initial ID consists of the initial state and the initial stack
symbol for the stack content. When reasoning formally, we use the functions state
and stack which, given an ID, returns its state and stack content, respectively.

An action (q,X) ↪→b (q′, β) is enabled at ID I if state(I) = q and (stack(I))1 =
X.7 Given an ID (q,Xγ) enabling (q,X) ↪→b (q′, β), define the successor ID
to be (q′, βγ). We denote this fact as (q,Xγ) `b (q′, βγ), and call it a move
that consumes b from the input.8 We sometimes omit the subscript of ` when
the input consumed (if any) is not important. Given n ≥ 0, a move sequence,
denoted I0 `b1 · · · `bn In, is a finite sequence of IDs I0I1 . . . In such that
Ii `bi Ii+1 for all i. The move sequence consumes w (from the input) when
b1 · · · bn = w. We concisely denote this fact as I0 ` w. . . ` In. A move sequence
I ` · · · ` I ′ is a quasi-run when |stack(I)| = 1 and |stack(I ′)| = 0; and a
run when, furthermore, I is the initial ID. Define the language of a PDA P as
L(P) = {w ∈ Σ∗ | P has a run consuming w}.

The Parikh image of a word w over an alphabet {b1, . . . , bn}, denoted by
*w+, is the vector (x1, . . . , xn) ∈ Nn such that xi is the number of occurrences of
bi in w. The Parikh image of a language L, denoted by *L+, is the set of Parikh
images of its words. When *L1+ = *L2+, we say L1 and L2 are Parikh-equivalent.

We assume the reader is familiar with the basics of finite state automata (or
FSA for short) and context-free grammars (or CFG). Nevertheless we fix their
notation as follows. We denote a FSA as a tuple (Q,Σ, δ, q0, F) where Q is a
finite set of states including the initial state q0 and the final states F ; Σ is the
input alphabet and δ ⊆ Q× (Σ ∪ {ε})×Q is the set of transitions. We denote a
CFG as a tuple (V,Σ, S,R) where V is a finite set of variables including S the
start variable, Σ is the alphabet or set of terminals and R ⊆ V × (V ∪Σ)∗ is a
finite set of rules. Rules are conveniently denoted X → α. Given a FSA A and
a CFG G we denote their languages as L(A) and L(G), respectively.

Finally, let us recall the translation of a PDA into an equivalent CFG.

Given a PDA P = (Q,Σ, Γ, δ, q0, Z0), define the CFG G = (V,Σ,R, S) where

– The set V of variables — often called the triples — is given by

{[qXq′] | q, q′ ∈ Q,X ∈ Γ} ∪ {S} . (1)

7 (w)i is the i-th symbol of w if 1 ≤ i ≤ |w|; else (w)i = ε. |w| is the length of w.
8 When b = ε the move does not consume input.

4

– The set R of production rules is given by

{S → [q0Z0q] | q ∈ Q}
∪ {[qXrd]→ b[q′(β)1r1] . . . [rd−1(β)drd]

| (q,X) ↪→b (q′, β), d = |β|, r1, . . . , rd ∈ Q}
(2)

For a proof of correctness, see the textbook of Ullman et al. [9]. The previous
definition easily translates into a conversion algorithm. Observe that the runtime
of such algorithm depends polynomially on |Q| and |Γ |, but exponentially on |β|.

3 A Tree-Based Semantics for Pushdown Automata

In this section we introduce a tree-based semantics for PDA. Using trees instead
of sequences sheds the light on key properties needed to present our main results.

Given an action a denoted by (q,X) ↪→b (q′, β), q is the source state of a, q′

the target state of a, X the symbol a pops and β the (possibly empty) sequence
of symbols a pushes.

A labeled tree c(t1, . . . , tk) (k ≥ 0) is a finite tree whose nodes are labeled,
where c is the label of the root and t1, . . . , tk are labeled trees, the children of
the root. When k = 0 we prefer to write c instead of c(). Each labeled tree t
defines a sequence, denoted t, obtained by removing the symbols ‘(’, ‘)’ or ‘,’
when interpreting t as a string, e.g. c(c1, c2(c21)) = c c1 c2 c21. The size of a
labeled tree t, denoted |t|, is given by |t|. It coincides with the number of nodes
in t.

Definition 1. Given a PDA P , an action-tree (or actree for short) is a labeled
tree a(a1(. . .), . . . , ad(. . .)) where a is an action of P pushing β with |β| = d and
each children ai(. . .) is an actree such that ai pops (β)i for all i. Furthermore,
an actree t must satisfy that the source state of (t)i+1 and the target state of (t)i
coincide for every i.

An actree t consumes an input resulting from replacing each action in the
sequence t by the symbol it consumes (or ε, if the action does not consume any).
An actree a(. . .) is accepting if the initial ID enables a.

Example 2. Consider a PDA P with actions a1 to a5 respectively given by
(q0, X1) ↪→ε (q0, X0X0), (q0, X0) ↪→ε (q1, X1 ?), (q1, X1) ↪→ε (q1, X0X0),
(q1, X0) ↪→b (q1, ε) and (q1, ?) ↪→ε (q0, ε). The reader can check that the actree
t = a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5)), depicted in Figure 1, satisfies the
conditions of Definition 1 where t = a1 a2 a3 a4 a4 a5 a2 a3 a4 a4 a5, |t| = 11 and
the input consumed is b4.

We recall the notion of dimension of a labeled tree [5] and we relate dimension
and size of labeled trees in Lemma 5.

Definition 3. The dimension of a labeled tree t, denoted as d(t), is inductively
defined as follows. d(t) = 0 if t = c, otherwise we have t = c(t1, . . . , tk) for some

5

a1

a2

a3

a4 a4

a5

a2

a3

a4 a4

a5

Fig. 1: Depiction of the tree a1(a2(a3(a4, a4), a5), a2(a3(a4, a4), a5))

k > 0 and

d(t) =

{
maxi∈{1,...,k}d(ti) if there is a unique maximum,

maxi∈{1,...,k}d(ti) + 1 otherwise.

Example 4. The annotation
d(t)

t (. . .) shows the actree of Example 2 has dimen-
sion 2

2
a1 (

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5),

1
a2 (

1
a3 (

0
a4,

0
a4),

0
a5)) .

Lemma 5. |t| ≥ 2d(t) for every labeled tree t.

The proof of the lemma is given in the Appendix. The actrees and the quasi-
runs of a PDAs are in one-to-one correspondence as reflected in Theorem 6 whose
proof is in the Appendix.

Theorem 6. Given a PDA, its actrees and quasi-runs are in a one-to-one cor-
respondence.

4 Parikh-Equivalent Context-free Grammars

In this section we compare PDAs against CFGs when they describe Parikh-
equivalent languages. We first study the general class of (nondeterministic) PDAs
and, in Section 4.2, we look into the special case of unary deterministic PDAs.

We prove that, for every n ≥ 1 and p ≥ 2n + 4, there exists a PDA
with n states and p stack symbols for which every Parikh-equivalent CFG has
Ω(n2(p− 2n− 4)) variables. To this aim, we present a family of PDAs P (n, k)
where n ≥ 1 and k ≥ 1. Each member of the family has n states and k+ 2n+ 4
stack symbols, and accepts one single word over a unary input alphabet.

4.1 The Family P (n, k) of PDAs

Definition 7. Given natural values n ≥ 1 and k ≥ 1, define the PDA P (n, k)
with states Q = {qi | 0 ≤ i ≤ n− 1}, input alphabet Σ = {b}, stack alphabet

6

Γ = {S, ?, $} ∪ {Xi | 0 ≤ i ≤ k} ∪ {si | 0 ≤ i ≤ n − 1} ∪ {ri | 0 ≤ i ≤ n − 1},
initial state q0, initial stack symbol S and actions δ

(q0, S) ↪→b (q0, Xk r0)
(qi, Xj) ↪→b (qi, Xj−1 rm siXj−1 rm) ∀ i,m ∈ {0, . . . , n− 1},∀ j ∈ {1, . . . , k},
(qj , si) ↪→b (qi, ε) ∀i, j ∈ {0, . . . , n− 1},
(qi, ri) ↪→b (qi, ε) ∀i ∈ {0, . . . , n− 1},

(qi, X0) ↪→b (qi, Xk ?) ∀i ∈ {0, . . . , n− 1},
(qi, X0) ↪→b (qi+1, Xk $) ∀i ∈ {0, . . . , n− 2},

(qi, ?) ↪→b (qi−1, ε) ∀i ∈ {1, . . . , n− 1},
(q0, $) ↪→b (qn−1, ε)

(qn−1, X0) ↪→b (qn−1, ε)

Lemma 8. Given n ≥ 1 and k ≥ 1, P (n, k) has a single accepting actree con-

suming input bN where N ≥ 2n
2 k.

Proof. Fix values n and k and refer to the member of the family P (n, k) as P . We
show that P has exactly one accepting actree. We define a witness labeled tree
t inductively on the structure of the tree. Later we will prove that the induction
is finite. First, we show how to construct the root and its children subtrees. This
corresponds to case 1 below. Then, each non-leaf subtree is defined inductively
in cases 2 to 5. Note that each non-leaf subtree of t falls into one (and only one)
of the cases. In fact, all cases are disjoint, in particular 2, 4 and 5. The reverse
is also true: all cases describe a non-leaf subtree that does occur in t. Finally, we
show that each case describes uniquely how to build the next layer of children
subtrees of a given non-leaf subtree.
1. t = a(a1(. . .), a2) where a = (q0, S) ↪→b (q0, Xk r0) and a1(. . .) and a2 are of

the form:

a2 = (q0, r0) ↪→b (q0, ε) only action popping r0

a1 = (q0, Xk) ↪→b (q0, Xk−1 r0 s0Xk−1 r0) only way to enable a2.

Note that the initial ID (q0, S) enables a which is the only action of P with

this property. Note also that
d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

2. Each subtree whose root is labeled a = (qi, Xj) ↪→b (qi, Xj−1 rm siXj−1 rm)
with i,m ∈ {0, . . . , n−1} and j ∈ {2, . . . , k} has the form a(a1(. . .), a2, a3, a1(. . .), a2)
where

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping si from qm

a1 = (qi, Xj−1) ↪→b (qi, Xj−2 rm siXj−2 rm) only way to enable a2.

Assume for now that t is unique. Therefore, as the 1st and 4th child of a
share the same label a1, they also root the same subtree. Thus, it holds
(d > 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2) .

7

3. Each subtree whose root is labeled a = (qi, X0) ↪→b (qi+1, Xk $) with i ∈
{0, . . . , n− 2} has the form a(a1(. . .), a2) where

a2 = (q0, $) ↪→b (qn−1, ε) only action popping $

a1 = (qi+1, Xk) ↪→b (qi+1, Xk−1 r0 si+1Xk−1 r0) only way to enable a2.

Note that
d
a (

d
a1 (. . .),

0
a2) holds, where d > 0.

4. Each subtree whose root is labeled a = (qi, X1) ↪→b (qi, X0 rm siX0 rm) with
i ∈ {0, . . . , n− 1} and m ∈ {0, . . . , n− 2} has the form

a(a1(a11(. . .), a12), a2, a3, a1(a11(. . .), a12), a2) .

where

a2 = (qm, rm) ↪→b (qm, ε) only action popping rm

a3 = (qm, si) ↪→b (qi, ε) only action popping si from qm

a1 = (qi, X0) ↪→b (qi, Xk ?) assume it for now

a12 = (qm+1, ?) ↪→b (qm, ε) only way to enable a2

a11 = (qi, Xk) ↪→b (qi, Xk−1 rm+1 siXk−1 rm+1) only way to enable a12.

Assume a1 is given by the action (qi, X0) ↪→b (qi+1, Xk $) instead. Then
following the action popping $, we would end up in the state qn−1, not
enabling a2 since m < n− 1.
Again, assume for now that t is unique. Hence, as the 1st and 4th child of a
are both labeled by a1, they root the same subtree. Thus, it holds (d > 0)

d+1
a (

d
a1 (

d
a11 (. . .),

0
a12),

0
a2,

0
a3,

d
a1 (

d
a11 (. . .),

0
a12),

0
a2) .

5. Each subtree whose root is labeled a = (qi, X1) ↪→b (qi, X0 rn−1 siX0 rn−1)
with i ∈ {0, . . . , n− 1} has the form a(a1(. . .), a2, a3, a1(. . .), a2) where

a2 = (qn−1, rn−1) ↪→b (qn−1, ε) only action popping rn−1

a3 = (qn−1, si) ↪→b (qi, ε) only action popping si from qi

a1 =

{
(qi, X0) ↪→b (qi+1, Xk $) if i < n− 1

(qn−1, X0) ↪→b (qn−1, ε) otherwise
Assume it for now.

For both cases (i < n− 1 and i = n− 1), assume a1 is given by (qi, X0) ↪→b

(qi, Xk ?) instead. Then, the action popping ? must end up in the state qn−1
in order to enable a2, i.e., it must be of the form (qn, ?) ↪→b (qn−1, ε). Hence
the action poppingXk must be of the form (qi, Xk) ↪→b (qi, Xk−1 rm siXk−1 rm)
where necessarily m = n, a contradiction (the stack symbol rn is not defined
in P).
Assume for now that t is unique. Then, as the 1st and 4th child of a are
labeled by a1, they root the same subtree (possibly a leaf). Thus, it holds
(d ≥ 0)

d+1
a (

d
a1 (. . .),

0
a2,

0
a3,

d
a1 (. . .),

0
a2) .

8

We now prove that t is finite by contradiction. Suppose t is an infinite tree.
König’s Lemma shows that t has thus at least one infinite path, say p, from the
root. As the set of labels of t is finite then some label must repeat infinitely
often along p. Let us define a strict partial order between the labels of the non-
leaf subtrees of t. We restrict to the non-leaf subtrees because no infinite path
contains a leaf subtree. Let a1(. . .) and a2(. . .) be two non-leaf subtrees of t. Let
qi1 be the source state of a1 and qf1 be the target state of the last action in the

sequence a1(. . .). Define qi2 , qf2 similarly for a2(. . .). Let Xj1 be the symbol that
a1 pops and Xj2 be the symbol that a2 pops. Define a1 ≺ a2 iff (a) either i1 < i2,
(b) or i1 = i2 and f1 < f2, (c) or i1 = i2, f1 = f2 and j1 > j2. First, note that
the label a of the root of t (case 1) only occurs in the root as there is no action
of P pushing S. Second, relying on cases 2 to 5, we observe that every pair of
non-leaf subtrees a1(. . .) and a2(. . .) (excluding the root) such that a1(. . .) is the
parent node of a2(. . .) verifies a1(. . .) ≺ a2(. . .). Using the transitive property of
the strict partial order ≺, we conclude that everypair of subtrees a1(. . .) and
a2(. . .) in p such that a1(. . . a2(. . .) . . .) verifies a1(. . .) ≺ a2(. . .). Therefore, no
repeated variable can occur in p (contradiction). We conclude that t is finite.

The reader can observe that t = a(. . .) verifies all conditions of the definition
of actree (Definition 1) and the initial ID enables a, thus it is an accepting actree
of P . Since we also showed that no other tree can be defined using the actions
of P , t is unique.

Finally, we give a lower bound on the length of the word consumed by t. To
this aim, we prove that d(t) = n2 k. Then since all actions consume input symbol

b, Lemma 5 shows that the word bN consumed is such that N ≥ 2n
2 k.

Note that, if a subtree of t verifies case 1 or 3, its dimension remains the
same w.r.t. its children subtrees. Otherwise, the dimension always grows. Recall
that all cases from 1 to 5 describe a set of labels that does occur in t. Also, as
t is unique, no path from the root to a leaf repeats a label. Thus, to compute
the dimension of t is enough to count the number of distinct labels of t that are
included in cases 2, 4 and 5, which is equivalent to compute the size of the set

D = {(qi, Xj) ↪→ (qi, Xj−1 rm siXj−1 rm) | 1 ≤ j ≤ k, 0 ≤ i,m ≤ n− 1} .

Clearly |D| = n2 k from which we conclude that d(t) = n2 k. Hence, |t| ≥ 2n
2 k

and therefore t consumes a word bN where N ≥ 2n
2 k since each action of t

consumes a b. ut

The reader can find in the Appendix a depiction of the accepting actree
corresponding to P (2, 1).

Theorem 9. For each n ≥ 1 and p > 2n+ 4, there is a PDA with n states and
p stack symbols for which every Parikh-equivalent CFG has Ω(n2(p − 2n − 4))
variables.

Proof. Consider the family of PDAs P (n, k) with n ≥ 1 and k ≥ 1 described in
Definition 7. Fix n and k and refer to the corresponding member of the family
as P .

9

First, Lemma 8 shows that L(P) consists of a single word bN with N ≥ 2n
2 k.

It follows that a language L is Parikh-equivalent to L(P) iff L is language-
equivalent to L(P).

Let G be a CFG such that L(G) = L(P). The smallest CFG that generates
exactly one word of length ` has size Ω(log(`)) [2, Lemma 1], where the size of
a grammar is the sum of the length of all the rules. It follows that G is of size
Ω(log(2n

2k)) = Ω(n2k). As k = p− 2n− 4, then G has size Ω(n2(p− 2n− 4)).
We conclude that G has Ω(n2 (p− 2n− 4)) variables. ut

Remark 10. According to the classical conversion algorithm, every CFG that is
equivalent to P (n, k) needs at least n2(k + 2n + 4) ∈ O(n2k + n3) variables.
On the other hand, Theorem 9 shows that a lower bound for the number of
variables is Ω(n2k). We observe that, as long as n ≤ Ck for some positive
constant C, the family P (n, k) shows that the conversion algorithm is optimal 9

in the number of variables when assuming both language and Parikh equivalence.
Otherwise, the algorithm is not optimal as there exists a gap between the lower
bound and the upper bound. For instance, if n = k2 then the upper bound is
O(k5 + k6) = O(k6) while the lower bound is Ω(k5).

4.2 The Case of Unary Deterministic Pushdown Automata

We have seen that the classical translation from PDA to CFG is optimal in
the number of grammar variables for the family of unary nondeterministic PDA
P (n, k) when n is in linear relation with respect to k (see Remark 10). How-
ever, for unary deterministic PDA (UDPDA for short) the situation is different.
Pighizzini [10] shows that for every UDPDA with n states and p stack symbols,
there exists an equivalent CFG with at most 2np variables. Although he gives
a definition of such a grammar, we were not able to extract an algorithm from
it. On the other hand, Chistikov and Majumdar [3] give a polynomial time al-
gorithm that transforms a UDPDA into an equivalent CFG going through the
construction of a pair of straight-line programs. The size of the resulting CFG
is linear in that of the UDPDA.

We propose a new polynomial time algorithm that converts a UDPDA with
n states and p stack symbols into an equivalent CFG with O(np) variables. Our
algorithm is based on the observation that the conversion algorithm from PDAs
to CFGs need not consider all the triples in (1). We discard unnecessary triples
using the saturation procedure [1, 6] that computes the set of reachable IDs.

For a given PDA P with q ∈ Q and X ∈ Γ , define the set of reachable IDs
RP (q,X) as follows:

RP (q,X) = {(q′, β) | ∃(q,X) ` · · · ` (q′, β)} .

9 Note that if n ≤ Ck for some C > 0 then the n3 addend in O(n2k + n3) becomes
negligible compared to n2k, and the lower and upper bound coincide.

10

Lemma 11. If P is a UDPDA then the set {I ∈ RP (q,X) | stack(I) = ε} has
at most one element for every state q and stack symbol X.

Proof. Let P be a UDPDA with Σ = {a}. Since P is deterministic we have that
(i) for every q ∈ Q,X ∈ Γ and b ∈ Σ ∪ {ε}, |δ(q, b,X)| ≤ 1 and, (ii) for every
q ∈ Q and X ∈ Γ , if δ(q, ε,X) 6= ∅ then δ(q, b,X) = ∅ for every b ∈ Σ.

The proof goes by contradiction. Assume that for some state q and stack sym-
bol X, there are two IDs I1 and I2 in RP (q,X) such that stack(I1) = stack(I2) =
ε and state(I1) 6= state(I2).

Necessarily, there exists three IDs J , J1 and J2 with J1 6= J2 such that the
following holds:

(q,X) ` · · · `J `a J1 ` · · · ` I1
(q,X) ` · · · `J `b J2 ` · · · ` I2 .

It is routine to check that if a = b then P is not deterministic, a contradiction.
Next, we consider the case a 6= b. When a and b are symbols, because P is a
unary DPDA, then they are the same, a contradiction. Else if either a or b is
ε then P is not deterministic, a contradiction. We conclude from the previous
that when stack(I1) = stack(I2) = ε, then necessarily state(I1) = state(I2) and
therefore that the set {I ∈ RP (q,X) | stack(I) = ε} has at most one element.

ut

Intuitively, Lemma 11 shows that, when fixing q and X, there is at most one
q′ such that the triple [qXq′] generates a string of terminals. We use this fact to
prove the following theorem.

Theorem 12. For every UDPDA with n states and p stack symbols, there is
a polynomial time algorithm that computes an equivalent CFG with at most np
variables.

Proof. The conversion algorithm translating a PDA P to a CFG G computes
the set of grammar variables {[qXq′] | q, q′ ∈ Q,X ∈ Γ}. By Lemma 11, for each
q and X there is at most one variable [qXq′] in the previous set generating a
string of terminals. The consequence of the lemma is twofold: (i) For the triples
it suffices to compute the subset T of the aforementioned generating variables.
Clearly, |T | ≤ np. (ii) Each action of P now yields a single rule in G. This
is because in (2) there is at most one choice for r1 to rd, hence we avoid the
exponential blowup of the runtime in the conversion algorithm. To compute T
given P , we use the polynomial time saturation procedure [1, 6] which given
(q,X) computes a FSA for the set RP (q,X). Then we compute from this set the
unique state q′ (if any) such that (q′, ε) ∈ RP (q,X), hence T . From the above
we find that, given P , we compute G in polynomial time. ut

Up to this point, we have assumed the empty stack as the acceptance con-
dition. For general PDA, assuming final states or empty stack as acceptance
condition induces no loss of generality. The situation is different for determin-
istic PDA where accepting by final states is more general than empty stack.

11

For this reason, we contemplate the case where the UDPDA accepts by final
states. Theorem 13 shows how our previous construction can be modified to
accommodate the acceptance condition by final states.

Theorem 13. For every UDPDA with n states and p stack symbols that accepts
by final states, there is a polynomial time algorithm that computes an equivalent
CFG with O(np) variables.

Proof. Let P be a UDPDA with n states and p stack symbols that accepts
by final states. We first translate P = (Q,Σ, Γ, δ, q0, Z0, F)10 into a (possibly
nondeterministic) unary pushdown automaton P ′ = (Q′, Σ, Γ ′, δ′, q′0, Z

′
0) with

an empty stack acceptance condition. In particular, Q′ = Q ∪ {q′0, sink}; Γ ′ =
Γ ∪ Z ′0; and δ′ is given by

δ ∪ {(q′0, Z ′0) ↪→ε (q0, Z0 Z
′
0)}

∪ {(q,X) ↪→ε (sink , X) | X ∈ Γ ′, q ∈ F}
∪ {(sink , X) ↪→ε (sink , ε) | X ∈ Γ ′} .

The new stack symbol Z ′0 is to prevent P ′ from incorrectly accepting when P
is in a nonfinal state with an empty stack. The state sink is to empty the stack
upon P entering a final state. Observe that P ′ need not be deterministic. Also, it
is routine to check that L(P ′) = L(P) and P ′ is computable in time linear in the
size of P . Now let us turn to RP ′(q,X). For P ′ a weaker version of Lemma 11
holds: the set H = {I ∈ RP ′(q,X) | stack(I) = ε} has at most two elements for
every state q ∈ Q′ and stack symbols X ∈ Γ ′. This is because if H contains two
IDs then necessarily one of them has sink for state.

Based on this result, we construct T as in Theorem 12, but this time we have
that |T | is O(np).

Now we turn to the set of production rules as defined in (2) (see Section 2).
We show that each action (q,X) ↪→b (q′, β) of P ′ yields at most d production
rules in G where d = |β|. For each state ri in (2) we have two choices, one of
which is sink . We also know that once a move sequence enters sink it cannot
leave it. Therefore, we have that if ri = sink then ri+1 = · · · = rd = sink . Given
an action, it thus yields d production rules one where r1 = · · · = rd = sink ,
another where r2 = · · · = rd = sink , . . . , etc. Hence, we avoid the exponential
blowup of the runtime in the conversion algorithm.

The remainder of the proof follows that of Theorem 12. ut

5 Parikh-Equivalent Finite State Automata

Parikh’s theorem [11] shows that every context-free language is Parikh-equivalent
to a regular language. Using this result, we can compare PDAs against FSAs
under Parikh equivalence. We start by deriving some lower bound using the
family P (n, k). Because its alphabet is unary and it accepts a single long word,
the comparison becomes straightforward.

10 The set of final states is given by F ⊆ Q.

12

Theorem 14. For each n ≥ 1 and p > 2n+4, there is a PDA with n states and p
stack symbols for which every Parikh-equivalent FSA has at least 2n

2(p−2n−4) +1
states.

Proof. Consider the family of PDAs P (n, k) with n ≥ 1 and k ≥ 1 described in
Definition 7. Fix n and k and refer to the corresponding member of the family
as P . By Lemma 8, L(P) = {bN} with N ≥ 2n

2k. Then, the smallest FSA that
is Parikh-equivalent to L(P) needs N + 1 states. As k = p− 2n− 4, we conclude

that the smallest Parikh-equivalent FSA has at least 2n
2(p−2n−4) + 1 states. ut

Let us now turn to upper bounds. We give a 2-step procedure computing,
given a PDA, a Parikh-equivalent FSA. The steps are: (i) translate the PDA into
a language-equivalent context-free grammar [9]; and (ii) translate the context-
free grammar into a Parikh-equivalent finite state automaton [4]. Let us intro-
duce the following definition. A grammar is in 2-1 normal form (2-1-NF for sort)
if each rule (X,α) ∈ R is such that α consists of at most one terminal and at
most two variables. It is worth pointing that, when the grammar is in 2-1-NF,
the resulting Parikh-equivalent FSA from step (ii) has O(4n) states where n is
the number of grammar variables [4]. For the sake of simplicity, we will assume
that grammars are in 2-1-NF which holds when PDAs are in reduced form: every
move is of the form (q,X) ↪→b (q′, β) with |β| ≤ 2 and b ∈ Σ ∪ {ε}.

Theorem 15. Given a PDA in reduced form with n ≥ 1 states and p ≥ 1 stack
symbols, there is a Parikh-equivalent FSA with O(4n

2p) states.

Proof. The algorithm to convert a PDA with n ≥ 1 states and p ≥ 1 stack
symbols into a CFG that generates the same language [9] uses at most n2p+ 1
variables if n > 1 (or p if n = 1). Given a CFG of n variables in 2-1-NF, one can
construct a Parikh-equivalent FSA with O(4n) states [4].

Given a PDA P with n ≥ 1 states and p ≥ 1 stack symbols the conversion
algorithm returns a language-equivalent CFG G. Note that if P is in reduced
form, then the conversion algorithm returns a CFG in 2-1-NF. Then, apply to G
the known construction that builds a Parikh-equivalent FSA [4]. The resulting

FSA has O(4n
2p) states. ut

Remark 16. Theorem 14 shows that a every FSA that is Parikh-equivalent to
P (n, k) needs Ω(2n

2k) states. On the other hand, Theorem 15 shows that the

number of states of every Parikh-equivalent FSA is O(4n
2(k+2n+4)). Thus, our

construction is close to optimal11 when n is in linear relation with respect to k.

We conclude by discussing the reduced form assumption. Its role is to simplify
the exposition and, indeed, it is not needed to prove correctness of the 2-step
procedure. The assumption can be relaxed and bounds can be inferred. They will
contain an additional parameter related to the length of the longest sequence of
symbols pushed on the stack.

11 As the blow up of our construction is O(4n2(k+2n+4)) for a lower bound of 2n2k, we
say that it is close to optimal in the sense that 2n2(k + 2n + 4) ∈ Θ(n2k), which
holds when n is in linear relation with respect to k (see Remark 10).

13

Acknowledgement. We thank Pedro Valero for pointing out the reference on
smallest grammar problems [2]. We also thank the anonymous referees for their
insightful comments and suggestions.

References

[1] A. Bouajjani, J. Esparza, and O. Maler. Reachability analysis of pushdown au-
tomata: Application to model-checking. In CONCUR, pages 135–150. Springer,
1997.

[2] M. Charikar, E. Lehman, D. Liu, R. Panigrahy, M. Prabhakaran, A. Sahai, and
A. Shelat. The smallest grammar problem. IEEE Transactions on Information
Theory, 51(7):2554–2576, 2005.

[3] D. Chistikov and R. Majumdar. Unary pushdown automata and straight-line
programs. In ICALP, pages 146–157. Springer, 2014.

[4] J. Esparza, P. Ganty, S. Kiefer, and M. Luttenberger. Parikh’s theorem: A simple
and direct automaton construction. IPL, pages 614–619, 2011.

[5] J. Esparza, M. Luttenberger, and M. Schlund. A brief history of strahler numbers.
In LATA, pages 1–13. Springer, 2014.

[6] A. Finkel, B. Willems, and P. Wolper. A direct symbolic approach to model
checking pushdown systems (extended abstract). Electronic Notes in Theoretical
Computer Science, 9:27–37, 1997.

[7] P. Ganty and D. Valput. Bounded-oscillation pushdown automata. EPTCS, pages
178–197, 2016. GandALF.

[8] J. Goldstine, J. K. Price, and D. Wotschke. A pushdown automaton or a context-
free grammar: Which is more economical? Theoretical Computer Science, pages
33–40, 1982.

[9] J. E. Hopcroft, R. Motwani, and J. D. Ullman. Introduction to Automata Theory,
Languages, and Computation (3rd Edition). Addison-Wesley Longman Publishing
Co., Inc., Boston, MA, USA, 2006.

[10] G. Pighizzini. Deterministic pushdown automata and unary languages. Interna-
tional Journal of Foundations of Computer Science, 20(04):629–645, 2009.

[11] J. P. Rohit. On context-free languages. Journal of the ACM, 13(4):570–581, 1966.

14

A Appendix

A.1 Proof of Lemma 5

Proof. By induction on |t|.
Base case. Since |t| = 1 necessarily t = a and d(t) = 0. Hence 1 ≥ 20.
Inductive case. Let t = a(a1(. . .), . . . , ar(. . .)) with r ≥ 1. We study two cases.
Suppose there is a unique subtree tx = ax(. . .) of t with x ∈ {1, . . . , r} such that
d(tx) = d(t). As |tx| < |t|, the induction hypothesis shows that |tx| ≥ 2d(tx) =
2d(t), hence |t| ≥ 2d(t).

Next, let r ≥ 2 and suppose there are at least two subtrees tx = ax(. . .)
and ty = ay(. . .) of t with x, y ∈ {1, . . . , r} and x 6= y such that d(tx) =
d(ty) = d(t)− 1. As |tx| < |t|, the induction hypothesis shows that |tx| ≥ 2d(tx).
Applying the same reasoning to ty we conclude from |t| ≥ |tx| + |ty| that |t| ≥
2d(tx) + 2d(ty) = 2 · 2d(t)−1 = 2d(t). ut

A.2 Disassembly of Quasi-runs

A quasi-run with more than one move can be disassembled into its first move and
subsequent quasi-runs. To this end, we need to introduce a few auxiliary defini-
tions. Given a word w ∈ Σ∗ and an integer i, define wsh(i) = (w)i+1 · · · (w)i+|w|.
Intuitively, w is shifted i positions to the left if i ≥ 0 and to the right other-
wise. So given i ≥ 0, we will conveniently write w�i for wsh(i) and w�i for
wsh(−i). Moreover, set w� = w�1

. For example, a�1
= a�1

= ε, abcde�3
= de,

abcde�3
= ab, w = (w)1 · · · (w)i w�i

and w = w�i
(w)|w|−i+1 · · · (w)|w| for

i > 0.
Given an ID I and i > 0 define I�i

= (state(I), tape(I), stack(I)�i
) which,

intuitively, removes from I the i bottom stack symbols.

Lemma 17 (from [7]). Let r = I0 ` · · · ` In, be a quasi-run. Then we can
disassemble r into its first move I0 ` I1 and d = |stack(I1)| quasi-runs r1, . . . , rd
each of which is such that

ri = (Ipi−1
)�ni

` · · · ` (Ipi
)�ni

.

where p0 ≤ p1 ≤ · · · ≤ pd are defined to be the least positions such that p0 = 1
and stack(Ipi

) = stack(Ipi−1
)� for all i. Also ni = |stack(Ipi

)| for all i, that is ri
is a quasi-run obtained by removing from the move sequence Ipi−1

` · · · ` Ipi
the

ni bottom stack symbols leaving the stack of Ipi empty and that of Ipi−1 with one
symbol only. Necessarily, pd = n and each quasi-run ri starts with (stack(I1))i
as its initial content.

Example 18. Recall the PDA P described in Example 2. Consider the quasi-run:

r = (q0, X1) ` (q0, X0X0) ` (q1, X1 ? X0) ` (q1, X0X0 ? X0) ` (q1, X0 ? X0) `
(q1, ?X0) ` (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?) ` (q1, X0 ?) ` (q1, ?) ` (q0, ε) .

15

We can dissasemble r into its first move I0 ` I1 = (q0, X1) ` (q0, X0X0) and
d = 2 quasi-runs r1, r2 such that

r1 = (Ip0
)�n1

`∗ (Ip1
)�n1

p0 = 1, p1 = 6, n1 = |stack(I6)| = 1

= (I1)�1
`∗ (I6)�1

= (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?) `
(q1, X0 ?) ` (q1, ?) ` (q0, ε)

r2 = (Ip1
)�n2

`∗ (Ip2
)�n2

p1 = 6, p2 = 11, n2 = |stack(I11)| = 0

= (I6)�0 ` (I11)�0

= (q0, X0) ` (q1, X1 ?) ` (q1, X0X0 ?) `
(q1, X0 ?) ` (q1, ?) ` (q0, ε) .

Note that for each quasi-run ri (i = 1, 2), the stack of (Ipi
)�ni

is empty and
that of (Ipi−1

)�ni
contains one symbol only. Also, pd = p2 = n = 11 and each

ri starts with (stack(I1))i as its initial content.

A.3 Assembly of Quasi-runs

Now we show how to assemble a quasi-run from a given action and a list of
quasi-runs. We need the following notation: given I and w ∈ Γ ∗, define I • w =
(state(I), stack(I)w).

Lemma 19. Let a = (q,X) ↪→ (q′, β1 . . . βd) be an action and r1, . . . , rd be d ≥ 0
quasi-runs with ri = Ii0 ` Ii1 ` · · · ` Iini

for all i, such that
– the first action of ri pops βi for every i;
– the target state of last action of ri (a when i = 0) is the source state of first

action of ri+1 for all i ∈ {1, . . . , d− 1}.
Then there exists a quasi-run r given by

(q,X) ` (q′, β1 . . . βd) ` (I11 • β2 . . . βd) ` · · · ` (I1n1
• β2 . . . βd) ` · · ·

` (I`1 • β`+1 . . . βd) ` · · · ` (I`n`
• β`+1 . . . βd) ` · · ·

` (Id1 • ε) ` · · · ` (Idnd
• ε) . (3)

A.4 Proof of Theorem 6

Proof. To prove the existence of a one-to-one correspondence we show that:
1. Each quasi-run must be paired with at least one actree, and viceversa.
2. No quasi-run may be paired with more than one actree, and viceversa.

1. First, given a quasi-run r of P , define a tree t inductively on the length of r.
We prove at the same time that (4) holds for t which we show is an actree.

t and the sequence of actions of r coincide. (4)

16

For the base case, necessarily r = I0 ` I1 and we define t as the leaf labeled by
the action I0 ↪→ I1. Clearly, t satisfies (4), hence t is an actree (t trivially verifies
Definition 1).

Now consider the case r = I0 ` I1 ` · · · ` In where n > 1, we de-
fine t as follows. Lemma 17 shows r disassembles into its first action a and
d = |stack(I1)| ≥ 1 quasi-runs r1, . . . , rd. The action a labels the root of t which
has d children t1 to td. The subtrees t1 to td are defined applying the induction
hypothesis on the quasi-runs r1 to rd, respectively. From the induction hypothe-
sis, t1 to td are actrees and each sequence ti coincide with the sequence of actions
of the quasi-run ri. Moreover, Lemma 17 shows that the state of the last ID of
ri coincides with the state of the first ID of ri+1 for all i ∈ {1, . . . , d− 1}. Also,
the state of the first ID of r1 coincides with the state of I1. We conclude from
above that t satisfies (4) and that t is an actree since it verifies Definition 1.

Second, given an actree t of P , we define a move sequence r inductively on
the height of t. We prove at the same time that (4) holds for r which we show is
a quasi-run. For the base case, we assume h(t) = 0. Then, the root of t is a leaf
labeled by an action a = I0 ↪→ I1 and we define r = I0 ` I1. Clearly, r satisfies
(4) and is a quasi-run.

Now, assume that t has d children t1 to td, we define r as follows. By the
induction hypothesis, each subtree ti for all i ∈ {1, . . . , d} defines a quasi-run
ri verifying (4). The definition of actree shows that the root of t pushes β1 to
βd which are popped by its d children. By induction hypothesis each ri for all
i ∈ {1, . . . , d} thus starts by popping βi. Next it follows from the induction
hypothesis and the definition of actree that the target state of the action given
by the last move of ri coincides with the source state of the action given by
the first move of ri+1 for all i ∈ {1, . . . , d − 1}. Moreover, the target state of a
coincides with the source state of the action given by the first move of r1. Thus,
applying Lemma 19 to the action given by the root of t and r1, . . . , rd yields the
quasi-run r that satisfies (4) following our previous remarks.
2. First, we prove that no quasi-run may be paired with more than one actree.
The proof goes by contradiction. Given a move sequence I0 ` . . . ` In, define its
sequence of actions a1 . . . an such that the move Ii ` Ii+1 is given by the action
ai+1, for all i. Note that two quasi-runs r = I0 ` . . . ` In and r′ = I ′0 ` . . . ` I ′m
are equal iff their sequences of actions coincide.

Suppose that given the actrees t and t′ with t 6= t′, there exist two quasi-
runs r and r′ such that r is paired with t and r′ is paired with t′, under the
relation we described in part 1. of this proof, and r = r′. Let t = a1, . . . , an
and t′ = a′1, . . . , a

′
m. Let p ∈ {1, . . . ,min(n,m)} be the least position in both

sequences such that ap 6= a′p. By (4), the sequences of actions of r and r′ also
differ at position p (at least). Thus, r 6= r′ (contradiction).

Second, we prove that no actree may be paired with more than one quasi-run.
Again, we give a proof by contradiction.

Suppose that given the quasi-runs r and r′ with r 6= r′, there exist two actrees
t and t′ such that t is paired with r and t′ is paired with r′, under the relation we

17

described in part 1. of the proof, and t = t′. We rely on the standard definition
of equality between labeled trees.

Suppose a1 . . . an is the sequence of actions of r and a′1 . . . a
′
m is the sequence

of actions of r′. Let p ∈ {1, . . . ,min(n,m)} be the least position such that
ap 6= a′p. By (4), t and t′ also differ at position p (at least). Then, t 6= t′

(contradiction).
ut

A.5 Example: Accepting Actree of P (2, 1)

We give a graphical depiction of the accepting actree t of P (2, 1). Recall that
P (2, 1) corresponds to the member of the family P (n, k) that has 2 states q0
and q1, and 9 stack symbols S,X0, X1, s0, s1, r0, r1, ? and $. Figure 2 represents
t which has been split for layout reasons.

(a) Top of the tree t

(q0, S) ↪→b (q0, X1 r0)

(q0, X1) ↪→b (q0, X0 r0 s0X0 r0)

t1 (q0, r0) ↪→b (q0, ε) (q0, s0) ↪→b (q0, ε) t1 (q0, r0) ↪→b (q0, ε)

(q0, r0) ↪→b (q0, ε)

(b) Subtree t1

(q0, X0) ↪→b (q0, X1 ?)

(q0, X1) ↪→b (q0, X0 r1 s0X0 r1)

t2 (q1, r1) ↪→b (q1, ε) (q1, s0) ↪→b (q0, ε) t2 (q1, r1) ↪→b (q1, ε)

(q1, ?) ↪→b (q0, ε)

(c) Subtree t2

(q0, X0) ↪→b (q1, X1 $)

(q1, X1) ↪→b (q1, X0 r0 s1X0 r0)

t3 (q0, r0) ↪→b (q0, ε) (q0, s1) ↪→b (q1, ε) t3 (q0, r0) ↪→b (q0, ε)

(q0, $) ↪→b (q1, ε)

(d) Subtree t3

(q1, X0) ↪→b (q1, X1?)

(q1, X1) ↪→b (q1, X0 r1 s1X0 r1)

(q1, X0)↪→b(q1, ε) (q1, r1)↪→b(q1, ε) (q1, s1)↪→b(q1, ε) (q1, X0)↪→b(q1, ε) (q1, r1)↪→b(q1, ε)

(q1, ?)↪→b(q0, ε)

Fig. 2: Accepting actree t of P (2, 1) split into 4 subtrees.

	Parikh Image of Pushdown Automata

