
ar
X

iv
:1

61
1.

03
68

0v
1

 [
cs

.D
B

]
 1

1
N

ov
 2

01
6

DB-Nets: on The Marriage of

Colored Petri Nets and Relational Databases

Marco Montali and Andrey Rivkin

Free University of Bozen-Bolzano, Piazza Domenicani 3, 39100 Bolzano, Italy
montali,rivkin@inf.unibz.it

Abstract. The integrated management of business processes and mas-
ter data is being increasingly considered as a fundamental problem, by
both the academia and the industry. In this position paper, we focus on
the foundations of the problem, arguing that contemporary approaches
struggle to find a suitable equilibrium between data- and process-related
aspects. We then propose db-nets, a new formal model that balances
such two pillars through the marriage of colored Petri nets and relational
databases. We invite the research community to build on this model, dis-
cussing its potential in modeling, formal verification, and simulation.

1 Introduction

In contemporary organizations, the integrated management of business processes
(BPs) and master data is being increasingly considered as a fundamental prob-
lem, both by academia and the industry. From the practical point of view, it has
been widely recognized that the traditional isolation between process and data
management induces a fragmentation and redundancies in the organizational
structure and its underlying IT solutions, with experts and tools solely centered
around data, and others only focusing on process management [29,17,28]. This
isolation falls short, especially when it comes to knowledge-intensive and human-
empowered processes [19,4,21]. Foundational research has witnessed a similar
trend, with completely separate fields of research either focused on the foun-
dations of data management, or the principles underlying dynamic concurrent
systems, database theory and Petri net theory being the two most prominent
representatives within such fields.

To answer the increasing demand of integrated models holistically tackling
the dynamics of a complex domain and the manipulation of data, a plethora of
approaches has emerged in the last decade. Such approaches can be classified in
two main groups, again implicitly reflecting the process-data dichotomy. A first
series of approaches comes from Petri nets, the reference formalism to represent
the control-flow of BPs, with the purpose of increasing their awareness of data.
All such models are more or less directly inspired by a class of high-level Petri
nets called Colored Petri nets (CPNs) [20,3], where colors abstractly account
for data types, and where control threads (i.e., tokens) progressing through the
net carry data conforming to colors. In their original formulation, though, CPNs

http://arxiv.org/abs/1611.03680v1

must be severely restricted when it comes to their formal analysis, in particular
requiring color domains to be finite, and in principle allowing one to get rid
of the data via propositionalization. Several data-aware fragments of high-level
Petri nets that are amenable to formal analysis even in the case of infinite color
domains have consequently been studied, ranging from nets where tokens carry
single data values (as in data- and ν-nets [23,30]), to nets where tokens are
associated to more complex data structures such as nested relations [18], nested
terms [32], or XML documents [8]. The common, main issue of al such approaches
is that data are still subsidiary to the control-flow dimension: data elements
“locally” attached to tokens, without being connected to each other by a global,
end-to-end data model. In this light, CPN-based approaches naturally support
the key notion of process instance (or case) through that of token, together with
the key notion of case attributes [31]. However, they do not lend themselves to
modeling, querying, updating, and ultimately reasoning on persistent, relational
data, like those typically maintained inside an enterprise information system.
For this reason, they are unable to suitably formalize concrete BP execution
engines, which all provide support for explicitly interconnecting a BP with an
underlying relational persistent storage [15].

The second group of foundational approaches to data-aware processes has
emerged at the intersection of database theory, formal methods and conceptual
modeling, and specularly mirrors the advantages and lacks of CPN-based solu-
tions. Such proposals go under the umbrella term of data-centric approaches [11],
and gained momentum during the last decade, in particular due to the develop-
ment of the business artifact paradigm [13], which also lead to concrete languages
and implementations [14,21]. The common denominator of all such approaches
is that processes are centered around an explicit, persistent data component
maintaining information about the domain of interest, and possibly capturing
also its semantics in terms of classes, relations, and constraints. Atomic tasks
induce CRUD (create-ready-update-delete) operations over the data component,
in turn supporting the evolution of the master data maintained therein. Propos-
als then differ in terms of the adopted data model (e.g., relational, tree-shaped,
graph-structured), and on the nature of information (e.g., whether it is com-
plete or not). For example, [9,16] focus on relational databases, while [7] refers
to XML. The main downside of data-centric process models is that they disre-
gard an explicit representation of how atomic tasks have to be sequenced over
time, only implicitly representing the control flow via (event-)condition-action
rules [16,14,9].

In this position paper, we argue that the lack of equilibrium between data-
and process-related aspects in the aforementioned proposals is a major obstacle
towards modeling, verifying, monitoring, mining, and ultimately understanding
data-aware business processes. We believe that this can only be achieved by bet-
ter balancing such two pillars. This, in turn, calls for the development of further
modeling abstractions tailored to establishing more intimate, synergic connec-
tions between CPNs and data-centric approaches. To the best of our knowledge,
the only existing proposal that makes an effort in this direction is [15]. However,

persistence layer

data logic layer

control layer

DB

ActionsQueries

View places Places Transitions

fetch update

populate trigger

Arcs
Read arcs
Rollback arcs

Fig. 1. The conceptual components of db-nets

it employs workflow nets [1] for capturing the process control flow, without lever-
aging the advanced capabilities of CPNs. Taking inspiration from [15], we then
propose db-nets, a new, balanced formal model for data-aware processes, rooted
in CPNs and relational databases. We rigorously describe the abstractions of-
fered by the model, and formalize its execution semantics. We finally invite the
research community to build on this new model, discussing its potential along
three subjects: modeling, verification, and simulation.

2 The DB-Net Model

In our formal model, called db-net, we combine the distinctive features of CPNs
and relational databases into a coherent framework, sketched in Figure 1. The
model is structured in three layers:
• persistence layer, capturing a full-fledged relational database with constraints,
and used to store background data, and data that are persistent across cases.

• control layer, employing a variant of CPNs to capture the process control-flow,
case data, and possibly the resources involved in the process execution.

• data logic layer, interconnecting in the persistence and the control layer.
Thanks to the data logic, the control layer is supported in querying the un-
derlying persistent data and tunes its own behavior depending on the obtained
answers. Furthermore, the data logic may be exploited by the control layer to up-
date the persistent data depending on the current state, the data locally carried
by tokens, and additional data obtained from the external world. We formalize
the framework layer by layer, from the bottom to the top.

2.1 Persistence Layer

The persistence layer maintains the relevant data in the domain of interest. To
this end, we rely on standard relational databases equipped with constraints,
in the spirit of [9]. First-order (FO) constraints allow for the formalization of
conventional database constraints, such as keys and functional dependencies, as
well as semantic constraints reflecting the domain of interest. Differently from
[9], though, we also consider data types, on the one hand resembling concrete
logical schemas of relational databases (where table columns are typed), and on
the other reconciling the persistence layer with the notion of “color” in CPNs.

Definition 1 (Data type, type domain). A data type D is a pair 〈∆D, ΓD〉,
where ∆D is a value domain, and ΓD is a finite set of predicate symbols. Each
predicate symbol S ∈ ΓD comes with an arity nS and an n-ary predicate SD ⊆
∆n

D that rigidly defines its semantics. A type domain is a finite set of data types.�

In the following, we use D to denote a type domain of interest, assuming that
types in D are pairwise disjoint, that is, their domains do not intersect, and
their predicate symbols are syntactically distinguished. This guarantees that a
predicate symbol S defined in some type of D, is defined only in that type, which
can be then unambiguously denoted, with slight abuse of notation, by type(S).
We also employ ∆D =

⋃

D∈D
∆D. Examples of data types are:

• string : 〈S, {=s}〉, strings with the equality predicate;
• real : 〈R, {=r, <r}〉, real numbers with the usual comparison operators;
• int : 〈Z, {=int, <int, succ}〉, integers with the usual comparison operators, as
well as the successor predicate.
We employ Definition 1 to introduce a typed relational database.

Definition 2 (Typed relation schema, arity). A D-typed relation schema

is a pair 〈R, ~D〉, where R is a relation name, and ~D is a tuple of elements from
D, indicating the data types associated to each component of R. The number
| ~D| is the arity of R. �

Definition 3 (Typed database schema). A D-typed database schema R is
a finite set of D-typed relation schemas. �

For compactness, we represent a typed relation schema 〈R, 〈D1, . . . ,Dn〉〉 using
notation R(D1, . . . ,Dn). E.g., Emp(string, string, real) models a ternary rela-
tion for employees, where the first component is a string denoting the employee
id, the second a string for her name, and the third a real for her salary.

Definition 4 (Typed database instance, active domain). Given a D-
typed database schema R, a D-typed database instance I over R is a finite
set of facts of the form R(o1, . . . , on), such that (i) R(D1, . . . ,Dn) ∈ R, and
(ii) for each i ∈ {1, . . . , n}, we have oi ∈ ∆Di

. Given a type D ∈ D, the
D-active domain of I, written AdomD(I), is the set of values in ∆D such that
o ∈ AdomD(I) if and only if o ∈ ∆D and o occurs in I. �

We now turn to queries. As query language, we resort to standard first-order
logic (FOL), interpreted under the active domain semantics [24]. This means
that quantifiers are relativized to the active domain of the database instance
of interest, guaranteeing that queries are domain-independent (actually, safe-
range): their evaluation only depends on the values explicitly appearing in the
database instance over which they are applied. Recall that this query language
is equivalent to the well-known SQL standard [6]. Since the relational structures
we consider are typed, the logic is typed as well.

Given a type domain D, we fix a countably infinite set VD of variables.
Each variable is typed. To this end, we introduce a variable typing function

type : VD → D mapping variables to their types. The typing function prescribes
that x may be substituted only by values taken from ∆type(x). For compactness,
the variable type may be explicitly shown using a colon notation x :type(x).

Definition 5 (FO(D) query). A (well-typed) FO(D) query over a D-typed
database schema R is a formula of the form:

Q ::= S(~y) | R(~z) | ¬Q | Q1 ∧Q2 | ∃x.Q, where

• for ~y = 〈y1, . . . , yn〉, we have that S/n is a predicate defined in ΓD for some
D ∈ D, and for each i ∈ {1, . . . , n}, we have that yi is either a value o ∈ ∆D,
or a variable x ∈ VD with type(x) = D;

• for ~z = 〈z1, . . . , zm〉, we have that R(D1, . . . ,Dm) is a relation defined in R,
and for each i ∈ {1, . . . ,m}, we have that zi is either a value o ∈ ∆Di

, or a
variable x ∈ VD with type(x) = Di. �

We use standard abbreviations Q1 ∨Q2 = ¬(¬Q1 ∧¬Q2), and ∀x.Q = ¬∃x.¬Q.

Definition 6 (Free variable, boolean query). A variable x ∈ VD is free in
a FO(D) query Q, if x occurs in Q but is not in the scope of any quantifier. We
use Free(Q) to denote the set of variables occurring free in Q. A boolean query
is a query without free variables. �

Given a query Q such that Free(Q) = {x1, . . . , xn}, we employ notation
Qname(x1, . . . , xn):-Q to emphasize the free variables of Q, and to fix a natu-
ral ordering over them. As usual, queries are used to extract answers from a
database instance of interest.

Definition 7 (Substitution). Given a setX = 〈x1, . . . , xn〉 of typed variables,
a substitution for X is a function θ : X → ∆D mapping variables from X into
values, such that for every x ∈ X , we have θ(x) ∈ ∆type(x). A substitution θ for
a FO(D) query Q is a substitution for the free variables of Q. �

As customary, we may view a substitution θ for a query Q simply as a tuple
of values, assuming the natural ordering over the free variables of Q. We de-
note by Qθ the boolean query obtained from Q by replacing each free variable
x ∈ Free(Q) with the corresponding value θ(x). In the following, we apply sub-
stitutions to any structure containing variables.

Definition 8 (Query entailment with active domain semantics). Given
a D-typed database schema R, a D-typed instance I over R, a FO(D) query Q
over R, and a substitution θ for Q, we inductively define the relation I entails
Q under θ with active domain semantics, written I, θ |= Q, as:

I, θ |= R(y1, . . . , yn) if R(y1, . . . , yn)θ ∈ I
I, θ |= S(y1, . . . , yn) if S(y1, . . . , yn)θ ∈ Stype(S)

I, θ |= ¬Q if I, θ 6|= Q
I, θ |= Q1 ∧Q2 if I, θ |= Q1 and I, θ |= Q2

I, θ |= ∃x.Q if there exists o ∈ Adomtype(x)(I) such that I, θ[x/o] |= Q

where θ[x/o] denotes the substitution obtained from θ by assigning o to x.1 �

1 If θ(x) is defined, its value is replaced by o, otherwise θ is extended so that θ(x) = o.

Definition 9 (Query answers). Given a D-typed database schema R, a D-
typed instance I over R, and a FO(D) query Q(x1, . . . , xn) over R, the set of
answers to Q in I, written ans(Q, I), is the set of substitutions θ from the free
variables of Q to the active domain of I, such that Q holds in I under θ:

ans(Q, I) =

{

θ : {x1, . . . , xn} →
Adomtype(x1)(I) × . . .×Adomtype(xn)(I)

∣

∣

∣

∣

I, θ |= Q

}

�

When Q is boolean, we write ans(Q, I) ≡ true if 〈〉 ∈ ans(Q, I), or ans(Q, I) ≡
false if ans(Q, I) = ∅. We are finally ready to define the persistence layer.

Definition 10 (Persistence layer). A D-typed persistence layer is a pair
〈R, E〉 where: (i)R is aD-typed database schema; (ii) E is a finite set {Φ1, ..., Φk}
of boolean FO(D) queries over R, modeling constraints over R. �

The presence of constraints calls for a definition of which database instances
are compliant by a given persistence layer, i.e., satisfy its constraints.

Definition 11 (Compliant database instance). Given a D-typed persis-
tence layer P = 〈R, E〉 and a D-typed database instance I, we say that I
complies with P if: (i) I is defined over R; (ii) I satisfies all constraints in E ,
that is, ans(

∧

Φ∈E Φ, I) ≡ true. �

Example 1. The persistence layer P = 〈R, E〉 is a fragment of an information system
used by a company to handle the submission of tickets, and their management by
employees. R employs types string and int to define the following relation schemas:
• Emp(string) lists employee (names);
• Ticket(int, string) models ticket (identifiers) and their description;
• Resp(string, int) models which employees handle which tickets: Resp(e, 1) indicates

that the employee named e is responsible for ticket number 1.
• Log(int, string, string) represents a log table storing information about all the tick-

ets processed so far, also listing their responsible employees and their description.
The persistence layer is also equipped with a set of constraints over R, expressing
(primary) keys, foreign keys, functional dependencies, and multiplicity constraints.
E.g., the ticket number provides the primary key for Ticket , the second component of
Resp references the primary key of Ticket , and each employee can handle at most one

ticket at a time. It is well-known that such constraints can be formalized in FO [6]. E.g.,
the latter constraint may be formalized as: ∀e, t1, t2.Resp(e, t1)∧Resp(e, t2) → t1 = t2.

2.2 Data Logic Layer

The data logic layer provides a bidirectional “interface” to interact with a
database instance complying with a persistence layer of interest. On the one
hand, the data logic allows one to extract data from the database instance using
queries. On the other hand, it allows one to update the database instance, adding
and deleting possibly multiple facts at once, with a transactional semantics: if
the new database instance obtained after the update is still compliant with the
persistence layer, the update is committed, otherwise it is rolled back. This ap-
proach is in line with how database management systems operate in practice.

To query the database instance, we use FO(D) queries as in Definition 5. To
update the database instance, we instead resort to the literature on data-centric
processes [33,11], where actions are typically used to apply CRUD (create-read-
update-delete) operations over a relational database. Specifically, we adopt a
minimalistic approach, keeping the actions as simple as possible. The approach
is inspired by the well-known STRIPS language for planning, which has been
adopted also in for data-centric processes [5]. More sophisticated forms of actions,
as those in [9], can be seamlessly introduced.

Definition 12 (Action). A (parameterized) action over a D-typed persistence
layer 〈R, E〉 is tuple 〈n, ~p, F+, F−〉, where: (i) n is the action name; (ii) ~p is a
tuple of pairwise distinct typed variables from VD, denoting the action (formal)
parameters. (iii) F+ and F− respectively represent a finite set of R-facts over
~p, to be added to and deleted from the current database instance. Given a typed
relation R(D1, . . . ,Dn) ∈ R, an R-fact over ~p has the form R(y1, . . . , yn), such
that for every i ∈ {1, . . . , n}, yi is either a value o ∈ ∆Di

, or a variable x ∈ ~p
with type(x) = Di. An R-fact is an R-fact for some relation R from R. �

To access the different components of an action α = 〈n, ~p, F+, F−〉, we use a dot
notation: α·name = n, α·params = ~p, α·add = F+, and α·del = F−.

We now turn to the semantics of actions. Actions are executed by grounding
their parameters to values. Given an action α and a (parameter) substitution
θ for α, we call action instance αθ the (ground) action resulting from α by
substituting its parameters with corresponding values, as specified by θ.

Definition 13 (Action instance application). Let P = 〈R, E〉 be aD-typed
persistence layer, I be a D-typed database instance I compliant with D, α be
an action over P , and θ be a substitution for action·params. The application
of αθ on I, written apply(αθ, I), is a database instance over R obtained as
(I\F−

αθ)∪F
+
αθ, where: (i) F

−
αθ =

⋃

R(~y)∈α·del R(~y)θ; (ii) F+
αθ =

⋃

R(~y)∈α·add R(~y)θ.

We say that αθ can be successfully applied to I if apply(αθ, I) complies with
P . �

The application of an action instance amounts to ground all the facts contained
in the definition of the action as specified by the given substitution, then ap-
plying the update on the given database instance, giving priority to additions
over deletions (this is a standard approach, which unambiguously handles the
situation in which the same fact is asserted to be added and deleted).

The data logic simply exposes a set of queries and a set of actions that can
be used by the control layer to obtain data from the persistence layer, and to
induce updates on the persistence layer.

Definition 14 (Data logic layer). Given a D-typed persistence layer P , a D-
typed data logic layer over P is a pair 〈Q,A〉, where: (i) Q is a finite set of FO(D)
queries over P ; (ii) A is a finite set of actions over P . �

Example 2. We make the scenario of Example 1 operational, introducing a data logic
layer L over P . L exposes two queries to inspect the persistence layer:

• Qe(e):-Emp(e) ∧ ¬∃t.Resp(e, t), to extract idle employees;
• Qt(t, d):-Ticket(t, d), to extract tickets and their description.
In addition, L provides three main functionalities to manipulate tickets in persistence
layer: ticket registration, assignment/release, and logging. Such functionalities are re-
alized through four actions (where, for simplicity, we blur the distinction between an
action and its name). The registration of a new ticket is managed by an action reg

that, given an integer t, and two strings e and d, (reg·params = 〈t , e, d〉, simultane-
ously creates a ticket identified by t and described by d into the persistence layer, and
assigns the employee identified by e to such ticket (thus making her busy):

reg·del = {Emp(e, idle)} reg·add = {Ticket(t , d),Resp(e, t)}

Two specular actions assign and release are exposed to assign or release a ticket
to/from an employee, making her busy or idle. Both actions take as input a string for
the employee name and an integer for a ticket it (assign·params = release·params =
〈e, t〉), and update e by removing or adding that e is responsible of t:

release·del = assign·add = {Resp(e, t)} release·add = assign·del = ∅

Finally, an action log with log·params = 〈t , e, d〉 is exposed to flush the information
related to a ticket into a log table. The action erases all information about the ticket,
and logs that it has been processed, also recalling its employee and description:

log·del = {Ticket(t , d),Resp(e, t)} log·add = {Log(t , e, d)}

2.3 Control Layer

The control layer employs a variant of CPNs to capture the process control flow,
and how it interacts with an underlying persistence layer through the function-
alities provided by the idata logic. The spirit is to conceptually ground CPNs
by adopting a data-oriented approach. This is done by introducing dedicated
constructs exploiting such functionalities, as well as simple, declarative patterns
to capture the typical token consumption/creation mechanism of CPNs.

Before introducing the different constitutive elements of the control layer
together with their graphical appearance, we fix some preliminary notions. We
consider the standard notion of a multiset. Given a set A, the set of multisets over
A, written A⊕, is the set of mappings of the form m : A → N. Given a multiset
S ∈ A⊕ and an element a ∈ A, S(a) ∈ N denotes the number of times a appears
in S. Given a ∈ A and n ∈ N, we write an ∈ S if S(a) = n. We also consider the
usual operations on multisets. Given S1, S2 ∈ A⊕: (i) S1 ⊆ S2 (resp., S1 ⊂ S2)
if S1(a) ≤ S2(a) (resp., S1(a) < S2(a)) for each a ∈ A; (ii) S1 + S2 = {an |
a ∈ A and n = S1(a) + S2(a)}; (iii) if S1 ⊆ S2, S2 − S1 = {an | a ∈ A and n =
S2(a)− S1(a)}; (iv) given a number k ∈ N, k · S1 = {akn | an ∈ S1}.

2

Places. The control layer contains a finite set P of places, which in turn are
classified in two groups. On the one hand, so-called control places play the role
of standard places in classical Petri nets: they represent conditions/states of a

2 Hence, given a multiset S, we have 0 · S = ∅.

dynamic system. On the other hand, so-called view places are used as an interface
to the underlying persistence layer, so as to make the persistent data available
to the control layer. We then have P = Pc ⊎ Pv, where Pc and Pv respectively
denote the set of control and view places. Graphically, we depict control places
using the standard notation: . We instead decorate view places as: .

In the spirit of CPNs, the control layer assigns to each place a color, which
in turn combines one or more data types from a type domain D. Formally, a
D-color is a cartesian product D1 × . . .×Dm, where for each i ∈ {1, . . . ,m}, we
have Di ∈ D. We denote by Σ the set of all possible D-colors.

Definition 15 (Color assignment). A D-color assignment over places P is a
function color : P → Σ mapping each place p ∈ P to a correspondingD-color.�

As for control places, it is well-known that the coloring mechanism can be ex-
ploited to realize a plethora of conceptual abstractions on top of the control flow.
We mention here the two most important abstractions in our setting: (i) cases
and their data, and (ii) resource. A case represents a specific process instance,
and its case data [31] are local data whose scope is the case itself, and that are
used to store important information for the progression of the case. Such data
may be either extracted from the underlying persistence layer, or obtained by
interacting with the external environment (e.g., human users, external services,
or data generators). Resources represent actors able to handle the execution of
tasks. They are also typically associated to data attributes (e.g., id, role, group).
Tasks typically consume (certain kinds of) resources when executed, and this
implicitly affect the degree of concurrency in the progression of cases, as well as
the possibility of spawning new cases.

The fact that control places are colored implies that whenever a token is
assigned to a control place, it must carry a data tuple whose types match
component-wise the place color. It is worth noting that a colored place may
be interchangeably considered as a specific state/condition within the control
layer, or as a special relation schema used to enrich the persistence layer with
control-related information. Similarly, a token distributed over a place may be
interchangeably seen as a thread of control located in that state, or as a tuple
assigned to the relation schema represented by that place.

As discussed above, control places host tokens carrying local data. Obviously,
the control layer also requires to query persistent data, using them to decide how
to route tokens when it comes to business decisions, or to assign them to case
data. We want to support both possibilities, but clearly separating the data
retrieved from the persistence layer, from those carried by tokens. This is why
we distinguish view places from control places. Each view place exposes to the
control layer a portion of the data stored in the persistence layer. Formally, this
is done by equipping the view place with a query defined in the data logic layer.

Definition 16 (Query assignment). Given a data logic layer L = 〈Q,A〉, a
query assignment from view places Pv to queries Q is a function query : Pv → Q
mapping each view place p ∈ Pv with color(p) = D1 × . . . × Dn to a query

Q(x1, . . . , xn) from Q, such that the color of p component-wise matches with the
types of the free variables in Q: for each i ∈ {1, . . . , n}, we have Di = type(xi).�

A view place may be seen as a normal place, whose color is implicitly obtained
by the types of the free variables of the query, considered with their natural
ordering. However, tokens are not arbitrarily attached to it: at a given time, the
tokens it contains represent the answers to the query it is associated to. All such
tokens are only “virtually” present in the control layer, and in fact they cannot
be consumed within the control layer itself, but only accessed in a read-only way.
Notice, however, that the content of the view place is not immutable: it changes
whenever the data it fetches from the persistence layer are updated.

Transitions. As customary, in our model transitions represent atomic units of
work within the control layer, thus providing the fundamental building block to
describe the dynamics of a process. As usual, they are depicted using a square
notation: . In our setting, they simultaneously account for three different as-
pects: the token consumption/production mechanism of CPNs, the injection of
possibly fresh data from the external environment a là ν-Petri nets [30], and the
impact on the underlying persistence layer.

We start with the consumption of tokens. This is modeled through input arcs
connecting places to transitions, together with inscriptions that declaratively
match tokens and their data. To this end, we build on the approach adopted
in variants of data nets [30,23,5]: an inscription is just a multiset of tuples over
a given set of typed variables. Each tuple matches with a token present in the
input place, and the variables therein are bound, component-wise, to the data
carried by such a token. In addition, if the input place is a control place, the
token is consumed upon firing, whereas if the place is a view place, it is only
inspected. Graphically, we adopt the following conventions. An input arc from
a control place is depicted as usual: . An input arc from a view place is

instead depicted using the read-arc notation: .
The overall consumption/inspection of tokens and the data they carry along

all arcs incoming into a transition constitutes a firing mode for that transition.
In the context of a transition definition, we call a tuple of typed variables (as
well as, possibly, values) inscription. We denote the set of all possible inscriptions
over set Y as ΩY . In addition, we denote the set of variables appearing inside
an inscription ω ∈ ΩY as Vars(ω), and we extend such notation to sets and
multisets of inscriptions.

Definition 17 (Input flow). An input flow from places P to transitions T is
a function Fin : P ×T → Ω⊕

VD
assigning multisets of inscriptions (over variables

VD) to input arcs, such that all such inscriptions are compatible with their input
places. An inscription 〈x1, . . . , xm〉 is compatible with a place p if color(p) =
D1 × . . .×Dm, such that for every i ∈ {1, . . . ,m}, we have type(xi) = Di. �

Graphically, we do not depict input arcs whose inscription is ∅. We define the
input variables of t, written InVars(t) as the set of all variables occurring on
input arc inscriptions for t:

InVars(t) = {x ∈ VD | there exists p ∈ P such that x ∈ Vars(Fin(〈p, t〉))}.

The set InVars(t) gives an indication about which input data elements are
accessed when a transition fires. The multiple usage of the same variable in an
inscription, or in inscriptions attached to different arcs incident to a transition,
captures the requirement of matching the same data object in different tokens,
allowing the transition to fire only if the accessed tokens carry the same data
value. This mirrors the notion of join used when querying relational data. In
general, though, the modeler may require to specify additional constraints over
such input data to allow firing the transition. To this end, we introduce guards.

Definition 18 (Guard). A D-typed guard is a formula of the form:

ϕ ::= true | S(~y) | ¬ϕ | ϕ1 ∧ ϕ2

where, for ~y = 〈y1, . . . , yn〉 ⊆ VD, we have that S/n is a predicate defined in ΓD

for some D ∈ D, and for each i ∈ {1, . . . , n}, we have that yi is either a value
o ∈ ∆D, or a variable xi ∈ VD with type(xi) = D. �

We denote by FD the set of all possible D-typed guards. Additionally, with a
slight abuse of notation, given guard ϕ we denote by Vars(ϕ) the set of vari-
ables occurring in ϕ. Guards may be seen as the quantifier- and relation-free
fragment of FO(D) queries (cf. Definition 5). Consequently, their semantics is
inherited from Definition 8 (considering the empty database instance). Guards
are attached to transitions, and defined over their input variables, thus being an
additional filter on the data that can be matched to the input inscriptions.

Definition 19 (Transition guard assignment). A D-typed transition guard
assignment over transitions T is a function guard : T → FD assigning to each
transition t ∈ T a D-typed guard ϕ, such that Vars(ϕ) ⊆ InVars(t). �

We now concentrate on the effect of firing a transition, which may simul-
taneously impact the control layer and the underlying persistence layer. Such
an effect is tuned by the input variables attached to the transition, as well as
additional data obtained from the external environment. Injection of external
data is crucial for two reasons [11,26,5]. First, during the execution of a case,
input data may be dynamically acquired from human users or external services,
and used later on; this is, e.g., what happens when a user form needs to be filled
before continuing with the case execution, then deciding how to route the case
depending on the inserted data. Second, fresh identifiers may be injected into
the system, e.g., to explicitly distinguish tokens via certain data attributes, or to
insert a new tuple in the underlying database instance (which typically requires
to create a distinctive primary key for that tuple). We call these two types of ex-
ternal inputs arbitrary external inputs and fresh external inputs. To account for
arbitrary external inputs in the context of a transition, we just employ “normal”
variables distinct from those used in the input inscriptions. To account for fresh
external inputs, we employ the well-known mechanism adopted in ν-Petri nets
[30,27]. In particular, we introduce a countably infinite set ΥD of D-typed fresh

variables. To guarantee an unlimited provisioning of fresh values, we impose that
for every variable ν ∈ ΥD, we have that ∆type(ν) is countably infinite.

From now on, we fix a countably infinite set of D-typed variable XD, ob-
tained as the disjoint union of “normal” variables VD and fresh variables ΥD. In
formulae, XD = VD ⊎ ΥD. Let us first focus on the impact of transition firing
on the underlying persistence layer. This is, again, mediated by the data logic,
exploiting in particular the actions it exposes. Specifically, a transition can bind
to an action, using variables from XD as “actual” parameters. In this light, data
passing from the control to the persistence layer is captured by re-using the same
variable inside an input inscription and an action binding for the same transi-
tion. When the transition fires, actual parameters are substituted with concrete
data values, instanating the action and allowing for its further invocation.

Definition 20 (Action assignment). Given a data logic layer L = 〈Q,A〉, an
action assignment from transitions T to actionsA is a partial function act : T →
A×ΩXD∪∆D

, where act(t) maps t to an action α ∈ A together with a (binding)
inscription compatible with α. An inscription 〈y1, . . . , ym〉 is compatible with α
if α·params = 〈z1, . . . , zm〉 and, for each i ∈ {1, . . . ,m}, we have type(yi) =
type(zi) if yi is a variable from XD, or yi ∈ ∆type(zi) if yi is a value from ∆D.�

The action assignment provides a distinctive feature of our model, namely the
ability of the control layer to invoke an action applied to the underlying persis-
tence layer. This, however, does not in general guarantee that the action invo-
cation will actually turn into an update over the persistence layer. Recall in fact
that an action instance is applied transactionally: if it produces a new database
instance that is compliant with the persistence layer, the action instance suc-
ceeds and the update is committed; if, instead, some constraints is violated, the
action instance fails and the update does not take place.

Lastly, we consider the effect of transitions on the control layer itself, defining
which tokens have to produced, together with the data they will carry, and to
which places such tokens have to be assigned. This is done by mirroring the def-
inition of input flow (cf. Definition 17), with two distinctions. First, output arcs
connect transitions to control places only, as view places cannot be explicitly
modified within the control layer. Second, the inscriptions attached to output
arcs may mention not only input variables, but also: (i) values, allowing for con-
structing tokens that carry explicitly specified data; (ii) fresh variables, allowing
for constructing tokens that carry data not already present in the net, nor in the
underlying database instance.

Definition 21 (Output flow). An output flow from transitions T to control
places Pc is a function Fout : T × Pc → Ω⊕

XD∪∆D
assigning multisets of inscrip-

tions to output arcs, such that all such inscriptions are compatible with their
output places (as defined in Definition 17). �

We do not depict output arcs graphically when their inscription is ∅. We define
the output variables of t, written OutVars(t), as the set of variables occurring in

the action assignment for t (if any), and in its output arc inscriptions:

OutVars(t) = {x ∈ XD | act(t) is defined as 〈α, ω〉, and x ∈ Vars(ω)}
∪ {x ∈ XD | there exists p ∈ P such that x ∈ Vars(Fout(〈t, p〉))}.

With this notion at hand, we can obtain the external variables of transition
t as OutVars(t) \ InVars(t). Each such variable x is not bound by any in-
put inscription, and can consequently be assigned arbitrarily (if x ∈ VD), or
to a fresh value (if x ∈ ΥD). Among such variables, we explicitly refer to
the fresh variables attached to t, using notation FreshVars(t). Mathematically,
FreshVars(t) = OutVars(t)∩ΥD. As discussed before, firing a transition may in-
cur in the instantiation and invocation of an action from the data logic layer, and
the so-obtained action instance may or not result in an actual update. To raise
awareness of the control layer about these two radically different outcomes, we
introduce two separate output flows: a normal output flow, capturing the actual
effect of a transition on the control flow when its attached action succeeds, and a
rollback flow, capturing the actual effect of a transition on the control flow when
its attached action fails. With this distinction, the control layer can fine-tune its
own behavior in accordance with the transactional semantics of the persistence
layer, e.g., taking a standard or a compensation route depending on the outcome
of the action. To graphically distinguish normal output arcs from rollback output
arcs, we proceed as follows. We depict the former as usual: . Instead, we
decorate the latter with an “x”: .

We are finally in the position of defining the control layer.

Definition 22 (Control layer). A D-typed control layer over a data logic
layer L = 〈Q,A〉 is a tuple 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, where:
• P = Pc ⊎ Pv is a finite set of control places constituted by control places Pc

and view places Pv;
• T is a finite set of transitions, such that T ∩ P = ∅;
• Fin is an input flow from P to T (cf. Definition 17);
• Fout and Frb are two output flows from T to Pc (cf. Definition 21), respectively
called normal output flowand rollback flow ;

• color is a color assignment over P (cf. Definition 15);
• query is a query assignment from Pv to Q (cf. Definition 16);
• guard is a transition guard assignment over T (cf. Definition 19);
• act is an action assignment from T to A (cf. Definition 20). �

2.4 DB-nets

We now put the three layers together, providing a formal definition for db-nets.

Definition 23 (Db-net). A db-net is a tuple 〈D,P ,L,N〉, where:
• D is a type domain (cf. Definition 1);
• P is a D-typed persistence layer (cf. Definition 10);
• L is a D-typed data logic layer over P (cf. Definition 14);

Idle Employees

register

(νt, emp, descr)

CreateTicket

Active tickets

release

(tid, emp)

Stall

assign

(tid, emp)

Awake

Stalled tickets

logData

(tid, emp, id)

ResolveTickets

〈νt, emp〉 〈tid, emp〉 〈tid, emp〉

〈t
id
, e
m
p〉

〈tid, em
p〉

〈tid, emp〉

〈emp〉

〈tid, descr〉

〈t
id
, e
m
p〉

Fig. 2. The control layer of a db-net for ticket management. In CreateTicket, νt is a
fresh input variable, and descr is an arbitrary input variable.

• N is a D-typed control layer over L (cf. Definition 22). �

We close the section by equipping our running example with a control layer.

Example 3. Figure 2 shows the control layer of a db-net B, using the persistence
layer P defined in Example 1 and the data logic layer L defined in Example 2.2. The
control layer realizes a simple ticket processing workflow, where tickets are created,
manipulated, and finally resolved. In spite of its simplicity, B already shows many
distinctive features of our model. We intuitively describe the control layer moving from
left to right and from top to bottom. Each case of this process is constituted by a
ticket and its responsible employee. A ticket is created by the CreateTicket transition,
which requires the presence of an idle employee to be fired. Since this condition needs
to inspect the persistence layer so as to retrieve idle employees, we model it through a
view place associated to query Qe from L. Notice that if no employee is currently idle,
then CreateTicket is not enabled. Upon firing CreateTicket for a given idle employee,
a fresh ticket identifier is generated using fresh variable νt, and a ticket description is
obtained through the “external” input variable descr. All such data are bound to action
register, which is applied when the transition fires. Among the effects of register,
there is one asserting that the selected employee becomes responsible for the newly
created ticket. This indirectly implies that such an employee is not present anymore in
the view place for idle employees. The ticket id, together with its responsible employee,
represent the case and its data. The two control places Active Tickets and Stalled

Tickets have color int × string, and model two distinct states in which tickets may
be. Such states are important only within the evolution of cases, and are therefore not
propagated to the underlying persistence layer. An active ticket may be “stalled” if the
employee is currently unable to resolve it. Executing the stall transition has a twofold
effect. Within the control layer, the ticket is moved from active to stalled. Within
the persistence layer, its responsible employee is released. Interestingly, the relation
of responsibility is now only recalled within the control layer. A stalled ticket may be
revived, by inserting such a relation back into the persistence layer. This is captured by
the Awake transition, which mirrors the effect of the Stall transition. However, there
is a particularly interesting aspect here. When a ticket t1 is stalled, its responsible
employee e is released and becomes idle. She may be then selected as responsible of a
newly created ticket t2. Due to the constraints present in P , the indirect effect of this
situation is that t1 cannot be awaken unless t2 is either stalled or resolved. In fact,
awakening t1 in a situation where t2 is active would violate the requirement that e is

responsible of at most one ticket. For this reason, we enrich the Awake transition with
a rollback output arc, which brings back the ticket to the stalled state if it is awaken
in the “wrong” moment. For example, if t1 is awaken while t2 is active, the application
of assign applied to 〈t1, e〉 will fail, consequently bringing t1 back to stalled. Finally,
an active ticket may be resolved. This has a twofold effect. On the one hand, the token
carrying the ticket and its responsible employee is removed from the net. On the other
hand, the case information is logged into the persistence layer. However, logging also
requires to retrieve the description of the ticket. To this end, we employ a second view
place accessing tickets and their description by exploiting Qt from L. By using the same
variable tid in the two input inscriptions of the Resolve transition, we realize a join,
thus inspecting the view place and extracting the description of tid.

3 Execution Semantics

The execution semantics of a db-net simultaneously accounts for the progression
of a database instance compliant with the persistence layer of the net, and for
the evolution of a marking over the control layer of the net. Such two infor-
mation sources affect each other via the data logic layer: the database instance
exposes its own data through view places, influencing the current marking and
the enabled transitions; the marking over the control layer determines which
transitions may be fired, in turn triggering updates the database instance. We
start by formalizing the notion of marking over the control layer of the db-net.
A marking distributes tokens over the places of the net, so that each token car-
ries data that are compatible with the color of the place in which that token
resides. In this light, tokens are nothing else than tuples of values over the place
colors. In addition, the marking of a view place must correspond to the answers
obtained by issuing its associated query over the underlying database instance.

Definition 24 (Marking). A marking of a D-typed control layer N =
〈P, T, Fin, Fout, Frb, color, query, guard, act〉 is a function m : P → Ω⊕

D
map-

ping each place p ∈ P to a corresponding multiset of p-compatible tuples using
data values from D. A tuple 〈o1, . . . , on〉 is p-compatible if color(p) is of the
form 〈D1, . . . ,Dn〉, and for every i ∈ {1, . . . , n}, we have oi ∈ ∆Di

. Given a
database instance I, we say that m is aligned to I via query if the tuples it
assigns to view places exactly correspond to the answers of their corresponding
queries over I: for every view place v ∈ P and every v-compatible tuple ~o, we
have that ~o ∈ m(v) if and only if ~o ∈ ans(query(v), I). �

We mirror the notion of active domain as provided in Definition 4 to the
case of markings. Given a type D ∈ D, the D-active domain of a marking m,
written AdomD(m), is the set of values in ∆D such that o ∈ AdomD(m) if and
only if there exists p such that o occurs in m(p). From the practical point of
view, one may consider the marking of control places to be initially defined by
the modeler, and then evolved by the control layer, while the marking of view
places computed on-the-fly from the underlying database instance when needed.

In db-nets, then, both the persistence layer and the control layer are stateful:
during the execution, the persistence layer is associated to a database instance,
while the control layer to a marking aligned with that database instance.

Definition 25 (Snapshot). Given a db-net B = 〈D,P ,L,N〉 with control
layer N = 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, a snapshot of B (also
called B-snapshot) is a pair 〈I,m〉, where I is a database instance compliant
with P , and m is a marking of N aligned to I via query. �

As customary for CPNs, the firing of a transition t in a snapshot is defined
w.r.t. a so-called binding for t, that is, a substitution σ : Vars(t) → ∆D, where
Vars(t) = InVars(t) ∪ OutVars(t). However, to properly enable the firing of t,
the binding σ must guarantee a number of properties:

1. agreement with the distribution of tokens over the places, in accordance with
the inscriptions on the corresponding input arcs;

2. satisfaction of the guard attached to t;
3. proper treatment of fresh variables, guaranteeing that they are substituted

with values that are pairwise distinct, and also distinct from all the values
present in the current marking, as well as in the current database instance.

To formalize these conditions, we need the preliminary notion of inscription
binding. Given an inscription (i.e., multiset of tuples of variables) ω ∈ Ω⊕

XD∪∆D
,

and a substitution θ defined over a set X of variables containing all variables
occuring in ω, the inscription binding of ω under θ is a multiset θ⊕(ω) from
Ω⊕

D
defined as follows: 〈o1, . . . , on〉m ∈ θ⊕(ω) if and only if 〈y1, . . . , yn〉m ∈ ω,

such that for every i ∈ {1, . . . , n}, we have oi = yi if yi ∈ ∆D, or oi = θ(yi) if
yi ∈ XD. For example, given ω = {〈x, y〉2, 〈x, 1〉} and θ = {x 7→ 1, y 7→ 2}, we
have θ⊕(ω) = {〈1, 2〉2, 〈1, 1〉}.

Definition 26 (Transition enablement). Let B be a db-net with control
layer 〈P, T, Fin, Fout, Frb, color, query, guard, act〉. A transition t ∈ T is en-
abled in a B-snapshot 〈I,m〉, written 〈I,m〉[t, σ〉, if:

1. for every place p ∈ P , m(p) provides enough tokens matching those required
by inscription ω = Fin(〈p, t〉) once ω is bound by σ, i.e, σ⊕(ω) ⊆ m(p);

2. guard(t)σ is true;
3. σ is injective over FreshVars(t), thus guaranteeing that fresh variables are

assigned to pairwise distinct values by σ, and for every fresh variable ν ∈
FreshVars(t), σ(ν) /∈ (Adomtype(ν)(I) ∪ Adomtype(ν)(m)). �

Definition 27 (Induced action instance). Let N = 〈P, T, Fin, Fout, Frb,
color, query, guard, act〉 be a D-typed control layer, and let t ∈ T be a
transition of N such that act(t) = 〈α, ω〉, with α·params = 〈x1, . . . , xn〉 and
ω = 〈y1, . . . , yn〉. The action instance induced by transition t ∈ T under binding
σ, written actσ(t), is the action instance ασ′, where σ′ : α·params → ∆D is a
substitution for the formal parameters of α, defined as: for every i ∈ {1, . . . , n},
if yi ∈ ∆D, then σ′(xi) = yi; if instead yi ∈ XD, then σ′(xi) = θ(yi). �

The firing of an enabled transition under some mode has then a threefold effect.
First, all tokens present in control places that are used to match the input
inscriptions are consumed. Second, the action instance induced by the firing
is applied on the current database instance. If such an action instance can be
successfully applied, the database instance is updated accordingly; if not, the
database instance is kept unaltered (thus realizing a rollback). Third, tokens
constructed using the inscriptions on output arcs are produced, and inserted
into their target places, considering either normal output arcs or rollback arcs
depending on whether the induced action instance is successfully applied or not.

Definition 28 (Transition firing). Let B = 〈D,P ,L,N〉 be a db-net with
N = 〈P, T, Fin, Fout, Frb, color, query, guard, act〉, and s1 = 〈I1,m1〉, s2 =
〈I2,m2〉 be two B-snapshots. Let t ∈ T be a transition of N , and σ be a binding
for t, such that s1[t, σ〉. We say that t fires in s1 with binding σ producing s2,
written s1[t, σ〉s2, if the following conditions hold: given I3 = apply(actσ(t), I1),
• if I3 is compliant with P , then I2 = I3, otherwise I2 = I1;
• For every control place p ∈ P , given ωin = Fin(〈p, t〉), ωout = Fout(〈t, p〉), and
ωrb = Frb(〈t, p〉), we have

m2(p) = (m1(p)− σ⊕(ωin)) + kout · σ
⊕(ωout) + (1− kout) · σ

⊕(ωrb),

where kout = 1 if I3 is compliant with P , and kout = 0 otherwise. �

The execution semantics of a db-net is captured by a possibly infinite-state
labeled transition system (LTS) that accounts for all possible executions of the
control layer starting from an initial snapshot. States of this transition sys-
tems are db-net snapshots, and transitions model the effect of firing db-net
transitions under given bindings. Formally, the execution semantics of a db-net
B = 〈D,P ,L,N〉 with N = 〈P, T, Fin, Fout, Frb, color, query, guard, act〉 is
given in terms of an LTS ΓB = 〈S, s0,→〉, where:
• S is a possibly infinite set of B-snapshots;
• s0 is the initial B-snapshot ;
• →⊆ S × T × S is a transition relation over states, labeled by transitions T ;
• S and → are defined by simultaneous induction as the smallest sets such that:
(i) s0 ∈ S; (ii) given a B-snapshot s ∈ S, for every transition t ∈ T , binding

σ, and B-snapshot s′, if s[t, σ〉s′ then s′ ∈ S and s
t
→ s′.

4 Discussion and Conclusion

We believe that db-nets have the potential of stimulating discussion, and possibly
spawning new lines of investigation, for researchers interested in the foundations
and applications of data-aware processes. We consider in particular the impact
on modeling, verification, and simulation.

Modeling. From the modeling point of view, db-nets incorporate all typical ab-
stractions needed in data-aware business processes. In this light, our model covers
all the distinctive features of various Petri net classes enriched with data, as well

as those of data-centric processes. More formally, in terms of expressiveness, we
observe/conjecture the following correspondences. First of all, db-nets subsume
ν-PNs [30], and become expressively equivalent to ν-PNs when: (i) there is only
one unary color assigning places to the only one unordered countably infinite
data type, (ii) the data logic layer is empty. With such a restrictions, the only
modeling construct not natively provided by ν-PNs is that of arbitrary external
input, which can be however simulated using ν-PNs by following the strategy
defined in [5]. Second, db-nets are expressively equivalent to recently introduced
formal models for data-centric business processes, like DCDSs [9] and DMSs
[5]. To transform those models into a db-net, it is sufficient to realize a control
layer that simulates the application of condition-action rules. The translation of
a db-net into those models, instead, is more convoluted, but can be attacked by
leveraging the technique introduced in [27] to encode ν-PNs into DCDSs. Since
DCDSs and DMSs are expressively equivalent to the richest models for business
artifacts, such a correspondence paves the way towards the study of CPN-based
business artifacts, making approaches like that of [25] truly data-aware.

However, we also stress that db-nets go beyond the aforementioned ap-
proaches, since they conceptually componentize the different aspects of a dy-
namic system, giving first-class citizenships to relations, constraints, queries,
database access points in the process, database updates triggered by the process,
external inputs, and so on. This opens another interesting line of research, fo-
cused on understanding how to exploit db-nets from the conceptual and method-
ological point of view, as well as on their exploitation to formalize concrete BP
management systems like Bizagi, Bonita, and Camunda.

Formal Verification. It is straightforward to see that db-nets, in their full
generality, are Turing-complete, and consequently that all standard verification
tasks such as reachability, coverability, and model checking are undecidable.
However, the fact that the different aspects of a dynamic system are conceptu-
ally separated in db-nets make them an ideal model to study in a fine-grained
way how such aspects impact on undecidability and complexity of verification
tasks, and how should they be controlled to guarantee decidability/tractability.
For example, it is known from the literature that the presence of ordered vs. un-
ordered data types, and of (globally) fresh inputs, is intimately connected to the
boundaries of decidability for reachability [23]. A similar observation holds for
the presence of negation in the queries used to inspect the persistence layer, as
well as for the arity of relation schemas contained therein [5]. Interestingly, db-
nets do not only provide a comprehensive model to fine-tune all such parameters,
but also allow to study how they interact with each other.

Within this space, we consider of particular importance the case where the
db-net obeys to the so-called state-boundedness property [9,10,27]. Intuitively,
in the context of db-nets, this means that the control layer is depth- and width-
bounded [30,27], and that the underlying database instance does not simultane-
ously employ more than a pre-defined number of elements (which however may
arbitrarily change over time). Such an assumption still allows for the db-net to
visit infinitely many different snapshots along its runs, as no restriction is im-

posed on the size of the type domains, from which external inputs are borrowed.
It has been shown that model checking data-aware dynamic systems against
first-order variants of µ-calculus is indeed decidable, giving a constructive tech-
nique to carry out the verification task [9,27]. This opens up another interesting
line of investigation on how to check, or guarantee using modeling strategies,
that a db-net state-bounded, leveraging recent results [30,10,26,27].

Finally, db-nets paves the way towards the formal analysis of additional prop-
erties, which only become relevant when CPNs are combined with relational
databases. We mention in particular two families of properties. The first is re-
lated to rollbacks, so as to check whether it is always (or never) the case that a
transition induces a failing action. The second is related to the true concurrency
present in a db-net, which may contain transitions that appear to be concurrent
by considering the control layer in isolation, but have instead to be sequenced
due to the interplay with the persistence layer (and its constraints).

Simulation and Benchmarking. Since the control layer of db-nets is grounded
on CPNs, all simulation techniques developed for CPNs can be seamlessly lifted
to our setting. The result of a db-net simulation produces, as a by-product, a
final, database instance, populated through the execution of the control layer.
On the one hand, this database instance may be scaled up at one’s pleasure,
by just changing the simulation parameters. On the other hand, the obtained
database instance implicitly reflects the footprint of the control layer, which, e.g.,
inserts data in a certain order. This makes the obtained database instance much
more intriguing than one synthetically generated without considering how data
are generated over time. In this light, simulation of db-nets has the potential of
providing novel insights into the problem of data benchmarking [22], especially
in the context of data preparation for process mining [2,12].

References

1. van der Aalst, W.M.P.: Verification of workflow nets. In: Proc. of ICATPN. LNCS,
vol. 1248, pp. 407–426. Springer (1997)

2. van der Aalst, W.M.P.: Process cubes: Slicing, dicing, rolling up and drilling down
event data for process mining. In: Proc. of AP-BPM. LNCS, vol. 159, pp. 1–22.
Springer (2013)

3. van der Aalst, W.M.P., Stahl, C.: Modeling Business Processes - A Petri Net-
Oriented Approach. Cooperative Information Systems series, MIT Press (2011)

4. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: A new paradigm
for business process support. Data and Knowledge Engineering 53(2), 129–162
(2005)

5. Abdulla, P.A., Aiswarya, C., Atig, M.F., Montali, M., Rezine, O.: Recency-bounded
verification of dynamic database-driven systems. In: Proc. of PODS. ACM Press
(2016)

6. Abiteboul, S., Hull, R., Vianu, V.: Foundations of Databases. Addison Wesley
(1995)

7. Abiteboul, S., Segoufin, L., Vianu, V.: Static analysis of active XML systems. ACM
Trans. Database Syst. 34(4) (2009)

8. Badouel, E., Hélouët, L., Morvan, C.: Petri nets with semi-structured data. In:
Proc. of PN. LNCS, Springer (2015)

9. Bagheri Hariri, B., Calvanese, D., De Giacomo, G., Deutsch, A., Montali, M.:
Verification of relational data-centric dynamic systems with external services. In:
Proc. of PODS. pp. 163–174. ACM (2013)

10. Bagheri Hariri, B., Calvanese, D., Deutsch, A., Montali, M.: State boundedness in
data-aware dynamic systems. In: Proc. of KR (2014)

11. Calvanese, D., De Giacomo, G., Montali, M.: Foundations of data aware process
analysis: A database theory perspective. In: Proc. of PODS (2013)

12. Calvanese, D., Montali, M., Syamsiyah, A., Aalst, W.M.P.: Ontology-driven ex-
traction of event logs from relational databases. In: Proc. of BPI. LNCS, vol. 256
(2015)

13. Cohn, D., Hull, R.: Business artifacts: A data-centric approach to modeling busi-
ness operations and processes. IEEE Data Eng. Bull. 32(3), 3–9 (2009)

14. Damaggio, E., Hull, R., Vacuĺın, R.: On the equivalence of incremental and fixpoint
semantics for business artifacts with guard-stage-milestone lifecycles. Information
Systems 38(4), 561–584 (2013)

15. De Masellis, R., Di Francescomarino, C., Ghidini, C., Montali, M., Tessaris, S.:
Raw-sys: a practical framework for data-aware business process verification. Tech.
Rep. KRDB16-1, Free University of Bozen-Bolzano (2016)

16. Deutsch, A., Hull, R., Patrizi, F., Vianu, V.: Automatic verification of data-centric
business processes. In: Proc. of ICDT. pp. 252–267 (2009)

17. Dumas, M.: On the convergence of data and process engineering. In: Proc. of
ABDIS. LNCS, vol. 6909, pp. 19–26. Springer (2011)

18. Hidders, J., Kwasnikowska, N., Sroka, J., Tyszkiewicz, J., Van den Bussche, J.:
Dfl: A dataflow language based on petri nets and nested relational calculus. Inf.
Syst. 33(3), 261–284 (2008)

19. Hull, R.: Artifact-centric business process models: Brief survey of research results
and challenges. In: Proc. of ODBASE. pp. 1152–1163 (2008)

20. Jensen, K., Kristensen, L.M.: Coloured Petri Nets - Modelling and Validation of
Concurrent Systems. Springer (2009)

21. Künzle, V., Weber, B., Reichert, M.: Object-aware business processes: Fundamen-
tal requirements and their support in existing approaches. Int. J. of Information
System Modeling and Design 2(2), 19–46 (2011)

22. Lanti, D., Rezk, M., Xiao, G., Calvanese, D.: The NPD benchmark: Reality check
for OBDA systems. In: Proc. of EDBT. pp. 617–628. OpenProceedings.org (2015)

23. Lasota, S.: Decidability border for petri nets with data: WQO dichotomy conjec-
ture. In: Proc. of PN. LNCS, vol. 9698, pp. 20–36. Springer (2016)

24. Libkin, L.: Elements of Finite Model Theory, LNCS, vol. 7360, chap. Fixed Point
Logics and Complexity Classes. Springer (2004)

25. Lohmann, N.: Compliance by design for artifact-centric business processes. Inf.
Syst. 38(4), 606–618 (2013)

26. Montali, M., Calvanese, D.: Soundness of data-aware, case-centric processes. Int.
Journal on Software Tools for Technology Transfer (2016)

27. Montali, M., Rivkin, A.: Model checking petri nets with names using data-centric
dynamic systems. Formal Aspects of Computing pp. 1–27 (2016)

28. Reichert, M.: Process and data: Two sides of the same coin? In: Proc. of OTM.
pp. 2–19 (2012)

29. Richardson, C.: Warning: Don’t assume your business processes use master data.
In: Proc. of BPM. LNCS, vol. 6336, pp. 11–12. Springer (2010)

30. Rosa-Velardo, F., de Frutos-Escrig, D.: Decidability and complexity of petri nets
with unordered data. Theor. Comput. Sci. 412(34), 4439–4451 (2011)

31. Russell, N., ter Hofstede, A.H.M., Edmond, D., van der Aalst, W.M.P.: Workflow
data patterns: Identification, representation and tool support. In: Proc. of ER.
LNCS, vol. 3716, pp. 353–368. Springer (2005)

32. Triebel, M., Sürmeli, J.: Homogeneous equations of algebraic petri nets. In: Proc.
of CONCUR. pp. 1–14. LNCS, Springer (2016)

33. Vianu, V.: Automatic verification of database-driven systems: a new frontier. In:
Proc. of ICDT. pp. 1–13 (2009)

	DB-Nets: on The Marriage of Colored Petri Nets and Relational Databases

