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Abstract. Bone segmentation from CT images is a task that has been
worked on for decades. It is an important ingredient to several diagnos-
tics or treatment planning approaches and relevant to various diseases.
As high-quality manual and semi-automatic bone segmentation is very
time-consuming, a reliable and fully automatic approach would be of
great interest in many scenarios. In this publication, we propose a U-
Net inspired architecture to address the task using Deep Learning. We
evaluated the approach on whole-body CT scans of patients suffering
from multiple myeloma. As the disease decomposes the bone, an accu-
rate segmentation is of utmost importance for the evaluation of bone
density, disease staging and localization of focal lesions. The method was
evaluated on an in-house data-set of 6000 2D image slices taken from 15
whole-body CT scans, achieving a dice score of 0.96 and an IOU of 0.94.

1 Introduction

Fast and accurate automatic bone segmentation is important for analysis, staging
and treatment planning of various diseases like multiple myeloma. Despite several
years of research, it is still a significant challenge in some aspects [1] caused by
the inhomogeneous structure and various shapes of bones and the fact that CT
scans in clinical routine are often captured with a low dose which leads to inferior
image quality.

Bones can be assigned to four different categories based on their shape: long
bones, short bones, flat bones, and irregular bones [2]. As shown in Fig. 1 bones
are composes of three different tissue types: cortical (compact) bone, cancellous
(trabecular, spongy) bone and bone marrow. The cortical bone is the most dense
and solid part with high Hounsfield Units (HU), surrounding the bone marrow
compartment [2]. Because of the variation in density, the different types of bone
have huge differences in HU. Cancellous bone and bone marrow are less dense,
with HU being more similar to those of soft tissue like muscles. Pathological
changes in the bone, e.g., caused by multiple myeloma can influence the density
and therefore the HU of bone tissue [3].

The gold standard for bone segmentation is still semi-automated slice-by-
slice hand contouring, which is very time-consuming [4]. Fully automatic bone
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Fig. 1. CT scan of the femur. Cortical
bone appears white and surrounds the
less dense cancellous bone and the bone
marrow.

segmentation has therefore been of great interest to research for a long time.
Numerous studies can be found in literature addressing the issue, as described
by Pinheiro et al. [5] and Buie et al. [5]. In the large number of studies, a lot of
different approaches were proposed. Yet, bone segmentation is still considered
an open problem in several aspects [1].

Some authors consider bone segmentation as a local problem, concentrating
on specific bones. Krčah et al. and Younes et al. address the issue by focusing on
the femur [1,6]. Younes et al. propose primitive shape recognition and statistical
shape models. A more general approach is proposed by Pinheiro et al. [5]. They
regard it as a local problem, too. However, they are not focusing on a particular
bone, but on a user-defined region of interest, applying a level-set based pro-
tocol. Other authors like Pérez-Carrasco et al. apply more general heuristics to
whole-body scans [7], in their case continuous max-flow optimization. Further-
more, approaches are based on region growing, intensity thresholding (e.g., Buie
et al. [4]), energy minimizing spline curves, edge detection or combinations of
these algorithms. They often rely on expensive pre- and post-processing steps or
are depending on the specific initialization [8]. While deep learning algorithms
have become a methodology of choice in many areas of automatic medical image
segmentation problems [9], their performance on a bone segmentation task re-
mains to be evaluated. Some initial work can be found in the ”Bone Segmenter”
project by Kevin Mader of 4Quant1.

In this paper, we present our most recent efforts towards bone segmentation
on whole-body CT images, more specifically: low quality low dose CT scans
that were captured as part of a PET/CT study during standard assessment
for patients with multiple myeloma. We propose a network based on the U-Net
architecture by Ronneberger et al. [10]. The goal of our work is to locate and
segment cortical and cancellous tissue as well as bone marrow of long, short, flat
and irregular bones in whole-body scans of patients with multiple myeloma.

2 Materials and methods

2.1 Data

We use an in-house data-set that consists of 15 whole-body low quality CT
scans of patients diagnosed with multiple myeloma. We perform a k-fold cross-
validation with k=5, thus using 9 patients for training (≈3800 slices), 3 for
validation (≈1300 slices) and 3 for testing (≈1300 slices) in each fold. Slices are
512x512 pixels, and each scan has between 380 and 450 slices. All datasets have

1 https://github.com/4Quant/Bone-Segmenter
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an equal spacing of 0.98x0.98x4 mm3. The ground truth segmentation has been
performed by a medical expert who was provided with segmentations generated
by an intensity threshold. Slices were corrected using the segmentation plugin of
the Medical Imaging Interaction Toolkit (MITK) [11].

2.2 Architecture

We adapt the U-Net architecture that was initially proposed by Ronneberger et
al. [10] as shown in Fig. 2.2. The U-Net is a fully convolutional network with 18
convolutional layers. It consists of a downsampling and a symmetric upsampling
path and uses skip connections to fast forward features from shallow layers to
deep ones. Our model uses padded convolutions with a kernel size of 3 to keep
the spatial output dimensions equal to the input. We resized the layers to match
our image size of 512x512 pixels. The number of feature channels in the first
convolutional channel is set to 64 as proposed in the original paper and doubled
whenever the network increases in depth. We use a 2D architecture and provide
the network with axial slices as input images.

Fig. 2. U-Net architecture as proposed by Ronneberger et al. [10]. The architecture
consists of a contracting path that captures semantic information and a symmetric
expanding path that enables precise localization information [10].

2.3 Training

Data augmentation is used to more efficiently train our network given the amount
of training data [10]. We make use of ±180◦ rotations around the axial axis, as
well as randomly mirroring in x- and y-direction. We use a categorical cross-
entropy loss and an adam optimizer with a learning rate of 0.0005, β1 = 0.5,
β2 = 0.999 for our training. Our network is trained for 60 epochs with batch size
8 and 500 batches per epoch.



4 Klein et al.

3 Results

The proposed segmentation algorithm achieved a dice score of 0.96±0.02 and
an intersection over union (IOU) of 0.94±0.02. In comparison, the standard
procedure, i.e. thresholding + morphological operations, achieved a dice score of
0.85±0.04 and an IOU of 0.78±0.06.

Both, the proposed and the standard procedure, worked well for cortical bone
due to its high HU values. An example is shown in Fig. 3 for the proposed and in
Fig. 4 for the standard procedure. The main issues arose when segmenting bone
marrow and spongy bone. As expected, the standard approach did not segmented
these structures well and also often mistook the table in the images as bony
structure (see Fig. 4). These issues are partly solved by our approach. However,
performance on more complex body regions like the chest was still challenging
as the network tends to oversegment bone like tissue such as cartilage. The most
difficult task for both approaches were patients with hip or knee replacement.
Segmenting bone on the according slices is a difficult task because of the artifacts
that have similar HUs as cortical bone, and they are not represented sufficiently
frequent in our data set for the proposed method to learn how to adequately
handle such situations (see Fig. 5).

Fig. 3. The network performs best on long bones like the femur.

(a) CT image (b) ground truth (c) our segmentation

The segmentation of a whole-body CT scan (512x512x400) took about 30s
on an NVIDIA Titan X GPU.

4 Discussion

In this paper, we present a deep learning approach for the simultaneous segmen-
tation of long, short, flat and irregular bones including cortical, cancellous and
bone marrow structures. Our network achieved promising dice and IOU scores
despite the low image quality of the applied whole-body CT scans. As expected,
the segmentation of smaller bones like the ribs was more challenging, which is
probably related to the fact that only small pieces of each bone are visible on
each slice and that tey are surrounded by more complex tissue combinations (see
Fig. 6).
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Fig. 4. Segmentation created with threshold + morphological operations. The bone
marrow is not segmented and the table is mistaken with bone.

(a) CT image (b) threshold segmenta-
tion

Fig. 5. Artefacts caused by tooth crowns or artificial joints lead to imperfect segmen-
tations.

(a) CT image (b) ground truth (c) our segmentation

(d) CT image (e) ground truth (f) our segmentation

Many different bone segmentation approaches have been published so far. It
is not easy to provide a fair comparison of the different algorithms, as a lot of
the work is focused on restricted problems like the segmentation of specific bony
structures. To our knowledge, there do currently not exist any public benchmark
datasets for the problem of general bone segmentation. Pérez-Carrasco et al. [7]
presented a solution that used a continuous max-flow optimization to segment
CT images. We did not reimplement the method, but on their in-house dataset
the authors achieved a dice score of 0.91, requiring approx. 0.5s processing time
per slice (512x512 pixels).

Our network was trained on images from a single scanner only. A larger
dataset with higher heterogeneity could be established in the future to establish
a more general bone segmentation method that applies to a variety of scanners
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Fig. 6. Segmentation of smaller bones like rips is a harder task but still provides good
results.

(a) CT image (b) ground truth (c) our segmentation

and different levels of image quality. We will continue to further expand our
reference dataset and plan to develop semi-supervised approaches that leverage
unlabeled input data during learning.
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