
ar
X

iv
:1

80
3.

10
42

1v
1 

 [
cs

.C
L

] 
 2

8 
M

ar
 2

01
8

Handling Verb Phrase Anaphora with

Dependent Types and Events

Daniyar Itegulov1,2 and Ekaterina Lebedeva1 ⋆

1 Australian National University, Canberra, Australia
{daniyar.itegulov, ekaterina.lebedeva}@anu.edu.au

2 ITMO University, St. Petersburg, Russia

Abstract. This paper studies how dependent typed events can be used
to treat verb phrase anaphora. We introduce a framework that extends
Dependent Type Semantics (DTS) with a new atomic type for neo-
Davidsonian events and an extended @-operator that can return new
events that share properties of events referenced by verb phrase anaphora.
The proposed framework, along with illustrative examples of its use, are
presented after a brief overview of the necessary background and of the
major challenges posed by verb phrase anaphora.

1 Introduction

Davidson [2] observed that some verbs can imply the existence of an “action”.
For example, a sentence “John eats.” represents an action of eating. This ac-
tion can be anaphorically referred from a following sentence (e.g.: “The food is
yummy.”). Hence, a framework of natural language semantics should encompass
the notion of action and a mechanism for action reference. Davidson proposed
to equip interpretations of verbs with an additional argument for events. Then
the sentence “John eats.” is interpreted according to Davidson as ∃e.eats(e, j),
instead of eats(j).

Parsons [8] and Taylor [13] argued that the approach of event semantics
captures the notion of adverbs better than approaches based on higher-order
predicates, such as [14], and is easier to work with. For example, adverbial mod-
ifiers usually affect only the event and not the entity, as the following example
illustrates:

(1)
a. John buttered the toast slowly, deliberately, in the bathroom, with

a knife, at midnight.
b. ∃e.butter(e, j, t) ∧ slowly(e) ∧ deliberately(e) ∧ in(e,b) ∧
∃k.with(e, k) ∧ at(e,m)

Sentence (1a) contains adverbs that modify the event of buttering the toast.
The corresponding interpretation is shown in (1b).

⋆ We thank Bruno Woltzenlogel Paleo and Florrie Verity for numerous helpful discus-
sions and insightful remarks.

http://arxiv.org/abs/1803.10421v1


Additionally to adverbial modifiers, Parsons [8] described two more reasons
for introducing events as a new atomic type: perception verbs and reference to
events.

Parsons [8], furthermore, proposed a framework based on Davidson’s event
theory, called neo-Davidsonian event semantics, that extends it as follows:

– event participants are introduced via thematic roles
– state verbs, in addition to action verbs, are handled with an abstract variable
– two concepts, event holding and event culmination, are added
– events are decomposed into subevents

The differences between Davidsonian and neo-Davidsonian approaches can
be seen by comparing interpretations (1b) and (2) of Sentence (1a).

(2) ∃e.butter(e)∧agent(e, j)∧patient(e, t)∧slowly(e)∧deliberately(e)∧in(e,b)∧
∃k.with(e, k) ∧ at(e,m)

This paper proposes a framework for solving verb phrase anaphora (also
known as verb phrase ellipsis) based on the neo-Davidsonian event semantics
and on dependent types; and to adapt the existing techniques of handling the
propositional anaphora to Dependent Type Semantics framework. Dependent
types are already used to express pronominal anaphora in [1].

In Section 2, we briefly recall Dependent Type Semantics (DTS), which is a
theoretical foundation for our framework. In Section 3, we discuss major prob-
lems of interpreting verb phrase anaphora. The main contribution of this paper
is presented in Section 4, which describes an extension of the Dependent Type
Semantics, and in Section 5, which discusses an application of subtyping in the
proposed framework.

2 Recalling Dependent Type Semantics

Dynamic type semantics (DTS) proposed in [1] is a framework of discourse se-
mantics based on dependent type theory (Martin-Lf [6]). DTS follows the con-
structive, proof-theoretic approach to semantics established by Sundholm [12]
who introduced Sundholmian semantics and by Ranta [11] who introduced Type
Theoretical Grammar.

Definition 1 (Dependent function). For any (s1, s2) ∈ {(type, type), (type,
kind), (kind, type), (kind, kind)}, s ∈ {type, kind}:

A : s1

x : A

...
B : s2

(x : A) → B : s2

A : s

x : A

...
M : B

λx.M : (x : A) → B

M : (x : A) → B N : A

MN : B[N/x]



Definition 2 (Dependent pair). For any (s1, s2) ∈ {(type, type), (type,
kind), (kind, kind)}:

A : s1

x : A

...
B : s2

[

x : A
B

]

: s2

M : A N : B[M/x]

(M,N) :

[

x : A
B

] M :

[

x : A
B

]

π1M : A

M :

[

x : A
B

]

π2M : B[π1M/x]

DTS employs two kinds of dependent types (in addition to simply-typed
lambda calculus): dependent pair type or Σ-type (notation (x : A) → B(x))
and dependent function type or Π-type (notation (x : A)×B(x)). A dependent
pair is a generalization of an ordinary pair. By Curry-Howard correspondence
between types and propositions, the type (x : A) × B(x) corresponds to an
existential quantified formula ∃xA.B and to an ordinary conjunction A∧B when
x 6∈ fv(B).3 A dependent function is a generalization of an ordinary function
and the type (x : A) → B corresponds to ∀xA.B. Formal definitions are given
through inference rules in definitions 1 and 2.

A comparison between the traditional notation for dependent types and the
notation used in DTS can be seen in fig. 1.

Π-type Σ-type

Initial notation (Πx : A)B(x) (Σx : A)B(x)

DTS notation (x : A) → B(x) (x : A)×B(x),

[

x : A
B(x)

]

When x 6∈ fv(B) A → B

[

A
B

]

Fig. 1. Notation in DTS

The main atomic type in DTS is entity, which represents all entities in
a discourse. With the employment of dependent type constructors, the entity
type can be combined with additional properties. For example, (Σu : (Σx :
entity) × man(x)) × enter(π1(u)) is a valid DTS interpretation of “A man
entered”. Therefore, in contrast to traditional approaches to semantical inter-
pretation where entities are not distinguished by their types, each entity has its
own type in DTS.

In the traditional Montague model-theoretic semantics [7] a proposition de-
notes a truth value (often defined as an o-type). However, DTS does not follow
this convention and instead the meaning of a sentence is represented by a type.

3 fv(x) denotes all free variables in x.



In dependent type theory, types are defined by the inference rules, as shown in
definitions 1 and 2. The rules specify how a dependent type (as a proposition)
can be proved under a given context. Thus, the meaning of a sentence in proof-
theoretic semantics lies in its verification condition similar to the philosophy of
language by Dummett [3] [4] and Prawitz [9].

To handle anaphora resolution, DTS distinguishes two kinds of propositions:
static and dynamic. A static proposition P is called true if it is inhabited, i.e.
there exists a term of type P . A dynamic proposition is a function mapping
context-proof (a static proposition, representing the previous discourse) to a
static proposition.

@-operator is used to represent anaphora and presupposition triggers. The
operator takes the left context of dynamic propositions it is used in. For example,
Sentence (3a) can be interpreted as (3b) in DTS. The @-operator in (3b) takes a
context as an argument and tries to find a female entity (due to the interpretation
of the word “herself”) in the context passed to it.

Different @-operators can have different types (since context passed to them
can vary in its type). They are distinguished with a numerical subscript. Since
different @-operators can take differently typed contexts, the operators should
have different types as well. That is why contexts’ types of @-operators are
distinguished with a numerical subscript. The full type of @i-operator can look
like this: @i : γi → entity.

(3)
a. Mary loves herself.

b. λc.loves(m, π1(@1c :

[

x : entity
female(x)

]

))

3 Verb Phrase Anaphora

Verb phrase anaphora [10] are anaphora with an intentional omission of part of a
full-fledged verb phrase when the ellipsed part can be implicitly derived from the
context. For example, verb phrase anaphora can be observed in (4a) and (4b):

(4)
a. John left before Mary did.
b. John left. Mary did too.

In (4a), the word “did” refers to an action John did before Mary. In (4b),
the “did too” clause refers to an action which John and Mary both did. These
sentences can be interpreted in event semantics as the following logical expres-
sions:

(5)
a. ∃e.agent(e, j) ∧ left(e) ∧ ∃e′.agent(e′,m) ∧ left(e′) ∧ before(e, e′)
b. ∃e.agent(e, j) ∧ left(e) ∧ ¬∃e′.agent(e′,m) ∧ left(e′)

Furthermore, an anaphoric verb phrase can “inherit” some properties from
its referent. Consider Example (6a) where “did too” not only refers to the event
of eating performed by John, but also to properties such as “quietly” and “last
night”. Expression (6b) is the interpretation of this sentence in event semantics.



(6)
a. John quietly ate the cake last night. Mary did too.
b. ∃e.(agent(e, j) ∧ patient(e, c) ∧ ate(e) ∧ quietly(e)∧ at(e, ln)) ∧
∃e′.(agent(e′,m) ∧ patient(e′, c) ∧ ate(e′) ∧ quietly(e′) ∧ at(e′, ln))

A verb phrase anaphora may have an additional property that can ease the
choice of a correct anaphoric referent-event from the context. This phenomenon
is exemplified in (7a), where it is explicit that “too” refers to an action connected
with eating.

(7) a. John ate pasta and did not feel well. Mary ate too, but nothing happened
to her.

An ambiguity between strict and sloppy identity readings of verb phrase
anaphora described by Prust [10] is another intriguing phenomenon. Example (8)
illustrates this:

(8) a. John likes his hat. Fred does too.
b. ∃x.hat(x) ∧ owner(x, j) ∧ ∃e.like(e) ∧ agent(e, j) ∧ patient(e, x) ∧
∃e′.like(e′) ∧ agent(e′, f) ∧ patient(e′, x)

c. ∃x.hat(x) ∧ owner(x, j) ∧ ∃e.like(e) ∧ agent(e, j) ∧ patient(e, x) ∧
∃y.hat(y) ∧ owner(y, f) ∧ ∃e′.like(e′) ∧ agent(e′, f) ∧ patient(e′, y)

The anaphoric clause in the second sentence of (8a) can be interpreted as
“Fred likes John’s hat” (the sloppy identity interpretation (8b)) or as “Fred
likes Fred’s hat” (the strict interpretation (8c)). A desirable framework should
be able to provide both interpretations.

4 Events with Dependent Types

To tackle phenomena discussed in Section 3, we propose to extend DTS with
a new atomic type event for interpreting events. Then, given its left contect
c, DTS’s @-operator can be employed for retrieving a variable of type event
analogously to its original use for retrieving a referent of type entity.

As was shown by Parsons [8], event semantics can be employed to represent
propositional anaphora. An example of propositional anaphora is shown in (9a),
where “this” refers to the whole proposition expressed in the first sentence.
Formula (9b) is an interpretation of (9a).

(9)
a. John loved Mary. But Mary did not believe this.
b. ∃e.agent(e, j) ∧ patient(e,m) ∧ loved(e) ∧ ∃e′.believed(e′) ∧

agent(e′,m) ∧ patient(e′, e)

Dependent typed events allow us to handle more complex types of proposi-
tional anaphora. Similar to entities, events can have various properties provided
by their description. Assume the following three sentences appear in the same
discourse, possibly remotely from each other, but with preservation of the order:



(10)
a. Canberra was hit by a flood on Sunday.
b. The fair was held in London.
c. What happened in Canberra is surprising.

Here the anaphoric clause in Sentence (10c) refers to an event discussed ear-
lier. There are however (at least) two potential events for the reference: one given
by (10a) and another given by (10b). Since the anaphoric clause in (10c) specifies
that it refers to an event happened in Canberra, the anaphora disambiguates to
the event in (10a).

The interpretation of verb phrase anaphora is more challenging, however,
than the interpretation of propositional anaphora: an anaphoric clause in a verb
phrase anaphora usually talks about a new event that inherits properties of
another event. For example, “John left. Bob did too.” conveys two events: one
is about John leaving and the second one is about Bob leaving. In cases of
pronominal and propositional anaphora, however, there is just a reference to an
entity or an event in the context. For example in “John walks. He is slow.”,
pronoun “he” in the second sentence just refers to the entity “John” from the
first sentence.

To handle verb phrase anaphora correctly, it is not enough to just fetch a
referenced variable from the left context; instead a new variable of type event
should be introduced. This new variable copies properties from the referred
event. Furthermore, the agent of the referred event should be changed to the
current agent in the new event. This can be seen in interpretation (6b) of (6a),
where the agent John is replaced with Mary.

Although @i-operator has type γi → entity in DTS for handling pronominal
anaphora, according to DTS syntax for raw terms the operator can be of any
type. We therefore suggest a new type of @-operator that guarantees that the
returned event has a proper agent, necessary for interpreting the verb phrase
anaphora:

(11) @i : (c : γi)→ (x : entity)→

[

e : event
agent(e, x)

]

Formula (12a) is an interpretation of discourse (4b). The @1-operator in (12b)
is applied to its left context c (of type γ0) and an entity, and returns a new event
of type event with the same properties (apart from the agent property) of the
referenced event. Crucially, the event returned by @1-operator in (12b) is not
an event that was in the context previously. It is a new event with the same
properties (e.g. location, time) as a referenced event from the context, but with
a replaced agent.

(12)

a. λc.





e : event
[

left(e)
agent(e, j

]

)





b. λc.(@1c : (x : entity)→

[

e : event
agent(e, x)

]

)(m)



Note that the entity accepted by the @-operator defined in (11) is the agent
in the new event. For instance, in Example (6a), the interpretation of “did too”
using (11) would have the agent “John” of the referenced event replaced by
“Mary”, but the patient (i.e. the cake) would remain. On the other hand, there
exist cases of verb phrase anaphora where the patient in the referenced event
should be replaced. This usually depends on the voice (active or passive) of an
anaphoric clause, as can be seen from examples in (13).

(13) a. Mary is loved by John. So is Ann.
b. John loves Mary. So does Bob.

c.

























u :









e : event




agent(e, j)
[

patient(e,m)
loved(e)

]





















e′ : event




agent(e′, j)
[

patient(e′, a)
loved(e′)

]





































d.

























u :









e : event




agent(e, j)
[

patient(e,m)
loved(e)

]





















e′ : event




agent(e′,b)
[

patient(e′′′′,m)
loved(e′)

]





































The first sentences in (13a) and (13b) have the same semantics and hence
the interpretations given to them in (13c) and (13d) coincide. However, despite
both second sentences are written in the same voice as their first sentences, the
second sentences are interpreted differently. Naturally, the second sentence in
(13a) means “Ann is loved by John”, while the second sentence in (13b) means
“Bob loves Mary”. Note that they have replaced different participants of the
first sentences: in (13a) Mary (patient) was replaced by Ann and in (13b) John
(agent) was replaced by Bob.

Furthermore, an interpretation of a sentence may require both the agent and
the patient to be replaced, as for example in the sloppy reading of (8c). These
possible cases of anaphora resolution can be tackled with the judgements (15)
assuming they occur in a global context K.

Another important notion in DTS is the felicity condition. The anaphora res-
olution for @i operator is launched by type checking of the following judgement:
K, γi : type ⊢ @i : γi → type. It means that the semantical interpretation of a
sentence must be of the sort type assuming that the left context is of type γi.
A requirement of a success of the launching the type checker is called felicity
condition.

In order to preserve the original DTS invariants, we should show how felic-
ity condition is being fulfilled in the extended DTS. An example of a felicity-
judgement generated by verb phrase anaphora is shown in example (14). It is
different from the felicity condition from original DTS notion since the new
@-operator has a new type as shown in Equation 11.

(14) K, γi : type ⊢ @i : γi → (x : entity)→

[

e : event
agent(e, x)

]



Let us assume that the global context K contains the judgements from (15).
Then one should be able to type check judgements generated by the verb phrase
anaphora.

(15)
a. replaceA : (p : entity→ (e : event)→ type)→

(original : entity)→ (new : entity)→

(u :

[

e′ : event
p original e′

]

)→ (v :

[

e′′ : event
p new e′′

]

)

b. replaceP : (p : entity→ (e : event)→ type)→

(original : entity)→ (new : entity)→

(u :

[

e′ : event
p original e′

]

)→ (v :

[

e′′ : event
p new e′′

]

)

c. replaceAP : (p : entity→ entity→ (e : event)→ type)→

(oagent : entity)→ (nagent : entity)→

(opatient : entity)→ (npatient : entity)→

(u :

[

e′ : event
p oagent opatient e′

]

)→ (v :

[

e′′ : event
p nagent npatient e′′

]

)

d. j : entity

Functions replaceA, replaceP , replaceAP construct a new event v from an
existing event u. To express the inheritance of properties and the change of the
agent in replaceA (or patient in replaceP ), properties are expressed as a function
that accepts two arguments: an agent-entity (or patient-entity in replaceP ) and
an event; and returns a logical expression describing the event using the entity.
Function replaceAP accounts for cases where both an agent and a patient are
replaced.

We can now construct term @1 of type (11), to fulfill the felicity condition
of form (14), as shown in (16):

(16) K, γ0 : type ⊢ @1 : γ0 → (x : entity)→

[

e : event
agent(e, x)

]

=

λc.λx.replaceA (λy.λe.

[

left(e)
agent(e, y)

]

) j x π1π2(c)

A substitution of @1 in (12b) with its term defined in (16) leads to the
following semantical interpretation:

(17)





e′′ : event
[

left(e′′)
agent(e′′,m)

]





Since anaphora in DTS is resolved using the type checking procedure, the
verb phrase anaphora, just like the pronominal anaphora, can be resolved in
various ways. A type checking algorithm can find different terms which conform



to the specified (by felicity condition) type. For example, in order to handle
the ambiguity between strict and sloppy identity readings, which were discussed
in Example (8), our framework can provide both possible interpretations for
Sentence (8a). Term (18) shows a generic interpretation of (8a) in the proposed
framework.

(18) λc.





























u :





















v :





x : entity
[

hat(x)
owner(x, j)

]













e : event




like(e)
[

agent(e, j)
patient(e, π1(v))

]

































@1(c, u)f :

[

e′ : event
agent(e′, f)

]





























In (18), “Fred does too.” is interpreted as the term @1(c, u)f, where u stands
for the interpretation of the preceeding sentence “John likes his hat.”. Recall
from Example (8) that the latter sentence has an ambiguous meaning. (19)
defines two alternative terms for @0, one for each of the possible meanings. Note
that the type of these terms for @0 conforms with the felicity condition.

(19)

a. K ⊢@1 : γ0 → (x : entity)→

[

e′ : event
agent(e′, x)

]

=

λc.λf.replaceA (λy.λe.





like(e)
[

agent(e, y)
patient(e, x)

]



) j f π1π2π2(c)

b. K ⊢@1 : γ0 → (x : entity)→

[

e′ : event
agent(e′, x)

]

=

let p = λy.λz.λe.





like(e)
[

agent(e, y)
patient(e, z)

]





in λc.λf.





u :

[

y : entity
hat(y) ∧ owner(y, f)

]

replaceAP p j f π1π1π2(c) π1(u) π1π2π2(c)





Both terms are valid substitutions for @1-operator in (18) and they represent
strict and sloppy anaphora readings respectively. In (19b) let-in structure is used
only as a syntactical sugar for readability and is not actually a part of DTS term
syntax.

5 Subtyping

Equation in (16) (i.e. an anaphora resolution solution: a proof of existence of a
term with the required type under the global context K) is not sound: the type



of the right side of the equation is

γ0 → (x : entity)→





e′′ : entity
[

left(e′′)
agent(e′′, x)

]





while the type required by the left side is

γ0 → (x : entity)→

[

e : entity
agent(e, x)

]

The former type is more specific than the latter type because it has an additional
property “left”.

This is not a problem, as events have a natural subtyping relationship be-
tween them. As described in [5], an event whose agent is a and patient is p,
is an event with agent a. Despite a different theory underneath, the techniques
described there can be reused for subtyping events in DTS. This leads to the
following subtyping relations in event semantics:

(20)
a. EvtAP (a, p) <: EvtA(a) <: Event←→





e : event
[

agent(e, a)
patient(e, p)

]



 <:

[

e : event
agent(e, a)

]

<:

[

e : event
()

]

b. EvtAP (a, p) <: EvtP (p) <: Event←→




e : event
[

agent(e, a)
patient(e, p)

]



 <:

[

e : event
patient(e, p)

]

<:

[

e : event
()

]

Subtyping relations of events can also depend on other properties (e.g. a
loud event performed by John is also an event performed by John). We employ
Luo’s notation to define a new type EventNA(n, a), which is the type of events
with agent a and nature n. Nature is a main predicate for each event in neo-
Davidsonian semantics (e.g. “left(e)” for an event of leaving, “ate(e)” for an
event of eating).

The following transformation shows how the dependent event types in DTS
notation from (16) can be converted into dependent event types in Luo notation:

(21)

a.





e′′ : event
[

left(e′′)
agent(e′′, x)

]



←→ e′′ : EventDA(left, x)

b.

[

e : entity
agent(e, x)

]

←→ e : EventA(x)

A subtyping relationship between these types can be constructed (assuming
the appropriate subtyping rules have been added along with typeEventDA(d, a)).

left : Description x : Agent

EventDA(left, x) <: EventA(x)

The discussed subtyping relationship allows us to obtain (16).



6 Conclusion

This paper introduces dependent event types for resolving verb phrase anaphora
with DTS as the underlying framework. To tackle verb phrase anaphora, we ex-
tend DTS’s @-operator, which was originally introduced for handling pronomi-
nal anaphora. The paper also adresses strict and sloppy readings of verb phrase
anaphora and shows that each of them can be achieved solely by manipulating
the interpretation of the @-operator. The previous approaches to handling the
propositional anaphora were also adapted to DTS framework.

Techniques described in this paper could be applied to handle other cases of
anaphora, such as adjectival anaphora, modal and “do so” anaphora. Another
interesting topic would be to study specific behaviours of various thematic roles,
such as experiencer, theme and source.

References

[1] Daisuke Bekki. “Representing Anaphora with Dependent Types”. In: Logi-
cal Aspects of Computational Linguistics. Springer Berlin Heidelberg, 2014,
pp. 14–29.

[2] Donald Davidson. “The Logical Form of Action Sentences”. In: The Logic
of Decision and Action. Ed. by Nicholas Rescher. University of Pittsburgh
Press, 1967.

[3] Michael Dummett. “What is a Theory of Meaning? (II)”. In: Truth and
Meaning: Essays in Semantics. Ed. by Gareth Evans and John McDowell.
Oxford: Clarendon Press, 1976.

[4] Michael A. E. Dummett. “What is a Theory of Meaning?” In: Mind and
Language. Ed. by Samuel Guttenplan. Oxford University Press, 1975.

[5] Zhaohui Luo and Sergei Soloviev. “Dependent Event Types”. In: Logic,
Language, Information, and Computation. Ed. by Juliette Kennedy and
Ruy J.G.B. de Queiroz. Berlin, Heidelberg: Springer Berlin Heidelberg,
2017, pp. 216–228.

[6] P. Martin-Löf and G. Sambin. Intuitionistic type theory. Studies in proof
theory. Bibliopolis, 1984.

[7] Richard Montague. Formal Philosophy; Selected Papers of Richard Mon-
tague. New Haven: Yale University Press, 1974.

[8] Terence Parsons.Events in the Semantics of English: A Study in Subatomic
Semantics. MIT Press, 1990.

[9] Dag Prawitz. “Intuitionistic Logic: A Philosophical Challenge”. In: Logic
and Philosophy / Logique et Philosophie. Ed. by G. H. Von Wright. Dor-
drecht: Springer Netherlands, 1980, pp. 1–10.

[10] Hub Prüst, Remko Scha, and Martin van den Berg. “Discourse grammar
and verb phrase anaphora”. In: Linguistics and Philosophy 17.3 (1994),
pp. 261–327.

[11] Aarne Ranta. Type-theoretical Grammar. Oxford University Press, 1994.



[12] Göran Sundholm. “Proof Theory and Meaning”. In: Handbook of Philo-
sophical Logic: Volume III: Alternatives in Classical Logic. Ed. by D. Gab-
bay and F. Guenthner. Dordrecht: Springer Netherlands, 1986, pp. 471–
506.

[13] Barry Taylor. “Modes of Occurence, Verbs, Adverbs and Events”. In: Re-
vue Philosophique de la France Et de l’Etranger 176.3 (1986), pp. 406–
407.

[14] Henk J. Verkuyl. On the Compositional Nature of the Aspects. Dordrecht,
Netherlands: D.Reidel Publishing Company, 1972.


	Handling Verb Phrase Anaphora with Dependent Types and Events

