Bracket Induction for Lambek Calculus
with Bracket Modalities

Glyn Morrill', Stepan Kuznetsov®®, Max Kanovich?®®, and Andre Scedrov*®

! Universitat Politécnica de Catalunya, Barcelona, Spain; morrill@cs.upc.edu
2 Steklov Mathematical Institute of the RAS, Moscow, Russia; sk@mi.ras.ru
3 University College London, London, UK; m.kanovich@ucl .ac.uk
4 University of Pennsylvania, Philadelphia, U.S.A.; scedrov@math.upenn. edu
® National Research University Higher School of Economics, Moscow, Russia

Abstract. Relativisation involves dependencies which, although
unbounded, are constrained with respect to certain island domains. The
Lambek calculus L can provide a very rudimentary account of relativi-
sation limited to unbounded peripheral extraction; the Lambek calculus
with bracket modalities Lb can further condition this account according
to island domains. However in naive parsing/theorem-proving by back-
ward chaining sequent proof search for Lb the bracketed island domains,
which can be indefinitely nested, have to be specified in the linguistic in-
put. In realistic parsing word order is given but such hierarchical brack-
eting structure cannot be assumed to be given. In this paper we show
how parsing can be realised which induces the bracketing structure in
backward chaining sequent proof search with Lb.

Keywords: Lambek calculus with brackets, bracket induction, catego-
rial grammar

1 Introduction

Relativisation involves dependencies which can be medial as well as peripheral
and which, although unbounded, are constrained with respect to certain island
domains; furthermore these unbounded dependencies can be multiple, or par-
asitic, in a way which appears to depend on islands. The Lambek calculus L
of Lambek 1958 [9] can provide a very rudimentary account of relativisation
limited to unbounded peripheral extraction; the Lambek calculus with bracket
modalities Lb of Morrill 1992 [13] and Moortgat 1995 [11] can further condition
this account according to island domains; and the Lambek calculus with bracket
modalities and universal subexponential Lb! (after Girard 1987 [3]) accommo-
dates furthermore medial and parasitic extraction (Morrill 2017 [14]). However
in naive parsing/theorem-proving by backward chaining sequent proof search
for Lb and Lb! the bracketed island domains, which can be indefinitely nested,
have to be specified in the linguistic input. In realistic parsing word order is
given but such hierarchical bracketing structure cannot be assumed to be given.
In this paper we show how parsing can be realised which induces the bracketing
structure in backward chaining sequent proof search for Lb.

1.1 Relativisation

Relativisation is an unbounded dependency construction; the distance between
a relative pronoun (filler) and the position it binds (gap) can be unboundedly
long:

(1) a. the man that; Mary loves e;
b. the man that; John thinks Mary loves e;
c. the man that; Suzy knows John thinks Mary loves e;

Some domains are islands to relativisation and cannot be penetrated by the filler-
gap (extraction) dependency, for example adverbial phrases are weak islands
(extraction is semi-acceptable) and relative clauses themselves are strong islands
(extraction is unacceptable):

(2) a. ?the paper that; John laughed [without reading e;]
b. (?)the paper that; John went to Paris [without reading e;]
c. *the waitress that; John saw the man [that married e;]

Relativisation can be medial:
(3) the contract that; John signed e; yesterday

And although islands block singleton extractions, relativisation can have a par-
asitic gap in a weak island dependent on a non-island host gap:

(4) the paper that; John filed e; [without reading e;]
Such parasitic gaps can also appear in subjects, which are weak islands:

(5) a. ??the man that; [the friends of e;] laughed
b. the man that; [the friends of e;] praised e;

A single host gap can license parasitic gaps in multiple islands; for example:
(6) the paper that; [the editor of e;] filed e; [without reading e;]

In this paper we give an account in terms of the Lambek calculus with bracket
modalities Lb of the data of (1-2). We provide a calculus and consider a bracket-
inducing parsing/theorem-proving algorithm. We illustrate this algorithm on an
example of a lexical grammar for a small fragment of English. The input of
this algorithm is just a string (linearly ordered sequence of words), without
any bracketing information. The job of the algorithm is to induce (guess) the
correct placement of brackets, as well as to derive the resulting Lb sequent. The
algorithm relies on the assignment of types drawn from the lexical grammar.
In Section 6 we discuss the complexity of our algorithm, in comparison with
both a naive approach with brute-force guessing of the correct bracketing and
the pseudo-polynomial algorithm for theorem-proving (but not parsing) in Lb
presented in our earlier paper [5].

As for examples (3-6), their parsing involves Lb!, the extension of Lb with
the universal exponential modality, which is beyond the scope of the present
paper. For Lb!, the derivability problem in general is algorithmically undecid-
able [7]. A practically useful fragment, however, guarded by the so-called bracket
non-negative condition, was shown to be decidable [17] and to belong to the NP
complexity class [7]. In other words, despite undecidability of the whole calculus,
practical parsing with Lb! has the same complexity as for Lb without the expo-
nential. We hope to extend the results presented here from Lb to Lb! (restricted
by the bracket non-negative condition) in a subsequent paper.

Our analysis of linguistic examples in this paper follows Morrill 2011 [20]
and Morrill 2017 [14]. This paper’s purposes are mostly technical. Namely, we
present an approach that allows the parsing algorithm for Lb to induce open and
closed “symbolic” brackets by itself and therefore avoid requesting this informa-
tion (which is not part of the actual text in natural language) from the user.
Therefore, we refrain from deep discussions of the design of the lexical grammar
itself and its empirical justification. In particular, we leave beyond the scope of
this paper the subtle issues of semi-grammaticality [20, Sect. 5.4] of extraction
from weak islands; see, for instance, examples (2b) and (5a). For such examples,
Morrill 2011 [20, Sect. 5.4] suggests including further structural rules that allow
some violation of bracketing, but with a cost for such. The number of appli-
cations of such rules is supposed to be counted, and the more times they are
used the less grammatical the target sentence is considered. The modification of
the algorithm described in this paper to allow such rules is a topic for further
investigation.

1.2 Lambek Calculus with Bracket Modalities

The set T'p of types of the Lambek calculus with bracket modalities Lb is defined
in terms of a set P of primitive types as follows:

Tp:=P|()Tp|[]7'Tp | TpeTp | Tp\Tp | Tp/Tp
A configuration Config is a well-bracketed string of types:

Config ::= TreeTerm | Config, Config
TreeTerm ::= Tp | [Config]

Note that this definition builds in “Lambek’s restriction” whereby configurations
(and bracketed configurations) are non-empty. Lambek’s restriction, even in the
fragment without brackets, is motivated linguistically; otherwise we could derive
the sequent (CN/CN)/(CN/CN),CN = CN, validating grammatically incor-
rect phrases like “very book” (compare with “very interesting book”, parsed as
(CN/CN)/(CN/CN),CN/CN,CN = CN). In this paper, Lambek’s restric-
tion is crucial for the construction to work (see Section 5).

A sequent is an expression of the form Config = Tp.

1.3 Sequent Calculus for Lb

Let A(I') signify a structure A with a distinguished substructure I'. The sequent

calculus for Lb is as follows:

id I'=A

A(A) =B

A=A

Cut

A(I')= B

[A] = B
A=[]"'B

iR

I'= B

I'=B A(C)= D

A, I' = AeB

I'B=C
/R

/L

A(C/B,T) = D

Ir=A AC)=B
A(ILA\C) = B

\L

I'=C/B

AT =C

——\R
I = A\C

Moortgat 1995 [11] shows that this calculus enjoys Cut-elimination: that every
theorem has a Cut-free proof. We omit Cut in what follows.

1.4 Grammar

Consider the micro-Lb lexical grammar in Figure 1 whereby weak islands are
singly bracketed and strong islands doubly bracketed. For example, (1a) is de-
rived as follows:

N = N
— - OR
[N]= ()N S=S5
N=N [N],()N\S = S .
NLOMS)NN =S ON,[[]"*(CM\CN)] = CN
[N], (ON\S)/N = S/N ON (1717 (CN\CN)]] = CN .
CN, [[[I7'{I7'(CN\CN)/(S/N), [N], ()N\S)/N]} = CN
Examples (2a—c) are blocked because the bracket modalities require the is-
land bracketings indicated below, which prevent the hypothetical subtype of

the relative pronoun from associating into the object positions of “reading” and
“married” respectively. We discuss example (2a) in detail in Subsection 5.3.

ON= ON CN= CN
CN, CN\CN = CN

\L

ate: (()N\S)/N

built: (()N\S)/N

cat: CN

contract: CN

dog: CN

editor: CN/PP

filed: (()N\S)/N

friends: CN/PP

house: CN

in: [() N\S)\(ON\S))/N
Jack: N

John: N

killed: (()N\S)/N

knows: (()N\S)/S

laughed: ()N\S

lay: ()N\S

loves: (()N\S)/N

malt: CN

man: CN

married: (()N\S)/N

Mary: N

paper: CN

Paris: NV

praised: (()N\S)/N

rat: CN

reading: (()N\S)/N

saw: (()N\S)/N

signed: (()N\S)/N

Suzy: N

that: []=(]"1(CN\CN)/(()N\S)
that: []~[]~'(CN\CN)/(S/N)
the: N/CN

thinks: (()N\S)/S

to: PP/N

waitress: CN

went: (()N\S)/PP

without: (]~ () N\S)\(H)N\))/()N\S)
worried: (()N\S)/N
yesterday: (()N\S)\(()N\S)

Fig. 1. Lexical grammar

2 Inducing Brackets

The general strategy will be to represent symbolic half-brackets in the input by

variables for which the flow of information is propagation from endsequent to

axiom leaves and instantiation from axiom leaves to endsequent. Thus we need

a coding of brackets which represents the terminal yield of sequents in terms of

open and closed “symbolic” half-brackets which are uninstantiated bottom up.
Such antecedents are of the pattern:

(Onset Tp Offset)™

where Onset is of the form [*, Tp is a type, and Offset is of the form]*. This
formulation builds in Lambek’s restriction whereby there must be at least one
type in an antecedent and within brackets.

We represent Onsets and Offsets by lists of zeros; the length of the list is
the number of brackets. For example, [[[is coded [0,0,0],] is coded [0] and no
brackets are coded by the empty list [] ().

A symbolically bracketed antecedent A is well-bracketed (is a BI-Config), if
it is the case that at every point of A, the sum of all Onsets to the left of this
point is greater or equal than the sum of all Offsets to the left of this point, and
that for the whole A these two sums are equal.

In the following section we present the bracket inducing rules.

3 Bracket Inducing Rules

Regarding notation, in bracket inducing BI-Lb rules, we use A (and also Aq,
Ay) for sequences starting with an Onset F' and ending with an Offset G, and
2 for sequences starting and ending with types (in particular, just a singleton
type is also an £2).

All rules have a premise-to-conclusion property by which all sequents gen-
erated have well-bracketed antecedents. Fragments of the antecedent, however,
are not necessarily well-bracketed: in a sequent of the form Ay, A, Ay = B an
opening bracket in A; could have its corresponding closing bracket in As, and in
this case Ay and As are not well-bracketed. Also recall that we are working with
a Cut-free version of Lb, therefore the Cut rule is not included in the BI-Lb
calculus.

Identity axiom:

—id
0,P,0 =P

5 We use this notation because it prefigures a planned future extension to exponentials
in which onsets are coded by lists of naturals representing the size of so-called stoups;
the zeros in the coding of Lb essentially mean that here all stoups are empty.

Bracket modalities:

Al,F,A7G,A2 = B [0]@F7Q,G@[O] = B

[I7'L [I7'R
Ay, Fal0],[] 1A, [0)6G, Ay = B F,2,G=[]"'B
A Fal0), A 066G, 42 = B F.2,G= B R
AL F,()A,G, Ay = B 0)@F, 2,Go[0] = ()B

Lambek connectives: the original Lambek rules should also be modified in
order to include the new bracket induction mechanism, as shown below.

Al,F,A,(Z),Q),B,G,AQ:>D.L A=A A2:>B.R
AL F,AeB.G, Ay = D A, Ay = AeB
F,02,Gi = B Al,Fg,C,GQ,AQ:D/L A0, B,0=C
Ay, Fy,C/B,0, Fi, 2,G10Ga, Ay = D A= C/B
F,02.G,= A Ay, By, C.Go, Ay = D I 0,A,0,A=C
AL, B®F;, 2,Gy,0,A\C, Ga, Ay = D A= A\C

4 Correctness

We define a translation # : Config — BI-Config in terms of injective functions
#(0*,0*) : Config — BI-Config as follows:

(7) a. #(4) = #(0,0)(4)
b. #(F,G)(P) = F,P,G
#(F,G)([4]) = #(Fol0], [0jeG)(A)
#(F,G)(I,A) = #(F,0)(I), #(0, G)(4)

Then we have the following:
(8) Proposition (BI completeness)

Fib ' = A = Fprww #{) = A
Proof. Trivial induction on derivation in Lb. Q.E.D.
(9) Lemma (BI soundness)

Fib ' = A < Fprww #{) = A

Proof. First we show, by induction on derivation in BI-Lb, that if FgrrLp
A= A, then A = #(I') for some I' € Config; in particular, that A is well-
bracketed in the sense of Section 2. In the only non-trivial induction steps, those
of /L and \ L, the well-bracketedness of the antecedent in the conclusion follows

from the fact that the antecedent of the minor (left) premise is contiguous in the
antecedent of the conclusion. Second, we prove the soundness lemma itself, also
by induction on the derivation of #(I') = A in BI-Lb. Again, the non-trivial
case here is the branching rule, /L, for example. Here we use the above consid-
eration to establish the fact that both premises are actually #-translations of
some Lb sequents. After that, the instance of /L in BI-Lb transforms into an
instance of the corresponding rule in Lb. Q.E.D.

(10) Theorem (BI correctness)

l_Lb I'= A < |_BI—Lb #(F) = A
Proof. By BI soundness and BI completeness. Q.E.D.

Notice that throughout this section F;’s and G;’s in BI-Lb derivations are
ground terms of the form [0,0,...,0] or () (representing constant natural num-
bers). Thus, BI-Lb is actually just an equivalent formulation of Lb, and no real
bracket induction is taking place yet. In the next section, we treat F;’s and G;’s
as variables, whose values are not yet known when we start the proof search.

5 Parsing

5.1 Bracket-Inducing Proof-Search and Parsing

The usual parsing procedure using a categorial grammar works as follows. Using
a lexical grammar, such as that of Figure 1, we assign types to words of a string,
and these types form the left-hand side of the sequent we are going to derive. The
right-hand side is a fixed type, usually primitive, like S for “sentence,” for ex-
ample. If the sequent is derivable, the string is considered valid, and, moreover,
we can extract some semantic information from the proof via Curry—Howard
correspondence (see [12]). This works perfectly well when antecedents are just
linearly ordered lists of formulae (for example, with the “pure” Lambek calcu-
lus). With brackets, the situation becomes more involved. Now left-hand sides
of sequents also include the bracketing structure. In the naive generalisation
of the Lambek-style parsing procedure to Lb-grammars, the bracketing struc-
ture should be provided to the parsing algorithm along with the input string and
the lexical grammar. For example, since in our lexicon transitive verbs have type
({)N\S)/N (the subject forms a weak island), one needs to provide “[John] loves
Mary” instead of just “John loves Mary” as the input string for the algorithm.
The parser/theorem-prover CatLog3 of Morrill 2017 [15] currently depends on
being provided with such bracketing structure in the input. A real natural lan-
guage string, however, does not come with any brackets. Thus, the more appro-
priate formulation of the parsing problem involves an existential quantifier over
possible bracketings. A string is considered valid if the sequent constructed from
the corresponding types is derivable in Lb for some bracketing.

More formally, a string s is of type A according to a grammar if and only
if it has a factorization s = wi+ws+ - - - +w,, such that wq: Ay, ws: Ao, ..., and
wyp: A, are in the grammar lexicon and the following is derivable in BI-Lb:

(11) F17A13G17F27A27G2)"'7Fn7AnaGn = A

for some values of Fy, Gy, Fy, Ga, ..., F,, G,. (Recall that F; and G, are
natural numbers, but written in the form [0,0,...,0], linearly bounded by the
total length of the sequent.)

Notice that Lambek’s non-emptiness restriction is crucial here. It guarantees
that every pair of brackets has at least one formula inside, thus brackets are
well-organised: in the beginning of the sequent there is [[...[(corresponding to
Fy), in the end | .. .]] (corresponding to G,), and between two formulae |...][...][
(corresponding to G, Fy11). Without Lambek’s restriction, a more weird be-
haviour is possible. For example, the sequent s/{)(p/p) — s becomes derivable,
but only with the following bracketing: s/()(p/p),[] — s, which does not map
to a BI sequent of the form (11), and thus would not be found by the algorithm
we describe below.

The proof search procedure using bracket induction works as follows. We start
with a sequent with no brackets placed, Ay, ..., A, = A, and insert variables for
symbolic brackets: Fy, Ay, Gy, Fy, As, Go, ..., F,, A, G, = A. Then we do proof
search from the goal sequent to axiom leaves, annotating each rule application
with side effects, which are equations on F;’s and G;’s. For each new sequent, we
introduce new fresh variables in the places where bracketing is altered, or put (),
where the rule postulates that there should be no bracketing. Symbolic brackets
in the context are just copied upwards. The rules of BI-Lb are annotated with
side effects as follows (side effect annotations are placed on the right of the rules):
Identity axiom:

F=9
F,PG=PG=0

Rules for bracket modalities:

AL FLAG Ay = B - B[] F'.0,G' =B pglo]=F
AL F[]71A,G, Ay = B G=G & [0] F,2,G=['BGa0]=¢
AL F' A G Ay = B Fal0]=F F'.02,G = B F=F &0
Ay F,(JA,G, Ay = B GO0l =6 F,0,G= ()BG=Go[0]
Lambek rules:

A, F A 0,0,B,G, Ay = D A= A Ay = B
A, F,AeB,G, Ay = D Ay, Ay = AeB
F,0,G, = B AL, F,0,G5 A, = D ¢, = A0,B,0=C

AL, Fy,C/B,G\, F1,2,G, A0 =D Go=G10G A= O/B
and symmetrically for \. The rules without annotations have no side effects.
The proof search procedure yields a tree which we call pre-derivation. In
the pre-derivation, instead of constant ground terms (natural numbers) we use
variables or ()’s. On the other hand, the pre-derivation is annotated by side-effect
equations that allow computing the ground terms for symbolic brackets.

The side effect equations are actually very simple: on the left-hand side we
have either a term with only one occurrence of a symbolic bracket variable from
the conclusion of the rule application, or just a ground term, if there was a 0.
The right-hand side includes variables from the premises. Thus, once the tree is
constructed upto axioms, the algorithm tries to resolve side effects going back-
wards (from axiom leaves to the goal sequent). For axiom leaves, the symbolic
bracket variables receive the zero ((}) value, and then we recursively go down.
At each step we either evaluate the new variable in the conclusion, or, if there
was a (), check whether the right-hand side of the equation (which is already
computed) is also (.

Sometimes the side effect equations could be non-satisfiable. For example, for
the sequent P = []71P, which is not derivable under any bracket assignment,
we have Fy, P,G; = []71P, and after applying [| "' R (which is the only possible
rule here) we get Fy, P, Gy = P with side effects Fy = F; ®[0] and G2 = F; ®|0].
On the other side, we have F» = G3 =) from the axiom, which gives a non-
satisfiable equation Fy @ [0] = @ (recall that F; and G; should always be non-
negative integers).

Another, more sophisticated and linguistically relevant example is given in
Subsection 5.3.

Therefore, even when a pre-derivation is obtained, we still have to resolve the
side-effects; fortunately, this can be done in linear time and does not substantially
slow down the proof search process. If resolving of side effects succeeds, variables
get replaced with ground terms (natural numbers), obtaining a derivation (in the
standard sense) in BI-Lb. By Theorem (10), this yields derivability of the original
sequent, with some brackets assigned, in Lb. If resolving side-effects failed, the
algorithm continues the proof search.

Correctness of the bracket-inducing proof search algorithm is justified by the
following theorem, whose proof is straightforward.

(12) Theorem. For a sequent of the form Fy, A;,Gq,...,Fy, Ay, G, = A, in
which F; and G are variables, the algorithm described above yields all BI-Lb
derivations of all instances of this sequents with ground terms (natural num-
bers) substituted for these variables. (In particular, it returns “not derivable”
if there are no such derivations.)

5.2 A Positive Example

In this subsection we run our bracket-inducing proof search algorithm on the
common noun group in (la), “man that Mary loves.” In order to show that it is
of type CN, if we prove the following in the BI-Lb calculus:

Fl, CN,Gl,FQ, []_1[]_1(CMCM/(S/N)7GQ,F3,N, Gg,

(13) Fi, ()N\S)/N, G4 = CN

The following pre-derivation is annotated with side effects at axiom leaves and
rules. The goal sequent (13) above is pre-derived using /L from two sequents with

the following pre-derivations (we omit side effects that are trivially satisfied, like

0=0e0):

Fi1=0
Gog=10
Fi1,N,Gg = N
11 9 F5 = [0]®Fi1 Fo—0
N G3 = Go®[0] 6
55 7G5:>(>N FG,S,@=>SF -0
=
F3 = Fg@F:
0.N.0 = N Fs,N,Gs, Fa, ()N\S,0 = § 8= Fedls
Gs =0
F3,N,Gs, Fu, ({)N\S)/N,G5,0,N,0 = S
F3,N,Gs, Fu, (()N\S)/N,Gs = S/N
and
Fi9 = Fy=0
Fi0,CN,G1 = CN Gi=0 Fy, CN,Gs = CN gs_:g
s =
Fy = Fio®Fy
Fy,CN, G4, Fs, CN\CN, G CN
15 , G1, Fs, CN\ ,Gg = Fr = Fs®[0]
_ Gr = [0]®Gs
F1,CN,G1, F7,[]"Y(CN\CN),G7 = CN
1 1, F7,[]7(CN\CN), Gz Fs = Fr@[0]
Gs = [0]®G7

Fi, CN,G1, F2,[]7'[]7'(CN\CN),Gs = CN

The side-effects for the lowermost application of /L, which yields the goal
sequent (13), are Go = 0 and G4 = G5 P Ge.
Using side effects, the algorithm computes the bracketings from leaves to root

as follows:
Fii=Gy=Fs=Fio=G1=Fy=Gs =10

Fs =[0]@ Fuu=[0]®0 = [0]
Gs=Gyo®[0] =0 [0] =[0]
Fs=F,=Gs=10
Fi=Fo®F=060=0
Fs=Fs® Fs=0a[0] = 0]
Fr=Fs [0l =0 [0] = 0]
Gr=[0] @ Gs = [0] &0 = [0
Fy = Fr @[0] = [0] @ [0] = [0,
Gs =[0]®Gr =[0] & [0] = [
G2=10
Gi=Gs®Gs =0®[0,0] = [0,0]

and establishes the fact that the following sequent (with ground terms substi-

tuted for symbolic bracket variables) is derivable in BI-Lb:

0, CN,0,[0,0], []7[]7H(CN\CN)/(S/N), 0, [0, N, [0], 8, ({) N\S)/N., [0,0] = CN.
This sequent corresponds to the following Lb-sequent:

CN, [[I7* I (CN\CN)/(S/N), [N], ()N\S)/N]] = CN
and the following bracketing of the CN group: “man [[that [Mary] loves]].”

0]
) O}

5.3 A Negative Example

In this section we run the bracket-inducing proof search to invalidate (2a), “the
paper that John laughed without reading”. In order to make the reasoning

shorter, we focus on the central part, namely, we show that the dependent clause
“John laughed without reading” is not of type S/N. The natural bracketing for
this dependent clause would be “[John] laughed [without reading]” (the subject
and the without-clause form weak islands), and one can see that the correspond-
ing sequent, according to the lexicon from Figure 1,

INT, ONAS, T HO NSO NS))/(ON\S), (ON\S)/N| = S/N

is not derivable in Lb, since the N which comes from the right-hand side appears
outside the bracketed weak island and cannot penetrate the brackets.

Using our bracket-inducing proof search procedure, we establish a stronger
fact that there exists no bracketing for which the sequent saying that “John
laughed without reading” is of type S/N could be derivable in Lb.

We shall do proof search in the BI-Lb calculus for the following:

Fi,N,G1, Fa, <>N\Sv G, F3, []_1((<>N\S)\(<>N\S))/(<>N\S>7G37

W) R (ON\S)/N.Gy = SN

and show that it yields no derivation.

The basic idea here is that when the proof search comes to the application
of []71L, there is always going to be () on the right, thus the side effect for
[]7'L would fail, and the pre-derivation will not become a real BI-Lb derivation.
Accurate justification of this idea requires exhaustive case analysis, which we
perform below.

A direct implementation of the algorithm (see Section 6) would do a complete
proof search. Here we make some optimisations. First we notice that the /R rule
is invertible, therefore we can apply it immediately:

F1, N, G1, Py, ()N\S, G2, F5, [[7 ((ON\AS\((ON\S)) /((ON\S), Gs,

(15) o (ON\S)/N, G 0. N, 0 = S

Second, we are going to use count invariants in order to reduce the number of
possible cases to be considered. Count invariants for the Lambek calculus were
introduced by van Benthem [2] and then extended to the calculi with brackets
and additive connectives [23] and universal exponential [8]. Here we use a very
weak form of the count invariant:

(16) Lemma. If a sequent is provable in Lb (or BI-Lb), then each primitive
type occurs in it an even number of times.

The proof is a straightforward induction on the derivation of the sequent.

On the top-level, there are three connectives, so we have three cases to con-
sider.

Case 1. Apply /L to the long formula in the center of the sequent (15).
Notice that (()N\S)/N and the rightmost N should both go to the left premise,
since otherwise it would violate the count invariant and therefore be a priori not
derivable. The side effect here is G5 = (), and the right premise is as follows

Fy, N, Gy, Fy, ()N\S, G2, Fy, [T ((ON\AS\(()N\S)), 0 = 5.

For this very sequent, further proof search fails, since application of []71L is not
possible, neither immediately, nor after applying \ L to the formula on the left,
due to the rightmost (.

Case 2. Apply /L to the rightmost /. This yields a side effect G4 = () and
the (interesting) right premise is as follows:

Fy, N, G1, Fy, ()N\S, Ga, Fs, [[7H(ON\S\(()N\S))/((ON\S),
Gs, Fy, ()N\S,0 = S

Applying /L to the central formula yields, as the right premise,
F1,N, Gy, F2, ()N\S, G2, F5, [] T ((ON\S\(()N\S)), 0 = S

and again the () on the right violates the side condition for [|~!L, whenever it
gets applied.

Applying \ L to the right formula makes further derivation impossible, since,
due to Lambek’s restriction, after that there will be no way to decompose the
central formula.

Finally, applying \ L to the left formula gives

FY, S, G, s, [[H(ONASNON\S) /(ON\S), Gs, Fi, (JN\S, 0 = S

and we do the same case analysis as above.
Case 8. Apply \L to the leftmost occurrence of \. The right premise is as

follows:
F{, 8, Ga, F3, [[TH((ON\S\(ON\S)) /((YN\S),
G37F47(<>N\S)/N7G47®7N7® =S

and we proceed similarly to Cases 1 and 2.

This analysis shows that even if the proof search procedure for (14) suc-
cessfully finishes at axiom links, resolving side effects fails when it comes across
the application of []7'L due to) on the right. Therefore, “the paper that John
laughed without reading” does not receive type S/N for any bracketing.

6 Complexity Estimations

6.1 Bracket Induction vs. Generate-and-Test Brackets

The proof search algorithm with side-effects presented in the previous section,
still has exponential running time. In general, this is inevitable, due to the NP-
hardness of the original Lambek calculus [22]. However, the proof search with
bracket induction has a significant advantage in speed compared to a naive
approach where the algorithm searches for all possible bracketings by brute force
and does proof search independently for each sequent obtained in this way. More
precisely, non-determinism in parsing with Lb-based categorial grammar comes
from three sources:

1. non-unique type assignment (a lexical item can have several different types),

2. bracketing,
3. proof search.

In the bracket induction approach presented in the present paper, the second
source above is handled together with the third one. Thus, our algorithm is
still exponential, but is also exponentially faster than the naive one. This makes
bracket induction applicable in practice, while attempts to implement brute force
bracket guessing fail to parse even simple sentences in reasonable time. An im-
plementation of our parsing algorithm in Prolog, written by the first author, with
an example and runtime log showing execution times are available on GitHub:
https://github.com/skuzn/BI-Lb

The lower exponential bound on the running time of the bracket-inducing
proof search algorithm in the present paper comes from the fact that in the
Lambek calculus, even without brackets, there exist examples of sequents with
exponentially many derivations: P/P,..., P/P,P,P\P,..., P\P = P. Thus, if
we want to yield all possible derivations (parsings) for a sentence, even the
output length could be exponential, unless we represent it in a compressed way,
as in [21,5]. The proof search algorithm yields all possible (pre-)derivations in
an uncompressed form, and therefore has exponential worst case running time.

6.2 Pseudo-polynomial Approaches

The more subtle question is the comparison of the bracket-inducing parsing
procedure presented here with the pseudo-polynomial algorithm for Lb presented
in our earlier paper [5].

Despite the Lambek calculus being NP-hard [22], Pentus [21] noticed that
the complexity essentially comes from complicated types used in the lexicon. He
presented a polynomial-time parsing algorithm [21] for Lambek grammars where
complexity of all types in the lexicon is bounded. More precisely, the running
time of Pentus’ algorithm is a polynomial of n and 2%, where n is the length of
the input and d is a complexity measure of types. For simplicity, one can think
of d as just the maximal size of a type in the lexicon. Pentus’ algorithm is based
on proof nets and dynamic programming.

In [5], using the method of Pentus [21], we have presented an algorithm for
checking derivability in the Lambek calculus with brackets”. However, unlike
Pentus’ algorithm, our algorithm in [5] is only a theorem-prover, not a parser.
That is, the algorithm from [5] does not account for lexical ambiguity, where sev-
eral types are assigned to one word. Adding this extra level of non-determinism
could make running time exponential.

Another, more serious issue is connected with the deep nesting of brackets.
The time complexity estimation in [5] is a polynomial of n, 2¢, and n®, where
n is the input length, d is the complexity measure of types in the lexicon, and
b is the maximum depth of nested brackets. Thus, the algorithm would run in

" In contrast to the present paper, the calculus in [5] allows empty antecedents, but
imposing the Lambek’s restriction there is quite straightforward.

polynomial time only if both d and b are bound by constants. Unfortunately, in
linguistic practice this holds for d, but not for b.

The counter-examples come from well-known phrases with nested dependent
clauses, like “the dog that worried the cat that killed the rat that ate the malt
that lay in the house that Jack built.” The natural bracketing here is as follows
(dependent clauses form strong islands, and the subject ‘Jack’ is a weak one):
“the dog [[that worried the cat [[that killed the rat [[that ate the malt [[that
lay in the house [[that [Jack] built |]]]]]]]].” Here b is linear w.r.t. input length
(b = an for some constant «), which yields exponential (> n*") running time
for the algorithm from [5].

There also exists a shallow bracketing for this phrase: “... the cat [[that
killed the rat]] [[that ate the malt || ...” Parsing with this shallow bracketing,
however, yields another reading: “the cat ate the malt” rather than the more
natural “the rat ate the malt.” Thus, if we restrict our algorithm by imposing a
constant bound on the value of b, we can still justify the phrase as grammatically
correct, but we lose some of its readings, which is undesired.

The b parameter being linear w.r.t. n, the algorithm from [5] runs exponen-
tially, as does the algorithm presented in the present paper. The advantage of
this latter is that it does not require bracketing to be passed as an input along
with the sentence itself.

The question whether there exists an algorithm for Lb with the running time
being a polynomial of n and 2¢ (without n® in the complexity estimation) is an
open problem.

7 Future Work

In order to make the presentation as clear as possible, in this paper we have
discussed bracket induction on a very small fragment of type-logical grammar,
based on the pure Lambek calculus augmented with brackets and bracket modal-
ities. In the future we are planning to extend this approach to broader cal-
culi, including additive connectives [4], discontinuous operations [16,19], and
the (sub)exponential modality for medial and parasitic extraction [17]. For the
latter, the whole calculus is undecidable [7], so proof search is possible only
in a restricted fragment [17,7]. Moreover, we are planning to optimise parsing
with bracket induction using count invariant heuristics [2,23,8] and focusing
techniques [1, 10, 18, 6], with necessary modifications for the BI calculi.
Implementing bracket induction in CatLog would allow the system to pro-
cess raw sentences in natural language, not asking the user for extra structural
information (bracketing). Being almost as effective as standard proof search, the
proof search procedure with bracket induction would not slow down the parsing
workflow. Unfortunately, the running time is still exponential. In the previous
section we have discussed why the pseudo-polynomial algorithm for the Lambek
calculus with brackets presented in [5] is still not enough to build a polynomial-
time version of CatLog. The interesting open question here is whether there is
an algorithm for parsing in Lb with polynomial runtime for bounded type com-

plexity but unbounded bracket nesting depth, or there is NP-hardness arising
from deeply nested brackets even with shallow types.

Acknowledgments

We would like to thank the anonymous referees for their thoughtful comments
and questions.

The research of Morrill was supported by the grant TIN2017-89244-R. from
MINECO (Ministerio de Economia, Industria y Competitividad). Glyn Morrill
is also grateful to the University of Pennsylvania for support during his visit
in February 2017. Kuznetsov’s research towards this paper was supported by
the Young Russian Mathematics award, by the Program of the Presidium of
the Russian Academy of Sciences No. 01 ‘Fundamental Mathematics and its Ap-
plications’ under grant PRAS-18-01, and by the Russian Foundation for Basic
Research under grant 18-01-00822. Stepan Kuznetsov is also grateful to the Uni-
versity of Pennsylvania for support during his visit in April-May 2018, when
the final version of this paper was prepared. Max Kanovich is grateful to the
University of Pennsylvania for support during his visit in February 2017. The
participation of Kanovich, Kuznetsov, and Scedrov in the preparation of this
article was within the framework of the Basic Research Program at the National
Research University Higher School of Economics (HSE) and supported within
the framework of a subsidy by the Russian Academic Excellence Project ‘5-100’.

References

1. Andreoli, J.M.: Logic programming with focusing in linear logic. Journal of Logic
and Computation 2(3), 297-347 (1992)

2. van Benthem, J.: Language in Action: Categories, Lambdas, and Dynamic Logic.
No. 130 in Studies in Logic and the Foundations of Mathematics, North-Holland,
Amsterdam (1991), revised student edition printed in 1995 by the MIT Press

3. Girard, J.Y.: Linear logic. Theoretical Computer Science 50, 1-102 (1987), DOL:
10.1016/0304-3975(87)90045-4

4. Kanazawa, M.: The Lambek calculus enriched with additional connectives. Journal
of Logic, Language and Information 1, 141-171 (1992), DOI: 10.1007/BF00171695

5. Kanovich, M., Kuznetsov, S., Morrill, G., Scedrov, A.: A polynomial-time
algorithm for the Lambek calculus with brackets of bounded order. In:
Miller, D. (ed.) Proceedings of the 2nd International Conference on For-
mal Structures for Computation and Deduction (FSCD 2017). Leibniz In-
ternational Proceedings in Informatics, LIPIcs, wvol. 84, pp. 22:1-22:17.
Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl Publishing, Ger-
many (2017), URL: http://drops.dagstuhl.de/opus/volltexte/2017/7738/, DOI:
10.4230/LIPIcs.FSCD.2017.22

6. Kanovich, M., Kuznetsov, S., Nigam, V., Scedrov, A.: A logical framework with
commutative and non-commutative subexponentials. In: Automated Reasoning:
Proceedings of IJCAR 2018. Springer (2018), to appear

7. Kanovich, M., Kuznetsov, S., Scedrov, A.: Undecidability of the Lambek calculus
extended with subexponential and bracket modalities. In: Klasing, R., Zeitoun, M.

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(eds.) FCT 2017: Fundamentals of Computation Theory. LNCS, vol. 10472, pp.
326-340. Springer, Berlin (2017), DOI: 10.1007/978-3-662-55751-8_26

Kuznetsov, S., Morrill, G., Valentin, O.: Count-invariance including exponentials.
In: Kanazawa, M., de Groote, P., Sadrzadeh, M. (eds.) Proceedings of the 15th
Meeting on the Mathematics of Language. pp. 128-139. Association for Compu-
tational Linguistics, London (2017), https://aclweb.org/anthology /W /W17 /W17-
3413.pdf

Lambek, J.: The mathematics of sentence structure. American Mathematical
Monthly 65, 154-170 (1958)

Miller, D., Saurin, A.: From proofs to focused proofs: A modular proof of focal-
ization in linear logic. In: CSL 2007: Computer Science Logic. Lecture Notes in
Computer Science, vol. 4646, pp. 405-419. Springer (2007), DOIL: 10.1007/978-3-
540-74915-8_31

Moortgat, M.: Multimodal linguistic inference. Journal of Logic, Language, and
Information 5(3, 4), 349-385 (1996), DOI: 10.1007/BF00159344

Moortgat, M.: Categorial Type Logics. In: van Benthem, J., ter Meulen, A. (eds.)
Handbook of Logic and Language, pp. 93-177. Elsevier Science B.V. and the MIT
Press, Amsterdam and Cambridge, Massachusetts (1997)

Morrill, G.: Categorial Formalisation of Relativisation: Pied Piping, Islands, and
Extraction Sites. Tech. Rep. LSI-92-23-R, Departament de Llenguatges i Sistemes
Informatics, Universitat Politéecnica de Catalunya (1992)

Morrill, G.: Grammar logicised: relativisation. Linguistics and Philosophy 40(2),
119-163 (2017), DOI: 10.1007/s10988-016-9197-0

Morrill, G.: Parsing logical grammar: CatLog3. In: Loukanova, R., Liefke, K. (eds.)
Proceedings of the Workshop on Logic and Algorithms in Computational Linguis-
tics 2017, LACompLing2017. pp. 107-131. DiVA, Stockholm University (2017),
http://su.diva-portal.org/smash/get/diva2:1140018 /FULLTEXT03.pdf

Morrill, G., Valentin, O.: Displacement Calculus. Linguistic Analysis 36(1-4), 167—
192 (2010), http://arxiv.org/abs/1004.4181, special issue Festschrift for J. Lambek
Morrill, G., Valentin, O.: Computational Coverage of TLG: Nonlinearity. In:
Kanazawa, M., Moss, L., de Paiva, V. (eds.) Proceedings of NLCS’15. Third Work-
shop on Natural Language and Computer Science. EPiC, vol. 32, pp. 51-63. Kyoto
(2015), Workshop affiliated with Automata, Languages and Programming (ICALP)
and Logic in Computer Science (LICS)

Morrill, G., Valentin, O.: Multiplicative-Additive Focusing for Parsing as Deduc-
tion. In: Cervesato, I., Schiirmann, C. (eds.) First International Workshop on Fo-
cusing, workshop affiliated with LPAR 2015. pp. 29-54. No. 197 in EPTCS, Suva,
Fiji (2015)

Morrill, G., Valentin, O., Fadda, M.: The Displacement Calculus. Journal of Logic,
Language and Information 20(1), 1-48 (2011), DOI: 10.1007/s10849-010-9129-2
Morrill, G.V.: Categorial Grammar: Logical Syntax, Semantics, and Processing.
Oxford University Press, New York and Oxford (2011)

Pentus, M.: A polynomial-time algorithm for Lambek grammars of bounded order.
Linguistic Analysis 36(1-4), 44-471 (2010)

Pentus, M.: Lambek calculus is NP-complete. Theoretical Computer Science
357(1), 186-201 (2006), DOI: 10.1016/j.tcs.2006.03.018

Valentin, O., Serret, D., Morrill, G.: A count invariant for Lambek calculus with
additives and bracket modalities. In: Morrill, G., Nederhof, M.J. (eds.) Proceedings
of Formal Grammar 2012 and 2013. Springer LNCS, FoL.LLI Publications in Logic,
Language and Information, vol. 8036, pp. 263—276. Springer, Berlin (2013), DOI:
10.1007/978-3-642-39998-5_17

