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Abstract. The Web of Data consists of numerous Linked Data (LD)
sources from many largely independent publishers, giving rise to the
need for data integration at scale. To address data integration at scale,
automation can provide candidate integrations that underpin a pay-as-
you-go approach. However, automated approaches need: (i) to operate
across several data integration steps; (ii) to build on diverse sources of
evidence; and (iii) to contend with uncertainty. This paper describes the
construction of probabilistic models that yield degrees of belief both on
the equivalence of real-world concepts, and on the ability of mapping
expressions to return correct results. The paper shows how such models
can underpin a Bayesian approach to assimilating different forms of evi-
dence: syntactic (in the form of similarity scores derived by string-based
matchers), semantic (in the form of semantic annotations stemming from
LD vocabularies), and internal in the form of fitness values for candidate
mappings. The paper presents an empirical evaluation of the methodol-
ogy described with respect to equivalence and correctness judgements
made by human experts. Experimental evaluation confirms that the pro-
posed Bayesian methodology is suitable as a generic, principled approach
for quantifying and assimilating different pieces of evidence throughout
the various phases of an automated data integration process.

Keywords: Probabilistic Modelling, Bayesian Updating, Data Integra-
tion, Linked Data

1 Introduction

There has been a general trend towards generating large volumes of data, es-
pecially with the explosion of social media and other sensory data from smart
devices. The Web is no exception to the accelerating and unprecedented rate
at which digital data is being generated. Because of this explosion, data is now
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made available with different characteristics: with different degrees of structure
(e.g., structured or unstructured), often semantically annotated (e.g., Linked
Data (LD)), typically stored in various distributed data sources3, often designed
independently using different data models, and maintained autonomously by dif-
ferent actors. This makes it imperative to integrate data from various sources
with the aim of providing transparent querying facilities to end-users [19]. How-
ever, this integration task poses several challenges due to the different types of
heterogeneities that are exhibited by the underlying sources [10, 12]. For instance,
in the case of the Web of Data (WoD), LD sources do not necessarily adhere to
any specific, uniform structure and are, thus, considered to be schema-less [5].
This can lead to a great diversity of publication processes, and inevitably means
that resources from the same domain may be described in different ways, using
different terminologies.

The challenging problem of resolving the different kinds of heterogeneities
that data sources exhibit with the aim of providing a single, transparent interface
for accessing the data is known as data integration [10, 12]. A traditional data
integration system [19] builds on a mediator -based architecture where a virtual
schema is designed that captures the integration requirements and is presented to
the user for querying. In this approach, the integration schema is seen as a logical
schema since the data still resides in the underlying data sources (as opposed to
being materialized, as is typically the case for data warehouses). Typically, for
the underlying sources to interoperate, two basic capabilities are required: (i)
matching, i.e., the ability to quantify the degree of similarity between the source
schemas and the integration schema (often by considering their terminologies,
and, if available, samples of instance data), the result of which is a set of semantic
correspondences (a.k.a. matches); and (ii) mapping generation, i.e., the ability
to use the set of semantic correspondences in order to derive a set of executable
expressions (a.k.a. mappings) that, when evaluated, translate source instance
data into instance data that conforms to the integration schema.

Dataspaces are data integration systems that build on a pay-as-you-go ap-
proach for incremental and gradual improvement of automatically derived spec-
ulative integrations [30, 20]. In this approach, the manual effort required to set
up a traditional data integration system is replaced with automatic techniques
that aim to generate a sufficiently useful initial integration with minimum human
effort [11, 14]. Over time, as the system is continuously queried, users are stim-
ulated to provide feedback (e.g., on query results) that, once assimilated, lead
to a gradual improvement in the quality of the integration [2]. More specifically,
with a view to providing best-effort querying capabilities, dataspaces are envi-
sioned to have a life-cycle (depicted in Fig. 1) comprising the following phases:
(i) bootstrapping, where algorithmic techniques are used to automatically derive
an initial integration by postulating the required semantic correspondences and
using them to derive mappings between the source schemas and the integration

3 One well-known example portal is the so-called Linked Open Data (LOD) cloud, at
https://lod-cloud.net/.



schema 4; (ii) usage, where best-effort querying services are provided to answer
user requests over the speculative integration, and explicit or implicit feedback
[24] is collected to inform the incremental improvement of the integration; and
finally (iii) improvement, where the feedback that has been collected during us-
age is assimilated in order to improve the initial integration, e.g., by filtering
erroneously-derived semantic correspondences and regenerating the mappings
previously derived from them.

Fig. 1: Dataspace life-cycle phases.

Because dataspaces depend on automation, and because automation can only
generate inherently uncertain outcomes, it is imperative to quantify and propa-
gate uncertainty throughout the dataspace life-cycle [31, 18]. Broadly speaking,
it is not obvious how the inherent uncertainty arising during the various phases
of a dataspace system can be quantified and then reasoned with in a principled
manner. Motivated by this challenge, and taking into account the different types
of uncertainty that must be quantified and propagated across the phases of the
dataspace life-cycle, this paper contributes a methodology for quantifying uncer-
tainty (founded on the construction of empirical probabilistic models based on
kernel estimators) and for reasoning with different kinds of evidence that emerge
during the boostrapping phase of a dataspace system using Bayesian techniques
for assimilating: (a) syntactic evidence, in the form of similarity scores generated
by string-based matchers, (b) semantic evidence, in the form of semantic anno-
tations such as subclass-of and equivalent relations that have been asserted in, or
inferred from, LD ontologies, and (c) internal evidence, in the form of mapping
fitness values, produced during mapping generation.

1.1 Motivating Example: Uncertainty in Dataspaces

Our motivating example comes from the music domain. We assume the inferred
schemas for the Jamendo LD source 5, denoted by s1, and the Magnatune LD

4 For schema-less sources (e.g., Linked Data sources) schema extraction techniques
can be used to infer schemas (e.g., [5])

5 https://www.jamendo.com/



source 6, denoted by s2, depicted in simplified ER notation in Figs. 2 (a) and
(b), respectively. The goal is integrate these to give rise to an integrated schema,
denoted by sint.

mo:trackmo:Record mo:Track

mo:published_as

mo:Signal

mo:available_as mo:Playlist

dc:format

dc:title mo:licence

mo:track_number

mo:licence

mo:time time:Interval

tl:onTimeLine

dc:title

dc:description
dc:date

mo:image

foaf:made

mo:MusicArtistfoaf:maker

mo:available_asmo:Torrent

tags:taggedWithTagtags:Tag

foaf:based_near

foaf:homepage

mo:biography

foaf:img

foaf:name

dc:format

tags:tagName

dc:title

mo:Performance

event:place

mo:recorded_as mo:Signal mo:time time:Interval
tl:duration

tl:onTimeLine

mo:Record

mo:publishing_location

mo:MusicArtistfoaf:maker

mo:performer

bio:olb

foaf:name

foaf:homepage

foaf:img

foaf:based_near

foaf:maker

mo:Track mo:published_asmo:track

dc:title

mo:track_number

dc:createdmo:licence

mo:available_as

mo:paid_download

(b) Conceptual Description of Magnatune LD dataset (a) Conceptual Description of Jamendo LD dataset 

Fig. 2: Inferred schemas from LD sources.

For the identification of these candidate semantic matches, several approaches
have been proposed especially by the literatures on schema matching [27] in the
database area, and on ontology alignment [32] in the knowledge representation
area. Fig. 3 shows a subset of semantic correspondences (i.e., matches) that might
have been discovered across our example schemas using string-based matching
techniques (e.g., n-gram).

mt1 : 〈s1.Record, sint.Record, 1.0〉
mt2 : 〈s1.Record.title, sint.Record.track title, 0.54〉
mt3 : 〈s1.Tag.tagName, sint.MusicArtist.name, 0.45〉
mt4 : 〈s2.P erformance.recorded as, sint.Record, 0.6〉

Fig. 3: Example schema matching results.

Fig. 4 exemplifies different kinds of semantic evidence regarding our example
schemas. In this figure, solid arrows denote annotations (e.g., rdfs:subClassOf)
either internal, pointing to constructs in the same LD vocabulary, or exter-
nal, pointing to constructs in some other LD vocabulary; dashed arrows denote
equivalence annotations that define entities; and dotted lines show examples of
one-to-one semantic correspondences where confidence is measured as a d.o.b..

6 http://magnatune.com/



As this example shows, semantic relationships may exist in addition to syntac-
tic ones, e.g., mo:MusicGroup is also subsumed by foaf:Group and not simply
named in a syntactically similar way to the latter. Section 3.2 presents a method-
ology for quantifying semantic evidence that is founded on the construction of
probabilistic models that can be used to inform a Bayesian approach for making
judgements on the equivalence of constructs.

mo:MusicArtist

mo:SoloMusicArtist

mo:GroupArtist

⊆

⊆

foaf:Person

foaf:Group

⊆

⊆

rdf:type#
mo:SoloMusicArtist

rdf:type#
mo:MusicGroup

Source LD dataset

rdf:type#
foaf:Person

rdf:type#
foaf:Group

Target LD dataset

≡

≡

≡
≡

P (cS ≡ cT |e1, ..., en) = ?

http://purl.org/ontology/mo/ http://xmlns.com/foaf/0.1/

Fig. 4: Different kinds of semantic evidence.

Table 1 shows examples of such internal evidence viz., where the fitness val-
ues and corresponding mapping correctness score (as explained in Section 2)
are assumed to have been returned by the mapping generation process. Some
examples of mapping queries are provided in Table 2.

map id target source fitness mapping correctness

m1 : 〈〉 solomusicartist musicartist 0.845 0.86
m2 : 〈〉 track track 0.256 0.33
m3 : 〈〉 musicgroup musicartist 0.92 0.86
m4 : 〈〉 lyrics performance 0.0048 0

Table 1: Example of internal evidence from the mapping generation phase.



1.2 Summary of Contributions

This paper describes a probabilistic approach for combining different types
of evidence so as to annotate integration constructs with d.o.b.s on seman-
tic equivalence and on mapping quality. This paper contributes the follow-
ing: (a) a methodology that uses kernel density estimation for deriving likeli-
hoods from similarity scores computed by string-based matchers; (b) a method-
ology for deriving likelihoods from semantic relations (e.g., rdfs: subClassOf,
owl:equivalentClass) that are retrieved by dereferencing URIs in LD ontolo-
gies; (c) a methodology for aggregating evidence of conceptual equivalence of
constructs from both string-based matchers and semantic annotations; (d) a
methodology for deriving likelihoods from mapping fitness values and mapping
correctness scores using bivariate kernel density estimation; and (e) an empirical
evaluation of our approach grounded on the judgements of experts in response
to the same kinds of evidence. Note that, in this paper, the experiments only
use LD datasets.

The remainder of the paper is structured as follows. Section 2 presents an
overview of the developed solution. Section 3 describes the contributed method-
ologies. The application of bayesian updating, as a technique for the incremental
assimilation of data integration evidence, is introduced in Section 4. Section 5
presents an empirical evaluation of the methodology complemented by a discus-
sion of results. Section 6 reviews related work, and Section 7 concludes.

2 Overview of Solution

The main focus of this paper is on the bootstrapping phase of a data integration
system. More specifically, the techniques discussed in this section focus on oppor-
tunities for the quantification and assimilation of uncertainty using a Bayesian
approach to assimilate different forms of evidence. Fig. 5 stands in contrast with
Fig. 1 and indicates the different types of evidence that inform different boot-
strapping stages in our approach. Our techniques have been implemented as
extensions to the DSToolkit [13] dataspace management system, which brings
together a variety of algorithmic techniques providing support for the dataspace
life-cycle.

Deriving d.o.b.s on matches. Assuming that declared (or else inferred) con-
ceptual descriptions (e.g., schemas) for the sources and target integrated artefact
are available, the basic notion underpinning the bootstrapping process is that
of semantic correspondences. Given a conceptual description of a source and a
target LD dataset, denoted by S and T , respectively, a semantic correspondence
is a triple 〈cS , cT , P (cS ≡ cT |E)〉, where cS ∈ S and cT ∈ T are constructs (e.g.,
classes, or entity types) from (the schema of) the datasets, and P (cS ≡ cT |E) is
the conditional probability representing the d.o.b. in the equivalence (≡) of the
constructs given the pieces of evidence (e1, ..., en) ∈ E. Such semantic correspon-
dences, therefore, quantify (as d.o.b.s) the uncertainty resulting from automated
matching techniques that yield syntactic evidence in the form of similarity scores



Fig. 5: Uncertainty propagation and evidence assimilation.

but also taking into account, when available, semantic annotations from ontolo-
gies (as exemplified in Fig. 4).

Deriving d.o.b.s on mappings. Given a set of semantic correspondences, the
mapping generation process derives a set of mappings M using (in the case of
DSToolkit) an evolutionary search strategy that assigns a fitness value to each
mapping in the solution set. A mapping m ∈M denotes that one or more schema
constructs from S that can be used to populate one or more constructs from T .
The two sets of schema constructs that are related in this way by a mapping are
henceforth referred to as entity sets and notated as 〈ESS , EST 〉, where ESS ∈ S
and EST ∈ T .

Mapping Fitness Value

m1 : 〈sint.Record,SELECT R.title as title, R.maker as maker,
NULL as description, NULL as date created,
T.title as track title, T.paid download as paid download
FROM s2.Record R, s2.Track T
WHERE R.track = T.title〉

0.42459

m2 : 〈sint.SoloArtist,SELECT M.name as name, M.img as img,
NULL as biography, M.homepage as homepage,
M.based near as based near FROM s2.MusicArtist M〉

0.84560

Table 2: Example generated mappings.

As a result of the search technique used in the mapping generation process,
a mapping fitness value y is a measure of the strength of the internal evidence



that a set of schema constructs in a source entity set ESS is semantically re-
lated to a set of schema constructs in the target entity set EST . In this context,
P (m | f(m) = y) is the conditional probability representing the d.o.b. that an
attribute value in a tuple returned by the mapping m is likely to be correct,
given that the fitness value of m, is y i.e., f(m) = y. Such probabilities, there-
fore, quantify (as d.o.b.s) the uncertainty resulting from the automated mapping
generation technique used, i.e., one that yields mapping fitness values. Table 2
shows some mappings generated between a target schema, denoted by sint and
source schemas, denoted by s1, and s2, resp., along with their associated fitness
value scores.

Types of Evidence. As indicated above, our approach makes use of three dis-
tinct types of evidence: (a) syntactic evidence, in the form of strings that are
local-names of resource URIs; (b) semantic evidence, such as structural relations
between entities, either internal to a vocabulary or across different LD vocab-
ularies (e.g., relationships such as subclass of and equivalence); and (c) internal
evidence, in the form of fitness values computed during mapping generation. Ta-
ble 3 briefly describes the types of evidence used in this paper and introduces
the abbreviations by which we shall refer to them. In particular, if TE is the
set of all semantic annotations, its subsets EE and NE comprise the assertions
that can be construed as direct evidence of equivalence and non-equivalence,
respectively.

Type ID Description Evidence Rule

Syntactic Evidence (LE) - SLN similar-local-name string similarity(cT , cS)

SU same-URI string equality(URIS , URIT )

Semantic
Evidence (TE)

- SB subsumed-by cS v cT

EE
SA same-as owl:sameAs(cS , cT )
EC equivalent-class owl:equivalentClass(cS , cT )
EM exact-match skos:exactMatch(cS , cT )

NE
DF different-from owl:differentFrom(cS , cT )
DW disjoint-with owl:disjointWith(cS , cT )

Mapping Generation Evidence - MGE mapping fitness value fitness value(ESS , EST )

Table 3: Types of evidence.

Collecting Evidence. To collect syntactic evidence (represented by the set
LE), given two sources, our approach extracts local names from the URIs of every
pair of constructs 〈cs, ct〉 and then derives their pairwise string-based degree
of similarity. Two string-based metrics are used in our experiments, viz., edit-
distance (denoted by ed) and n-gram (denoted by ng) [32]. Section 3.1 explains
in detail how probability distributions can be constructed for each matcher.
To collect semantic evidence, our approach dereferences URIs to obtain access
to annotations from the vocabularies that define the resource. For example,
the subsumption relation cS v cT is taken as semantic evidence. Section 3.2



explains in detail how to construct probability distributions for each kind of
semantic evidence published in RDFS/OWL vocabularies. To collect evidence
on mapping generation, we extract from the set of mappings generated by a
mapping generation algorithm their fitness value, and, therefore, we assume that
the search procedure underpinning the algorithm aims to maximize an objective
function founded on such fitness values [8]. Section 3.3 explains in detail how
to construct probability distributions for mapping fitness values. Later in our
methodology, the probability distributions thus constructed are used to denote
the likelihood of evidence term in Bayes’s formula.

We use a Bayesian approach to evidence assimilation, i.e., given a degree of
uncertainty expressed as a d.o.b., once new evidence is observed, we use Bayes’s
formula to update that d.o.b. (referred to as the prior) into a new d.o.b. (referred
to as the posterior) that reflects the new evidence. Applying Bayes’s formula
in this way requires us to quantify the uncertainty of the evidence (referred
to as the likelihood). This means that in order to assimilate different kinds of
evidence, preliminary work is needed to enable the computation of the likelihoods
in applications of Bayes’s formula, i.e., the otherwise unknown term required for
the calculation of a posterior d.o.b. from a prior d.o.b. This requirement holds
for the equivalence of constructs, as captured by the posterior P (cS ≡ cT |E)
when the evidence is syntactic (as described in Section 3.1) and when the
evidence is semantic (as described in Section 3.2). Similarly, preliminary work is
needed for deriving a d.o.b. on mapping correctness, as captured by the posterior
P (m | f(m) = y), where f(m) = y is internal evidence from mapping generation
in which we relate the notion of mapping correctness to the fraction of correct
attribute values in a mapping extent (as described in Section 3.3).

The idea behind Bayesian updating [34] is that once the posterior (e.g., P (cS ≡
cT |E)) is computed for some evidence e1 ∈ E, a new piece of evidence e2 ∈ E
allows us to compute the impact of e2 (i.e., measure how the d.o.b. is changed
in light of e2) by taking the previously computed posterior as the new prior.

3 Constructing Likelihoods for Evidence

We now provide a detailed account of a principled methodology for constructing
probability distributions from relevant evidence with a view towards enabling a
Bayesian approach to quantifying and propagating uncertainty across the datas-
pace life-cycle.

3.1 Deriving Likelihoods for Similarity Scores

We call syntactic evidence the likelihoods derived from similarity scores pro-
duced by string-based matchers. We study the behaviour of each matcher (in
our case ed and ng) used to derive similarity scores.

To derive probability density functions (PDFs) for syntactic evidence, we
proceeded as follows:



1. From the datasets made available by the Ontology Alignment Evaluation
Initiative (OAEI)7, we observed the available ground truth on whether a
pair of local-names, denoted by (n, n′), aligns.

2. We assumed the existence of a continuous random variable,X, in the bounded
domain [0,1], for the similarity scores returned by each matcher µ, where
µ ∈ {ed, ng}. Our objective was to model the behaviour of each matcher in
terms of a PDF f(x) over the similarity scores it returns, which we refer to
as observations in what follows.

3. To empirically approximate f(x) for each matcher, we proceeded as follows:
(a) We ran each matcher µ independently over the set of all local-name pairs

(n, n′) obtained from (1).
(b) For each pair of local-names, we observed the independent similarity

scores returned by the matcher when (n, n′) agrees with the ground
truth. These are the set of observations (x1, ..., xi) from which we esti-
mate f(x) for the equivalent case.

4. The observations x1, ..., xi obtained were used as inputs to the non-parametric
technique known as kernel density estimation (KDE) (using a Gaussian ker-

nel8) [4] whose output is an approximation f̂(x) for both ed and ng and for
both the equivalent and non-equivalent cases.

We interpret the outcome of applying such a PDF to syntactic evidence as the
likelihood of that evidence. More formally, and as an example, PDF≡

ed
(ed(n, n′))

= P (ed(n, n′)|cS ≡ cT ), i.e., given a pair of local-names (n, n′) the PDF for the ed
matcher in the equivalent case PDF≡

ed
yields the likelihood that the similarity

score ed(n, n′) expresses the equivalence of the pair of concepts (cS , cT ) that
(n, n′), resp., denote. Correspondingly, for the non-equivalent case, and for ng in
both the equivalent and non-equivalent cases.

The PDFs derived by the steps described above are shown in Fig. 6(a) and
(b) for ed and in Fig. 6(c) and (d) for ng. The same procedure can be used to
study the behaviour of any matcher that returns similarity scores in the interval
[0, 1]. Note that the PDFs obtained by the method above are derive-once, apply-
many constructs. Assuming that the samples used in the estimation of the PDFs
remain representative, and given that the behaviour of matchers ed and ng is
fixed and deterministic, the PDFs need not be recomputed.

3.2 Deriving Likelihoods for Semantic Evidence

We call semantic evidence the likelihoods derived from semantic annotations
obtained from the WoD. We first retrieved the semantic annotations summarised
in Table 3. The set TE is the set of all such evidence, TE = SU ∪ SB ∪ SA ∪
EC∪EM ∪DF ∪DW . We formed the subsets EE ⊂ TE = SA∪EC∪EM and

7 http://oaei.ontologymatching.org
8 A Gaussian kernel was used due to its mathematical convenience. Note that any

other kernel can be applied. Of course, the shape of the distribution may differ
depending on the kernel characteristics.
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Fig. 6: Illustration of probability distributions for each matcher over [0, 1].

NE ⊂ TE = DF ∪DW comprising assertions that can be construed as direct
evidence of equivalence and non-equivalence, respectively.

To derive a PDF for semantic evidence, we proceeded as follows:

1. We assumed the existence of a Boolean random variable, for each type of
semantic evidence in Table 3, with domain {true, false}.

2. Using the vocabularies available in the Linked Open Vocabularies (LOV)9

collection, we collected and counted pairs of classes and properties that share
direct or indirect assertions of equivalence or non-equivalence for all the
assertions in TE and NE using SPARQL queries. For example, with respect
to equivalence based on OWL and RDFS class annotations:

SELECT DISTINCT ?elem1 ?elem2
WHERE {
{?elem1 a rdfs:Class .} UNION {?elem1 a owl:Class .}
?elem1 ?p ?elem2 .
FILTER (?p = owl:equivalentClass && !isBlank(?elem2)) }

9 http://lov.okfn.org/dataset/lov/



3. From the set of pairs derived by the assertions in TE and NE, we counted as-
sertions that can be construed as evidence of equivalence or non-equivalence
for each pair, grouping such counts by kind of assertion (e.g., subsumed-by,
etc.)

4. We used the sets of counts obtained in the previous step to build contingency
tables (as exemplified by Table 4) from which the probability mass functions
(PMFs) for each kind of semantic evidence for both the equivalence and
non-equivalent cases can be derived. In the case of Table 4, the likelihood
P (EC(n, n′)|cS ≡ cT ) is estimated by the fraction 305/396.

Contingency Table
Semantic Evidence

EC ¬EC Total

cS ≡ cT 305 91 396

cS 6≡ cT 0 2552 2552

Total 305 2643 2948

Table 4: Example of a contingency table.

We interpret the outcome of applying such a PMF to semantic evidence as the
likelihood of that evidence. More formally, and as an example, PMF≡

EC
(EC(u, u′))

= P (EC(u, u′)|cS ≡ cT ), i.e., given the existence of an assertion that a pair of
URIs (u, u′) have an equivalence relation, the probability mass function for this
kind of assertion in the equivalent case PMF≡

EC
yields the likelihood that the

assertion EC(u, u′) expresses the equivalence on the pair of constructs (cS , cT )
that (u, u′), resp., denote. Correspondingly, for the non-equivalence case and for
all other kinds of semantic evidence (e.g., SB, etc.) in both the equivalent and
non-equivalent cases.

The PMFs derived by the steps described above are also derive-once, apply-
many constructs, but since the vocabulary collection from which we draw our
sample is dynamic, it is wise to be conservative and view them as derive-seldom,
apply-often.

3.3 Deriving Likelihoods for Internal Evidence

We call internal evidence the likelihoods derived from mapping fitness values
returned by the mapping generation process.

Note that in quantifying the uncertainty in respect of matching outcomes,
the hypothesis of equivalence can be modelled as a Boolean random variable.
However, in the case of mapping outcomes, this binary classification is undesir-
able. In the case that we adopt a binary setting with two possible outcomes,
viz., correct or incorrect, a correct mapping would be one that produces exactly



the same extent as the ground truth, any other mapping would be deemed in-
correct. However, a mapping may still be useful even if it fails to produce a
completely correct result. In practice, requiring mappings to be correct in this
most stringent sense may lead to few correct mappings whilst ruling out many
useful mappings. Therefore, for mapping outcomes, rather than expecting a pair
of constructs to be either equivalent or not, we are interested in the degree of
correctness of a mapping, and, therefore, we start by associating a mapping cor-
rectness score to a mapping.

More formally, we denote by JmK the extent of m, i.e., the result of evaluating
m over some instance and introduce a measure δ(m) that assigns a degree of
correctness m as the fraction of correct attribute values in JmK, where δ(m) ∈
[0, 1]. This measure can be computed for a mapping m and the ground truth GT
(taken as an instance) based on the number of identical attribute values between
JmK and GT as follows:

S(m) =

|GT |∑
i=1

maxj=1...|JmK| (tsim(tGTi
, tmj

)) (1)

S′(m) =

|JmK|∑
j=1

maxi=1...|GT | (tsim(tGTi , tmj )) (2)

δ(m) =
S(m) + S′(m)

|GT |+ |JmK| (3)

where JmK is the set of tuples resulting from the evaluation of m over GT , and
tsim() is a function that computes the similarity between two tuples as the ratio
of identical attribute-aligned values as follows:

tsim(tGT , tm) =

∣∣{a ∈ tGT |tGT (a) = tm(b), aligned(a, b)
}∣∣

arity(GT )
(4)

where a and b are attributes belonging to GT and JmK, resp., tGT (a) is the value
of the attribute a, tm(b) is the value of the attribute b, and aligned(a, b) is true
iff a and b are considered to be a match (i.e., there is a postulated conceptual
equivalence between a and b). Intuitively, S(m) estimates how similar the tuples
in GT are to the tuples in m, and S′(m) estimates how similar the tuples in m
are to those in the GT , whereas δ(m) combines these estimates.

With the goal of deriving likelihoods from internal evidence in the form
of mapping fitness values, we then correlate the latter with the corresponding
mapping correctness scores.

We must study the distribution of mapping fitness values for a comprehensive
set of mappings showing different fractions of correct attribute values in their
extent. We used a comprehensive set of paired observations obtained from a
diverse set of integration scenarios. Using a representative sample of observations
as input to KDE leads to a better estimate of the unknown distribution [33].
To collect as many observations as possible, we exposed the integration tool



(i.e., DSToolkit) to as many types of heterogeneities as are likely to be found in
real-world integration scenarios.

We used MatchBench [9] to systematically inject into an initial schema var-
ious heterogeneities (at the entity, and the attribute levels) between two sets of
schema constructs under the classification proposed by Kim et al. [17]. Examples
of schematic heterogeneities include missing attributes, inconsistent naming, as
well as horizontal and vertical partitionings.

In more detail, in order to derive probability density functions (PDFs) for
internal evidence, we proceeded as follows:

1. Given a pair of initial schemas (S, T ), we injected a set of systematic hetero-
geneities into the initial schemas as described in [9], where for each hetero-
geneity introduced, so as to derive, using MatchBench, a new pair of schemas
(S′, T ′) that reflects the changes intended for that scenario.

2. For every new pair of schemas (S′, T ′), and a set of matches between S′ and
T ′, we derived, using DSToolkit, a set of mappings M ′ between S′ and T ′.

3. For each mapping mi ∈ M ′, we observed its fitness value f(mi) = y and
computed its degree of correctness δ(mi) = x, based on the extent produced
by the mapping mi and the corresponding ground truth GT (constructed
by hand), giving rise to a pair of measures (xi, yi) which we refer to as
observations in what follows.

4. We assumed the existence of a continuous random variable X ∈ [0, 1] for the
correctness score of a generated mapping.

5. We assumed the existence of a continuous random variable Y ∈ [0, 1] for the
fitness value associated with a generated mapping.

6. The observations x1, . . . , xi, and y1, . . . , yi, i = |M | obtained as described
above were used as inputs to a bivariate KDE (using a Gaussian kernel)
whose output is an approximation of the PDF of the two continuous vari-
ables, f̂(x, y).

We interpret the outcome of applying such a PDF to this internal evidence
as the likelihood of that evidence. The PDF yields the probability of observing
a mapping fitness value y given that a mapping has a correctness score x. More
formally, this is expressed as P (f(m) = y | δ(m) = x). As with the previous
cases, the obtained PDF is a derive-once, apply-many construct. Assuming that
the sample of mappings used for training remains representative, and highly
correlates mapping correctness scores with mapping fitness values, the PDF need
not be recomputed. As is the case with semantic evidence, a certain degree of
domain dependency suggests it is wise to consider the process one whose type is
derive-seldom, apply-often. Fig. 7 depicts the resulting bivariate PDF.

4 Assimilating Evidence Using Bayesian Updating

The purpose of deriving likelihood models as described in Section 3 is to enable
the evidence to be combined in a systematic way using Bayesian updating. The
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Fig. 7: Bivariate PDF showing the correlation of mapping correctness score with
the mapping fitness values.

procedure for doing so is now described, but the benefits of the procedure are
only discussed in Section 5.

We denote by S and T the structural summaries (an ontology or a structural
summary derived by an approach like [5]) that describe, resp., the structure
of a source and a target LD source (over which we wish to discover semantic
correspondences) and that are used to derive a set of mappings between S and T .
Firstly, we show how to assimilate syntactic and semantic evidence to postulate
a d.o.b. on the equivalence of two constructs. Then, we elaborate on how the
Bayesian updating methodology can be used to update the derived posterior in
the light of additional evidence that emerge from the mapping generation phase,
and thereby postulate a d.o.b. on mapping correctness.

Assimilating Syntactic and Semantic Evidence on Matches. Given a
pair of constructs cS ∈ S and cT ∈ T , our objective is to derive a d.o.b. on
the postulated equivalence of a pair of constructs (denoted by H), given pieces
of evidence e1, ..., en ∈ E. To reason over our hypothesis, we model it as a
conditional probability P (H|E) and apply Bayes’s theorem to make judgements
on the equivalence of two constructs. The classical form of Bayes’s theorem10 is:

10 Informally, the d.o.b., in the hypothesis given the evidence (the so-called posterior
d.o.b.) is equal to the ratio between the product of the d.o.b. in the evidence given
the hypothesis (which we call likelihood in Section 3) and the d.o.b. in the hypothesis
(the so-called prior d.o.b.) divided by the d.o.b. in the evidence.



P (H|E) =
P (E|H) P (H)

P (E)
. (5)

To formulate the hypothesis for the matches, we assume a Boolean hypothesis
to postulate equivalence of constructs. In this case, the hypothesis can take
one of two states: P (H) = {P (cS ≡ cT ), P (cS 6≡ cT )}. The prior probability,
i.e., P (H) = P (cS ≡ cT ), is the d.o.b. in the absence of any other piece of
evidence (we assume a uniform distribution). Thus, since N = 2, i.e., there
are two possible outcomes our hypothesis can take, the prior probability that
one of the outcomes is observed is 1/N . The probability of the evidence, P (E),
can be expressed using the law of total probability [23], i.e., P (E) = P (E|cS ≡
cT ) P (cS ≡ cT )+P (E|cS 6≡ cT ) P (cS 6≡ cT ). To use Bayes’s theorem for deriving
a d.o.b. on the hypothesis given the available evidence, it is essential to estimate
the likelihoods for each type of evidence, i.e., P (E|cS ≡ cT ) and P (E|cS 6≡
cT ). For semantic evidence, the likelihoods are estimated from the contingency
tables constructed in Section 3.2. For continuous values, like similarity scores,
the constructed PDFs for each matcher from Section 3.1 are used to estimate
the conditional probabilities for the likelihoods. To determine these likelihoods,

we integrate the PDF over a finite region [a, b], viz., P (a ≤ X ≤ b) =
b∫
a

f(x) dx,

where the density f(x) is computed using KDE with a Gaussian kernel.
Recall that the idea behind Bayesian updating [34] is that once the posterior

(e.g., P (cS ≡ cT |E)) is computed for some evidence e1 ∈ E, a new piece of
evidence e2 ∈ E allows us to compute the impact of e2 by taking the previously
computed posterior as the new prior. Given the ability to compute likelihoods
for different kinds of evidence, we can use Bayesian updating to compute a d.o.b.
on the equivalence of (pairs of constructs in) two structural summaries S and T .
To see this, let P (e1,...,e

′
n) denote the d.o.b. that results from having assimilated

the evidence sequence (e1, ..., en). The initial prior is therefore denoted by P (),
and if (e1, ..., en) is the complete evidence sequence available, then P (e1,...,e

′
n) is

the final posterior. We proceed as follows:

i. We set the initial prior according to the principle of indifference between
the hypothesis that P (cS ≡ cT ) and its negation, so P () = 0.5.

ii. We collect the local-name pairs from the structural summaries S and T .
iii. We run ed on the local-name pairs and, using the probability distributions

derived using the methodology described above (Section 3.1), compute the
likelihoods for each pair and use Bayes’s rule to calculate the initial posterior
P (ed).

iv. We run ng on the local-name pairs and, using the probability distributions
derived using the methodology described above (Section 3.1), compute the
likelihoods for each pair and use Bayes’s rule to calculate the next posterior
P (ed,ng). Note that this is the d.o.b. given the syntactic evidence alone, which
we denote more generally by P (syn).

v. To get access to semantic annotations that span a variety of LD ontolo-
gies, we dereference every URI in S and T to collect the available semantic
annotations e.g., SB(cS ⊆ cT ).



vi. Using the methodology described above (Section 3.2), we compute, one at
a time, the likelihoods for the available semantic evidence, each time using
Bayes’s rule to calculate the next posterior (e.g., P (ed,ng,SB,...)), so that once
all the available semantic evidence is assimilated, the final posterior, which
we denote more generally by P (syn,sem), is the d.o.b. on cS ≡ cT , where,
cS ∈ S ∧ cT ∈ T .

Before carrying out the empirical evaluation of this approach using syntac-
tic and semantic evidence described in Section 5, we studied analytically, using
Bayes’s theorem, the effect of each piece of evidence independently. Given a se-
ries of initial prior probabilities in the range of [0, 1] and the evidence likelihoods
(see Section 3) we computed the posterior probabilities given each piece of ev-
idence. Fig. 8(a) and 8(b) show how the posteriors P (cs ≡ ct|ed(cs, ct) = s),
and, P (cs ≡ ct|ng(cs, ct) = s), resp., are updated when the available evidence
is similarity scores computed by the string-based matchers ed and ng. As an
example, consider Fig. 8(a) and assume that we are given a prior probability of
x = 0.5 and a similarity score that is y < 0.5, ed will cause the updated posterior
probability to fall relatively more. In this case, if the similarity score is y = 0.2,
the posterior probability drops to z = 0.2. In the case of ng, using identical
values as previously, the posterior probability drops to z = 0.36, which means
that ng causes a smaller decrease in the posterior than the ed does. In a simi-
lar fashion, the independent behaviours of different kinds of semantic evidence
have been studied. For example, Fig. 8(c) shows how the posterior is updated
when there is direct evidence that a pair of classes stand in a subsumption rela-
tionship (i.e., SB). A subsumption relation may indicate that the constructs are
more likely to be related than to be disjoint and a low initial prior is therefore
increased into a larger posterior. Similarly, Fig. 8(d) shows how the posterior
is affected when a pair of constructs stand in an equivalence relation (i.e., EC).
This is considered enough evidence to significantly increase a low prior to close
to 1; meaning that constructs are much more probably equivalent than if that
evidence had not been available.

Having observed how different posterior probabilities are updated in the pres-
ence of individual pieces of evidence, in Section 5 we empirically assess whether
the incorporation of semantic evidence from LD ontologies can improve on judge-
ments on the equivalence of constructs obtained through syntactic matching
alone.

Assimilating Evidence on Mappings. Similarly to the matching case, we use
the Bayesian updating methodology to revise a previously computed posterior
with a d.o.b. on mapping correctness in the light of evidence in the form of fitness
values. For this purpose, we postulate our hypothesis as a degree of correctness
of a mapping m, denoted as the mapping correctness score δ(m) = x. Therefore
the posterior d.o.b. can be expressed using Bayes’s theorem:

P (δ(m) = x | f(m) = y) =
P (f(m) = y | δ(m) = x)P (δ(m) = x)

P (f(m) = y)
(6)
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(a) Edit-distance matcher.
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(b) N-gram matcher.

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0  0.1  0.2  0.3  0.4  0.5  0.6  0.7  0.8  0.9  1

R
es

ul
tin

g 
po

st
er

io
r 

pr
ob

ab
ili

ty

Prior probability

(c) Evidence for subsumption.
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(d) Evidence of equivalence.

Fig. 8: Effect on the posterior probabilities using particular evidence on different prior
probabilities.

where P (δ(m) = x) is the prior probability that a mapping m has a degree
of correctness x (drawn from a continuous uniform distribution, U(0, 1)), and
P (f(m) = y | δ(m) = x) is the likelihood of observing a mapping fitness value
y for a mapping m, given that m has a degree of correctness x. We use the con-
structed PDF described in Section 3.3 to compute the conditional probability.
More specifically, and assuming that f(m) and δ(m) are two jointly continu-
ous random variables, described in terms of the derived PDF, the likelihood
P (f(m) = y | δ(m) = x), can be computed using the definition of conditional
probability as follows:

P (f(m) = y | δ(m) = x) =
P (f(m) = y ∩ δ(m) = x)

P (δ(m) = x)
(7)

where the joint probability P ((f(m) = y ∩ δ(m) = x) ∈ B) , B ∈ [0, 1] is
computed with a double integral over the estimated density function (derived

using KDE) f̂(y, x) as follows:

P (f(m) = y ∩ δ(m) = x) =

∫ ∫
B

f̂(y, x) dx dy (8)

The resulting probability, using Eq. 8, can be seen as the area under the
surface conditioned on the event [a − ε ≤ y ≤ a + ε, c− ε ≤ x ≤ c + ε], where ε



is a small positive number. P (δ(m) = x) in Eq. 7, is the marginal probability.
We use the computed probability using Eq. 7 as the likelihood term required by
Eq. 6.

For completeness, P (f(m) = y) in Eq. 6 is a normalization factor to sum the
probabilities to unity. This is the marginal probability denoted by

∫∞
−∞ fY (y |

X = x) fX(x) dx.
Finally, P (δ(m) = x | f(m) = y) denotes the posterior probability that

a value produced by a mapping m will be correct given an observed mapping
fitness value y.

The Bayesian updating methodology described above can underpin the uni-
form and consistent assimilation of different types of evidence to yield judge-
ments on the correctness/quality of the individual artefacts involved in a data
integration life-cycle, i.e., matchings and mappings. Assimilation of new pieces
of evidence leads to updates to the prior d.o.b.s in these artefacts, which can
potentially be propagated to more complex artefacts or other phases in the life-
cycle. Thus, the d.o.b.s in matching equivalences are propagated to the mapping
generation process, which now uses those d.o.b.s as input rather than similarity
scores as in most of the literature on this topic. Similarly, d.o.b.s on mapping
correctness can be used as priors in an improvement phase that assimilate user
feedback on mapping results. Enabling this principled propagation over many
phases of a pay-as-you-go data integration process is a major contribution of
this paper.

We observe that Bayesian updating, as such, is not computationally expen-
sive but, of course, the construction of the likelihoods, which is essentially a
training/induction step, could be, as it is involves labelling. In a real-world ap-
plication where a specific concern leads to the generation of a specific training
set, one would appeal to sampling theory in order to avoid an unnecessarily
large training set. This, of course, need not be large. It rather needs to be rep-
resentative of the underlying intended sources. So, this induction step, albeit
relatively expensive, may need to be done once but possibly not again. Unless,
of course, the population from which the sample was drawn changes significantly
and irreversibly.

5 Experimental Evaluation

The evaluation of our approach is based on the idea of emulating the judgements
produced by human experts in the presence of different kinds of evidence as the
latter emerge from an automated data integration cycle. The collected judge-
ments derived from experts were then compared with the judgements derived by
the Bayesian updating approach (as discussed in Sections 3 and 4).

This section describes our experimental evaluation, which had the following
goals: (a) to compare how well the Bayesian assimilation of syntactic evidence
alone performs against the aggregation of syntactic evidence followed by a pre-
defined function (viz., average), which is commonly used in existing matching
systems [32, 3]; (b) to ascertain whether the incorporation of semantic evidence



can improve on judgements on the equivalence of constructs obtained through
syntactic matching alone; (c) to ascertain whether the derived d.o.b.s on mapping
correctness are consistent with the aggregated testimonies from human experts
against the computed mapping degrees of correctness given a ground truth; and
(d) to compare the d.o.b.s on mappings obtained using the Bayesian approach
with the mapping correctness scores using the ground truth.

5.1 Experimental Setup

Use of expert testimonies. To evaluate the application of Bayes’s theorem for as-
similating different kinds of evidence, the experimental evaluation was grounded
on the rational decisions made by human experts on data integration and on-
tology alignment when judging whether a pair of constructs is postulated to be
equivalent given both syntactic and semantic evidence, and postulating whether
a mapping expression will produce correct values, as construed in this paper.
Fifteen human experts were asked (through surveys) to judge the correctness of
matches and mapping expressions and their judgements were compared to the
judgements obtained through the use of our methodology. By experts, we mean
professionals in data integration.

Deriving expert d.o.b.s in the matching stage. In the experiments investigating
matching, a set of pairs of constructs from different LD ontologies was collected,
making sure that different combinations of syntactic and semantic evidence (as in
Table 3) were present or absent. To obtain testimonies from the human experts,
a survey was designed based on the collected set of pairs of constructs, asking the
experts to make judgements on the equivalence of such pairs. Testimonies were
recorded on a discretization scale [6], as follows: {Definitely equivalent} mapped
to a d.o.b. of 1.0; {Tending towards being equivalent} mapped to a d.o.b. of 0.75;
{Do not know} mapped to a d.o.b. of 0.5; {Tending towards being not-equivalent}
mapped to a d.o.b. of 0.25; and {Definitely not-equivalent}mapped to a d.o.b. of 0.
By observing different pairs of constructs from real ontologies, approximately 40
common combinations of syntactic and semantic evidence have been identified.
For each combination, a question was designed to obtain individual testimonies
from each responder. Individual testimonies from each question were aggregated
using a weighted average, based on the confidence assigned to each item [6]. The
aggregated d.o.b.s obtained from the survey are treated as an approximation
of the experts’ confidence on equivalence of constructs given certain pieces of
syntactic and semantic evidence and act as a gold standard.

Deriving expert d.o.b.s in the mapping stage. Similarly, for the mapping experi-
ments, a set of mappings and their results were collected and presented to human
experts in order to obtain individual testimonies on the correctness of mapping
results. The mappings were derived by integrating two real-world schemas from
the music domain, viz., Jamendo11 and Magnatune12, using DSToolkit [13]. An

11 http://dbtune.org/jamendo/
12 http://dbtune.org/magnatune/



on-line survey, consisting of a set of mapping expressions written in SPARQL
and a sample of the corresponding result tuples, was delivered to expert users
who were asked to postulate how likely it was that a value in the tuples produced
by that mapping would be correct. We used the following discretization scale:
{Definitely correct} mapped to a d.o.b. of 1.0; {Tending towards being correct}
mapped to a d.o.b. of 0.75; {Do not know/Partially correct} mapped to a d.o.b. of
0.5; {Tending towards being incorrect} mapped to a d.o.b. of 0.25; and {Definitely
incorrect} mapped to a d.o.b. of 0. For each question, we aggregated the indi-
vidual testimonies using an average. We treat the aggregated testimonies as an
approximation of a human-derived d.o.b. on mapping correctness.

Datasets for the matching stage. For the purposes of the matching experiment,
the Bayesian technique was evaluated over the class hierarchies of ontologies
made available by the OAEI (Conference Track). These have been designed
independently but they all belong to the domain of conference organisation.
Note also that these ontologies share no semantic relations between them. Since
our technique assumes such relations for use as semantic evidence, we made
explicit some of these cross-ontology semantic relations using BLOOMS13, a
system for discovering rdfs:subClassOf and owl:equivalentClass relations between
LD ontologies [16]. We note that the contributions reported in this paper are
independent of BLOOMS, in that they can be used regardless of the sources of
semantic annotations. We found that, as it currently stands, the LOD cloud still
lacks the abundance of cross-ontology links at the conceptual level that is implied
by the vision of a Semantic Web. The results reported in this paper consider a
single pair of ontologies from the conference track, viz., ekaw (denoted by S)
and conference (denoted by T ).

Datasets for the mapping stage. The set of mappings used in the experiments
was derived using schemas from the music domain. In particular, we used three
schemas: Magnatune (as a source schema), Jamendo (as a source schema), and
DBTune (as the target schema). Magnatune is an online music streaming service
which offers an online music catalog. Jamendo is a linked open data repository.
DBTune is an ontology that describes music artists, records, tracks, and perfor-
mances. The schemas are depicted in Fig. 9.

Expectation matrix. Given a pair of classes from the class hierarchies of the input
ontologies and given the available kinds of evidence, both syntactic and semantic,
a d.o.b. was assigned for each pair on the basis of the experts’ testimonies. More
formally, we constructed a n × m structure referred to from now on as the
expectation matrix and denoted by Mexp, where n = |S| and m = |T |. The
element ejk in the jth row and the kth column of Mexp denotes the d.o.b.
derived from the expert survey between the jth construct in S and the kth
construct in T according to the pieces of evidence present or absent. Similarly,
we constructed a vector e = e1, . . . , en, n = |M |, where the element ei denotes

13 BLOOMS was configured with a high threshold, viz., > 0.8.



(a) Source Schema: Jamendo, s1.

(b) Source Schema: Magnatune, s2.

(c) Integration Schema: DbTune, sint.

Fig. 9: Schemas for deriving mappings.



the d.o.b. derived from the expert survey for the mapping mi ∈ M , and the
vector b = b1, . . . , bn, n = |M |, where the element bi denotes the d.o.b. derived
by the Bayesian approach for the mapping mi ∈M .

Evaluation metric. Let p1, p2, ..., pn be the d.o.b.s derived for each pair of classes
from the ontologies by either the average aggregation scheme or the Bayesian
assimilation, and let a1, a2, ..., an be the corresponding d.o.b.s in the expecta-
tion matrix just described. In the same way, let p1, p2, ..., pn be the d.o.b.s for
each mapping mi ∈ M by the Bayesian approach, and let a1, a2, ..., an be the
corresponding d.o.b.s from each mapping mi ∈ M by the experts’ testimonies.
We compute the mean-absolute error, MAE = (|p1 − a1| + ... + |pi − an|)/n
where |pi − ai| is the individual error of the i-th pair and n is the total number
of such errors. We also compute the correlation coefficient ρ between mapping
d.o.b.s and mapping correctness scores, and between mapping d.o.b.s and ag-
gregated experts’ testimonies, ρX,Y = cov(X,Y )/δXδY , where X is the set of
mapping d.o.b.s and Y is either the set of mapping correctness scores or the set
of aggregated experts’ testimonies.

5.2 Experimental Design

Traditional matching approaches (e.g., COMA [1]) exploit different pieces of
evidence, mostly from string-based matchers, to assess the similarity between
constructs in ontologies or in database schemas. Such approaches combine simi-
larity scores computed independently, typically using averages. For the matching
evaluation, the antagonist to our Bayesian approach is a process that indepen-
dently runs matchers ng and ed on the local-names of classes from ontologies S
and T , and produces an average of the similarity scores. The aggregated result
of this computation is a matrix Mavg. The next step is to measure how close the
derived predictions are to the d.o.b.s obtained by the experts’ testimonies. In
doing so, we used MAE as the performance measure since it does not exaggerate
the effect of outliers [15]. The result from computing the error between Mavg

and the expectation matrix Mexp is denoted by δavg.
Similarly, the Bayesian assimilation technique (as described in Section 4)

was used (instead of an average) to assimilate the evidence computed by the
string-based matchers on pairs of local-names. The result of this computation
is a matrix Msyn, where n = |S| and m = |T |. The element ejk in the jth row
and the kth column of Msyn denotes the posterior probability P (syn) between
the jth class in S and the kth class in T according to the syntactic evidence
derived from the string-based matchers ed and ng. The next step is to measure
how close the predictions from Msyn are to the expectation matrix Mexp. The
result is denoted by δsyn.

To assess whether semantic evidence can improve on judgements on the equiv-
alence of constructs that use averaging alone to aggregate syntactic evidence, we
first used BLOOMS [16] to make explicit the cross-ontology semantic relations
and used this as semantic evidence. In the light of this new evidence, the Bayesian
assimilation technique updates the posterior probabilities P (syn) for each pair of



classes in Msyn accordingly. The result of this process is a new matrix Msyn,sem

with the same dimensions as Msyn, where, the posterior probabilities for the
elements ejk reflect both syntactic and semantic evidence, P (syn,sem). Again we
denote by δsyn,sem the error calculated between Msyn,sem and the expectation
matrix Mexp. Finally, to complete the evaluation, the individual absolute errors
used for the calculation of δavg, δsyn, and δsyn,sem have been examined.

To evaluate the derived d.o.b.s on mapping correctness, we compared the
resulting d.o.b.s against two measures: aggregated d.o.b.s that were obtained
from testimonies from human experts, and overall mapping correctness with
respect to an available ground truth. In both cases, we observed whether a
derived d.o.b. for a mapping by the Bayesian approach is consistent with the
d.o.b. estimated from human experts, and an estimated mapping correctness
score given a ground truth. We would expect that a low d.o.b., e.g., lower than
0.1 by the Bayesian approach, should relate to a low d.o.b. obtained from either
human experts or from an observed mapping correctness score. In contrast, a
high d.o.b., e.g., greater than 0.6, should likewise relate to a high d.o.b. derived
from human testimonies and from an estimated mapping correctness score. We
use MAE to estimate the overall error between the d.o.b.s by the Bayesian and
the experts’ testimonies, and the computed similarity given an available ground
truth obtained from a Benchmark.

5.3 Results and Discussion

In experiments 1–3, individual errors are correlated against the expected value
(from experts’ testimonies).

Exp. 1 – Matching: AVG scheme vs. Bayesian Syntactic. The MAE error com-
puted for the average aggregation scheme against the expectation matrix was
δavg = 0.1079 whereas the error as a result of assimilating syntactic evidence
using the Bayesian technique was δsyn = 0.0698. To further understand the dif-
ference in errors, we measured the individual absolute errors that fall into each
of four regions of interest as these are shown in Fig. 10(a). They correspond to
the following minimum bounding rectangles, resp., Region 1 lies below the y = x
error line where AVG error >> Bayesian error and is the rectangle defined by
y = 0.2; Region 2 lies above the y = x error line where AVG error << Bayesian
error and is the rectangle defined by x = 0.2; Region 3 lies below the y = x error
line where AVG error > Bayesian error and is the rectangle defined by y > 0.2;
and Region 4 lies above the y = x error line where AVG error < Bayesian error
and is the rectangle defined by x > 0.2. We note that the larger the cardinality
of Region 1, the more significant is the impact of using semantic annotations as
we propose.

For the traditional aggregation scheme that produced Mavg we counted 3833
matches with individual errors greater than the analogous individual errors de-
rived by the Bayesian technique that produced Msyn. The use of Bayesian ag-
gregation significantly outperformed (i.e., has smaller individual errors than) the
use of AVG aggregation scheme for 87.49% of the total. Table 5 summarises the



no. region count perc. (%)

1 Ravg>>Bsyn 3833 87.49

2 Ravg<<Bsyn 215 4.90

3 Ravg>Bsyn 31 0.70

4 Ravg<Bsyn 302 6.89

Table 5: AVG scheme vs. Bayesian
syntactic.

no. region count perc. (%)

1 Ravg>>Bsyn,sem 125 71.43

2 Ravg<<Bsyn,sem 43 24.57

3 Ravg>Bsyn,sem 2 1.14

4 Ravg<Bsyn,sem 5 2.85

Table 6: AVG scheme vs. Bayesian
syntactic & semantic.

no. region count perc. (%)

1 RBsyn>>Bsyn,sem 124 89.21

2 RBsyn<<Bsyn,sem 9 6.48

3 RBsyn>Bsyn,sem 5 3.60

4 RBsyn<Bsyn,sem 1 0.72

Table 7: Bayesian syntactic vs. Bayesian syntactic & semantic.

results for each region showing how many individual errors are located in each
of the regions of interest in both absolute terms and relative to the total.

Exp. 2 – Matching: AVG scheme vs. Bayesian Syn. & Sem. To evaluate our hy-
pothesis that semantic annotations can improve outcomes we compared the ag-
gregated errors denoted by δavg and δsyn,sem. The mean absolute error δsyn,sem =
0.1259 is lower than δavg = 0.1942 with a difference of 0.0683. Fig. 10(b) plots the
individual errors for pairs of classes that have some semantic relation between
them. We are interested on cases where the individual errors for the Bayesian
technique are smaller than the AVG scheme. In particular, the points that lie
mostly between 0.1 and 0.3 on the x-axis and below the y = x error line. For
71.43% of the total matches that have some semantic evidence the Bayesian
technique produces results closer to the testimonies, with individual errors that
mostly lie in that region. Table 6 summarises the results for each region showing
how many individual errors are located in each of the regions of interest in both
absolute terms and relative to the total.

Exp. 3 – Matching: Bayesian Syn. vs. Bayesian Syn. & Sem. Similarly to Exp.2,
we compared the aggregated errors denoted by δsyn and δsyn,sem considering
only individual errors that have some semantic evidence. Again in this case
δsyn,sem = 0.1259 is closer to the expectation matrix than δsyn = 0.2768 with a
difference of 0.1509. The results of this experiment are summarised in Table 7.
The points of interest in this experiment are the ones where the individual errors
for Bsyn,sem, that considers both syntactic and semantic evidence, are smaller
than Bsyn. For 89.21% of the total matches discovered, that have some semantic
evidence, Bsyn,sem outperforms the configuration of the Bayesian scheme that
utilises syntactic evidence alone, i.e., Bsyn.



For the mapping generation case, we focus on the correlation between the
aggregated d.o.b.s from experts’ testimonies against the overall mapping cor-
rectness score, derived using ground truth, as well as with the d.o.b.s derived by
assimilating mapping generation evidence (i.e., fitness values) using the Bayesian
approach.
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Fig. 10: (a) Shows the regions of interest, (b) Individual errors Bayesian against AVG
scheme.

Exp. 4 – Mapping Generation: Bayesian d.o.b.s vs. Observed Mapping Correct-
ness. For each mapping in the integration, we observed the d.o.b. derived by the
Bayesian approach (x), and the mapping correctness score (y) using an available
ground truth. We correlate these two measures in a scatter plot depicted in Fig.
11(a). Here, we can observe that the Bayesian approach (x-axis) is being more
optimistic than the computed similarity using an available ground truth. One
possible reason for this is that the ground truth is inherently rigorous in the
sense that it does not allow for misleading interpretations of the actual data.
Thus, mapping correctness tends to be lower than the derived d.o.b.s. Compar-
ing the two measures, it can be seen that there is a positive correlation between
the Bayesian d.o.b.s and the mapping similarities as, for most cases, a low d.o.b.
correlates with a low mapping correctness. Similarly, a high d.o.b. relates to a
high similarity score. The computed MAE for the Bayesian d.o.b.s against the
mapping correctness was δ = 0.1274. The correlation coefficient between the
Bayesian d.o.b.s and the mapping correctness score is 0.92. Furthermore, the
computed MAE for the Bayesian d.o.b.s against the mapping correctness was
δ = 0.1296.

Exp. 5 – Mapping Generation: Bayesian d.o.b.s vs. Experts Testimonies. As
in Experiment 4, here we correlate the d.o.b. derived by the Bayesian approach
with the aggregated testimonies from experts. Fig. 11(b) depicts this correlation.
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Fig. 11: (a) Inferred Quality vs. Observed Quality, (b) Inferred Quality vs. Experts’
testimonies, (c) Individual errors Overall mapping correctness score vs Aggregated
experts testimonies.

Here, we observe that the experts’ testimony is slightly more optimistic than the
d.o.b.s derived by the Bayesian approach. Moreover, we observe that there is
a positive correlation, i.e., low d.o.b.s are correlated to low d.o.b.s by experts’
testimonies, whereas high d.o.b.s are correlated to high d.o.b.s from experts’
testimonies. The correlation coefficient between the Bayesian d.o.b.s and the
experts testimonies is strong but slightly lower than in Exp. 4, possibly due to
inevitable subjectivity, albeit reduced by expertise, in human judgements. The
computed MAE for the Bayesian d.o.b.s against the testimony from experts was
δ = 0.1113.

We also show the individual errors between the aggregated testimonies from
experts against the overall mapping correctness score, using ground truth. This
is depicted in Fig. 11(c). Here, we observe that in most cases, the individual
errors are low, i.e., < 0.2. This may suggest that both techniques derive closely
related measures for individual mappings.



6 Related Work

Automatic techniques for bootstrapping a data integration system offers oppor-
tunities for on-demand approximate integrations [31]. This approximation arises
from the different kinds of uncertainty propagated throughout the process of in-
tegration. In the context of LD sources, automatic schema extraction techniques
[5] are used to approximate the structure of the sources which is not strictly en-
forced. Matching techniques are likely to be uncertain due to the robustness of
the matching techniques where the associations discovered between the sources
require selection and grouping to inform the generation of mappings. This un-
certainty on the match results is propagated throughout to mapping generation
[2] influencing the ability to produce correct results. In this paper, we make the
case that the effects introduced by the inherited uncertainty can be better under-
stood by assimilating different forms of evidence in a principled, uniform manner
throughout the integration processes. We then position this work in relation to
other proposals that are concerned with these challenges.

Reacting to Different Pieces of Evidence for Matching. A variety of
strategies have been proposed in the literature for solving the problem of com-
bining different pieces of evidence about matches, some examples are: average,
weighted average, min, max and sigmoid functions [25]. However, it falls on users
to tune or select the appropriate aggregation method manually according to the
problem in hand. In contrast, the Bayesian assimilation of evidence technique
can be used as an alternative aggregation strategy for assimilating any piece of
evidence, complementing typical aggregation strategies used by state-of-the-art
schema and ontology matching systems [27, 32, 3]. When the appropriate prob-
ability distributions are made available, the approach presented in this paper
can be used as a generic aggregation strategy that presents results in terms of
d.o.b.s, rather than building on matcher-specific metrics.

Sabou et al. [28] presented an ontology matching paradigm that makes use
of additional external background knowledge that is made available from ontolo-
gies from the Semantic Web. The proposal in our paper makes use of additional
semantic annotations from LD ontologies as evidence with the aim of improv-
ing the decision making of different matchers that mostly work on syntax. Ap-
proaches for discovering semantic relations from ontologies e.g., [29] can be used
to provide input to our Bayesian approaches to further improve the accuracy,
thus improving the decision making of matching approaches. The uncertainty in
the decisions made by different matchers has also been observed in [22], where a
similarity matrix that describes the outcome of some matcher is modelled as two
probability distributions. An alternative statistical analysis is used to model the
similarity scores distribution returned by each matcher that uses the parametric
beta-distribution to estimate the underlying probability. The proposal in our
paper, however, makes no assumptions about the shape or parameters of the un-
derlying distribution, and uses a non-parametric statistical analysis technique,
based on kernel density estimation, to approximate the probability distributions
for each matcher using the sampled data.



We observe that the antagonist in our matching experiments (i.e., taking
the average of a collection of independently-produced similarity scores) is the de
facto standard for schema matching.

Uncertainty Management in Mapping Generation. Dong et al. proposed
an approach to manage uncertainty in data integration by introducing the con-
cept of probabilistic schema mappings, in which a probability is attached to
each generated mapping. This probability is derived from a probability mass
function on the fraction of attributes from a source schema that conform to at-
tributes in a mediated schema [7]. The assigned probability is used to produce a
result consisting of the top-k tuples during the query evaluation process. In our
work the probability assigned to each mapping denotes the d.o.b. that a tuple
produced by a mapping is likely to be correct, whereas in [7] the assigned prob-
ability denotes the d.o.b that a mapping is correct among the mappings that
describe the same source and target concept. In addition, we are not restricted
to one-to-one mappings, as we also deal with one-to-many relationships. [21] as-
sumes the existence of a set of matches annotated with probabilities to present
a data integration process that annotates mappings with probabilities. In rela-
tion to mappings, they use a discrete value to denote the semantic relationship
between constructs, whereas in our work we assign a degree of correctness in
the continuous interval [0, 1]. We do not simply assume the existence of proba-
bilities, instead we have described a systematic methodology for deriving them.
In another study, Keulen [35], proposes a probabilistic approach to deal with
uncertainty in data cleaning, mapping and information extraction approaches.
Here, uncertainty is model as random events representing assertions on data in-
stances, i.e., whether two data instances relates to the same real-world object
or not. In contrast, our approach deals with uncertainty in postulating syntactic
and semantic equivalence between schema constructs from different sources.

We observe that there is no comparable antagonist for our mapping gener-
ation experiments insofar as work on mapping generation has mostly stemmed
from the data exchange literature and hence has focussed on generating map-
pings that can be used to materialize core solutions to the data exchange prob-
lem, whereas our contribution aims at producing a quantification of the uncer-
tainty associated with automatic mapping generation that closely correlates with
the corresponding expert judgements.

Most experimental work on automating data integration techniques is by
and large incomparable with ours because, so far, their primary intent has been
on evaluating a point solution (i.e., a technique that applies to a single stage,
such as matching, or mapping generation, of the end-to-end approach) whereas
one of our main goals has been to evaluate a cross-stage technique, i.e., one
of our contributions is to show how the quantified uncertainty resulting from
the matching stage influences the quantified uncertainty associated with the
generated mappings in the subsequent stage.

To the best of our knowledge, our work is the first attempt to evaluate the
techniques on their ability to correlate closely to the corresponding judgement
of experts. This is as ambitious as it is onerous and strongly suggests that future



work is needed to collect more data points and ascertain the true robustness of
our experimental results.

7 Conclusions

The WoD can be seen as vibrant but challenging: vibrant because there are nu-
merous publishers making valuable data sets available for public use; challenging
because of inconsistent practises and terminologies in a setting that is something
of a free-for-all. In this context, it is perhaps easier to be a publisher than a con-
sumer. As a result, there is a need for tools and techniques to support effective
analysis, linking and integration in the web of data [26]. 14 The challenging envi-
ronment means: (i) that there are many different sources of evidence on which to
build; (ii) that there is a need to make the most of the available evidence; and (iii)
that it is not necessarily easy to do (ii). This paper has described a well-founded
approach to combining multiple sources of evidence of relevance to matching and
mapping, namely similarity scores from several syntactic matchers, semantic an-
notations, and mapping generation evidence in the form of fitness values. The
main finding from our experimental results is confirmation that the contributed
Bayesian approach can be used as a generic approach of assimilating different
kinds of evidence that are likely to emerge throughout an automated integration
process, in ways that reflect the opinions of human integration experts.
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