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Abstract. We examine double successive approximations on a set, which we denote by L2L1, U2U1,
U2L1, L2U1 where L1, U1 and L2, U2 are based on generally non-equivalent equivalence relations
E1 and E2 respectively, on a finite non-empty set V. We consider the case of these operators being
given fully defined on its powerset P(V ). Then, we investigate if we can reconstruct the equivalence
relations which they may be based on. Directly related to this, is the question of whether there are
unique solutions for a given defined operator and the existence of conditions which may characterise
this. We find and prove these characterising conditions that equivalence relation pairs should satisfy
in order to generate unique such operators.
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1 Successive Approximations
Double successive rough set approximations here, are considered using two, generally different
equivalence relations. These are interesting because one can imagine a situation or model where
sets/information to be approximated is input through two different approximations before returning
the output. It is possible that for example heuristics in the brain can be modelled using such
layered approximations. Decomposing successive approximations into constituent parts is somewhat
analogous to decomposing a wave into sine and cosine parts using Fourier analysis.

In our case, we have two equivalence relations E1 and E2 on a set V with lower and upper
approximations operators acting on its powerset P(V ), denoted by L1, U1 and L2, U2 respec-
tively. What if we knew the results of passing all the elements in P(V ) through L1 and then
L2, which we denote by L2L1. Could we then reconstruct E1 and E2 from this information? In
this paper, we will investigate this question and consider the four cases of being given a defined
L2L1, U2U1, U2L1, L2U1 operators. We will find that two equivalence relations do not always
produce unique such operators but that some pairs do. We find and characterise conditions which
the pairs of equivalence relations must satisfy for them to produce a unique operator. Cattaneo and
Ciucci found that preclusive relations are especially useful for rough approximations in information
systems in [4]. For the L2L1 case we will show that these conditions from a preclusive relation be-
tween pairs of equivalence relations on a set and so we can define a related notion of independence
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from it. After this, we will find a more conceptual but equivalent version of the conditions of the
uniqueness theorem. These conditions are more illuminating in that we can easier see why these
conditions work while the conditions in the first version of the theorem are easier to use in practice.
Lastly, we will consider the cases of the remaining operators, U2U1, U2L1 and L2U1. We note that
the L2L1 and U2U1 cases are dual to each other and similarly for the U2L1 and L2U1 cases.

Rough set theory has quite a large number of practical applications. This is due in part to
the computation of reducts and decision rules for databases. Predictions can be made after the
data is mined to extract decision rules of manageable size (i.e. attribute reduction). In this
way, rough set theory can be used to make decisions using data in the absence of major prior
assumptions as argued in more detail in [22]. Hence in retrospect, it is perhaps not so surprising
that this leads to tremendous applications. Therefore, rough set analysis is added to the tools, which
includes regression analysis and Bayes’ Theorem, for pattern recognition and feature selection in
data mining, see [19, 36, 10, 37, 29, 5, 26, 28]. The resulting applications include in medical
databases [32, 31, 30, 8, 9, 12, 13], cognitive science [16, 14, 25, 17, 35], artificial intelligence and
machine learning [15, 11, 7, 6, 33, 21, 27] and engineering [1, 2, 3, 24, 23]. Indeed in [34], Yao noted
that there is currently an imbalance in the literature between the conceptual unfolding of rough set
theory and its practical computational progress. He observed that the amount of computational
literature currently far exceeds the amount of conceptual, theoretical literature. Moreover, he
made the case that the field would prosper from a correction of this imbalance. To illustrate this,
he began his recommendation in [34] by formulating a conceptual example of reducts that unifies
three reduct definitions used in the literature which on the surface look different. We strongly agree
that more efforts to find conceptual formulations of notions and results would increase the discovery
of unifying notions. This would greatly aid the aim of making a cohesive and coherent map of the
present mass of existing literature. In this direction, we have developed subsections 4.2 and 4.3 in
section 4.

2 Basic Concepts of Rough Set Theory
We go over some basic notions and definitions which can be found in [18]. Let V be a set and E
be an equivalence relation on V . Also, let the set of equivalence classes of E be denoted by V/E.
If a set X ⊆ V , is equal to a union of some of the equivalence classes of E then it is called E-exact.
Otherwise, X is called E-inexact or E-rough or simply rough when the equivalence relation under
consideration is clear from the context. Inexact sets may be approximated by two exact sets, the
lower and upper approximations as is respectively defined below:

lE(X) = {x ∈ V | [x]E ⊆ X},

uE(X) = {x ∈ V | [x]E ∩X 6= ∅}. (1)

Equivalently, we may use a granule based definition instead of a pointwise based definition:

lE(X) =
⋃
{Y ⊆ V/E | Y ⊆ X},

uE(X) =
⋃
{Y ⊆ V/E | Y ∩X 6= ∅}. (2)

The pair (V,E) is called an approximation space. It may be the case that several equivalence
relations are considered over a set. Let E being a family of equivalence relations over a finite non-
empty set V . The pair, K = (V,E) is called knowledge base. If P ⊆ E, we recall that

⋂
P is alao
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an equivalence relation. The intersection of all equivalence relations belonging to P is denoted by
IND(P) =

⋂
P. This is called the indiscernibility relation over P.

For two equivalence relations E1 and E2, we say that E1 ≤ E2 iff E1 ⊆ E2. In this case we say that
E1 is finer than E2 or that E2 is coarser than E1.

We recall from [20] some definitions about different types of roughly definable and undefinable sets.
Let V be a set then for X ⊆ V :

(i) If lE(X) 6= ∅ and uE(X) 6= V, then X is called roughly E-definable.

(ii) If lE(X) = ∅ and uE(X) 6= V, then X is called internally roughly E-undefinable.

(iii) If lE(X) 6= ∅ and uE(X) = V, then X is called externally roughly E-definable.

(iv) If lE(X) = ∅ and uE(X) = V, then X is called totally roughly E-definable.

2.1 Properties Satisfied by Rough Sets
In [18], Pawlak enlists the following properties of lower and upper approximations. Let V be a
non-empty finite set and X,Y ⊆ V . Then, the following holds:

1)lE(X) ⊆ X ⊆ uE(X),

2)lE(∅) = uE(∅) = ∅; lE(V ) = uE(V ) = V,

3)uE(X ∪ Y ) = uE(X) ∪ uE(Y ),

4)lE(X ∩ Y ) = lE(X) ∩ lE(Y ),

5)X ⊆ Y ⇒ lE(X) ⊆ lE(Y ),

6)X ⊆ Y ⇒ uE(X) ⊆ uE(Y ),

7)lE(X ∪ Y ) ⊇ lE(X) ∪ lE(Y ),

8)uE(X ∩ Y ) ⊇ uE(X) ∩ uE(Y ),

9)lE(−X) = −uE(X),

10)uE(−X) = −lE(X),

11)lE(lE(X)) = uE(lE(X)) = lE(X),

12)uE(uE(X)) = lE(uE(X)) = uE(X).

2.2 Dependencies in Knowledge Bases
A database can also be represented in the form of a matrix of Objects versus Attributes with the
entry corresponding to an object attribute pair being assigned the value of that attribute which
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the object satisfies. From the following definition, we can form equivalence relations on the objects
for each given attribute. The set of these equivalence relations can then be used as our knowledge
base.

Definition 2.1. Let V be the set of objects and P be the set of attributes. Let Q ⊆ P , then V/Q
is an equivalence relation on U induced by Q as follows: x ∼Q y iff q(x) = q(y) for every q ∈ Q.

To construct decision rules, we may fix two sets of attributes called condition attributes and decision
attributes denoted by C and D respectively. We then use these to make predictions about the
decision attributes based on the condition attributes. Decision rules are made by recording which
values of decision attributes correlate with which values of condition attributes. As this information
can be of considerable size, one of the primary goals of rough set theory is to reduce the number
of decision attributes without losing predictive power. A minimal set of attributes which contains
the same predictive power as the full set of decision attributes is called a reduct with respect to D.

Next we give the definition of the positive region of one equivalence relation with respect to another.

Definition 2.2. Let C and D be equivalence relations on a finite non-empty set V. The positive
region of the partition D with respect to C is given by,

POSC(D) =
⋃

X∈D

lC(X), (3)

Definition 2.3. It is said that D depends on C in a degree k, where 0 ≤ k ≤ 1, denoted by
C ⇒k D, if

k = γ(C,D) = |POSC(D)|
|V |

. (4)

If k = 1, then we say that C depends totally on D i.e C ⇒ D.

Let K1 = (V,P) and K2 = (V,Q). We now give the definitions dependency of knowledge and then
partial dependency. We say that Q depends on P i.e. P⇒ Q iff IND(P) ⊆ IND(Q).

Proposition 2.1. IIND(P) ≤ IIND(Q) iff P⇒ Q.

Proposition 2.2. POSIND(P)IND((Q)) = U iff P⇒ Q.

Otherwise, in the above case, γ(IND(P), IND(Q)) = k < 1 and then we say that P⇒k Q.

3 Properties of Successive Approximations
Next, we see that in general, approximating with respect to E1 and then approximating the result
with respect to E2 gives a different result than if we had done it in the reverse order. That is, suc-
cessive approximations do not commute. We consider some properties of successive approximations
below.

Proposition 3.1. Let V be a set and E1 and E2 be equivalence relations on V. Then for Y ∈ P(V ),
the following holds,
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1. lE1(lE2(Y )) = Z 6⇒ lE2(lE1(Y )) = Z,
2. uE1(uE2(Y )) = Z 6⇒ uE2(uE1(Y )) = Z,
3. uE1(lE2(Y )) = Z 6⇒ lE2(uE1(Y )) = Z,
4. lE1(uE2(Y )) = Z 6⇒ uE2(lE1(Y )) = Z.

Proof. We give a counterexample to illustrate the proposition. Let V = {a, b, c, d} and let E1 =
{{a, b, c}, {d}} and E2 = {{a, b}, {c, d}}.
To illustrate 1., let Y = {a, b, c}. Then lE1(lE2(Y )) = ∅ while lE2(lE1(Y )) = {a, b}.

For 2., let Y = {a}. Then uE1(uE2(Y )) = {a, b, c} while uE2(uE1(Y )) = {a, b, c, d}.

For 3., let Y = {a, b}. Then uE1(lE2(Y )) = {a, b, c} while lE2(uE1(Y )) = {a, b}.

For 4., let Y = {a, b, c}. Then lE1(uE2(Y )) = ∅ while uE2(lE1(Y )) = {a, b, c, d}.

From Properties 1), 5) and 6) of lower and upper approximations in Section 2.1, we immediately
get that,
(i) lE1(lE2(Y )) ⊆ lE2(Y ),uE1(uE2(Y )) ⊇ uE2(Y ),
ggluE1(lE2(Y )) ⊇ lE2(Y ) and lE1(uE2(Y )) ⊆ uE2(Y ).

If we do not know anything more about the relationship between E1 and E2 then nothing further
may be deduced. However, if for example we know that E1 ≤ E2 then the successive approximations
are constrained as follows:

Proposition 3.2. If E1 ≤ E2 then the following properties hold;

(ii) lE1(lE2(Y )) = lE2(Y )
(iii) lE2(lE1(Y )) ⊆ lE2(Y )
(iv) uE1(uE2(Y )) ⊇ uE1(Y )
(v) uE2(uE1(Y )) = uE2(Y )

Proof. Straightforward.

Proposition 3.3. Let V be a finite non-empty set and let E1 and E2 be equivalence relations on
V. Let x ∈ V. Then lE1(uE2({x})) ⊆ POSE1(E2).

Corollary 3.1. Let V be a finite non-empty set and let E1 and E2 be equivalence relations on V.
Let X ⊆ V. Then POSE1(E2) ∩X ⊆

⋃
x∈X

lE1(uE2({x})).

Corollary 3.2. Let V be a finite non-empty set and let E1 and E2 be equivalence relations on V.
Then POSE1(E2) =

⋃
x∈V

lE1(uE2({x})).
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Figure 4.1: Illustrates that successive approximations get more coarse when iterated.

Proposition 3.4. Let G be a graph with vertex set V and E an equivalence relation on V. Let SE be
the set containing equivalence classes of E and taking the closure under union. Let F : P(V )→ SE

be such that F (X) =
⋃

x∈X

[x]E and let Id : SE → P(V ) be such that Id(Y ) = Y Then F and Id

form a Galois connection.

Proof. It is clear from definitions that both F and Id are monotone. We need that for X ∈ P(V )
and Y ∈ SE , F (X) ⊆ Y iff X ⊆ Id(Y ). This is also the case because from the definition of F, we
have the X ⊆ F (X).

Remark 3.1. Successive approximations break the Galois structure of single approximations. We
can imagine that single approximations are a kind of sorting on the domain of a structure. We
partition objects in the domain into boxes and in each box there is a special member (the lower or
upper approximation) which identifies/represents any member in its respective box. We may say
that objects are approximated by their representative.

For successive approximations, we have two different sortings of the same domain. Objects
are sorted by the first approximation and only their representative members are then sorted by
the second approximation. An object is then placed in the box that its representative member is
assigned to in the second approximation, even though the object itself may be placed differently if
the second approximation alone was used. Hence the errors ‘add’ in some sense. In Figure 4.1, the
final grouping as seen by following successive arrows, may be coarser than both the first and second
approximations used singly. An interesting problem is how to correct/minimise these errors. It is
also interesting how much of the individual approximations can be reconstructed from knowledge
of the combined approximation. In the next section we will investigate this problem.

4 Decomposing L2L1 Approximations
What if we knew that a system contained exactly two successive approximations? Would we be
able to decompose them into its individual components? Before getting into what we can do and
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what information can be extracted, we start with an example to illustrate this.

Notation: Let V be a finite set. Let a function representing the output of a subset of V when acted
on by a lower approximation operator L1 followed by a lower approximation operator L2, based on
the equivalence relations E1 and E2 respectively, be denoted by L2L1 where L2L1(X) = L2(L1(X))
and L2L1 : P(V ) → P(V ). Similarly, other combinations of successive lower and upper approxi-
mations examined will be denoted by U2U1, L2U1, U2L1 which denotes successive upper approx-
imations, an upper approximation followed by a lower approximation and a lower approximation
followed by an upper approximation respectively.

Sometimes when we know that the approximations are based on equivalence relations P and Q
we may use the subscripts to indicate this for example; LQLP .

Lastly, if for a defined L2L1 operator there exists a pair of equivalence relation solutions E1 and
E2 which are such that the lower approximation operators L1 and L2 are based on them respec-
tively, then we may denote this solution by the pair (E1, E2). Also, (E1, E2) can be said to produce
or generate the operators based on them.

Example 4.1
Let V = {a, b, c, d, e}. Let a function representing the output of a subset of V when acted on by a
lower approximation operator L1 followed by a lower approximation operator L2, which are induced
by equivalence relations E1 and E2 respectively and let L2L1 : P(V )→ P(V ) be as follows:

L2L1({∅}) = ∅ L2L1({a, b, c, d, e}) = {a, b, c, d, e}
L2L1({a}) = ∅ L2L1({b, c, d, e}) = {e}
L2L1({b}) = ∅ L2L1({a, c, d, e}) = {c, d, e}
L2L1({c}) = ∅ L2L1({a, b, d, e}) = {e}
L2L1({d}) = ∅ L2L1({a, b, c, e}) = {a, b}
L2L1({e}) = ∅ L2L1({a, b, c, d}) = {a, b}
L2L1({a, b}) = ∅ L2L1({c, d, e}) = {e}
L2L1({a, c}) = ∅ L2L1({b, d, e}) = {e}
L2L1({a, d}) = ∅ L2L1({b, c, e}) = ∅
L2L1({a, e}) = ∅ L2L1({b, c, d}) = ∅
L2L1({b, c}) = ∅ L2L1({b, c, d}) = ∅
L2L1({b, d}) = ∅ L2L1({a, d, e}) = {e}
L2L1({b, e}) = ∅ L2L1({a, c, d}) = ∅
L2L1({c, d}) = ∅ L2L1({a, b, e}) = ∅
L2L1({c, e}) = ∅ L2L1({a, b, d}) = ∅
L2L1({d, e}) = {e} L2L1({a, b, c}) = {a, b}

We will now try to reconstruct E1 and E2. The minimal sets in the output are {e} and {a, b}.
Clearly, these are either equivalence classes of E2 or a union of two or more equivalence classes
of E2. Since {e} is a singleton it is must be an equivalence class of E2. So far we have partially
reconstructed E2 and it is equal to or finer than {{a, b}, {c, d}, {e}}.

Let us consider the pre-images of these sets in L2L1 to try to reconstruct E1. Now, L2L
−1
1 ({e}) =

{{d, e}, {a, d, e}, {b, d, e}, {c, d, e}, {a, b, d, e}, {b, c, d, e}}. We see that this set has a minimum with
respect to containment and it is {d, e}. Hence either {d, e} is an equivalence class of E1 or both of
{d} and {e} are equivalent classes of E1.
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Similarly, L2L
−1
1 ({a, b}) = {{a, b, c}, {a, b, c, e}, {a, b, c, d}}.We, see that this set has a minimum

which is {a, b, c} hence either this set is an equivalence class or is a union of equivalence classes in
E1. Now, L2L

−1
1 ({c, d, e}) = {{a, c, d, e}}. Hence, {a, c, d, e} also consists of a union of equivalence

classes of E1. Since we know from above that {d, e} consists of the union of one or more equivalence
classes of E1, this means that {a, c} consists of the union of one or more equivalence classes of E1 and
{b} is an equivalence class of E1. So far we have that E1 is equal to or finer than {{a, c}, {b}, {d, e}}.

Now we consider if {a, c} ∈ E1 or both of {a} and {c} are in E1. We can rule out the latter
for suppose it was the case. Then L2L1({a, b}) would be equal to {a, b} since we already have that
{b} ∈ E1 and {a, b} is the union of equivalence classes in E2. Since this is not the case we get that
{a, c} ∈ E1. By a similar analysis of L2L1({a, c, d}) 6= {c, d} but only ∅ we get that {d, e} ∈ E1.
Hence, we have fully constructed E1 and E1 = {{a, c}, {b}, {d, e}}.

With E1 constructed we can complete the construction of E2. Recall, that we have that {a, b} is
a union of equivalence classes in E2. Suppose that {a} ∈ E2. Then L2L1({a, c}) would be equal to
{a} since {a, c} ∈ E1 but from the given list we see that it is not. Hence, {a, b} ∈ E2. Similarly, we
recall that {c, d} is a union of equivalence classes in E2. Suppose that {d} ∈ E2. Then L2L1({d, e})
would be equal to {d, e} since {d, e} ∈ E1 but it is only equal to {e}. Hence, {c, d} ∈ E2. We have
now fully reconstructed E2 and E2 = {{a, b}, {c, d}, {e}}.

The next example shows that we cannot always uniquely decompose successive approximations.

Example 4.2
Let V = {a, b, c, d} and let E1 = {{a, b}, {c, d}}, E2 = {{a, c}, {b, d}} and E3 = {{a, d}, {b, c}}. We
see that L1L2(X) = L1L3(X) = ∅ for all X ∈ (P(V ) − V ) and L1L2(X) = L1L3(X) = V when
X = V. Then for all X ⊆ U, L1L2(X) = L1L3(X) even though E2 6= E3. Hence, if we are given a
double, lower successive approximation on P(V ) which outputs ∅ for all X ∈ (P(V )−V ) and V for
X = V then we would be unable to say that it was uniquely produced by L1L2 or L1L3.

In the following we start to build to picture of what conditions are needed for the existence of
unique solutions for double, successive approximations.

Proposition 4.1. Let V be a set with equivalence relations E1 and E2 on V. If for each [x]E1 ∈
E1, [x]E1 is such that L2([x]E1) = ∅ i.e [x]E1 is either internally E2–undefinable or totally E2–
undefinable, then the corresponding approximation operator, L2L1 on P(V ) will be such that L2L1([x]E1) =
∅.

Proof. Here, L1([x]) = ∅. Hence L2L1([x]) = L2(∅) = ∅.

Remark 4.1 We note that the union of E-undefinable sets is not necessarily E-undefinable. Con-
sider Example 4.2. Here, {a, b} and {c, d} are both totally E2–undefinable but their union, {a, b, c, d}
is E2–definable.

Algorithm 4.1: For Partial Decomposition of Double Successive Lower Approximations

Let V be a finite set. Given an input of a fully defined operator L2L1 : P(V )→ P(V ), if a solution
exists, we can produce a solution (S,R), i.e. where L1 and L2 are the lower approximation operators
of equivalence relations S and R respectively, by performing the following steps:
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1. Let J be the set of output sets of the given L2L1 operator. We form the relation R to be such
that for a, b ∈ V, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for any X ∈ J. It is clear that R is an
equivalence relation.

2. For each Y 6= ∅ output set, find the minimum pre-image set with respect to ⊆, Ym, such that
L2L1(Ym) = Y . Collect all these minimum sets in a set K. If there is any non-empty output set Y,
such that the minimum Ym does not exist, then there is no solution to the given operator and we
return 0 signifying that no solution exists.

3. Using K, we form the relation S to be such that for a, b ∈ V, a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X)
for any X ∈ K. It is clear that S is an equivalence relation.

4. Form the operator LRLS : P(V ) → P(V ) generated by (S,R). If for all X ∈ P(V ), the given
L2L1 operator is such that L2L1(X) = LRLS(X), then (S,R) is a solution proving that a solution
exists (note that it is not necessarily unique). Return (S,R). Otherwise, discard S and R and
return 0 signifying that no solution exists.

We will prove the claims in step 2 and step 4 in this section. Next, we prove step 2.

Proposition 4.2. Let V be a set and L2L1 : P(V ) → P(V ) be a given fully defined operator on
P(V ). If for Y 6= ∅ in the range of L2L1, there does not exist a minimum set Ym, with respect to ⊆
such that L2L1(Ym) = Y, then there is no equivalence relation pair solution to the given operator.

Proof. Suppose to get a contradiction that a solution (E1, E2) exists and there is no minimum
set Ym such that L2L1(Ym) = Y. Since V is finite, then there exists at least two minimal sets Yk

and Yl say, such that L2L1(Ys) = Y and L2L1(Yt) = Y. Since Ys and Yt are minimal sets with
the same output after two successive lower approximations, then Ys and Yt must each be unions
of equivalence classes in E1 which contain Y. Since they are unequal, then WLOG there exists
[a]E1 ∈ E1 which is such that [a]E1 ∈ Ys but [a]E1 6∈ Yt. Since Ys is minimal, then [a]E1 ∩ Y 6= ∅
(or else L2L1(Ys) = L2L1(Ys − [a]E1) = Y ). So let x ∈ [a]E1 ∩ Y. Then Yt 6⊇ x which contradicts
Yt ⊇ Y.

We now prove three lemmas on the way to proving the claim in step 4.

Lemma 4.1. Let V be a set and L2L1 : P(V ) → P(V ) be a given fully defined operator on P(V ).
Let R and S be equivalence relations defined on V as constructed in the previous algorithm. If
(E1, E2) is a solution of L2L1 then E2 ≤ R and E1 ≤ S.

Proof. We first prove E2 ≤ R. Now the output set of a non-empty set in P(V ) is obtained by first
applying the lower approximation L1 to it and and after applying the lower approximation, L2 to
it. Hence by definition of L2, the non-empty output sets are unions of equivalence classes of the
equivalence relation which corresponds to L2. If a is in an output set but b is not then they cannot
belong to the same equivalence class of E2 i.e. a 6∼R b implies that a 6∼E2 b. Hence E2 ≤ R.

Similarly, the minimal pre-image, X say, of a non-empty output set which is a union of equiv-
alence classes in E2, has to be a union of equivalence classes in E1. For suppose it was not.
Let Y = {y ∈ X | [y]E1 6⊆ X}. By assumption, Y 6= ∅. Then L1(X) = L1(X − Y ). Hence
L2L1(X) = L2L1(X−Y ) but |X−Y | < |X| contradicting minimality of X. Therefore, if a belongs
to the minimal pre-image of a non-empty output set but b does not belong to it, then a and b
cannot belong to the same equivalence class in E1 i.e. a 6∼S b which implies that a 6∼E1 b. Hence
E1 ≤ S.
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Remark 4.2 The above lemma implies that for a given L2L1 operator on P(V ) for a set V, that
the pair of solutions given by the algorithm S and R for corresponding to L1 and L2 are the
coarsest solutions for E1 and E2 which are compatible with the given, fully defined L2L1 operator.
That is, for any other possible solutions, E1 and E2 to the given L2L1 operator, E1 ≤ S and E2 ≤ R.

Lemma 4.2. Let V be a finite set and L2L1 : P(V ) → P(V ) be a fully defined operator. If
there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists
[x]E2 , [y]E2 ∈ E2, such that [x]E2 6= [y]E2 and uE1([x]E2) = uE1([y]E2), then there exists another
solution, (E1, H2), where H2 is an equivalence relation formed from E2 by combining [x]E2 and
[y]E2 and all other elements are as in E2. That is, [x]E2 ∪ [y]E2 = [z] ∈ H2 and if [w] ∈ E2 such
that [w] 6= [x]E2 and [w]E2 6= [y]E2 , then [w] ∈ H2.

Proof. Suppose that (E1, E2) is a solution of a given L2L1 operator and H2 is as defined above.
Now, L2L1(X) = Y iff the union of E1-equivalence classes inX contains the union of E2-equivalence
classes which is equal to Y. So, in the (E1, H2) solution, the only way that LH2LE1(X) could be
different from LE2LE1(X)(which is = L2L1(X)) is if (i) [x]E2 is contained in LE2LE1(X) while [y]E2

is not contained in LE2LE1(X) or if (ii) [y]E2 is contained in LE2LE1(X) while [x]E2 is not contained
in LE2LE1(X). This is because in H2, [x]E2 and [y]E2 always occur together in an output set if they
are in it at all (recall that output sets are unions of equivalence classes) in the equivalence class
of [z] = [x]E2 ∪ [y]E2 and all the other equivalence classes of H2 are the same as in E2. However,
neither (i) nor (ii) is the case since uE1([x]E2) = uE1([y]E2). That is, the equivalence classes of
[x]E2 are contained by exactly the same union of equivalences in E1 which contains [y]E2 . Thus,
any set X which contains a union of E1-equivalences which contains [x]E2 also must contain [y]E2

and therefore [z]H . Hence, if (E1, E2) is a solution for the given vector, then so is (E1, H2).

Lemma 4.3. Let V be a finite set and L2L1 : P(V ) → P(V ) be a fully defined operator. If
there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists
[x]E1 , [y]E1 ∈ E2, such that [x]E1 6= [y]E1 and uE2([x]E1) = uE2([y]E1), then there exists another
solution, (H1, E2), where H1 is an equivalence relation formed from E1 by combining [x]E2 and
[y]E2 and all other elements are as in E1. That is, [x]E1 ∪ [y]E1 = [z] ∈ H1 and if [w] ∈ E2 such
that [w] 6= [x]E1 and [w]E1 6= [y]E1 , then [w] ∈ H1.

Proof. Suppose that (E1, E2) is a solution of a given L2L1 operator and H1 is as defined above.
Now, L2L1(X) = Y iff the union of E1-equivalence classes inX contains the union of E2-equivalence
classes which is equal to Y. So, in the (H1, E2) solution, the only way that LE2LH1(X) could be
different from LE2LE1(X)(which is = L2L1(X)) is if the union of equivalence classes in X which is
needed to contain Y, (i) contains [x]E2 but not [y]E2 or (ii) contains [y]E2 but not [z]E2 . However, this
is not the case since uE2([x]E1) = uE2([y]E1). That is, [x]E1 intersects exactly the same equivalence
classes in E2 as [y]E1 . So if [x]E1 is needed to contain an equivalence class in E2, then [y]E1 is
also needed. In other words, if L2L1(X) = Y, then for any minimal set such Ym ⊆ X such that
L2L1(Ym) = Y, [x]E1 is contained in Ym iff [y]E1 is contained in Ym iff [z] ∈ H1 is contained in Ym.
Hence, if (E1, E2) is a solution for the given vector, then so is (H1, E2).

We now have enough to be able to prove the claim in step 4 of Algorithm 4.1 (actually we prove
something stronger because we also show conditions which the solutions of the algorithm must
satisfy).
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Theorem 4.1. Let V be a finite set and L2L1 : P(V )→ P(V ) be a fully defined operator. If there
exists equivalence pair solutions to the operator, then there exists solutions (E1, E2) which satisfy,

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) for each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

Furthermore, E1 = S and E2 = R where (S,R) are the solutions obtained by applying Algorithm
4.1 to the given L2L1 operator.

Proof. Suppose that there exists a solution (C,D). Then, either (C,D) already satisfies condition
(i) and condition (ii) or it does not. If it does, take (E1, E2) = (C,D). If it does not satisfy condition
(i) then use repeated applications of Lemma 4.2 until we arrive at an (C,E2) solution which does.
Similarly, if (C,E2) does not satisfy condition (ii), use repeated applications of Lemma 4.3 until it
does. Since P(V ) is finite this will take at most finite applications of the lemmas until we obtain
a solution, (E1, E2) which satisfies the conditions of the theorem. Since there is a solution, using
Proposition 4.2 we will at least be able to reach step 4 of Algorithm 4.1. So let S and R be the
relations formed by the algorithm after step 3. Next, we will show that E1 = S and E2 = R. Now,
by Lemma 4.1, we have that E1 ≤ S and E2 ≤ R.

Consider the output sets of the given L2L1 operator. It is clear that these sets are unions of
one or more equivalence classes of E2. Let [y]E2 ∈ E2 then L2L1(uE1([y]E2)) ⊇ [y]E2 .

Claim 1: L2L1(uE1([y]E2)) is the minimum output set of L2L1 such that it contains [y]E2 and
uE1([y]E2) is the minimum set X such that L2L1(X) ⊇ [y]E2 .

To see this we first note that L2L1 is a monotone function on P(V ) since L1 and L2 are monotone
operators and L2L1 is the composition of them. Then, if we can show that uE1([y]E2) is the
minimum set X ∈ P(V ), such that L2L1(X) ⊇ [y]E2 , then L2L1(uE1([y]E2)) will be the minimum
set output set which contains [y]E2 . This is true because for L2L1(X) ⊇ [y]E2 , then L1(X) must
contain each member of [y]E2 . We note that the range of L1 contains only unions of equivalence
classes of E1 (counting the emptyset as a union of zero sets). Hence for L1(X) to contain each
element of [y]E2 , it must contain each equivalence class in E1 which contains any of these elements.
In other words, it must contain uE1([y]E2). Suppose that X is such that X 6⊇ uE1([y]E2) and
L2L1(X) ⊇ [y]E2 . Then for some v ∈ [y]E2 , v is not in X and so uE1([v]E2) 6∈ L1(X). Hence
L2L1(X) 6⊇ v and so does not contain [y]E2 which is a contradiction.

Claim 2: L2L1(uE1([y]E2)) is not the minimum output set with respect to containing any other
[z]E2 6= [y]E2 .

Suppose that for some [z]E2 6= [y]E2 ∈ E2, that L2L1(uE1([y]E2)) is the minimum output set con-
taining [z]E2 . Then by the previous Claim, we get that L2L1(uE1([y]E2)) = L2L1(uE1([z]E2)) and
that uE1([y]E2) ⊇ uE1([z]E2). But since uE1([y]E2) is the minimum set such that L2L1(X) ⊇ [y]E2 ,
then the stated equality also gives us that uE1([y]E2) ⊆ uE1([z]E2). Hence we have uE1([y]E2) =
uE1([z]E2) which is a contradiction to the assumption of condition (i) of the theorem.

Now we can reconstruct E2 by relating elements which always occur together in the output
sets. That is, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for each X in the range of L2L1. From
the previous proposition we have that E2 ≤ R. We claim that R ≤ E2, hence R = E2. To show
this, suppose that it is not the case. Then there exists a, b ∈ V such that a ∼R b but a 6∼E2 b.
By Claim 1, L2L1(uE1([a]E2)) is the minimum set which contains [a]E2 and since a ∼R b then
it must contain b, and consequently [b]E2 as well. Similarly by Claim 1, L2L1(uE1([b]E2)) is the
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minimum set which contains [b]E2 and since a ∼R b then it must contain a, and consequently
[a]E2 as well. By minimality we therefore have both L2L1(uE1([a]E2)) ⊆ L2L1(uE1([b]E2)) and
L2L1(uE1([a]E2)) ⊇ L2L1(uE1([b]E2)) which implies that L2L1(uE1([a]E2)) = L2L1(uE1([b]E2)).
This contradicts Claim 2 since [a]E2 6= [b]E2 ∈ E2. Hence, E = R and we can reconstruct E2 by
forming the equivalence relation R which was defined by using the output sets.

It remains to reconstruct E1. Next, we list the pre-images of the minimal output sets which
contain [y]E2 for each [y]E2 in E2 and by Claim 1 this exists and is equal to uE1([y]E2). This
implies that each such set is the union of some of the equivalence classes of E1. Now using this
pre-image list we relate elements of V in the following way: a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X)
for each X in the pre-image list. From the previous proposition we have that E1 ≤ S. We claim
that S ≤ E1 and hence S = E1. Suppose that it was not the case. That is, there exists a, b ∈ V
such that a ∼S b but a 6∼E1 b. Hence [a]E1 6= [b]E1 . By condition (ii) of the theorem, we know
that uE2([a]E1) 6= uE2([b]E1). So WLOG suppose that d ∈ uE2([a]E1) but d 6∈ uE2([b]E1). Since
these sets are unions of equivalence classes in E2 this implies that 1), [d]E2 ⊆ uE2([a]E1) and 2)
[d]E2 ∩ uE2([b]E1) = ∅. Now by Claim 1, uE1([d]E2) is the minimum set, X such that L2L1(X)
contains [d]E2 and so is on the output list from which the Relation S was formed. However, 1)
implies that this set contains a while 2) implies that this set does not contain b. This contradicts
a ∼S b. Hence S = E1 and we can construct E1 by constructing S. The result is shown.

Next we give, a graph-theoretic equivalence of the theorem but we first define a graph showing the
relationship between two equivalence relations on a set.

Definition 4.1. Let C and D be two equivalence relations on a set V. Form a bipartite graph
B(C,D) = (G,E), where the nodes G is such that G = {[u]C | [u]C ∈ C} ∪ {[u]D | [u]D ∈ D} and
the edges E are such that E = {([u]C , [v]D) | ∃ x ∈ V : x ∈ [u]C and x ∈ [v]D}. We call this the
incidence graph of the pair (C,D).

Theorem 4.2. Let V be a finite set and let L2L1 : P(V )→ P(V ) be a given fully defined operator
on P(V ). If there exists solutions (E1, E2) then the incidence graph of E1 and E2, B(E1, E2), is
such that there are no compete bipartite subgraphs as components other than edges (or K2).

Proof. This is a direct translation of the previous theorem graph-theoretically. Suppose that the
incidence graph of E1 and E2, B(E1, E2), contains a complete bipartite subgraph as a component.
Then the partition corresponding to E2 violates Condition (i) of the theorem and the partition
corresponding to E1 violates condition (ii) of the theorem.

Corollary 4.1. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator. If
(E1, E2) is a unique solution for the operator then |E1| < 2|E2| and |E2| < 2|E1|.

Proof. This follows directly from the conditions since in the incidence graph of a unique solution
(E1, E2), each equivalence class in E1 is mapped to a unique non-empty subset of equivalence classes
in E2 and vice versa.

The next natural question is, without assuming conditions on the equivalence relations, are there
instances when the algorithm produces a unique solution? Example 4.1 is an example of a unique
decomposition of a given L2L1 operator. So this leads naturally to the next question. What
conditions result in a unique solution to a given L2L1? Can we find characterising features of the
pairs of equivalences relations which give a unique L2L1 operator?

12



We note that the algorithm always produces a solution for a fully defined L2L1 operator which
has at least one solution. Hence, if there is a unique solution then these pairs of equivalence relations
satisfy the conditions of Theorem 4.1. Recall that in Example 4.2, we were given an L2L1 operator
defined on P(V ) for V = {a, b, c, d} such that L2L1(X) = ∅ for all X 6= V and L2L1(V ) = V. This
example shows us that in addition to a solution which would satisfy the conditions of the theorem,
which applying the algorithm gives us; E1 = {{a, b, c, d}} and E2 = {{a, b, c, d}}}, we also have
solutions of the form E1 = {{a, b}, {c, d}} and E2 = {{a, c}, {b, d}} or E1 = {{a, b}, {c, d}} and
E2 = {{a, d}, {b, c}} amongst others. In Lemma 4.1, we showed that the solution given by the
algorithm is the coarsest pair compatible with a given defined L2L1 operator. We now try to find a
condition such that after applying the algorithm, we may deduce whether or not the (S,R) solution
is unique. This leads us to the next section.

4.1 Characterising Unique Solutions
Theorem 4.3. Let V be a finite set and let L2L1 : P(V ) → P(V ) be a fully defined operator on
P(V ). If (S,R) is returned by Algorithm 4.1, then (S,R) is the unique solution of the operator iff
the following holds:

(i) For any [x]R ∈ R, there exists [z]S ∈ S such that, |[x]R ∩ [z]S | = 1.
(ii) For any [x]S ∈ S, there exists [z]R ∈ R such that, |[x]S ∩ [z]R| = 1.

Proof. We prove ⇐ direction first. So assume the conditions. We note that by Lemma 4.1, any
other solutions, (E1, E2) to the given L2L1 operator must be coarser than (S,R). Thus, if there is
another solution to the given L2L1 operator, (E1, E2) then at least one of E1 < S, E2 < R must
hold.

First we assume to get a contradiction that there exists a solution (E1, E2) which is such that
E1 < S. That is, E1 contains a splitting of at least one of the equivalences classes of S, say [a]S .
Hence |[a]S | ≥ 2. By assumption there exists a [z]R ∈ R such that |[a]S ∩ [z]R| = 1. Hence there is
a [z]E2 ∈ E2 such that |[a]S ∩ [z]E2 | = 1 since E2 ≤ R. Call the element in this intersection v say.
We note that [v]E2 = [z]E2 . Now as [a]S is spilt into smaller classes in E1, v must be in one of these
classes, [v]E1 . Consider the minimal pre-image of the minimal output set of L2L1 which contains
[v]R. Call this set Y(S,R). For the solution (S,R), Y(S,R) contains all of [a]S since v ∈ [a]S . But for
the solution (E1, E2), the minimal pre-image of the minimal output set of L2L1 which contains
[v]R, Y(E1,E2), is such that Y(E1,E2) = (YS − [a]s) ∪ [v]E1 6= YS . Hence the output list for (E1, S) is
different from the given one which is a contradiction.

Next, suppose to get a contradiction there exists a solution (E1, E2) which is such that E2 < R.
That is, E2 contains a splitting of at least one of the equivalences classes of R, say [a]R. Hence
|[a]R| ≥ 2. By assumption there exists a [z]S ∈ S such that |[a]R ∩ [z]S | = 1. Hence there is a
[z]E1 ∈ E1 such that |[a]R ∩ [z]E1 | = 1 since E1 ≤ S. Call the element in this intersection v say. We
note that [v]E1 = [z]E1 . Now as [a]R is spilt into smaller classes in E2, v must be in one of these
classes, [v]E2 . Consider the set [a]R− [v]E2 . The minimal pre-image of the minimal output set which
contains this set in the (S,R) solution, Y(S,R) contains [v]S since here the minimal output set which
contains ([a]R− [v]E2), must contain all of [a]R which contains v. If (E1, E2) were the solution then
the minimal pre-image of the minimal output set which contains ([a]R− [v]E2), Y(E1,E2), would not
contain [vs] since ([a]R− [v]E2)∩ [v]S = ∅. That is, Y(E1,E2) 6= YS . Hence the output list for (E1, E2)
is different from the given one which is a contradiction.
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Now we prove ⇒ direction. Suppose that (E1, E2) is the unique solution, and assume that the
condition does not hold. By Theorem 4.1, (E1, E2) = (S,R). Then either there exists an [x]R ∈ R
such that for all [y]S ∈ S such that [x]R ∩ [y]S 6= ∅ we have that |[x]R ∩ [y]S | ≥ 2 or there exists an
[x]S ∈ S such that for all [y]R ∈ R such that [x]S ∩ [y]R 6= ∅ we have that |[x]S ∩ [y]R| ≥ 2.

We consider the first case. Suppose that [x]R has non-empty intersection with with n sets in S.
We note that n ≥ 1. Form a sequence of these sets; S1, ...Sn. Since |[x]R∩Si| ≥ 2 for each i such that
i = 1, ...n, let {ai1, ai2} be in [x]R ∩ Si for each i such that i = 1, ...n. We split [x]R to form a finer
E2 as follows: Let P = {ai1 | i = 1, ...n} and Q = [x]R−P be equivalence classes in E2 and for the
remaining equivalence classes in E2, let [y] ∈ E2 iff [y] ∈ R and [y]R 6= [x]R. Now, LRLS(X) = Y iff
the union of S-equivalence classes in X contains the union of R-equivalence classes which is equal
to Y. So, for the (S,E2) solution, the only way that LE2LS(X) could be different from LRLS(X)
is if there is a union of S-equivalence classes in X which contain P but not Q or which contain Q
but not P (since P and Q always occur together as [x]R for the (S,R) solution). However, this
is not the case as follows. Since P and Q exactly spilt all of the equivalence classes of S which
have non-empty intersection with [x]R, we have that uS(P ) = uS(Q). That is, P intersects exactly
the same equivalence classes of S as Q. Therefore, P is contained by exactly the same union of
equivalence classes in S as Q. Therefore, a union of S-equivalence classes in X contains P iff it
contains Q iff its contains [x]R. Hence, LRLS(X) = LE2LS(X) for all X ∈ P(V ) and if (S,R) is a
solution for the given vector, then so is (S,E2) which is a contradiction of assumed uniqueness of
(S,R).

We consider the second case. Suppose that [x]S has non-empty intersection with with n sets in
R. We note that n ≥ 1. Form a sequence of these sets; R1, . . . Rn. Since |[x]S ∩ Ri| ≥ 2 for each i
such that i = 1, . . . n, let {ai1, ai2} be in [x]S ∩Ri for each i such that i = 1, . . . n. We split [x]S to
form a finer E1 as follows: Let P = {ai1 | i = 1, . . . n} be one equivalence class and let Q = [x]R−P
be another and for any [y]S ∈ S such that [y]S 6= [x]S , let [y] ∈ E1 iff [y] ∈ S. Again, LRLS(X) = Y
iff the union of S-equivalence classes in X contains the union of R-equivalence classes which is equal
to Y. So, for the (E1, R) solution, the only way that LRLE1(X) could be different from LRLS(X)
is if (i) P is contained in LRLS(X) while Q is not contained in LRLS(X) or (ii) Q is contained in
LRLS(X) while P is not contained in LRLS(X). Since P and Q spilt all of the equivalence classes
of R which have non-empty intersection with [x]S , this implies that uR(P ) = uR(Q). That is, P and
Q intersect exactly the same equivalence classes of R. So if P is needed to contain an equivalence
class in R for the (S,R) solution, then Q is also needed. In other words, if L2L1(X) = Y, then for
any minimal set such Ym ⊆ X such that L2L1(Ym) = Y, P is contained in Ym iff Q is contained in
Ym iff [x]S is contained in Ym. Hence, LRLS(X) = LRLE1(X) for all X ∈ P(V ) and if (S,R) is a
solution for the given vector, then so is (E1, R) which is a contradiction of assumed uniqueness of
(S,R).

The following theorem sums up the results of Theorem 4.1 and Theorem 4.3.

Theorem 4.4. Let V be a finite set and let L2L1 : P(V ) → P(V ) be a fully defined successive
approximation operator on P(V ). If (E1, E2) is a solution of the operator then it is the unique
solution iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.
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(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Remark 4.3: If an equivalence relation pair satisfies the conditions of Theorem 4.1, then the L2L1
operator based on those relations would be such that if there exists other solutions then they would
be finer pairs of equivalence relations. On the other hand, if an equivalence relation pair satisfies
the conditions of Theorem 4.3, then the L2L1 operator based on those relations would be such that
if there exists other solutions then they would be coarser pairs of equivalence relations. Hence, if
an equivalence relation pair satisfies the conditions of both Theorem 4.1 and Theorem 4.3, then the
L2L1 operator produced by it is unique.

Corollary 4.2. Let V be a finite set and let L2L1 : P(V ) → P(V ) be a fully defined successive
approximation operator on P(V ). If (S,R) is the solution returned by Algorithm 4.1, is such that it
is the unique solution then following holds:

For any x ∈ V we have that;
(i) [x]S 6⊇ [x]R unless |[x]R| = 1
(ii) [x]R 6⊇ [x]S unless |[x]S | = 1,

Proof. This follows directly from the conditions in Theorem 4.3.

Example 4.1 (revisited): Consider again, the given output vector of Example 4.1. First we form the
(S,R) pair using Algorithm 4.1. We get that R = {{a, b}, {c, d}, {e}} and S = {{a, c}, {b}, {d, e}}.
Since this is the pair produced from Algorithm 4.1, we know that it satisfies the conditions of
Theorem 4.1. Now we need only to check if this pair satisfies the conditions of Theorem 4.3 to see
if it is the only solution to do so. To keep track of which equivalence class a set belongs to, we will
index a set belonging to either S or R by S or R respectively. Then we see that |{a, b}R∩{b}S | = 1,
|{c, d}R ∩ {a, c}S | = 1 and |{e}R ∩ {d, e}S | = 1. This verifies both conditions of Theorem 4.3 and
therefore this is the unique solution of the given operator.

Proposition 4.3. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator.
If (E1, E2) is a unique solution such that either E1 6= Id or E2 6= Id where Id is the identity
equivalence relation on V then,

(i) E1 6≤ E2,
(ii) E2 6≤ E1.

Proof. We first observe that if E1 and E2 are unique solutions and both of them are not Id then
one of them cannot be equal Id. This is because if (E1, Id) were solutions to a given L2L1 operator
corresponding to L1 and L2 respectively then (Id,E1) would also be solutions corresponding to L1
and L2 respectively and the solutions would not be unique. Hence, each of E1 and E2 contains at
least one equivalence class of size greater than or equal to two.

Suppose that E1 ≤ E2. Consider an e ∈ E2 such that |e| ≥ 2. Then e either contains a f ∈ E1
such that |f | ≥ 2 or two or more singletons in E1. Then first violates the condition of Corollary
4.2 and the second violates the second condition of Theorem 4.1. Hence the solutions cannot be
unique. Similarly, if we suppose that E2 ≤ E1.

Corollary 4.3. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator. If
there exists a unique solution (E1, E2) such that either E1 6= Id or E2 6= Id where Id is the identity
equivalence relation on V then,
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(i) k = γ(E1, E2) = |P OSE1 (E2)|
|V | < 1 or E1 6⇒ E2

(ii) k = γ(E2, E1) = |P OSE2 (E1)|
|V | < 1 or E2 6⇒ E1.

Proof. This follows immediately from definitions.

Proposition 4.4. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator. If
there exists exists a unique solution (E1, E2) then,

(i) for any [x]E1 ∈ E1, |POSE2([x]E1)| ≤ 1
(ii) for any [x]E2 ∈ E2, |POSE1([x]E2)| ≤ 1.

Proof. This follows from the conditions in Theorem 4.4 and Corollary 4.2 which imply that for a
unique pair solution (E1, E2), an equivalence class of one of the equivalence relations cannot contain
any elements of size greater than one of the other relation and can contain at most one element of
size exactly one of the other relation.

Corollary 4.4. Let V be a finite set where |V | = l and L2L1 : P(V ) → P(V ) be a given defined
operator. If there exists exists a unique solution (E1, E2) such that |E1| = n and |E2| = m then,

(i) k = γ(E1, E2) = |P OSE1 (E2)|
|V | ≤ m

l

(ii) k = γ(E2, E1) = |P OSE2 (E1)|
|V | ≤ n

l .

Proof. Let (E1, E2) be the unique solution of the given L2L1 operator. This result follows directly
from the previous proposition by summing over all the elements in one member of this pair for
taking its positive region with respect to the other member of the pair.

Corollary 4.5. Let V be a finite set such that |V | = n and L2L1 : P(V )→ P(V ) be a given defined
operator. If there exists exists a unique solution (E1, E2) then,

(i) if the minimum size of an equivalence class in E1, k1 where k1 ≥ 2 then
k = γ(E1, E2) = |P OSE1 (E2)|

|V | = 0.

(ii) if the minimum size of an equivalence class in E2, k2 where k2 ≥ 2 then
k = γ(E2, E1) = |P OSE2 (E1)|

|V | = 0.

Proof. Since no member of E2 can contain any member of E1 because E1 has no singletons, we get
that |P OSE1 (E2)|

|V | = 0. Similarly for Part (ii).

Proposition 4.5. Let V be a finite set and L2L1 : P(V ) → P(V ) be a given defined operator. If
there exists a unique solution (E1, E2) such that |E1| = m and |E2| = n and S1 is the number of
singletons in E1 and S2 is the number of singletons in E2, then,

(i) S1 ≤ n
(ii) S2 ≤ m.

Proof. We note that the conditions in Theorem 4.4 imply that no two singletons in E1 can be
contained by any equivalence class in E2 and vice versa. The result thus follows on application
of the pigeonhole principle between the singletons in one equivalence relation and the number of
elements in the other relation.
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4.2 A Derived Preclusive Relation and a Notion of
Independence

In [4], Cattaneo and Ciucci found that preclusive relations are quite useful for using rough approx-
imations in information systems. In this direction, we will define a related notion of independence
of equivalence relations from it.

Let V be a finite set and let EV be the set of all equivalence relations on V. Also, let E0
V =

EV − IdV , where IdV is the identity relation on V. From now on, where the context is clear, we
will omit the subscript. We now define a relation on E0, 6⇒E0 , as follows:

Let E1 and E2 be in E0. Let L2L1 : P(V ) → P(V ) where L1 and L2 are lower approximation
operators based on E1 and E2 respectively. Then,

E1 6⇒E0 E2 iff L2L1 is a unique approximation operator.

That is, if for no other E3 and E4 in E0 where at least one of E1 6= E3 or E2 6= E4 holds, is it the
case that the operator L2L1 = L3L4, where L3 and L4 are lower approximation operators based on
E3 and E4 respectively.

Definition 4.2. Let V be a set and E1, E2 ∈ E0
V . We say that E1 is E0

V –independent of E2
iff E1 6⇒E0

V
E2. Also, if ¬(E1 6⇒E0

V
E2), we simply write E1 ⇒E0

V
E2. Here, we say the E1 is

E0
V –dependent of E2 iff E1 ⇒E0

V
E2.

Proposition 4.6. 6⇒E0
V
is a preclusive relation.

Proof. We recall that a preclusive relation is one which is irreflexive and symmetric. Let E ∈ E0
V .

Since E 6= Id, then by application of Proposition 4.2.3 (E,E) does not generate a unique L2L1
operator and therefore E ⇒E0

V
E. Hence 6⇒E0

V
is irreflexive.

Now, suppose that E1, E2 ∈ E0
V are such that E1 6⇒E0

V
E2. Then (E1, E2) satisfies the con-

ditions of Theorem 4.4. Since together, the four conditions of the theorem are symmetric (with
conditions (i) and (ii) and conditions (iii) and (iv) being symmetric pairs), then (E2, E1) also sat-
isfies the conditions of the theorem. Then by this theorem, we will have that E2 6⇒E0

V
E1. Hence,

6⇒E0
V
is symmetric.

Remark 4.4 From the previous proposition we can see that dependency relation⇒E0
V
is a similarity

relation.

Proposition 4.7. If E1 ⇒ E2 then E1 ⇒E0
V
E2.

Proof. This follows from Corollary 4.3.

Proposition 4.8. It is not the case that E1 ⇒E0
V
E2 implies that E1 ⇒ E2.

Proof. In Example 4.2 we see (E1, E2) does not give a corresponding unique L2L1 operator, hence
E1 ⇒E0

V
E2 but E1 6⇒ E2.

Remark 4.5 From Proposition 4.7 and Proposition 4.8, we see that E0
V –dependency is a more

general notion of equivalence relation dependency that ⇒ (or equivalently ≤ ). Similarly E0
V –

independence is a stricter notion of independence than 6⇒ .
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Theorem 4.5. Let V be a finite set and E1 and E2 equivalence relations on V. Then
E1 6⇒E0

V
E2 iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Proof. This follows directly from Theorem 4.4.

4.3 Seeing One Equivalence Relation through Another
We will first give a proposition which will show a more explicit symmetry between conditions (i)
and (ii) and conditions (iii) and (iv) in Theorem 4.4 for unique solutions.

Proposition 4.9. Let V be a finite set and let E1 and E2 be two equivalence relations on V. Then;

For any [x]E1 ∈ E1, ∃[z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1 iff it is not the case that ∃Y,Z ∈ P(V )
such that [x]E1 = Y ∪ Z, Y ∩ Z = ∅ and uE2(Y ) = uE2(Z) = uE2([x]E1).

Proof. We prove⇒ first. Let [x]E1 ∈ E1 and suppose that ∃[z]E2 ∈ E2 such that, |[x]E1∩ [z]E2 | = 1.
Then let [x]E1 ∩ [z]E2 = t. Now for any spilt of [x]E1 , that is for any Y, Z ∈ P(V ) such that
[x]E2 = Y ∪Z and Y ∩Z = ∅, t is in exactly one of these sets. Thus exactly one of uE2(Y ), uE2(Z)
contains [t]E2 = [z]E2 . Hence uE2(Y ) 6= uE2(Z).

We prove the converse by the contrapositive. Let [x]E1 ∈ E1 be such that for all [z]E2 ∈ E2
whenever [x]E1 ∩ [z]E2 6= ∅ (and clearly some such [z]E2 must exist), we have that |[x]E1 ∩ [z]E2 | ≥ 2.
Suppose that [x]E1 has non-empty intersection with with n sets in E2. We note that n ≥ 1. Form a
sequence of these sets; R1, . . . Rn. Since |[x]E1∩Ri| ≥ 2 for each i such that i = 1, . . . n, let {ai1, ai2}
be in [x]E1 ∩Ri for each i such that i = 1, . . . n. Let Y = {ai1 | i = 1, . . . n} and let Z = [x]E1 − Y.
Then, [x]E1 = Y ∪ Z, Y ∩ Z = ∅ and uE2(Y ) = uE2(Z) = uE2([x]E1).

Using the preceding proposition we obtain an equivalent form of Theorem 4.4.

Theorem 4.6. Let V be a finite set and E1 and E2 equivalence relations on V. Then (E1, E2)
produces a unique L2L1 : P(V )→ P(V ) operator iff the following holds:

(i) For each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2)

(ii) For each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]E1 then uE2([x]E1) 6= uE2([y]E1)

(iii) For any [x]E2 ∈ E2, if ∃Y,Z ∈ P(V ) such that [x]E2 = Y ∪ Z and Y ∩ Z = ∅
aaa then uE1(Y ) 6= uE1(Z)

(iv) For any [x]E1 ∈ E1, if ∃Y,Z ∈ P(V ) if [x]E1 = Y ∪ Z and Y ∩ Z = ∅ then
aaa uE2(Y ) 6= uE2(Z)
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4.3.1 Conceptual Translation of the Uniqueness Theorem

The conditions of the above theorem can be viewed conceptually as follows: (i) Through the eyes of
E1, no two equivalence classes of E2 are the same; (ii) Through the eyes of E2, no two equivalence
classes of E1 are the same; (iii) No equivalence class in E2 can be broken down into two smaller
equivalence classes which are equal to it through the eyes of E1; (iv) No equivalence class in E1
can be broken down into two smaller equivalence classes which are equal to it through the eyes of
E2. In other words we view set Vmod E1. That is, let VmodE1 be the set obtained from V after
renaming the elements of V with fixed representatives of their respective equivalence classes in E1.
Similarly let VmodE2 be the set obtained from V after renaming the elements of V with fixed
representatives of their respective equivalence classes in E2. We then have the following equivalent
conceptual version of Theorem 4.4

Theorem 4.7. Let V be a finite set and E1 and E2 equivalence relations on V. Then
(E1, E2) generate a unique L2L1 operator iff the following holds:

(i) No two distinct members of E2 are equivalent in VmodE1.

(ii) No two distinct members of E1 are equivalent in VmodE2.

(iii) No member E2 can be broken down into two smaller sets which are equivalent to it in VmodE1.

(iv) No member E1 can be broken down into two smaller sets which are equivalent to it in VmodE2.

5 Decomposing U2U1 Approximations
We now investigate the case of double upper approximations. This is dually related to the case of
double lower approximations because of the relationship between upper and lower approximations
by the equation, U(X) = −L(−X) (see property 10 in Section 2.1.1). The following proposition
shows that the problem of finding solutions for this case reduces to the case in the previous section:

Proposition 5.1. Let V be a finite set and let U2U1 : P(V ) → P(V ) be a given fully defined
operator on P(V ). Then any solution (E1, E2), is also a solution of L2L1 : P(V )→ PP(V ) operator
where L2L1(X) = −U2U1(−X) for any X ∈ P(V ). Therefore, the solution (E1, E2) for the defined
U2U1 operator is a unique iff the solution for the corresponding L2L1 operator is unique.

Proof. Recall that L2L1(X) = −U2U1(−X). Hence, if there exists a solution (E1, E2) which cor-
responds to the given U2U1 operator, this solution corresponds to a solution for the L2L1 operator
which is based on the same (E1, E2) by the equation L2L1(X) = −U2U1(−X). Similarly for the
converse.

Algorithm: Let V be a finite set and let U2U1 : P(V ) → P(V ) be a given fully defined operator
on P(V ). To solve for a solution, change it to solving for a solution for the corresponding L2L1
operator by the equation L2L1(X) = −U2U1(−X). Then, when we want to know the L2L1 output
of a set we look at the U2U1 output of its complement set and take the complement of that. Next,
use Algorithm 4.2 and the solution found will also be a solution for the initial U2U1 operator.
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5.1 Characterising Unique Solutions
Theorem 5.1. Let V be a finite set and let U2U1 : P(V )→ P(V ) be a given fully defined operator
on P(V ). If (E1, E2) is a solution then, it is unique iff the following holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(ii) for each [x]E1 , [y]E1 ∈ E1, if [x]E1 6= [y]]E1 then uE2([x]E1) 6= uE2([y]E1).

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

(iv) For any [x]E1 ∈ E1, there exists [z]E2 ∈ E2 such that, |[x]E1 ∩ [z]E2 | = 1.

Proof. This follows from Proposition 5.1 using Theorem 4.4.

6 Decomposing U2L1 Approximations
For this case, we observe that U2L1(X) = −L2(−L1(X)) = U2(−U1(−X)). Since we cannot get
rid of the minus sign between the Ls (or Us), duality will not save us the work of further proof
here like it did in the previous section. In this section, we will see that U2L1 approximations are
tighter than L2L1 (or U2U1) approximations. For this decomposition we will use an algorithm
that is very similar to Algorithm 4.1, however notice the difference in step 2 where it only requires
the use of minimal sets with respect to ⊆ instead of minimum sets (which may not necessarily exist).

Algorithm 4.2: For Partial Decomposition of Double Successive Lower Approximations

Let V be a finite set. Given an input of a fully defined operator U2L1 : P(V ) → P(V ), if a
solution exists, we can produce a solution (S,R), i.e. where L1 and U2 are the lower and upper
approximation operators of equivalence relations S and R respectively, by performing the following
steps:

1. Let J be the set of output sets of the given U2L1 operator. We form the relation R to be such
that for a, b ∈ V, a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for any X ∈ J. It is clear that R is an
equivalence relation.

2. For each Y 6= ∅ output set, find the minimal pre-image sets with respect to ⊆, Ym, such that
U2L1(Ym) = Y . Collect all these minimal sets in a set K. Note that we can always find these
minimal sets since P(V ) is finite.

3. Using K, we form the relation S to be such that for a, b ∈ V, a ∼S b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X)
for any X ∈ K. It is clear that S is an equivalence relation.

4. Form the operator URLS : P(V ) → P(V ) generated by (S,R). If for all X ∈ P(V ), the given
U2L1 operator is such that U2L1(X) = URLS(X), then (S,R) is a solution proving that a solution
exists (note that it is not necessarily unique). Return (S,R). Otherwise, discard S and R and
return 0 signifying that no solution exists.

We will prove the claim in step 4 in this section.
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Lemma 6.1. Let V be a set and U2L1 : P(V ) → P(V ) be a given fully defined operator on P(V )
with L1 and E2 based on unknown E1 and E2 respectively. Let R and S be equivalence relations
defined on V as constructed in Algorithm 4.3. Then E2 ≤ R and E1 = S.

Proof. We first prove E2 ≤ R. Now the output set of a non-empty set in P(V ) is obtained by first
applying the lower approximation L1 to it and and after applying the upper approximation, U2 to
it. Hence by definition of U2, the non-empty output sets are unions of equivalence classes of the
equivalence relation which corresponds to U2. If a is in an output set but b is not in it then they
cannot belong to the same equivalence class of E2 i.e. a 6∼R b implies that a 6∼E2 b. Hence E2 ≤ R.

Now, the minimal pre-image, X say, of a non-empty output set which is a union of equivalence
classes in E2, has to be a union of equivalence classes in E1. For suppose it was not. Let Y = {y ∈
X | [y]E1 6⊆ X}. By assumption, Y 6= ∅. Then L1(X) = L1(X−Y ). Hence U2L1(X) = U2L1(X−Y )
but |X−Y | < |X| contradicting minimality of X. Therefore, if a belongs to the minimal pre-image
of a non-empty output set but b does not belong to it, then a and b cannot belong to the same
equivalence class in E1 i.e. a 6∼S b which implies that a 6∼E1 b. Hence E1 ≤ S.

We now prove the converse, that S ≤ E1. For suppose it was not. That is, E1 < S. Then there
exists at least one equivalence class in S which is split into smaller equivalence classes in E1. Call
this equivalence class [a]S . Then there exists w, t ∈ V such that [w]E1 ⊂ [a]S and [t]E1 ⊂ [a]S .
Now consider the pre-images of a minimal output sets of U2L1, containing t. That is, X such
that U2L1(X) = Y where Y is the minimal output set such that t ∈ Y and for any X1 ⊂ X,
U2L1(X1) 6= Y. The following is a very useful observation.

Claim: For any v ∈ uE1([y]E2), [v]S is a minimal set such that U2L1([v]S) ⊇ [y]E2 . The above

follows because 1) U2L1([v]S) ⊇ [y]E2 since v ∈ uE1([y]E2) and 2) For any Z ⊂ [v]S , U2L1(Z) = ∅
since L1(Z) = ∅.

Now for U2L1(X) to contain t, then it must contain [t]E2 . Hence by the previous claim, X = [t]S
is such a minimal pre-image of a set containing t. If L1 is based on S, then X = [t]S = [a]S .
However, if L1 is based on E1, then X = [a]S is not such a minimal set because X = [t]E1 is such
that U2L1(X) = Y but [t]E1 ⊂ [a]S . Hence, URLS(X) 6= UE2LE1(X) for all X ∈ P(V ) which is
a contradiction to (E1, E2) also being a solution for the given U2U1 operator. Thus we have that
E1 = S.

Lemma 6.2. Let V be a finite set and U2L1 : P(V ) → P(V ) be a fully defined operator. If
there exists equivalence pair solutions to the operator (E1, E2) which is such that there exists
[x]E2 , [y]E2 ∈ E2, such that [x]E2 6= [y]E2 and uE1([x]E2) = uE1([y]E2), then there exists another
solution, (E1, H2), where H2 is an equivalence relation formed from E2 by combining [x]E2 and
[y]E2 and all other elements are as in E2. That is, [x]E2 ∪ [y]E2 = [z] ∈ H2 and if [w] ∈ E2 such
that [w] 6= [x]E2 and [w]E2 6= [y]E2 , then [w] ∈ H2.

Proof. Suppose that (E1, E2) is a solution of a given U2L1 operator and H2 is as defined above.
Now, U2L1(X) = Y iff the union of E1-equivalence classes in X intersects the equivalence classes
of E2 whose union is equal to Y. So, in the (E1, H2) solution, the only way that UH2LE1(X) could
be different from UE2LE1(X)(which is = U2L1(X)) is if there some equivalence class of E1 which
either intersects [x]E2 but not [y]E2 or intersects [y]E2 but not [x]E2 . However, this is not the case
since we have that uE1([x]E2) = uE1([y]E2). Hence, UE2LE1(X) = UH2LE1(X) for all X ∈ P(V )
and therefore if (E1, E2) is a solution to the given operator then so is (E1, H2).

Next, we prove the claim in step 4 of Algorithm 4.2.
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Theorem 6.1. Let V be a finite set and U2L1 : P(V ) → P(V ) a fully defined operator. If there
exists an equivalence relation pair solution, then there exists a solution (E1, E2), which satisfies,

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

Furthermore E1 = S and E2 = R, where (S,R) are the relations obtained by applying Algorithm
4.2 to the given U2L1 operator.

Proof. Suppose that there exists a solution (C,D). Then by Lemma 6.1, C = S, where S is produced
by Algorithm 4.2. If (S,D) satisfies condition (i) of the theorem then take (E1, E2) = (C,D).
Otherwise, use repeated applications of Lemma 6.2 until we obtain a solution, (S,E2) which satisfies
the condition of the theorem. Since P(V ) is finite this occurs after a finite number of applications
of the lemma. Moreover, by Lemma 6.1, E2 ≤ R.

Consider the minimal sets in the output list of the given U2L1 operator. It is clear that these
sets are union of one or more equivalence classes of E2. Let [y]E2 ∈ E2 then for any v ∈ uE1([y]E2)),
U2L1([v]S) ⊇ [y]E2 (by the claim in Lemma 6.1).

Claim: (i) For any [y]E2 6= [z]E2 ∈ E2, there exists an output set, U2L1(X) such that it contains
at least of [y]E2 or [z]E2 both it does not contain both sets.

Suppose that [y]E2 6= [z]E2 ∈ E2. By the assumed condition of the theorem, then uE1([y]E2) 6=
uE1([z]E2). Hence either (i) there exists a ∈ V such that a ∈ uE1([y]E2) and a 6∈ uE1([z]E2) or (ii)
there exists a ∈ V such that a 6∈ uE1([y]E2) and a ∈ uE1([z]E2). Consider the first case. This implies
that [a]S ∩ [y]E2 6= ∅ while [a]S ∩ [z]E2 = ∅. Therefore, U2L1([a]S) ⊇ [y]E2 but U2L1([a]S) 6⊇ [z]E2 .
Similarly, for the second case we will get that U2L1([a]S) ⊇ [z]E2 but U2L1([a]S) 6⊇ [y]E2 and the
claim is shown.

We recall that a ∼R b ⇐⇒ (a ∈ X ⇐⇒ b ∈ X) for each X in the range of the given
U2L1. From the previous proposition we have that E2 ≤ R. From the above claim we see that if
[y]E2 6= [z]E2 in E2 then there is an output set that contains one of [y]E2 or [z]E2 , but not the other.
Hence, if x 6∼E2 y then x 6∼R y. That is, R ≤ E2. Therefore we have that R = E2.

6.1 Characterising Unique Solutions
Theorem 6.2. Let V be a finite set and let U2L1 : P(V ) → P(V ) be a fully defined successive
approximation operator on P(V ). If (S,R) is returned by Algorithm 4.1, then (S,R) is the unique
solution of the operator iff the following holds:

(i) For any [x]R ∈ R, there exists [z]S ∈ S such that, |[x]R ∩ [z]S | = 1.

Proof. We prove ⇐ direction first. So assume the condition holds. Then by Theorem 6.1 if there is
a unique solution, it is (S,R) produced by Algorithm 4.2. We note that by Lemma 6.1, any other
solution, (E1, E2) to the given U2L1 operator must be such that E1 = S and E2 ≤ R.

So, suppose to get a contradiction, that there exists a solution (E1, E2) which is such that
E2 < R. That is, E2 contains a splitting of at least one of the equivalences classes of R, say [a]R.
Hence |[a]R| ≥ 2. By assumption there exists a [z]S ∈ S such that |[a]R∩ [z]S | = 1. Call the element
in this intersection v say. We note that [v]S = [z]S . Now as [a]R is spilt into smaller classes in E2,
v must be in one of these classes, [v]E2 . Now, U2L1([v]S) when U2 is based on E2, contains [v]E2

but does not contain [a]R. This is because [v]S ∩ ([a]R − [v]E2) = ∅. That is, UE2LS([v]S) 6⊇ [a]R
but URLS([v]S) ⊇ [a]R. Hence UE2LS(X) 6= URLS(X) for all X ∈ P(V ). This is a contradiction to
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(S,E2) also being a solution to the given U2L1 operator for which (S,R) is a solution. Hence we
have a contradiction and so E2 = R.

Now we prove ⇒ direction. Suppose that (E1, E2) is the unique solution, and assume that the
condition does not hold. By uniqueness, (E1, E2) = (S,R). Then, there exists an [x]R ∈ R such
that for all [y]S ∈ S such that [x]R ∩ [y]S 6= ∅ we have that |[x]R ∩ [y]S | ≥ 2.

Suppose that [x]R has non-empty intersection with with n sets in S.We note that n ≥ 1. Form a
sequence of these sets; S1, . . . Sn. Since |[x]R ∩ Si| ≥ 2 for each i such that i = 1, . . . n, let {ai1, ai2}
be in [x]R ∩ Si for each i such that i = 1, . . . n. We split [x]R to form a finer E2 as follows: Let
P = {ai1 | i = 1, . . . n} and Q = [x]R − P be two equivalence classes in E2 and for the rest of E2,
for any [y]R ∈ R such that [y]R 6= [x]R, let [y] ∈ E2 iff [y] ∈ R. Now, URLS(X) = Y iff the union
of S-equivalence classes in X intersects equivalence classes of E2 whose union is equal to Y. So, for
the (S,E2) solution, the only way that LE2LS(X) could be different from LRLS(X) is if there is
an equivalence class in S which intersects P but not Q or Q but not P. However, this is not the
case because uS(P ) = uS(Q). Hence, LRLS(X) = LE2LS(X) for all X ∈ P(V ) and if (S,R) is a
solution for the given vector, then so is (S,E2) which is a contradiction of assumed uniqueness of
(S,R).

The following result sums up the effects of Theorem 6.1 and Theorem 6.2.

Theorem 6.3. Let V be a finite set and let U2L1 : P(V )→ P(V ) be a given fully defined operator
on P(V ). Then there exists a unique pair of equivalence relations solution (E1, E2) iff the following
holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),

(iii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

7 Decomposing L2U1 Approximations
For this case we observe that L2U1 is dual to the case previously investigated U2L1 operator. Due
to the duality connection between L2U1 and U2L1, the question of unique solutions of the former
reduces to the latter as the following proposition shows.

Proposition 7.1. Let V be a finite set and let L2U1 : P(V ) → P(V ) be a given fully defined
operator on P(V ). Then any solution (E1, E2), is also a solution of U2L1 : P(V )→ PP(V ) operator
where U2L1(X) = −L2U1(−X) for any X ∈ P(V ). Therefore, the solution (E1, E2) for the defined
U2U1 operator is a unique iff the solution for the corresponding U2L1 operator is unique.
Proof. Recall that U2L1(X) = −L2U1(−X). Hence, if there exists a solution (E1, E2) which cor-
responds to the given U2L1 operator, this solution corresponds to a solution for the L2U1 operator
which is based on the same (E1, E2) by the equation L2U1(X) = −U2L1(−X). Similarly for the
converse.

Algorithm: Let V be a finite set and let L2U1 : P(V ) → P(V ) be a given fully defined operator
on P(V ). To solve for a solution, change it to solving for a solution for the corresponding U2L1
operator by the equation U2L1(X) = −L2U1(−X). Then, when we want to know the U2L1 output
of a set we look at the L2U1 output of its complement set and take the complement of that. Next,
use Algorithm 4.2 and the solution found will also be a solution for the initial L2U1 operator.
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7.1 Characterising Unique Solutions
Theorem 7.1. Let V be a finite set and let L2U1 : P(V )→ P(V ) be a given fully defined operator
on P(V ). If (E1, E2) is a solution, then it is unique iff the following holds:

(i) for each [x]E2 , [y]E2 ∈ E2, if [x]E2 6= [y]E2 then uE1([x]E2) 6= uE1([y]E2),
(ii) For any [x]E2 ∈ E2, there exists [z]E1 ∈ E1 such that, |[x]E2 ∩ [z]E1 | = 1.

Proof. This follows from Proposition 7.1, Theorem 6.1 and Theorem 6.2.

8 Conclusion
We have defined and examined the consequences of double successive rough set approximations
based on two, generally unequal equivalence relations on a finite set. We have given algorithms to
decompose a given defined operator into constituent parts. Additionally, in sections 4.2 and 4.3 we
have found a conceptual translation of the main results which is very much in the spirit of what
Yao suggested in [34]. These type of links are especially helpful in forming a coherent map of the
mass of existing literature out there.

This type of analysis can be seen as somewhat analogous to decomposing a wave into constituent
sine and cosine waves using Fourier analysis. In our case, we work out the possibilities of what can
be reconstructed if we know that a system has in-built layered approximations. It is possible that
some heuristics of how the brain works can be modelled using such approximations and cognitive
science is a possible application for the theory which we have begun to work out.
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