Skip to main content

Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems.

  • Conference paper
  • First Online:
Machine Learning for Cyber Physical Systems

Part of the book series: Technologien für die intelligente Automation ((TIA,volume 11))

Abstract

Machine learning techniques have a huge potential to support humans, some impressive results are still achieved, such as AlphaGo. Until now the results are on a sub-symbolic level which is hard to interpret for humans, because we think symbolically. Today, the mapping is typically static which does not satisfy the needs for fast changing CPSs which prohibit the usage of the full machine learning potential. To tackle this challenge, this paper introduces a knowledge based approach of an automatic mapping between the sub-symbolic results of algorithms and their symbolic representation. Clustering is used to detect groups of similar data points which are interpreted as concepts. The information of the clusters are extracted and further classied with the help of an ontology which infers the current operational state. Data from wind turbines is used to evaluate the approach. The achieved results are promising, the system can identify the operational state without an explicit mapping.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 44.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 59.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Reference

  • 1. I. Ali, N. A. Madi, and A. Melton. Using text comprehension model for learning concepts, context, and topic of web content. In 2017 IEEE 11th International Conference on Semantic Computing (ICSC), pages 101–104, Jan 2017.

    Google Scholar 

  • 2. T. Araki, T. Nakamura, and T. Nagai. Long-term learning of concept and word by robots: Interactive learning framework and preliminary results. In International Conference on Intelligent Robots and Systems, pages 2280–2287, Nov 2013.

    Google Scholar 

  • 3. Lucas Drumond and Rosario Girardi. A survey of ontology learning procedures. In WONTO, volume 427 of CEUR Workshop Proceedings. CEUR-WS.org, 2008.

    Google Scholar 

  • 4. Brenden M Lake. Towards more human-like concept learning in machines: Compositionality, causality, and learning-to-learn. PhD thesis, Massachusetts Institute of Technology, 2014.

    Google Scholar 

  • 5. M. Mahmoodian, H. Moradi, M. N. Ahmadabadi, and B. N. Araabi. Hierarchical concept learning based on functional similarity of actions. In First International Conference on Robotics and Mechatronics (ICRoM), pages 1–6, Feb 2013.

    Google Scholar 

  • 6. I. Ocampo-Guzman, I. Lopez-Arevalo, and V. Sosa-Sosa. Data-driven approach for ontology learning. In 2009 6th International Conference on Electrical Engineering, Computing Science and Automatic Control (CCE), pages 1–6, Jan 2009.

    Google Scholar 

  • 7. T. Suma and Y. S. K. Swamy. Email classication using adaptive ontologies learning. In 2016 IEEE International Conference on Recent Trends in Electronics, Information Communication Technology (RTEICT), pages 2102–2106, May 2016.

    Google Scholar 

  • 8. M. Zhu, Z. Gao, J. Z. Pan, Y. Zhao, Y. Xu, and Z. Quan. Ontology learning from incomplete semantic web data by belnet. In 2013 IEEE 25th International Conference on Tools with Articial Intelligence, pages 761–768, Nov 2013.

    Google Scholar 

Download references

Acknowledgment

The work was supported by the German Federal Ministry of Education and Research (BMBF) under the projects “Semantics4Automation” (funding code: 03FH020I3) and “Provenance Analytics” (funding code: 03PSIPT5B).

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bunte, A., Li, P., Niggemann, O. (2020). Learned Abstraction: Knowledge Based Concept Learning for Cyber Physical Systems.. In: Beyerer, J., Maier, A., Niggemann, O. (eds) Machine Learning for Cyber Physical Systems. Technologien für die intelligente Automation, vol 11. Springer Vieweg, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59084-3_6

Download citation

Publish with us

Policies and ethics