Skip to main content

Wearable Sensors and Equipment in VR Games: A Review

  • Chapter
  • First Online:
Transactions on Edutainment XV

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 11345))

Abstract

Virtual Reality (VR) has been developed dramatically in recent years due to its benefits of providing an engaging and immersive environment. The objective of this study was to collect and critically analyze wearable sensors and equipment used in VR games, aiming at classifying wearable sensors according to the player’s key needs and the characteristics of the VR game. The review is organized according to three perspectives: the player’s needs, the player mode and the functional sensor modularization in a VR game. Our review work is useful for both researchers and educators to develop/integrate wearable sensors and equipment for improving a VR game player’s performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zyda, M.: From visual simulation to virtual reality to games. IEEE Comput. 38(9), 25–32 (2005)

    Article  Google Scholar 

  2. State, A., Hirota, G., Chen, D.T., et al.: Superior augmented reality registration by integrating landmark tracking and magnetic tracking. In: Conference on Computer Graphics and Interactive Techniques, pp. 429–438. ACM (1996)

    Google Scholar 

  3. Gaitatzes, A., Papaioannou, G., Christopoulos, D.: Virtual reality systems and applications. In: Symposium on Virtual Reality Software and Technology, p. 384. ACM (2006)

    Google Scholar 

  4. Tyson, A.M., Duma, S.M., Rowson, S., et al.: Laboratory evaluation of low-cost wearable sensors for measuring head impacts in sports. J. Appl. Biomech. 34(4), 320–326 (2018)

    Article  Google Scholar 

  5. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tut. 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  6. Gawel, J.E.: Herzberg’s theory of motivation and Maslow’s hierarchy of needs. ERIC. AE Dig., p. 4, July 1997

    Google Scholar 

  7. Chittaro, L., Sioni, R.: Affective computing vs. affective placebo: study of a biofeedback-controlled game for relaxation training. Int. J. Hum Comput Stud. 72(8-9), 663–673 (2014)

    Article  Google Scholar 

  8. Chen, P., Chen, C.C., Tsai, C.C., et al.: A time-to-digital-converter-based CMOS smart temperature sensor. IEEE J. Solid-State Circuits 40(8), 1642–1648 (2005)

    Article  Google Scholar 

  9. Higashikaturagi, K., Nakahata, Y., Matsunami, I., et al.: Non-invasive respiration monitoring sensor using UWB-IR. In: IEEE International Conference on Ultra-Wideband, pp. 101–104 (2008)

    Google Scholar 

  10. Jones, P.E.: Three-dimensional input device with six degrees of freedom. IEEE ASME. Trans. Mechatron. 9(7), 717–729 (1999)

    Google Scholar 

  11. Dai, R., Stein, R.B., Andrews, B.J., et al.: Application of tilt sensors in functional electrical stimulation. IEEE Trans. Rehabil. Eng. 4(2), 63–72 (1996)

    Article  Google Scholar 

  12. Goo, J.J., et al.: Effects of guided and unguided style learning on user attention in a virtual environment. In: Pan, Z., Aylett, R., Diener, H., Jin, X., Göbel, S., Li, L. (eds.) Edutainment 2006. LNCS, vol. 3942, pp. 1208–1222. Springer, Heidelberg (2006). https://doi.org/10.1007/11736639_151

    Chapter  Google Scholar 

  13. Kushida, T., Takefuta, H., Muramatsu, H.: Acceleration sensor: US, US5005412 (1991)

    Google Scholar 

  14. Cui, Z.G., Ai-Hua, L.I., Yan-Zhao, S.U., et al.: Collaborative object tracking algorithm in large FOV with binocular active vision sensors. J. Optoelectron. Laser 25(4), 784–791 (2014)

    Google Scholar 

  15. Le Thanh, T., Gagalowicz, A.: Virtual garment pre-positioning. In: Gagalowicz, A., Philips, W. (eds.) CAIP 2005. LNCS, vol. 3691, pp. 837–845. Springer, Heidelberg (2005). https://doi.org/10.1007/11556121_103

    Chapter  Google Scholar 

  16. Kim, W., Mechitov, K., Choi, J.Y., et al.: On target tracking with binary proximity sensors. In: International Symposium on Information Processing in Sensor Networks, p. 40. IEEE (2005)

    Google Scholar 

  17. Ferreira, A., Cassier, C., Hirai, S.: Automatic microassembly system assisted by vision servoing and virtual reality. IEEE-ASME Trans. Mechatron. 9(2), 321–333 (1960)

    Article  Google Scholar 

  18. Friedl, K.E.: Military applications of soldier physiological monitoring. J. Sci. Med. Sport. 21(11), 1147–1153 (2018)

    Article  Google Scholar 

  19. Jain, N., Wydra, A., Wen, H., et al.: Time-scaled interactive object-driven multi-party VR. Vis. Comput. 34(9), 1–11 (2018)

    Google Scholar 

  20. Menin, A., Torchelsen, R., Nedel, L.: An analysis of VR technology used in immersive simulations with a serious game perspective. IEEE Comput. Graph. Appl. 38(2), 57–73 (2018)

    Article  Google Scholar 

  21. Crawford, E.: Virtual battlegrounds: direct participation in cyber warfare. SSEP (2013)

    Google Scholar 

  22. Eom, D.S., Kim, T., Jee, H., et al.: A multi-player arcade video game platform with a wireless tangible user interface. IEEE Trans. Consum. Electron. 54(4), 1819–1824 (2008)

    Article  Google Scholar 

  23. Annie, G., Guyot-Mbodji, A., Demeure, I.: Gaming on the move: urban experience as a new paradigm for mobile pervasive game design. Multimed. Syst. 16(1), 43–55 (2010)

    Article  Google Scholar 

  24. Mousa, M., Sharma, K., Claudel, C.G., et al.: Inertial measurement units-based probe vehicles: automatic calibration, trajectory estimation, and context detection. IEEE Trans. Intell. Transp. Syst. 19(10), 3133–3143 (2018)

    Article  Google Scholar 

  25. Navarro, E., Gonzalez, P., Lopezjaquero, V., et al.: Adaptive, multisensorial, physiological and social: the next generation of telerehabilitation systems. Front. Neuroinform. 12, 43 (2018)

    Article  Google Scholar 

  26. Haghi, M., Stoll, R., Thurow, K., et al.: A low-cost, standalone, and multi-tasking watch for personalized environmental monitoring. IEEE Trans. Biomed. Circuits Syst. 12(5), 1144–1154 (2018)

    Article  Google Scholar 

  27. Zhai, J., Dong, S., Xing, Z., et al.: Geomagnetic sensor based on giant magnetoelectric effect. Appl. Phys. Lett. 91(12), 405 (2007)

    Article  Google Scholar 

  28. Berger, K., Ruhl, K., Schroeder, Y., et al.: Markerless motion capture using multiple color-depth sensors. In: VMV, pp. 317–324 (2011)

    Google Scholar 

  29. Kasapakis, V., Gavalas, D.: Occlusion handling in outdoors augmented reality games. Multimed. Tools. Appl. 76, 1–26 (2016)

    Google Scholar 

  30. Hastenteufel, M., Vetter, M., Meinzer, H.P., et al.: Effect of 3D ultrasound probes on the accuracy of electromagnetic tracking systems. Ultrasound Med. Biol. 32(9), 1359–1368 (2006)

    Article  Google Scholar 

  31. Larradet, F., Barresi, G., Mattos, L.S.: Effects of galvanic skin response feedback on user experience in gaze-controlled gaming: a pilot study. In: International Conference of the IEEE Engineering in Medicine & Biology Society, p. 2458 (2017)

    Google Scholar 

  32. Kahol, K.: Integrative gaming: a framework for sustainable game-based diabetes management. J. Diabetes Sci. Technol. 5(5), 293–300 (2011)

    Article  Google Scholar 

  33. Liao, L.D., Chen, C.Y., Wang, I.J., et al.: Gaming control using a wearable and wireless EEG-based brain-computer interface device with novel dry foam-based sensors. J. Neuroeng. Rehabil. 9(1), 1–12 (2012)

    Article  Google Scholar 

  34. Chen, Z., Lu, C.: Humidity sensors: a review of materials and mechanisms. Sens. Lett. 3(4), 274–295 (2005)

    Article  Google Scholar 

  35. Chiang, C.T., Chang, C.M., Chang, C.C.: Design of an ultraviolet light intensity monitor for personally wearable devices digital object identifier inserted by IEEE. IEEE Sens. J. PP(99), 1 (2018)

    Google Scholar 

  36. Miller, E., Kaufman, K., Kingsbury, T., et al.: Mechanical testing for three-dimensional motion analysis reliability. Gait Posture 50, 116–119 (2016)

    Article  Google Scholar 

  37. Vlasic, D., Adelsberger, R., Vannucci, G., et al.: Practical motion capture in everyday surroundings. ACM Trans. Graphics 26(3), 35 (2007)

    Article  Google Scholar 

  38. Schnabel, U.H., Hegenloh, M., Müller, H.J., et al.: Electromagnetic tracking of motion in the proximity of computer generated graphical stimuli: a tutorial. Behav. Res. Methods 45(3), 696–701 (2013)

    Article  Google Scholar 

  39. Aurand, A.M., Dufour, J.S., Marras, W.S.: Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume. J. Biomech. 58, 237–240 (2017)

    Article  Google Scholar 

  40. Kok, M., Jeroen, D.H., Thomas, B.S.: An optimization-based approach to human body motion capture using inertial sensors. IFAC Proc. Vol. 47(3), 79–85 (2014)

    Article  Google Scholar 

  41. Wang, X., Xiao, L.: Gyroscope-reduced inertial navigation system for flight vehicle motion estimation. Adv. Space Res. 59(1), 413–424 (2017)

    Article  Google Scholar 

  42. Chudecka, M., Lubkowska, A.: Temperature changes of selected body’s surfaces of handball players in the course of training estimated by thermovision, and the study of the impact of physiological and morphological factors on the skin temperature. J. Therm. Biol 35(8), 379–385 (2010)

    Article  Google Scholar 

  43. Darzi, A., Gorsic, M., Novak, D.: Difficulty adaptation in a competitive arm rehabilitation game using real-time control of arm electromyogram and respiration. In: International Conference on Rehabilitation Robotics, pp. 857–862 (2017)

    Google Scholar 

  44. Watanabe, M., Yamamoto, T., Kambara, H., et al.: Evaluation of a game controller using human stiffness estimated from electromyogram. In: International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4626–4631 (2001)

    Google Scholar 

  45. Jennett, C., Cox, A.L., Cairns, P.A., et al.: Measuring and defining the experience of immersion in games. Int. J. Hum. Comput. Stud. 66(9), 641–661 (2008)

    Article  Google Scholar 

  46. Wilcoxnetepczuk, D.: Immersion and realism in video games - the confused moniker of video game engrossment. In: International Conference on Computer Games, pp. 92–95 (2013)

    Google Scholar 

  47. Lara, O.D., Labrador, M.A.: A survey on human activity recognition using wearable sensors. IEEE Commun. Surv. Tutor. 15(3), 1192–1209 (2013)

    Article  Google Scholar 

  48. Chalmers, A., Debattista, K., Ramic-Brkic, B.: Towards high-fidelity multi-sensory virtual environments. Vis. Comput. 25(12), 1101–1108 (2009)

    Article  Google Scholar 

  49. Groen, F.C.A., Pavlin, G., Winterboer, A., et al.: A hybrid approach to decision making and information fusion: combining humans and artificial agents. Robot. Auton. Syst. 90(C), 71–85 (2017)

    Article  Google Scholar 

  50. Lee, S., Mase, K.: Activity and location recognition using wearable sensors. IEEE Pervasive Comput. 1(3), 24–32 (2002)

    Article  Google Scholar 

  51. Mukhopadhyay, S.C.: Wearable sensors for human activity monitoring: a review. IEEE Sens. J. 15(3), 1321–1330 (2015)

    Article  MATH  Google Scholar 

  52. Fuchs, P.: Théorie de la réalité virtuelle. Les véritables usages (A Theory of Virtual Reality: The Real Uses). Presses des Mines (2018)

    Google Scholar 

Download references

Acknowledgments

We would like to acknowledge the support of the Guangzhou Innovation and Entrepreneurship Leading Team Project under grant CXLJTD-201609.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingliang Cao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Cao, M., Xie, T., Chen, Z. (2019). Wearable Sensors and Equipment in VR Games: A Review. In: Pan, Z., Cheok, A., Müller, W., Zhang, M., El Rhalibi, A., Kifayat, K. (eds) Transactions on Edutainment XV. Lecture Notes in Computer Science(), vol 11345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59351-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59351-6_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59350-9

  • Online ISBN: 978-3-662-59351-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics