Skip to main content

The Style-Based Automatic Generation System for Xinjiang Carpet Patterns

  • Chapter
  • First Online:
Book cover Transactions on Edutainment XV

Part of the book series: Lecture Notes in Computer Science ((TEDUTAIN,volume 11345))

  • 991 Accesses

Abstract

Xinjiang carpet patterns have flowery color, strong contrast, and the overall harmony, how to design a carpet patterns with Xinjiang style feature is a challenging problem. This paper puts forward a method based on interactive choice mechanism and establishment color constraint rules in order to create Xinjiang carpet patterns. First, we can establish pattern design model through the medallion pattern, corner pattern and brink pattern; then according to the user’s choice, we can get sample pattern, and establish respectively dominant color matrix of samples and generated patterns; finally, through the color similarity to generate design constraints, the simulation experiment shows that method of the paper can innovatively design more inherited color style of Xinjiang carpet designs, and enrich the research methods of Xinjiang carpet style design.

This work was supported by the Project of Science and Technology Committee of Beijing (D171100003717003).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bastanfard, A., Mansourifar, H.: A novel decorative Islamic star pattern generation algorithm. In: 2010 International Conference of Computational Science and Its Applications, pp. 111–117 (2010)

    Google Scholar 

  2. Alexander, H.: The computer/plotter and the 17 ornamental design types. In Proceedings of IGGRAPH 1975, pp. 160–167 (1975)

    Google Scholar 

  3. Khajeh, M., Payvandy, P., Derakhshan, S.J.: Fashion set design with an emphasis on fabric composition using the interactive genetic algorithm. Fashion Text. 3(1), 8–24 (2016)

    Article  Google Scholar 

  4. Zhang, J., Zhang, K., Peng, R., et al.: Computer-aided generation of mandala thangka patterns. In: International Symposium on Visual Information Communication & Interaction. ACM (2017)

    Google Scholar 

  5. Glassner, A.: Frieze groups. IEEE Comput. Graph. Appl. 16(3), 78–83 (1996)

    Article  Google Scholar 

  6. Izadi, A., Rezaei (Ghahroudi), M., Bastanfard, A.: A computerized method to generate complex symmetric and geometric tiling patterns. In: Plemenos, D., Miaoulis, G. (eds.) Intelligent Computer Graphics 2010 Studies in Computational Intelligence, vol. 321, pp. 185–210. Springer, Heidelberg (2010). https://doi.org/10.1007/978-3-642-15690-8_10

  7. Darani, Z.S., Kaedi, M.: Improving the interactive genetic algorithm for customer-centric product design by automatically scoring the unfavorable designs. Human-centric Comput. Inf. Sci. 7(1), 38–45 (2017)

    Article  Google Scholar 

  8. Kaplan, C.S., Salesin, D.H.: Islamic star patterns in absolute geometry. ACM Trans. Graph. 23(2), 97–119 (2004)

    Article  Google Scholar 

  9. Albert, F., et al.: A new method to analyse mosaics based on symmetry group theory applied to Islamic Geometric Patterns. Comput. Vis. Image Understand. 130, 54–70 (2014). https://doi.org/10.1016/j.cviu.2014.09.002

  10. Rasouli, P., Bastanfard, A., Rezvanian, A., Jalilian, O.: Fast algorithms for computer generated islamic patterns of 8-ZOHREH and 8-SILI. In: Huang, Y.-M.R., et al. (eds.) PCM 2008. LNCS, vol. 5353, pp. 825–829. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-89796-5_91

    Chapter  Google Scholar 

  11. Zarghili, A., Gadi, N., Benslimane, R., Bouatouch, K.: Arabo-moresque decor image re-trieval system based on mosaic representations. J. Cult. Herit. 2(2), 149–154 (2001)

    Google Scholar 

  12. Gerdes, P.: Reconstruction and extension of lost symmetries: examples from tamil of South India. Comput. Math Appl. 17(4–6), 791–813 (1989)

    Article  MathSciNet  Google Scholar 

  13. Nagata, S., Robinson, T.: Digitalization of kolam patterns and tactile kolam tools. In: Formal Models, Languages and Applications. Series in Machine Perception and Artificial Intelligence, vol. 66, pp. 353–362 (2006)

    Google Scholar 

  14. Lalitha, D., Rangarajan, K.: Petrinets generating kolam patterns. Indian J. Comput. Sci. Eng. 3(1), 68–74 (2012)

    Google Scholar 

  15. Suyi, L., Leduo, Z.: Textile pattern generation technique based on quasi-regular pattern theory and their transform. In: 2008 IEEE Pacific-Asia Workshop on Computational Intelligence and Industrial Application, pp. 264–266 (2008)

    Google Scholar 

  16. Zhang, Z., Suyi, L.: Pattern design of textile printing based on the transform of the julia set. In: VECIMS 2009 International Conference on Virtual Environments, Human-Computer Interfaces and Measurements Systems Hong Kong, China, 11–13 May 2009

    Google Scholar 

  17. Zhang, Z., Wang, M.: The application to fractal of complex dynamics system on innovative design of textile pattern. In: 2011 Workshop on Digital Media and Digital Content Management, pp. 330–335 (2011)

    Google Scholar 

  18. Zhao, X., Yang, X.: Auto generation of textile patterns based on IFS. In: 2009 Fifth International Conference on Natural Computation, pp. 451–454 (2009)

    Google Scholar 

  19. Niu, X., Yuan, X.: Packaging design of IFS algorithm based on fractal theory. Revista de la Facultad de Ingeniería U.C.V. 32(14), 502–507 (2017)

    Google Scholar 

  20. Xu, J., Kaplan, C.S., Mi, X.: Computer-generated paper cutting. In: 15th Pacific Conference on PG 2007, pp. 343–350, 29 Oct–2 Nov 2007

    Google Scholar 

  21. Lei, H.: A survey of digital paper-cutting. Comput. Aided Drafting Des. Manufact. 22(3), 12–17 (2012)

    Google Scholar 

  22. Chi, M.T., Liu, W.C., Hsu, S.H.: Image stylization using anisotropic reaction diffusion (2016)

    Google Scholar 

  23. Peng, D., Liu, X., Sun, S.: An information view: digitalizing theory and methods in nonmaterial cultural heritage protection. J. Comput.-Aided Des. Comput. Graph. 20(1), 117–123

    Google Scholar 

  24. Kankanhalli, M.S., Mehtre, B.M., Wu, J.K.: Cluster-based color matching for image retrieval. Pattern Recognit. 29(4), 701–708 (1996)

    Article  Google Scholar 

  25. Celenk, M.: A color clustering technique for image segmentation. Comput. Vis. Graph. Image Process. 52, 145–170 (1990)

    Article  Google Scholar 

  26. Senthilkani, A.S., Ananth, C., et al.: Overlap wavelet transform for image segmentation. Int. J. Electron. Commun. Comput. Technol. (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai Ying Zhao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Hou, X.G., Zhao, H.Y. (2019). The Style-Based Automatic Generation System for Xinjiang Carpet Patterns. In: Pan, Z., Cheok, A., Müller, W., Zhang, M., El Rhalibi, A., Kifayat, K. (eds) Transactions on Edutainment XV. Lecture Notes in Computer Science(), vol 11345. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59351-6_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59351-6_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59350-9

  • Online ISBN: 978-3-662-59351-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics