Skip to main content

Closure Ordinals of the Two-Way Modal \(\mu \)-Calculus

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 11541))

Abstract

The closure ordinal of a \(\mu \)-calculus formula \(\varphi (x)\) is the least ordinal \(\alpha \), if it exists, such that, in any model, the least fixed point of \(\varphi (x)\) can be computed in at most \(\alpha \) many steps, by iteration of the meaning function associated with \(\varphi (x)\), starting from the empty set. In this paper we focus on closure ordinals of the two-way modal \(\mu \)-calculus. Our main technical contribution is the construction of a two-way formula \(\varphi _n\) with closure ordinal \(\omega ^n\) for an arbitrary \(n\in \omega \). Building on this construction, as our main result we define a two-way formula \(\varphi _\alpha \) with closure ordinal \(\alpha \) for an arbitrary \(\alpha <\omega ^\omega \).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    This suggestion was raised by one of the referees.

  2. 2.

    One of the reviewers pointed out that the formulas \(p \wedge \Box (\lnot p \wedge x)\) and \(\lnot p \wedge \Box (p \wedge x)\) both have closure ordinals, but their disjunction, behaving similarly to the formula \(\Box x\), does not.

References

  1. Afshari, B., Leigh, G.E.: On closure ordinals for the modal \(\mu \)-calculus. In: Computer Science Logic 2013 (CSL 2013). Leibniz International Proceedings in Informatics (LIPIcs), vol. 23, pp. 30–44. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2013). https://doi.org/10.4230/LIPIcs.CSL.2013.30. http://drops.dagstuhl.de/opus/volltexte/2013/4188

  2. Afshari, B., Leigh, G.: Cut-free completeness for modal \(\mu \)-calculus. In: Proceedings of the 32nd Annual ACM/IEEE Symposium on Logic in Computer Science (LICS 2017), pp. 1–12 (2017). https://doi.org/10.1109/LICS.2017.8005088

  3. Calude, C., Jain, S., Khoussainov, B., Li, W., Stephan, F.: Deciding parity games in quasipolynomial time. In: Proceedings of the 49th Annual ACM SIGACT Symposium on Theory of Computing, STOC 2017, pp. 252–263 (2017). https://doi.org/10.1145/3055399.3055409

  4. Czarnecki, M.: How fast can the fixpoints in modal \(\mu \)-calculus be reached? In: Fixed Points in Computer Science 2010 (FICS 2010), pp. 35–39, August 2010. https://hal.archives-ouvertes.fr/hal-00512377/document#page=36

  5. D’Agostino, G., Hollenberg, M.: Logical questions concerning the \(\mu \)-calculus. J. Symb. Log. 65, 310–332 (2000)

    Article  Google Scholar 

  6. Emerson, E.A., Jutla, C.S.: The complexity of tree automata and logics of programs (extended abstract). In: Proceedings of the 29th Annual Symposium on Foundations of Computer Science, pp. 328–337. IEEE Computer Society Press (1988). https://doi.org/10.1109/SFCS.1988.21949

  7. Fontaine, G.: Continuous fragment of the \(\mu \)-calculus. In: Kaminski, M., Martini, S. (eds.) CSL 2008. LNCS, vol. 5213, pp. 139–153. Springer, Heidelberg (2008). https://doi.org/10.1007/978-3-540-87531-4_12

    Chapter  Google Scholar 

  8. Fontaine, G., Venema, Y.: Some model theory for the modal \(\mu \)-calculus: syntactic characterisations of semantic properties. Log. Methods Comput. Sci. 14(1) (2018)

    Google Scholar 

  9. Gouveia, M.J., Santocanale, L.: \(\aleph _1\) and the modal \(\mu \)-calculus. In: 26th EACSL Annual Conference on Computer Science Logic (CSL 2017). Leibniz International Proceedings in Informatics (LIPIcs), vol. 82, pp. 38:1–38:16. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik (2017). https://doi.org/10.4230/LIPIcs.CSL.2017.38. http://drops.dagstuhl.de/opus/volltexte/2017/7692. An updated version can be found at https://arxiv.org/abs/1704.03772v2

  10. Janin, D., Walukiewicz, I.: On the expressive completeness of the propositional \(\mu \)-calculus with respect to monadic second order logic. In: Montanari, U., Sassone, V. (eds.) CONCUR 1996. LNCS, vol. 1119, pp. 263–277. Springer, Heidelberg (1996). https://doi.org/10.1007/3-540-61604-7_60

    Chapter  Google Scholar 

  11. Kozen, D.: Results on the propositional \(\mu \)-calculus. Theor. Comput. Sci. 27, 333–354 (1983)

    Article  MathSciNet  Google Scholar 

  12. Kozen, D.: A finite model theorem for the propositional \(\mu \)-calculus. Stud. Log. 47, 233–241 (1988)

    Article  MathSciNet  Google Scholar 

  13. Milanese, G.: An exploration of closure ordinals in the modal \(\mu \)-calculus. Master’s thesis, Institute for Logic, Language and Computation, University of Amsterdam (2018)

    Google Scholar 

  14. Otto, M.: Eliminating recursion in the \(\upmu \)-calculus. In: Meinel, C., Tison, S. (eds.) STACS 1999. LNCS, vol. 1563, pp. 531–540. Springer, Heidelberg (1999). https://doi.org/10.1007/3-540-49116-3_50

    Chapter  Google Scholar 

  15. Walukiewicz, I.: Completeness of Kozen’s axiomatisation of the propositional \(\mu \)-calculus. Inf. Comput. 157(1), 142–182 (2000). http://www.sciencedirect.com/science/article/pii/S0890540199928365

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gian Carlo Milanese .

Editor information

Editors and Affiliations

A Proof of the Main Result in Section 3

A Proof of the Main Result in Section 3

The statement of Theorem 1 from Sect. 3 is a direct consequence of the following lemmas.

Lemma

 1. Let \(0<n<\omega \) be a finite ordinal. Then there is a model \(\mathbb {S}\) where \(\gamma _x(\varphi _n, \mathbb {S}) = \omega ^n\).

Proof

For the rest of the proof we adopt the following notation: since every ordinal \(\alpha <\omega ^n\) can be written as \(\omega ^{n-1}\cdot k_1 + \ldots + \omega \cdot k_{n-1} + k_n\), we also denote \(\alpha \) as \((k_1, \ldots , k_n)\). From now on, if we write \(\alpha = (k_1, \ldots , k_n)\) we mean that \(\alpha = \omega ^{n-1}\cdot k_1 + \ldots + \omega \cdot k_{n-1} + k_n\). Also, if a tuple \((k_1, \ldots , k_n)\) is of the form \((k_1, \ldots , k_i, 0, \ldots , 0)\), we mean that \(k_j = 0\) for \(i+1 \le j \le n\).

Fix \(n>0\) and let \(\varphi := \varphi _n\) as an abbreviation. We define \(\mathbb {S}= (S,R,V)\) to be the model where:

  • \(S := \omega ^{n} = \{(k_1, \ldots , k_n)\;|\; k_j\in \omega \}\);

  • \(R := \bigcup \limits _{1\le i\le n}\{((k_1, \ldots , k_i + 1, 0,\ldots , 0 ), (k_1, \ldots , k_i, 0,\ldots , 0) ) \;|\; k_j\in \omega \}\);

  • for \(1\le i\le n\), \(V(q_i) := \{(k_1, \ldots , k_{n-i+1} + 1, 0, \ldots , 0)\;|\; k_j\in \omega \}\).

Note that \(R[(0, \ldots , 0)] = \emptyset \) and that \((0, \ldots , 0)\) falsifies \(q_i\) for every \(1\le i\le n\).

Before proving the key claim we make an observation about notation. Note that an ordinal \(\beta <\omega ^n\) can both be seen as an element \(\beta \in S = \omega ^n\) of the model and as a subset \(\beta = \{\gamma \;|\; \gamma <\beta \}\subseteq S = \omega ^n\). To avoid confusion, until the end of the proof we write \(\beta \) when we consider it as an element of the domain, and \(S_\beta \) when we consider it as a subset of the domain (\(S_\beta = \beta \) holds in any case).

Claim

For every \(\alpha <\omega ^n\), \(\varphi ^\alpha = S_\alpha \).

Proof of Claim. The proof goes by induction on \(\alpha \). The case for \(\alpha = 0\) is immediate. If \(\alpha \) is a limit ordinal, then \(\varphi ^\alpha = \bigcup _{\beta< \alpha } \varphi ^\beta =_{IH} \bigcup _{\beta <\alpha } S_\beta = S_\alpha \).

Now suppose that \(\alpha = \beta + 1\). We want to show that \(\varphi ^{\beta + 1} = S_{\beta + 1}\). We have that \(\varphi ^{\beta + 1} = \varphi ^\mathbb {S}_x(\varphi ^\beta ) =_{IH} \varphi ^\mathbb {S}_x(S_\beta )\): we show

$$\begin{aligned} \varphi ^\mathbb {S}_x(S_\beta ) = S_{\beta + 1}. \end{aligned}$$
(3)

For the \(\supseteq \) inclusion of (3) it suffices to show that \(\mathbb {S}[x\mapsto S_\beta ], \beta \Vdash \varphi \), since \(S_{\beta +1} = S_\beta \cup \{\beta \}\) and \(S_\beta = \varphi ^\beta \subseteq \varphi ^{\beta + 1} = \varphi ^\mathbb {S}_x(\varphi ^\beta )\). If \(\beta = 0 = (0,\ldots , 0)\) we are done. If \(\beta = (k_1, \ldots , k_n + 1)\), then \(\beta \in V(q_1)\) and \((k_1, \ldots , k_n)\in S_\beta \cap R[\beta ]\), so \(\mathbb {S}[x\mapsto S_\beta ],\beta \Vdash c_1\wedge Fx\) and \(\beta \in \varphi ^\mathbb {S}_x(S_\beta )\).

Otherwise let \(\beta = (k_1, \ldots , k_{i}+1, 0, \ldots , 0)\) for some \(1\le i< n\), so that \(\beta \in V(q_{n-i+1})\). Note that

$$\begin{aligned} (k_1, \ldots , k_i, k, 0,\ldots , 0)&\in S_\beta \text { for all } k\in \omega , \\ (k_1,\ldots , k_i, 0,0, \ldots , 0)&\in R[\beta ] \text { and } \\ (k_1, \ldots , k_i, k, 0,\ldots , 0)&\in R[(k_1, \ldots , k_i, k+1, 0,\ldots , 0)]\cap V(q_{n-i}) \text { for all } k> 0. \end{aligned}$$

By construction of the model \(\beta \Vdash \pi ^\infty _{n-i}\) also holds: then , so \(\beta \in \varphi ^\mathbb {S}_x(S_\beta )\).

Now we move to the \(\subseteq \) inclusion of (3). Let \(\gamma \in \varphi ^\mathbb {S}_x(S_\beta ) \). We want to show that \(\gamma \in S_{\beta + 1}\). Since \(\mathbb {S}[x\mapsto S_\beta ], \gamma \Vdash \varphi \) holds, we proceed by case distinction as to which disjunct of \(\varphi \) is satisfied by \(\gamma \). If \(\gamma \Vdash G\bot \) then \(\gamma = 0\in S_{\beta + 1}\). If \(\gamma \Vdash c_1\wedge Fx\), then \(\gamma \in V(q_1)\), so that \(\gamma = (k_1, \ldots , k_n + 1)\) and \(\gamma ' = (k_1, \ldots , k_n)\in R[\gamma ]\cap S_\beta \): as \(\gamma '\in S_\beta \), then \(\gamma = \gamma ' + 1 \in S_{\beta +1}\).

Now suppose for some \(2\le i\le n\). Then \(\gamma \in V(q_i)\), so \(\gamma = (k_1, \ldots , k_{n-i+1}+1, 0, \ldots , 0)\). For \(j\in \omega \) let

$$\delta _j := (k_1, \ldots , k_{n-i+1}, j,0, \ldots , 0). $$

By construction \(\delta _0\in R[\gamma ]\) and \(\delta _{j}\in R[\delta _{j+1}]\) for all \(j\ge 0\). Since then \(\delta _j\in S_\beta \) for all \(j>0\). Hence

$$\beta> (k_1, \ldots , k_{n-i+1}, j, 0, \ldots , 0) \text { for all } j>0,$$

implying \(\beta \ge (k_1, \ldots , k_{n-i+1}+1,0, \ldots , 0) = \gamma \), so \(\gamma \in S_{\beta + 1}\).   \(\vartriangleleft \)

Now that we have the claim, it follows that there is a \(\gamma \in \varphi ^{\omega ^n}\backslash \varphi ^\beta \) for each \(\beta <\omega ^n\).

Proposition 4

For all \(m,n\in \omega \), if \(m\ge n\), then \(\pi ^\infty _m \models \pi ^\infty _n\). Moreover, if \(\mathbb {S}\) is a model, \(\mathbb {S},s\Vdash \pi ^\infty _m\) for some state s, and \(t_0 t_1 \ldots \) is an \(R^{-1}\)-path witnessing the truth of \(\pi ^\infty _m\) at s, then \(t_j\Vdash \pi ^\infty _m\) for all \(j\in \omega \).

Lemma

 2. Let \(\mathbb {S}= (S,R,V)\) be a model and let \(n\in \omega \). For \(1\le i\le n\), let \(t_0 t_1 t_2\ldots \) be an infinite \(R^{-1}\)-path such that

$$\begin{aligned} \mathbb {S},t_0\Vdash \pi ^\infty _{i-1}{} \textit{ and, for all }j>0, \mathbb {S},t_j\Vdash c_i\wedge \pi ^\infty _{i-1}. \end{aligned}$$

Then, for any ordinal \(\alpha \): if \(t_0\in \varphi ^\alpha _n\) then \(t_j\in \varphi _n^{\alpha + \omega ^{i-1}\cdot j +1}\) for all \(j\in \omega \).

Proof

We prove the statement by induction on \(1\le i\le n\).

As the base case take \(i = 1\), so that by assumption we have an infinite \(R^{-1}\)-path \(t_0t_1t_2\ldots \) such that \(\mathbb {S}, t_j\Vdash c_1\) for all \(j>0\). Let \(t_0\in \varphi ^\alpha _n\). We want to show that, for all \(j\in \omega \), \(t_j\in \varphi ^{\alpha + j + 1}_n\): we prove this by induction on \(j\in \omega \). If \(j = 0\), then \(t_0\in \varphi ^\alpha _n\subseteq \varphi ^{\alpha +1}_n\). Next, inductively assume that \(t_j \in \varphi _n^{\alpha + j + 1}\): then, since \(t_{j}\in R[t_{j+1}]\), it follows that \(\mathbb {S}[x\mapsto \varphi _n^{\alpha + j + 1}], t_{j+1}\Vdash (c_1\wedge Fx)\), so \(t_{j+1}\in \varphi ^{\alpha + (j+1)+1}_n\).

For the inductive step assume that the statement holds for i. We prove it for \(i+1\), where \(i<n\). Suppose then that \(t_0 t_1 t_2\ldots \) is an infinite \(R^{-1}\)-path such that \(t_0\Vdash \pi ^\infty _{i}\) and for all \(j>0\), \(t_j\Vdash c_{i+1}\wedge \pi ^\infty _{i}\). Let \(t_0\in \varphi ^\alpha _n\). We want to show that

$$\begin{aligned} \text {for every }j\in \omega , t_j\in \varphi ^{\alpha + \omega ^{i}\cdot j +1}_n. \end{aligned}$$

The proof of this last statement goes by induction on \(j\in \omega \). The base case with \(j = 0\) follows immediately, as by assumption \(t_0\in \varphi _n^{\alpha }\).

Now suppose that \(t_j\in \varphi ^{\alpha + \omega ^{i}\cdot j +1}_n\): we show that \(t_{j+1}\in \varphi ^{\alpha + \omega ^{i}\cdot (j+1) +1}_n\). By assumption \(t_j\in R[t_{j+1}]\) and \(t_j\Vdash \pi ^\infty _i\), which in particular means that there is an infinite \(R^{-1}\)-path \(u_0 u_1\ldots \) (with \(u_0 = t_j\)) such that, for all \(k>0\), \(u_k\Vdash c_i\). But then this path satisfies the conditions of the inductive hypothesis: by Proposition 4, since \(u_0\Vdash \pi ^\infty _{i}\), then \(u_0\Vdash \pi ^\infty _{i-1}\), and for every \(k>0\), \(u_k\Vdash c_i\wedge \pi _{i-1}^\infty \). Then, by inductive hypothesis, since \(u_0=t_j\in \varphi ^{\alpha + \omega ^{i}\cdot j +1}_n\) it follows that, for every \(k\in \omega \), \(u_k\in \varphi _n^{\alpha + \omega ^i\cdot j + 1 + \omega ^{i-1}\cdot k + 1}\). Since for all \(k\in \omega \) it holds that

$$\begin{aligned} \omega ^i\cdot j + 1 + \omega ^{i-1}\cdot k + 1&< \omega ^i\cdot j + 1 + \omega ^i&(\text {as } \omega ^{i-1}\cdot k + 1 < \omega ^i \text { for } i>0) \\&= \omega ^i\cdot j + \omega ^i&(1 + \omega ^i = \omega ^i \text { for } i> 0) \\&= \omega ^i\cdot (j+1)&\end{aligned}$$

then also

$$\begin{aligned} \alpha + \omega ^i\cdot j + 1 + \omega ^{i-1}\cdot k + 1 <\alpha + \omega ^i\cdot (j+1). \end{aligned}$$

It follows that \(u_k\in \varphi _n^{\alpha + \omega ^i\cdot (j+1)}\) for all \(k\in \omega \), so that

$$\begin{aligned} \mathbb {S}[x\mapsto \varphi _n^{\alpha + \omega ^i\cdot (j+1)}],t_{j+1}\Vdash c_{i+1}\wedge \pi ^\infty _i\wedge F(\nu y. P(x\wedge y \wedge c_i)). \end{aligned}$$

We conclude that \(t_{j+1}\in \varphi _n^{\alpha + \omega ^i\cdot (j+1)+1}\) as desired.

Lemma

 3. For an arbitrary model \(\mathbb {S}\) and \(0<n<\omega \): \(\gamma _x(\varphi _n, \mathbb {S}) \le \omega ^n\).

Proof

It is sufficient to prove that \(\varphi ^{\omega ^n+1}_n \subseteq \varphi ^{\omega ^n}_n\) for every model \(\mathbb {S}\). Let \(s\in \varphi ^{\omega ^n+1}_n\), that is, \(\mathbb {S}[x\mapsto \varphi ^{\omega ^n}_n], s\Vdash \varphi _n\). We proceed by case distinction as to which disjunct of \(\varphi _n\) is satisfied by s to prove that \(s\in \varphi ^{\omega ^n}_n\). If \(s\Vdash G\bot \) then \(s\in (\varphi _n)^\mathbb {S}_x(\emptyset )\subseteq \varphi ^{\omega ^n}_n\), while if \(s\Vdash c_1\wedge Fx\), then there is a \(t\in R[s]\) such that \(t\in \varphi ^\alpha _n\) for some \(\alpha <\omega ^n\), so that \(s\in \varphi ^{\alpha + 1}_n\subseteq \varphi ^{\omega ^n}_n\).

Now suppose for some \(2\le i\le n\). Then in particular there is a point \(t\in R[s]\) and a \(R^{-1}\)-path \(t_0 t_1\ldots \) such that: (i) \(t\in R[t_0]\), (ii) for all \(j\in \omega \), \(t_j\in \varphi ^{\omega ^n}_n\) and \(t_j\Vdash c_{i-1}\). In particular, \(t_0\in \varphi ^\alpha _n\) for some \(\alpha <\omega ^n\). Observe that \(\varphi _n\wedge c_{i-1}\wedge F\top \models \pi ^\infty _{i-2}\): this implies that \(t_j\Vdash \pi ^\infty _{i-2}\) for all \(j\in \omega \), since \(t_j\in \varphi ^{\omega ^n}_n\), \(t_j\Vdash c_{i-1}\) and \(R[t_j]\ne \emptyset \). This means that we can apply Lemma 2 and it follows that \(t_j\in \varphi _n^{\alpha + \omega ^{i-2}\cdot j +1}\subseteq \varphi _n^{\alpha + \omega ^{i-1}}\) for all \(j\in \omega \). Hence \(\mathbb {S}[x\mapsto \varphi ^{\alpha + \omega ^{i-1}}], s\Vdash \varphi _n\) and \(s\in \varphi _n^{\alpha + \omega ^{i-1} + 1}\subseteq \varphi ^{\omega ^n}_n\) (since \(i \le n\) and \(\alpha <\omega ^n\) imply \(\alpha + \omega ^{i-1}+1 < \omega ^n\)).

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Milanese, G.C., Venema, Y. (2019). Closure Ordinals of the Two-Way Modal \(\mu \)-Calculus. In: Iemhoff, R., Moortgat, M., de Queiroz, R. (eds) Logic, Language, Information, and Computation. WoLLIC 2019. Lecture Notes in Computer Science(), vol 11541. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-59533-6_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-59533-6_30

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-59532-9

  • Online ISBN: 978-3-662-59533-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics