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Abstract. By ‘informational entropy’, we understand an inherent boundary to

knowability, due e.g. to perceptual, theoretical, evidential or linguistic limits. In

this paper, we discuss a logical framework in which this boundary is incorporated

into the semantic and deductive machinery, and outline how this framework can

be used to model various situations in which informational entropy arises.
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1 Introduction

This paper contributes to a line of research stemming from the theory of canonicity

and correspondence of lattice expansions [18,8,9,4], which aims at defining and study-

ing relational semantic frameworks for lattice-based logics. The present contribution

specifically builds on the graph-based semantics introduced in [2], on the basis of

a ‘modal expansion’ of Ploščica’s representation [23], its relationship with canonical

extensions of bounded lattices [13,11], and the ensuing algebraic canonicity and cor-

respondence results [2,9]. The resulting relational structures introduced in this paper,

called graph-based frames (cf. Definition 2), are more general than those in [2], as the

‘TiRS’ conditions have been removed. Hence, rather than being characterized as dis-

crete duals of perfect modal lattices, the graph-based structures considered here are in

a discrete adjunction with complete modal lattices, much in the same way in which

the class of the relational structures interpreting the same logic in [6], which are based

on polarities rather than on graphs, was generalized in [7] so as to remove the ‘RS’

conditions. However, the notions of satisfaction and refutation of formulas at states

of graph-based frames can be extracted from their interpretation on the complex alge-

bras of graph-based frames by an analogous ‘dual characterization’ process which the

frames-to-algebras direction of the adjunction is enough to convey.

Besides this technical contribution, there is also a conceptual contribution which

consists of making sense of this semantic framework in a more fundamental way. Our

proposal in this respect is to use graph-based frames to provide a purely qualitative
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representation of the notion of relative entropy in information theory [24], which is a

stochastic measure of noise in communication systems. As is argued by Weaver [24],

the significance of the key notions and insights developed in information theory goes

very much beyond the original “engineering aspects of communication”, and invests

also such aspects as meaning and knowledge. If the notion of relative entropy is con-

strued more broadly in this way, so as to capture conceptual noise, then it can be un-

derstood as the inherent boundary to knowability due e.g. to perceptual, theoretical,

evidential or linguistic limits. In this paper, as specific examples, we model phenomena

of informational entropy (under this broader understanding) arising in natural language

and visual perception. The interpretation proposed in the present paper is further pur-

sued in [3], where informational entropy arises from the scientific theories on which

empirical studies are grounded, and in [10], where it arises from socio-political theo-

ries.

Of course, the interpretation and use of graph-based structures proposed in the

present paper does not exclude the possibility of other interpretations and uses, as is

suggested by the fact that the ‘companion’ polarity-based semantics for lattice-based

modal logic has been used to provide different interpretations of the lattice-based modal

logic, including one in which lattice-based modal logic is viewed as an epistemic logic

of categories [6,7] and one [5,19] in which the same logic is viewed as the logic of

rough concepts, where polarity-based semantics is used as an encompassing framework

for the integration of rough set theory [22] and formal concept analysis [17], and as a

basis for further developments such as a Dempster–Shafer theory of concepts [16].

2 Preliminaries

Notation. We let ∆U denote the identity relation on a set U, and we will drop the sub-

script when it causes no ambiguity. The superscript (·)c denotes the relative complement

of the subset of a given set. Hence, for any binary relation R ⊆ S ×T , we let Rc ⊆ S ×T

be defined by (s, t) ∈ Rc iff (s, t) < R. For any such R and any S ′ ⊆ S and T ′ ⊆ T , we let

R[S ′] := {t ∈ T | (s, t) ∈ R for some s ∈ S ′} and R−1[T ′] := {s ∈ S | (s, t) ∈ R for some t ∈

T ′}, and write R[s] and R−1[t] for R[{s}] and R−1[{t}], respectively. Any such R gives

rise to the semantic modal operators 〈R〉, [R] : P(T )→ P(S ) s.t. 〈R〉W := R−1[W] and

[R]W := (R−1[Wc])c for any W ⊆ T . For any T ⊆U ×V , and any U′ ⊆U and V′ ⊆ V , let

T (1)[U′] := {v | ∀u(u ∈ U′⇒ uTv)} T (0)[V′] := {u | ∀v(v ∈ V′⇒ uTv)}. (1)

Known properties of this construction (cf. [14, Sections 7.22-7.29]) are collected below.

Lemma 1. 1. X1 ⊆ X2 ⊆ U implies T (1)[X2] ⊆ T (1)[X1], and Y1 ⊆ Y2 ⊆ V implies

T (0)[Y2] ⊆ T (0)[Y1].

2. U′ ⊆ T (0)[V′] iff V′ ⊆ T (1)[U′].

3. U′ ⊆ T (0)[T (1)[U′]] and V′ ⊆ T (1)[T (0)[V′]].

4. T (1)[U′] = T (1)[T (0)[T (1)[U′]]] and T (0)[V′] = T (0)[T (1)[T (0)[V′]]].

5. T (0)[
⋃
V] =

⋂
V ′∈V T (0)[V′] and T (1)[

⋃
U] =

⋂
U′∈U T (1)[U′].
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For any relation T ⊆ U ×V , and any U′ ⊆ U and V′ ⊆ V , let

T [1][U′] := {v | ∀u(u ∈ U′⇒ uT cv)} T [0][V′] := {u | ∀v(v ∈ V′⇒ uT cv)}. (2)

Hence, T [1][U′]= (T c)(1)[U′] and T [0][V′]= (T c)(0)[V′], therefore, the following lemma

is an immediate consequence of Lemma 1 instantiated to T := T c.

Lemma 2. 1. X1 ⊆ X2 ⊆ U implies T [1][X2] ⊆ T [1][X1], and Y1 ⊆ Y2 ⊆ V implies

T [0][Y2] ⊆ T [0][Y1].

2. U′ ⊆ T [0][V′] iff V′ ⊆ T [1][U′].

3. U′ ⊆ T [0][T [1][U′]] and V′ ⊆ T [1][T [0][V′]].

4. T [1][U′] = T [1][T [0][T [1][U′]]] and T [0][V′] = T [0][T [1][T [0][V′]]].

5. T [0][
⋃
V] =

⋂
V ′∈V T [0][V′] and T [1][

⋃
U] =

⋂
U′∈U T [1][U′].

2.1 Basic normal non-distributive modal logic

The logic discussed below was considered in [6] as an instance of a logic to which a

general methodology applies for endowing lattice-based logics with relational seman-

tics (cf. [9, Section 2]). The semantics of this logic was based on a restricted class of

formal contexts. These restrictions were lifted in [7].

Basic logic. Let Prop be a (countable or finite) set of atomic propositions. The language

L of the basic normal non-distributive modal logic is defined as follows:

ϕ := ⊥ | ⊤ | p | ϕ∧ϕ | ϕ∨ϕ | �ϕ | ^ϕ,

where p ∈ Prop. The basic, or minimal normalL-logic is a set L of sequents φ ⊢ ψ with
φ,ψ ∈ L, containing the following axioms:

p ⊢ p, ⊥ ⊢ p, p ⊢ ⊤,

p ⊢ p∨q, q ⊢ p∨q, p∧q ⊢ p, p∧q ⊢ q,

⊤ ⊢ �⊤, �p∧�q ⊢ �(p∧q), ^⊥ ⊢ ⊥, ^p∨^q ⊢^(p∨q)

and closed under the following inference rules:

φ ⊢ χ χ ⊢ ψ

φ ⊢ ψ

φ ⊢ ψ

φ (χ/p) ⊢ ψ (χ/p)

χ ⊢ φ χ ⊢ ψ

χ ⊢ φ∧ψ

φ ⊢ χ ψ ⊢ χ

φ∨ψ ⊢ χ

φ ⊢ ψ

�φ ⊢ �ψ

φ ⊢ ψ

^φ ⊢ ^ψ

By an L-logic we understand any extension of L with L-axioms φ ⊢ ψ.

Algebraic semantics. The logic above is sound and complete w.r.t. the class LE of

normal lattice expansions A = (L,�,^), where L = (L,∧,∨,⊤,⊥) is a general lattice,

and � and ^ are unary operations on L satisfying the following identities:

�⊤ = ⊤ �(a∧b) = �a∧�b ^⊥ = ⊥ ^(a∨b) = ^a∨^b.

In what follows, we will sometimes refer to elements of LE as L-algebras. Since L is

selfextensional (i.e. the interderivability relation is a congruence of the formula alge-

bra), a standard Lindenbaum–Tarski construction is sufficient to show its completeness

w.r.t. LE, i.e. that an L-sequent φ ⊢ ψ is in L iff LE |= φ ⊢ ψ.
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3 Graph-based semantics for the basic non-distributive modal

logic

Graph-based models for non-distributive logics arise in close connection with the topo-

logical structures dual to general lattices in Ploščica’s representation [23], see also

[13,11]. However, an important difference in the current paper is that we do not require

the TiRS conditions [11, Section 2].

A reflexive graph is a structure X = (Z,E) such that Z is a nonempty set, and E ⊆

Z×Z is a reflexive relation. From now on, we will assume that all graphs we consider are

reflexive even when we drop the adjective. Any graph X = (Z,E) defines the polarity5

PX = (ZA,ZX , IEc ) where ZA = Z = ZX and IEc ⊆ ZA × ZX is defined as aIEc x iff aEcx.

More generally, any relation R⊆ Z×Z ‘lifts’ to relations IRc ⊆ ZA×ZX and JRc ⊆ ZX×ZA

defined as aIRc x iff aRcx and xJRca iff xRca. The next lemma follows directly from these

definitions:

Lemma 3. For any relation R ⊆ Z×Z and any Y,B ⊆ Z,

I
(0)
Rc [Y] = R[0][Y] I

(1)
Rc [B] = R[1][B] J

(0)
Rc [B] = R[0][B] J

(1)
Rc [Y] = R[1][Y].

The complete lattice X+ associated with a graph X is defined as the concept lattice

of PX. For any lattice L, let Flt(L) and Idl(L) denote the set of filters and ideals of L,

respectively. The graph associated with L is XL := (Z,E) where Z is the set of tuples

(F, J) ∈ Flt(L)× Idl(L) such that F∩ J = ∅. For z ∈ Z, we denote by Fz the filter part of z

and by Jz the ideal part of z. Clearly, filter parts and ideal parts of states of XL must be

proper. The (reflexive) E relation is defined by zEz′ if and only if Fz∩ Jz′ = ∅.

Definition 1. [18, Section 2] Let L be a (bounded) sublattice of a complete lattice L′.

1. L is dense in L′ if every element of L′ can be expressed both as a join of meets and

as a meet of joins of elements from L.

2. L is compact in L′ if, for all S ,T ⊆ L, if
∨

S ≤
∧

T then
∨

S ′ ≤
∧

T ′ for some finite

S ′ ⊆ S and T ′ ⊆ T.

3. The canonical extension of a lattice L is a complete lattice Lδ containing L as a

dense and compact sublattice.

The canonical extension of any bounded lattice exists [18, Proposition 2.6] and is unique

up to isomorphism [18, Proposition 2.7].

5 A formal context [17], or polarity, is a structure P = (A,X, I) such that A and X are sets,

and I ⊆ A× X is a binary relation. Every such P induces maps (·)↑ : P(A)→ P(X) and (·)↓ :

P(X)→P(A), respectively defined by the assignments B↑ := I(1)[B] and Y↓ := I(0)[Y]. A formal

concept of P is a pair c = (B,Y) such that B ⊆ A, Y ⊆ X, and B↑ = Y and Y↓ = B. Given a

formal concept c = (B,Y) we will often write [[c]] for B and ([c]) for Y and, consequently,

c = ([[c]], ([c])). The set L(P) of the formal concepts of P can be partially ordered as follows:

for any c = (B1,Y1),d = (B2,Y2) ∈ L(P),

c ≤ d iff B1 ⊆ B2 iff Y2 ⊆ Y1.

With this order, L(P) is a complete lattice, the concept lattice P+ of P. Any complete lattice L

is isomorphic to the concept lattice P+ of some polarity P.
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Proposition 1. [12, Proposition 4.2] For any lattice L, the complete lattice XL
+ is the

canonical extension of L.

Furthermore, from results in [18, Sections 5 and 6], we know that if A = (L,�,^)

is an L-algebra, then the additional operations can be extended to XL
+ in order to get a

complete L-algebra.

Definition 2. A graph-based L-frame is a structure F = (X,R^,R�) where X = (Z,E)

is a reflexive graph,6 and R^ and R� are binary relations on Z satisfying the following

E-compatibility conditions (notation defined in (2)): for all b,y ∈ Z,

(R
[0]
�

[y])[10] ⊆ R
[0]
�

[y] (R
[1]
�

[b])[01] ⊆ R
[1]
�

[b]

(R
[0]
^

[b])[10] ⊆ R
[0]
^

[b] (R
[1]
^

[y])[01] ⊆ R
[1]
^

[y].

The complex algebra of a graph-based L-frame F = (X,R^,R�) is the complete L-

algebra F+ = (X+, [R�], 〈R^〉), where X+ is the concept lattice of PX, and [R�] and 〈R^〉

are unary operations on P+
X

defined as follows: for every c = ([[c]], ([c])) ∈ P+
X

,

[R�]c := (R
[0]
�

[([c])], (R
[0]
�

[([c])])[1]) and 〈R^〉c := ((R
[0]
^

[[[c]]])[0],R
[0]
^

[[[c]]]).

The following lemma is an immediate consequence of Lemma 9 in the appendix,

using Lemma 3 and the observation in Footnote 6.

Lemma 4. 1. The following are equivalent for every graph (Z,E) and every relation

R ⊆ Z×Z:

(i) (R[0][y])[10] ⊆ R[0][y] for every y ∈ Z;

(ii) (R[0][Y])[10] ⊆ R[0][Y] for every Y ⊆ Z;

(iii) R[1][B] = R[1][B[10]] for every B ⊆ Z.

2. The following are equivalent for every graph (Z,E) and every relation R ⊆ Z×Z:

(i) (R[1][b])[01] ⊆ R[1][b] for every b ∈ Z;

(ii) (R[1][B])[01] ⊆ R[1][B] for every B ⊆ Z;

(iii) R[0][Y] = R[0][Y[01]] for every Y ⊆ Z.

For any graph-based L-frame F, let us define R_ ⊆ Z ×Z by xR_a iff aR�x, and R� ⊆

Z×Z by aR�x iff xR^a. Hence, for every B,Y ⊆ Z,

R
[0]
_

[B] = R
[1]
�

[B] R
[1]
_

[Y] = R
[0]
�

[Y] R
[0]
�

[Y] = R
[1]
^

[Y] R
[1]
�

[B] = R
[0]
^

[B]. (3)

By Lemma 4, the E-compatibility of R� and R^ guarantees that the operations [R�], 〈R^〉

(as well as [R�], 〈R_〉) are well defined on X+.

Lemma 5. Let F = (X,R�,R^) be a graph-based L-frame. Then the algebra F+ =

(X+, [R�], 〈R^〉) is a complete lattice expansion such that [R�] is completely meet-

preserving and 〈R^〉 is completely join-preserving.

6 Applying the notation (2) to a graph-based L-frame F, we will sometimes abbreviate E[0][Y]

and E[1][B] as Y [0] and B[1], respectively, for each Y,B⊆ Z. If Y = {y} and B= {b}, we write y[0]

and b[1] for {y}[0] and {b}[1], and write Y [01] and B[10] for (Y [0])[1] and (B[1])[0], respectively.

Notice that, by Lemma 3, Y [0] = I
(0)
Ec [Y] = Y↓ and B[1] = I

(1)
Ec [B] = B↑, where the maps (·)↓ and

(·)↑ are those associated with the polarity PX.
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Proof. As mentioned above, the E-compatibility of R� and R^ guarantees that the maps
[R�], 〈R^〉, [R�], 〈R_〉 : X+ → X+ are well defined. Since X+ is a complete lattice, by
[14, Proposition 7.31], to show that [R�] is completely meet-preserving and 〈R^〉 is
completely join-preserving, it is enough to show that 〈R_〉 is the left adjoint of [R�] and
[R�] is the right adjoint of 〈R^〉. For any c = ([[c]], ([c])),d = ([[d]], ([d])) ∈X+,

〈R_〉c ≤ d iff ([d]) ⊆ R
[0]
_

[[[c]]] ordering of concepts

iff ([d]) ⊆ R
[1]
�

[[[c]]] (3)

iff [[c]] ⊆ R
[0]
�

[([d])] Lemma 2.2

iff c ≤ [R�]d. ordering of concepts

Likewise, one shows that [R�] is the right adjoint of 〈R^〉.

For an L-algebra L and K ⊆ L, we let

�K = {�u | u ∈ K } and ^K = {^v | v ∈ K }.

Further, for K ⊆ L, we denote by ⌈K⌉ (⌊K⌋) the ideal (filter) generated by K.

Lemma 6. Let L be an L-algebra with F ∈ Flt(L) and J ∈ Idl(L). Then

1. F∩�J , ∅ if and only if F∩⌈�J⌉ , ∅;

2. ^F ∩ J , ∅ if and only if ⌊^F⌋∩ J , ∅.

Proof. Let us prove item 1. The left-to-right direction is immediate since �J ⊆ ⌈�J⌉.

Conversely, assume that there are elements u1, . . . ,un ∈ J such that �u1∨ · · · ∨�un ∈ F.

Because � is monotone and F is upward closed, then �(u1 ∨ · · · ∨ un) ∈ F. Because

u1, . . . ,un ∈ J and J is an ideal, then u1 ∨ · · · ∨ un ∈ J, which completes the proof that

F∩�J , ∅. The proof of item 2 is similar and omitted.

Definition 3. Given a complete L-algebra A = (L,�,^) we define its associated L-

frame to be the structure FA = (XL,R�,R^) where R�,R^ ⊆ Z×Z are given by xR�y iff

Fx∩�Jy = ∅ and xR^y iff Jx∩^Fy = ∅.

Proposition 2. For any L-algebra A, the associated L-frame FA is a graph-based L-

frame.

Proof. We show that (R
[0]
�

[y])[10] ⊆ R
[0]
�

[y]. The other three properties will follow by

similar arguments. With the help of Lemma 6(1), we observe that

R
[0]
�

[y] = {u ∈ Z | (u,y) < R� } = {u ∈ Z | Fu∩�Jy , ∅} = {u ∈ Z | Fu∩⌈�Jy⌉ , ∅}.

We have

(R
[0]
�

[y])[1] = {z ∈ Z | ∀u(u ∈ R
[0]
�

[y]⇒ (u,z) < E) }

= {z ∈ Z | ∀u(Fu∩�Jy , ∅ ⇒ Fu∩ Jz , ∅) }

= {z ∈ Z | �Jy ⊆ Jz }.

Hence
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a ∈ (R
[0]
�

[y])[10] iff ∀z ∈ Z(�Jy ⊆ Jz⇒ (a,z) < E)

iff ∀z ∈ Z(�Jy ⊆ Jz⇒ Fa∩ Jz , ∅)

iff Fa∩⌈�Jy⌉ , ∅

iff Fa∩�Jy , ∅ Lemma 6

iff a ∈ R
[0]
�

[y].

Definition 4. A graph-based L-model is a tuple M = (F,V) where F is a graph-based

L-frame and V : Prop→ F+. Since V(p) is therefore a formal concept, we will write

V(p) = ([[p]], ([p])).

For every graph-based L-modelM = (F,V), the valuation V can be extended composi-
tionally to all L-formulas as follows:

V(p) = ([[p]], ([p]))

V(⊤) = (Z,∅) V(⊥) = (∅,Z)

V(φ∧ψ) = ([[φ]]∩ [[ψ]], ([[φ]]∩ [[ψ]])[1]) V(φ∨ψ) = ((([φ])∩ ([ψ]))[0], ([φ])∩ ([ψ]))

V(�φ) = (R
[0]
�

[([φ])], (R
[0]
�

[([φ])])[1]) V(^φ) = ((R
[0]
^

[[[φ]]])[0],R
[0]
^

[[[φ]]])

and moreover, the existence of the adjoints of [R�] and 〈R^〉 supports the interpre-
tation of the following expansion:

V(�φ) = (R
[0]
�

[([φ])], (R
[0]
�

[([φ])])[1]) V(_φ) = ((R
[0]
_

[[[φ]]])[0],R
[0]
_

[[[φ]]])

Spelling out the definition above (cf. [2]), we can define the satisfaction and co-
satisfaction relationsM,z 
 φ and M,z ≻ φ for every graph-based L-modelM = (F,V),
z ∈ Z, and any L-formula φ, by the following simultaneous recursion:

M,z 
 ⊥ never M,z ≻ ⊥ always

M,z 
 ⊤ always M,z ≻ ⊤ never

M,z 
 p iff z ∈ [[p]] M,z ≻ p iff ∀z′[z′Ez⇒ z′ 1 p]

M,z ≻ φ∨ψ iff M,z ≻ φ andM,z ≻ ψ M,z 
 φ∨ψ iff ∀z′[zEz′ ⇒M,z′ ⊁ φ∨ψ]

M,z 
 φ∧ψ iff M,z 
 φ andM,z 
 ψ M,z ≻ φ∧ψ iff ∀z′[z′Ez⇒M,z′ 1 φ∧ψ]

M,z ≻ ^φ iff ∀z′[zR^z′⇒M,z′ 1 φ] M,z 
 ^φ iff ∀z′[zEz′ ⇒M,z′ ⊁ ^φ]

M,z 
 �ψ iff ∀z′[zR�z′⇒M,z′ ⊁ ψ] M,z ≻ �ψ iff ∀z′[z′Ez⇒M,z′ 1 �ψ]

An L-sequent φ ⊢ ψ is true in M, denoted M |= φ ⊢ ψ, if for all z,z′ ∈ Z, if M,z 
 φ

and M,z′ ≻ ψ then zEcz′. An L-sequent φ ⊢ ψ is valid in F, denoted F |= φ ⊢ ψ, if it is

true in every model based on F.

The next lemma follows immediately from the definition of anL-sequent being true

in a graph-basedL-model.

Lemma 7. Let F be a graph-based L-frame and φ ⊢ ψ an L-sequent. Then F |= φ ⊢ ψ

iff F+ |= φ ⊢ ψ.

The next proposition follows from the fact that L is sound and complete with respect

to the class of L-algebras and Lemma 7.

Proposition 3. The basic non-distributive modal logic L is sound w.r.t. the class of

graph-based L-frames. I.e., if an L-sequent φ ⊢ ψ is provable in L, then F |= φ ⊢ ψ for

every graph-based frame F.



8 Conradie Craig Palmigiano Wijnberg

Let AL be the Lindenbaum–Tarski algebra of L. We will abuse notation and write

φ instead [φ] (i.e. formulas instead of their equivalence classes) for the elements of

the Lindenbaum–Tarski algebra AL. Define the canonical graph-based model to be

ML = (FAL
,V) where V(p) = ({z ∈ Z | p ∈ Fz}, {z ∈ Z | p ∈ Jz }). By Proposition 2, FAL

is

a graph-basedL-frame. That V is well defined can be shown as follows:

({z ∈ Z | p ∈ Fz})
[1] = {z ∈ Z | ∀z′(p ∈ Fz⇒ (z,z′) < E)}

= {z ∈ Z | ∀z′(p ∈ Fz⇒ Fz∩ Jz′ , ∅)}

= {z ∈ Z | p ∈ Jz}

Lemma 8. Let φ ∈ L. Then

1. ML,z 
 φ iff φ ∈ Fz

2. ML,z ≻ φ iff φ ∈ Jz

Proof. Let us show item 1 under the additional assumption that φ is a theorem of

L (i.e. L derives ⊤ ⊢ φ). Then φ belongs to every filter, hence to show the required

equivalence, we need to show that [[φ]]ML
= Z. If L derives ⊤ ⊢ φ, then, by soundness,

ML |= ⊤ ⊢ φ. Then for every state z in ML, we have ML,z ⊁ φ. Indeed, suppose for

contradiction thatML,z ≻ φ for some state z. SinceML,z 
 ⊤, then by spelling out the

definition of satisfaction of a sequent in a model in the instanceML |= ⊤ ⊢ φ, we would

conclude that (z,z) < E, i.e. E is not reflexive, which contradicts the fact that E is re-

flexive by construction. This finishes the proof that if L derives ⊤ ⊢ φ, then ([φ])ML
= ∅.

Hence, [[φ]]ML
= (([φ])ML

)[1] = ∅[1] = Z, as required.

Likewise, one can show item 2 of the lemma under the additional assumption that

L derives φ ⊢ ⊥.

Now, assuming that L derives neither ⊤ ⊢ φ nor φ ⊢ ⊥, we proceed by induction on

φ. The base cases are straightforward. Consider φ = α∨β. Now

ML,z 
 α∨β iff ∀z′ ∈ Z[zEz′⇒ML,z
′ ⊁ α∨β]

iff ∀z′ ∈ Z[zEz′⇒ (ML,z
′ ⊁ α orML,z

′ ⊁ β)]

iff ∀z′ ∈ Z[Fz∩ Jz′ = ∅ ⇒ (α < Jz′ or β < Jz′)] inductive hypothesis

iff ∀z′ ∈ Z[Fz∩ Jz′ , ∅ or (α < Jz′ or β < Jz′ )].

Consider z′ ∈ Z defined by z′ = (⌊⊤⌋, ⌈(α∨β)⌉), where ⌊⊤⌋ and ⌈(α∨β)⌉ denote, respec-

tively, the filter generated by ⊤ and the ideal generated by α∨β. The state z′ is indeed

well-defined since by assumption (α∨ β) < ⌊⊤⌋. Moreover, since ⊤ 0 α∨ β, this filter

and ideal are disjoint. Clearly α ∈ Jz′ and β ∈ Jz′ so we must have Fz ∩ ⌈(α∨ β)⌉ , ∅

so α∨ β ∈ Fz. Conversely, suppose α∨ β ∈ Fz and consider z′ ∈ Z with zEz′. Then

Fz ∩ Jz′ = ∅ so α∨ β < Jz′ and since this is a down-set we have α < Jz′ and β < Jz′ and

by the inductive hypothesis we haveML,z
′ ⊁ α andML,z

′ ⊁ β.

The proof that ML,z ≻ α∨ β iff α∨ β ∈ Jz follows easily from the fact that Jz is

an ideal. The proof of φ = α∧ β is similar to φ = α∨ β but with the role of 
 and ≻

interchanged.

Now consider φ = �ψ and assume thatML,z 
 �ψ. We have

ML,z 
 �ψ iff ∀z′ ∈ Z[zR�z′⇒ML,z
′ ⊁ ψ]

iff ∀z′ ∈ Z[zR�z′⇒ ψ < Jz′ ] inductive hypothesis

iff ∀z′ ∈ Z[Fz∩�Jz′ = ∅ ⇒ ψ < Jz′]

iff ∀z′ ∈ Z[ψ ∈ Jz′ ⇒ Fz∩�Jz′ , ∅]
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Consider z′ = (⌊⊤⌋, ⌈ψ⌉). Clearly ψ ∈ Jz′ so there exists α ∈ Fz ∩�Jz′ . Now α = �β for

some β≤ψ (in the lattice order ofAL), i.e. β ⊢ψ and therefore�β ⊢�ψ, whence �ψ ∈ Fz.

For the converse, if �ψ ∈ Fz then clearly the statement ∀z′ ∈ Z[Fz∩�Jz′ = ∅ ⇒ ψ < Jz′]

is true and soML,z 
 �ψ. Now

ML,z ≻ �ψ iff ∀z′ ∈ Z[z′Ez⇒ML,z
′ 1 �ψ]

iff ∀z′ ∈ Z[z′Ez⇒ �ψ < Fz′] from above

iff ∀z′ ∈ Z[Fz′ ∩ Jz = ∅ ⇒ �ψ < Fz′]

iff ∀z′ ∈ Z[�ψ ∈ Fz′ ⇒ Fz′ ∩ Jz , ∅]

iff �ψ ∈ Jz.

The forward implication of the last equivalence follows by taking z′ = (⌊�ψ⌋, ⌈⊥⌉).

The case of φ = ^ψ follows using a similar proof to that of φ = �ψ except starting

by first showingML,z ≻ ^ψ iff ^ψ ∈ Jz.

Theorem 1. The basic non-distributive modal logic L is complete w.r.t. the class of

graph-basedL-frames.

Proof. Consider an L-sequent φ ⊢ ψ that is not derivable in L. Then ⌊φ⌋ ∩ ⌈ψ⌉ = ∅ in

the Lindenbaum-Tarski algebra. Let z := (⌊φ⌋, ⌈ψ⌉) be the corresponding state inML By

Lemma 8 we haveM,z 
 φ andM,z ≻ ψ, but zEz. HenceM 6|= φ ⊢ ψ.

Remark 1. The proof via canonical model given above is of course constructive; defin-

ing the canonical model as we do by taking disjoint filter-ideal pairs (rather than e.g. max-

imally disjoint filter-ideal pairs) does not require any of the equivalents of Zorn’s lemma.

Completeness can also be argued via canonical extension in the following way

which does not make use of the truth lemma. Firstly, we observe that Proposition 1

can be readily extended to the statement that for any L-algebra A = (L,�,^), the com-

plex algebra of its associated graph-based structure FA is the canonical extension Aδ.

Secondly, we observe that any graph-based structure validates exactly the sequents valid

on its complex algebra (cf. Lemma 7).

Hence, if the L-sequent φ ⊢ ψ is not derivable in L, then by algebraic completeness,

φ ⊢ ψ is not valid in the Lindenbaum–Tarski algebra; then φ ⊢ ψ is not valid in the

canonical extension of the Lindenbaum–Tarski algebra, which, as discussed above, is

the complex algebra of the canonical model; then (Lemma 7) φ ⊢ ψ is not satisfied in

the canonical model.

4 Sahlqvist correspondence on graph-based frames

Parametric notions. We find it useful to phrase the correspondence results of the present

section in terms of a number of notions, parametric in E, which generalize familiar

notions about sets and relations which are staples of correspondence theory in Kripke

frames. The following definition will make it possible to concisely express relevant first

order conditions. Properties of this definition are collected in Section B.

Definition 5. For any graph X = (Z,E) and relations R,S ⊆ Z×Z, the E-compositions

of R and S are the relations R ◦E S ⊆ Z ×Z and R •E S ⊆ Z ×Z defined as follows: for

any a, x ∈ Z,

x(R◦E S )a iff ∃b(xRb & E(1)[b] ⊆ S (0)[a]).
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a(R•E S )x iff ∃y(aRy & E(0)[y] ⊆ S (0)[x]).

If E = ∆, then E(1)[b] = E(0)[b] = {b} for every b ∈ Z, and hence (R ◦E S ) and (R •E S )

reduce both to the usual relational composition of R and S . The interpretation of E-

compositions will be discussed in Section 5, while a number of their key properties are

proven in Appendix B.

Definition 6. For any graph X = (Z,E), the relation R ⊆ Z×Z is:

E-reflexive iff E ⊆ R; sub-E iff R ⊆ E; E◦-transitive iff R◦E R ⊆ R; E•-transitive iff R•E R ⊆ R.

When E := ∆, we obtain the usual reflexivity, transitivity etc.

Proposition 4. For any graph-basedL-frame F = (X,R�,R^),

1. F |= �φ ⊢ φ iff E ⊆ R� (R� is E-reflexive).

2. F |= φ ⊢^φ iff E ⊆ R� (R^ is E-reflexive).

3. F |= �φ ⊢ ��φ iff R� •E R� ⊆ R� (R� is E•-transitive).

4. F |= ^^φ ⊢^φ iff R^ ◦E R^ ⊆ R^ (R^ is E◦-transitive).

5. F |= φ ⊢ �φ iff R� ⊆ E (R� is sub-E).

6. F |= ^φ ⊢ φ iff R� ⊆ E (R^ is sub-E)

Proof. The modal principles above are all Sahlqvist (cf. [9, Definition 3.5]). Hence,
they all have first-order correspondents, both on Kripke frames and on graph-basedL-
frames, which can be computed e.g. via the algorithm ALBA (cf. [9, Section 4]). Below,
we do so for the modal axiom in item 1 (for the remaining items, see Appendix C). In
what follows, the variables j are interpreted as elements of the set J := {(a[10],a[1]) |
a ∈ Z} which completely join-generates F+, and the variables m as elements of M :=
{(x[0], x[01]) | x ∈ Z} which completely meet-generates F+.

∀p [�p ≤ p]

iff ∀p∀ j∀m[( j ≤ �p & p ≤ m)⇒ j ≤ m] first approximation

iff ∀ j∀m[ j ≤ �m⇒ j ≤ m] Ackermann’s Lemma

iff ∀m[�m ≤ m] J completely join-generates F+

Translating the universally quantified algebraic inequality above into its concrete
representation in F+ requires using the interpretation of m as ranging in M and the
definition of [R�] and [R�], as follows:

∀x ∈ Z R
[0]
�

[x[01]] ⊆ E[0][x] translation

iff ∀x ∈ Z R
[0]
�

[x] ⊆ E[0][x] Lemma 4 since R� is E-compatible

iff Rc
�
⊆ Ec (2)

iff E ⊆ R�.

5 Graph-based frames as models of informational entropy

As shown in the previous sections, graph-based frames – such as those defined for the

language L – provide a mathematically grounded semantic environment for lattice-

based logics such as L. However, in order for this environment to ‘make sense’ in a

more fundamental way, we need to: (a) specify how it generalizes the Kripke semantics

of classical normal modal logic; (b) couple it with an extra-mathematical interpreta-

tion which simultaneously accounts for the meaning of all connectives, and coherently
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extends to the meaning of axioms and of their first order correspondents. Below, we

propose a way to address these issues.

By assumption, the graphs X = (Z,E) on which the semantics of L is based are

reflexive, i.e. ∆ ⊆ E. Hence, a good starting point to address (a) is to understand this

semantics when E = ∆. In this case, the polarity arising from X is PX = (ZA,ZX , I∆c ),

and, as is well known and easy to see (cf. [5, Proposition 1]), the complete lattice X+

arising from X is (isomorphic to) the powerset algebra P(Z), and can be represented as

a concept lattice the join-generators of which are (a[10],a[1]) = ({a}, {a}c) for every a ∈ Z,

and the meet generators of which are (x[0], x[01]) = ({x}c, {x}) for every x ∈ Z. Notice also

that if E := ∆, then B↑ = Bc and Y↓ = Yc for all B,Y ⊆ Z. Hence, the interpretation of

L-formulas on frames based onX= (Z,∆) reduces as shown below. These computations

show that indeed, when E := ∆, we recover the usual Kripke-style interpretation of the

logical connectives, both propositional and modal.

V(p) = ([[p]], ([p])) = ([[p]], [[p]]c)

V(⊤) = (Z,Z[1]) = (Z,Zc)

V(⊥) = (Z[0],Z) = (Zc,Z)

V(φ∧ψ) = ([[φ]]∩ [[ψ]], ([[φ]]∩ [[ψ]])[1]) = ([[φ]]∩ [[ψ]], ([[φ]]∩ [[ψ]])c)

V(φ∨ψ) = ((([φ])∩ ([ψ]))[0], ([φ])∩ ([ψ])) = ([[φ]]∪ [[ψ]], ([[φ]]∪ [[ψ]])c)

V(�φ) = (R
[0]
�

[([φ])], (R
[0]
�

[([φ])])[1]) = ((R−1
�

[[[φ]]c])c,R−1
�

[[[φ]]c]) (∗)

V(^φ) = ((R
[0]
^

[[[φ]]])[0],R
[0]
^

[[[φ]]]) = (R−1
^

[[[φ]]], (R−1
^

[[[φ]]])c) (∗∗)

To justify the lines marked with (∗) and (∗∗),

R
[0]
�

[([φ])] = (Rc
�

)(0)[[[φ]]c] R
[0]
^

[[[φ]]] = (Rc
^

)(0)[[[φ]]]

= {z | ∀y(y < [[φ]]⇒ zRc
�

y)} = {z | ∀y(y ∈ [[φ]]⇒ zRc
^

y)}

= {z | ∀y(zR�y⇒ y ∈ [[φ]])} = {z | ∀y(zR^y⇒ y ∈ [[φ]]c)}

= ({z | ∃y(zR�y & y ∈ [[φ]]c)})c = ({z | ∃y(zR^y & y ∈ [[φ]])})c

= (R−1
�

[[[φ]]c])c = (R−1
^

[[[φ]]])c

Earlier on, we observed that the E-composition of relations reduces to the usual

relational composition when E := ∆, and so do the ‘E-versions’ of relational properties

such as reflexivity and transitivity (cf. Definition 6). So, in a slogan, the graph-based

interpretation of the modal operators is classical modulo a shift from ∆ to E. In what

follows we focus on this shift.

Drawing from the literature in information science and modal logic, we can regard

the vertices of X = (Z,E) as states, and interpret zEy as ‘z is indiscernible from y’. The

reflexivity of E is the minimal property we assume of such a relation, i.e. that every state

is indiscernible from itself.7 The closure a[10] of any a ∈ Z arises by first considering

the set a[1] of all the states from which a is not indiscernible, and then the set of all

the states that can be told apart from every state in a[1]. Then clearly, a is an element

of a[10], but this is as far as we can go: a[10] represents a horizon to the possibility of

7 In well-known settings (e.g. [22,15]), indiscernibility is modelled as an equivalence relation.

However, transitivity will fail, for example, when zEy iff d(z,y) < α for some distance function

d. It has been argued in the psychological literature (cf. [25,21]) that symmetry will fail in

situations where indiscernibility is understood as similarity, defined e.g. as z is similar to y iff

z has all the features y has.
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completely ‘knowing’ a. This horizon could be epistemic, cognitive, technological, or

evidential. Hence, E := ∆ represents the limit case in which a[10] = {a} for each state,

i.e. there are no bounds to the ‘knowability’ of each state of Z.

As we saw in Definition 2, the elements of the complex algebra of a graph-based

frame are tuples (B,Y) such that Y = B[1] and B = Y[0]. This two-sided representation

yields a corresponding interpretation of L-formulas ϕ as tuples ([[ϕ]], ([ϕ])) which, as

discussed above, reduce to ([[ϕ]], [[ϕ]]c) when E := ∆. Hence, formulas ϕ are assigned

both a satisfaction set [[ϕ]] and a refutation set ([ϕ]) which, as is the case when E := ∆,

determine each other, i.e. ([ϕ]) = [[ϕ]][1] and [[ϕ]] = ([ϕ])[0]. The latter identities imply

that [[ϕ]][10] = [[ϕ]] and ([ϕ])[01] = ([ϕ]), i.e. both the satisfaction and the refutation set of

any formula are stable. The stability requirement, which is mathematically justified by

the need of defining a compositional semantics for L, can also be understood at a more

fundamental level: if E encodes an inherent boundary to perfect knowability (i.e. the

informational entropy of the title), this boundary should be incorporated in the meaning

of formulas which are both satisfied and refuted ‘up to E’, i.e. not by arbitrary subsets

of the domain of the graph, but only by subsets which are preserved (i.e. faithfully

translated) in the shift from ∆ to E.

This is similar to the persistency restriction in the interpretation of formulas of

intuitionistic (modal) logic. Just like the interpretation of implication changes in the

shift from classical to intuitionistic semantics, the interpretation of disjunction changes

from classical to graph-based semantics and becomes weaker: the stipulation [[φ∨ψ]]=

(([φ])∩ ([ψ]))[0] requires a state z to satisfy φ∨ψ exactly when z can be told apart from

any state that refutes both φ and ψ. All states in [[φ]]∪ [[ψ]] will satisfy this requirement,

but more states might as well which neither satisfy φ nor ψ, provided that E detects

their being different from every state that refutes both φ and ψ.

Additional relations on graphs-based frames can be regarded as encoding subjec-

tive indiscernibility, i.e. zR�y iff z is indiscernible from y according to a given agent.

Under this interpretation, the stipulation [[�φ]] = R
[0]
�

[([φ])] requires �φ to be satisfied

at exactly those states that the agent can tell apart from each state refuting φ, and the

stipulation ([^φ]) = R
[0]
^

[[[φ]]] requires ^φ to be refuted at exactly those states that the

agent can tell apart from each state satisfying φ, and be satisfied at the states that can be

told apart from every state in ([^φ]). Hence, under the interpretation indicated above,

these semantic clauses support the usual reading of �φ as ‘the agent knows/believes φ’

and ^φ as ‘the agent considers φ plausible’.

Finally, we illustrate, by way of examples, how this interpretation coherently ex-

tends to axioms. In Proposition 4, we show that, also on graph-based frames, well

known modal axioms from classical modal logic have first-order correspondents, which

are the parametrized ‘E-counterparts’ of the first order correspondents on Kripke frames.

Interestingly, this surface similarity goes deeper, and in fact guarantees that the intended

meaning of a given axiom under a given interpretation is preserved in the translation

from ∆ to E. As a first illustration of this phenomenon, consider the axiom �φ ⊢ φ,

which, under the epistemic reading, in classical modal logic captures the characterizing

property of the factivity of knowledge (if the agent knows φ, then φ is true). This ax-

iom corresponds to E ⊆ R� on graph-based frames (cf. Proposition 4). This condition

requires that if the agent tells apart z from y, then indeed z is not indistinguishable from
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y. That is, the agent’s assessments are correct, which mutatis mutandis, is exactly what

factivity is about.

Likewise, as is well known, under the epistemic reading, axiom �φ ⊢ ��φ captures

the so called positive introspection condition: knowledge of φ implies knowledge of

knowing φ. This axiom corresponds to R�•E R� ⊆R� on graph-based frames (cf. Propo-

sition 4). This condition requires that if the agent cannot distinguish a state y from a and

nothing from which y is (in principle) indistinguishable she can distinguish from x, then

she cannot distinguish x from a. Equivalently, if she can distinguish x from a, then every

state which she cannot distinguish from a cannot be distinguished (in principle) from

some state from which she can distinguish x. This is exactly what positive introspec-

tion is about. As a third example, consider the axiom φ ⊢ �φ, which in the epistemic

logic literature is referred to as the omniscience principle (if φ is true, then the agent

knows φ). This axiom corresponds to R� ⊆ E on graph-based frames (cf. Proposition

4). This condition requires the agent to tell apart z from every state y from which z is

not indistinguishable, which is indeed what an omniscient agent should be able to do.

6 Sources of informational entropy

In this section we discuss two examples of the use graph-based models to capture sit-

uations where informational entropy arises. The first considers synonymy in natural

a language while the second deals with colour perception an the limits of the human

visual apparatus.

Synonymy in natural language. The exact nature of synonymy is debated, but there

is evidence to suggest that this relation, although reflexive, can fail to be an equiva-

lence, both on symmetry and transitivity. For example, one study [1] looks at English

synonyms in an online thesaurus and finds high degree of asymmetry. For example,

http://thesaurus.com lists cushion in the entry for pillow, but does not list pillow

in the entry for cushion, suggesting that cushion is a synonym for pillow but not vice

versa. To take another example, in a South African context, the term chips covers both

what Americans would call fries and what the British would call crisps. A South African

English speaker would thus regards chips as a synonym for both fries and crisps, but

would regard neither fries nor crisps as synonyms for chips. Chips is by far the most

commonly used word, with fries and crisps only used when disambiguation is required.

This can be modelled with the graph-based frame in the figure below, where the solid

arrows represent the E-relation, taken as the South African synonymity relation. As the

reader can easily verify, the closed sets of this graph are exactly ∅, {fries}, {crisps},

{fries,crisps} and {crisps,chips, fries}8. For any given word, the smallest of these sets

containing it can be thought of as its ‘semantic scope’. In particular, this accurately

represents the fact that the words fries and crisps have unambiguous meanings while,

without the benefit of context, chips could mean either of the others.

Now consider an American tourist trying to make sense of local usage. Having

some experience with British usage, she assumes chips and fries as interchangeable

8 Notice that since the E-relation in this example is only ‘one step’, it is automatically transitive

and therefore a pre-order. Hence, unsurprisingly, the associated concept lattice is distributive.

http://thesaurus.com
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terms, and say she also knows that South Africans use chips as a synonym for crisps.

This epistemic situation is modelled by the dashed arrows in the figure below which

define the E-compatible relation R.

fries crisps

chips

We could evaluate a proposition letter p, with intended interpretation ‘specific terms

for fried potatoes’, to ([[p]], ([p]))= ({fries,crisps}, {chips}), which would yield [[�Rp]]=

{crisps} capturing the fact that crisps is the only term the tourist can be sure denotes a

specific kind of fried potato.

Perceptual limits. The wavelength of visible light lies roughly in the rage from 380 to

780 nanometres. The smallest difference between wavelengths in this range which is

detectable by the human eye is known as the differentiation minimum. The differentia-

tion minimum varies with wavelengths and is best in the green-blue (around 490 nm)

and orange (around 590 nm) spectra, where it is as low as 1 nm. It goes as high as 7 nm

in the low 400 and middle 600 ranges, but averages round 4 nm over the spectrum of

visible light. Deficient colour vision is characterized by significantly higher individual

differentiation minima in certain ranges [20].

We model this situation using a graph-based frame. Firstly, write [380,780] for

{x ∈ N | 380 ≤ x ≤ 780} and represent the differentiation minimum by the function δ :

[380,780]→ N mapping every integer valued wavelength between 380 nm and 780

nm to the associated differentiation minimum. Represent the (possibly deficient) colour

vision of an agent A by δA : [380,780]→N such that δA(x) ≥ δ(x) for all x ∈ [380,780].

We will make the assumption that δ has no sudden “jumps”, specifically, that for all

x ∈ [380,779], |δ(x)− δ(x+ 1)| ≤ 1. We will assume that for all x ∈ [380,780], if (x−

δA(x)) ≥ 380, there exists xℓ ∈ [x− δA(x)+ 1, x] such that δ(xℓ) = xℓ − (x− δA(x)) and,

symmetrically, that if (x + δA(x)) ≤ 780, there exists xr ∈ [x, x + δA(x)− 1] such that

δ(xr) = (x+ δA(x))− xr. This assumption is needed for technical reasons. However, is

justified in the case of xℓ (and symmetrically in the case of xr) by the consideration

that, since x− δA(x) is the first point to the left of x in the spectrum which agent can

discern from x, there should be a point in between x−δA(x)+1 and x which is minimally

discernible from x− δA(x) according to differentiation minimum (and could be x itself,

if the agent’s perception at this point coincides with the differentiation minimum).

Let F = (X,R^,R�) where X = ([380,780],E) such that xEy iff |x− y| < δ(x) and

xR^y iff xR�y iff |x− y| < δA(x). Note that E is reflexive, but need be neither symmetric

nor transitive. Using the assumptions above, one can prove that R� is E-compatible.

Suitable proposition letters to interpret on F would be colour terms like green, yel-

low, orange etc. For example, according to the standard division of the spectrum into

colours, one would evaluate [[green]]= [520,560], [[yellow]]= [560,590] and [[orange]]=

[590,635]. As a simplified and stylized example (but one nevertheless not too unrealis-

tic for the range we focus on subsequently), let us take δ and δA to be defined as in the

following table:
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Interval δ δA

370 - 519 3 7

520 - 550 4 8

551 - 570 3 7

571 - 780 2 6

In this model we get [[�green]] = R[0][([green])] = R[0][ [370,516]∪ [563,780] ] =

[524,556] which represent the range of wavelengths that the agent definitely perceives

as green. On the other hand ([^green])= R[1][[[green]]]= R[1][[520,560]]= [370,512]∪

[567,780] which is the set of wavelengths which the agent definitely perceives as not

green. This leaves the intervals [513,523] and [557,568] where the agent cannot tell

whether the corresponding colour is green or not.

7 Conclusions

The present contributions lay the ground for a number of further developments, some

of which are listed below.

Parametric Sahlqvist theory. In Proposition 4 we were able to formulate our cor-

respondence results as parametric versions (where E is the parameter) of well known

relational properties such as reflexivity and transitivity (cf. Definition 6). This phe-

nomenon was also observed in [5, Proposition 5]. A natural question is whether these

instances can be subsumed by a more general and systematic parametric Sahlqvist the-

ory, where the generalized frame correspondent of any Sahlqvist formula would be

obtainable directly as a parametrization of its classical frame correspondents.

Gödel-McKinsey-Tarski translation. As mentioned in Section 5, one way of mak-

ing sense of the present framework is by comparing it with the relational semantics of

intuitionistic logic. In the later, the relation E is reflexive and transitive, and rather than

being used to generate the semantics of modal operators on powerset algebras, it is

used to generate an algebra of stable sets, namely the persistent (i.e. upward closed

or downward closed) sets. Hence a natural direction is to build a non-distributive ver-

sion of the transfer results induced by a suitable counterpart of Gödel-McKinsey-Tarski

translation. We are presently pursuing this direction.

Many-valued graph-based semantics. In this paper, we only treat examples of in-

formational entropy due to linguistic and perceptual limits. However, a very interesting

area of application for this framework is the formal analysis of informational entropy

induced by theoretical frameworks adopted to conduct scientific experiments. These

situations are also amenable to be studied using a many-valued version of the present

framework, which we have started to outline in [3].
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A Equivalent compatibility conditions in formal contexts

Lemma 9. 1. The following are equivalent for every formal context P = (A,X, I) and

every relation R ⊆ A×X:

(i) R(0)[x] is Galois-stable for every x ∈ X;

(ii) R(0)[Y] is Galois-stable for every Y ⊆ X;

(iii) R(1)[B] = R(1)[B↑↓] for every B ⊆ A.

2. The following are equivalent for every formal context P = (A,X, I) and every rela-

tion R ⊆ A×X:

(i) R(1)[a] is Galois-stable for every a ∈ A;

(ii) R(1)[B] is Galois-stable, for every B ⊆ A;

(iii) R(0)[Y] = R(0)[Y↓↑] for every Y ⊆ X.

Proof. We only prove item 1, the proof of item 2 being similar. For (i)⇒ (ii), see [7,

Lemma 4]. The converse direction is immediate.

(i)⇒ (iii). Since (·)↑↓ is a closure operator, B ⊆ B↑↓. Hence, Lemma 1.1 implies

that R
(1)
�

[B↑↓] ⊆ R
(1)
�

[B]. For the converse inclusion, let x ∈ R
(1)
�

[B]. By Lemma 1.2, this

is equivalent to B ⊆ R
(0)
�

[x]. Since R
(0)
�

[x] is Galois-stable by assumption, this implies

that B↑↓ ⊆ R
(0)
�

[x], i.e., again by Lemma 1.2, x ∈ R
(1)
�

[B↑↓]. This shows that R
(1)
�

[B] ⊆

R
(1)
�

[B↑↓], as required.

(iii)⇒ (i). Let x ∈ X. It is enough to show that (R
(0)
�

[x])↑↓ ⊆ R
(0)
�

[x]. By Lemma

1.2, R
(0)
�

[x] ⊆ R
(0)
�

[x] is equivalent to x ∈ R
(1)
�

[R
(0)
�

[x]]. By assumption, R
(1)
�

[R
(0)
�

[x]] =

R
(1)
�

[(R
(0)
�

[x])↑↓], hence x ∈ R
(1)
�

[(R
(0)
�

[x])↑↓]. Again by Lemma 1.2, this is equivalent to

(R
(0)
�

[x])↑↓ ⊆ R
(0)
�

[x], as required.

B Composing relations on graph-based structures

The present section collects properties of the E-compositions (cf. Definition 5).

Lemma 10. For any graph X = (Z,E), relations R,S ⊆ Z×Z and a, x ∈ Z,

(R◦E S )[0][a] = R[0][E[0][S [0][a]]], (R◦E S )[1][x] = R[1][E[1][S [1][x]]],

(R•E S )[0][x] = R[0][E[1][S [0][x]]] and (R•E S )[1][a] = R[1][E[0][S [1][a]]].

Proof. We only prove the identities in the left column.

R[0][E[0][S [0][a]]] = R[0][E[0][{x | xS ca}]] definition of S [0][a]

= R[0][{b | ∀x(xS ca⇒ bEcx)}] definition of E[0][−]

= R[0][{b | S [0][a] ⊆ E[1][b]}]

= R[0][{b | E(1)[b] ⊆ S (0)[a]}] Lemma 3

= {x | ∀b(E(1)[b] ⊆ S (0)[a]⇒ xRcb)} definition of R[0][−]

= ({x | ∃b(xRb & E(1)[b] ⊆ S (0)[a])})c

= ({x | x(R◦E S )a})c Definition 5

= {x | x(R◦E S )ca}

= (R◦E S )[0][a].
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R[0][E[1][S [0][x]]] = R[0][E[1][{a | aS cx}]] definition of S [0][x]

= R[0][{y | ∀a(aS cx⇒ aEcy)}] definition of E[1][−]

= R[0][{y | S [0][x] ⊆ E[0][y]}]

= R[0][{y | E(0)[y] ⊆ S (0)[x]}] Lemma 3

= {b | ∀y(E(0)[y] ⊆ S (0)[x]⇒ bRcy)} definition of R[0][−]

= ({b | ∃y(bRy & E(0)[y] ⊆ S (0)[x])})c

= ({b | b(R•E S )x})c Definition 5

= {b | b(R•E S )cx}

= (R•E S )[0][x].

Lemma 11. If R,T ⊆ Z×Z and R is E-compatible, then so are R◦E T and R•E T.

Proof. Let a ∈ Z. By Lemma 10, (R ;T )[0][a] = R[0][I[0][T [0][a]]], hence the following

chain of identities holds:

((R ;T )[0][a])[01] = (R[0][I[0][T [0][a]]])[01] = R[0][I[0][T [0][a]]] = (R ;T )[0][a],

the second identity in the chain above following from the E-compatibility of R and

Lemma 4.1. The remaining conditions for the E-compatibility of R◦E T and and R•E T

are shown similarly.

The following lemma is the counterpart of [5, Lemma 6] in graph-based semantics.

Lemma 12. If R,T ⊆ Z×Z are E-compatible, then for any B,Y ⊆ Z,

(R◦E T )[1][Y] = R[1][E[1][T [1][Y]]] (R◦E T )[0][B] = R[0][E[0][T [0][B]]].

(R•E T )[1][B] = R[1][E[0][T [1][B]]] (R•E T )[0][Y] = R[0][E[1][T [0][Y]]].

Proof. We only prove the first identity, the remaining ones being proved similarly.

R[1][E[1][T [1][Y]]] = R[1][E[1][T [1][
⋃

x∈Y {x}]]]

= R[1][E[1][
⋂

x∈Y T [1][x]]] Lemma 2.5

= R[1][E[1][
⋂

x∈Y E[0][E[1][T [1][x]]]]] T is E-compatible

= R[1][E[1][E[0][
⋃

x∈Y E[1][T [1][x]]]]] Lemma 2.5

= R[1][
⋃

x∈Y E[1][T [1][x]]] Lemma 4

=
⋂

x∈Y R[1][E[1][T [1][x]]] Lemma 2.5

=
⋂

x∈Y (R◦E T )[1][x] Lemma 10

= (R◦E T )[1][
⋃

x∈Y {x}] Lemma 2.5

= (R◦E T )[1][Y].

Lemma 13. If R,T,U ⊆ Z × Z are E-compatible, then (R ◦E T ) ◦E U = R ◦E (T ◦E U)

and (R•E T )•E U = R•E (T •E U).

Proof. For every x ∈ Z, repeatedly applying Lemma 12 we get:

(R◦E (T ◦E U))[1][x] = R[1][E[1][(T ◦E U)[1][x]]]

= R[1][E[1][T [1][E[1][U[1][x]]]]]

= (R◦E T )[1][E[1][U[1][x]]]

= ((R◦E T )◦E U)[1][x],

which shows that x(R ◦E (T ◦E U))ca iff x((R ◦E T ) ◦E U)ca for any x,a ∈ Z, and hence

x(R ◦E (T ◦E U))a iff x((R ◦E T ) ◦E U)a for any x,a ∈ Z, as required. The remaining

statements are proven similarly.
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C Proof of Proposition 4

2.

∀p [p ≤ ^p]

iff ∀p∀ j∀m[( j ≤ p & ^p ≤ m)⇒ j ≤ m] first approximation

iff ∀p∀ j∀m[( j ≤ p & p ≤ �m)⇒ j ≤ m] adjunction

iff ∀ j∀m[ j ≤ �m⇒ j ≤ m] Ackermann’s Lemma

iff ∀m[�m ≤ m] J completely join-generates F+

i.e ∀x ∈ Z R
[0]
�

[x[01]] ⊆ E[0][x] translation

iff ∀x ∈ Z R
[0]
�

[x] ⊆ E[0][x] Lemma 4 since R� is E-compatible

iff Rc
�
⊆ Ec (2)

iff E ⊆ R�.

3.

∀p [�p ≤ ��p]

iff ∀p∀ j∀m[( j ≤ �p & p ≤ m)⇒ j ≤ ��m] first approximation

iff ∀ j∀m[ j ≤ �m⇒ j ≤ ��m] Ackermann’s Lemma

iff ∀m[�m ≤ ��m] J completely join-generates F+

i.e ∀x ∈ Z R
[0]
�

[x[01]] ⊆ R
[0]
�

[E[1][R
[0]
�

[x[01]]]] translation

iff ∀x ∈ Z R
[0]
�

[x] ⊆ R
[0]
�

[E[1][R
[0]
�

[x]]] Lemma 4 since R� is E-compatible

iff ∀x ∈ Z R
[0]
�

[x] ⊆ (R� •E R�)[0][x] Lemma 12

iff Rc
�
⊆ (R� •E R�)c (2)

iff R� •E R� ⊆ R�.

4.

∀p [^^p ≤ ^p]

iff ∀p∀ j∀m[( j ≤ p & ^p ≤ m)⇒^^ j ≤ m] first approximation

iff ∀ j∀m[^ j ≤ m⇒^^ j ≤ m] Ackermann’s Lemma

iff ∀ j[^^ j ≤ ^ j] M completely meet-generates F+

i.e ∀a ∈ Z R
[0]
^

[a[10]] ⊆ R
[0]
^

[(R
[0]
^

[a[10]])[0]] translation

iff ∀a ∈ Z R
[0]
^

[a] ⊆ R
[0]
^

[(R
[0]
^

[a])[0]] Lemma 4 since R^ is E-compatible

iff ∀a ∈ Z R
[0]
^

[a] ⊆ (R^ ◦R^)[0][a] Lemma 12

iff Rc
^
⊆ (R^ ◦E R^)c (2)

iff R^ ◦E R^ ⊆ R^.

5.

∀p[p ≤ �p]

iff ∀p∀ j∀m[( j ≤ p & p ≤ m)⇒ j ≤ �m] first approximation

iff ∀ j∀m[ j ≤ m⇒ j ≤ �m] Ackermann’s Lemma

iff ∀m[m ≤ �m] J completely join-generates F+

i.e ∀x ∈ Z E[0][x] ⊆ R
[0]
�

[x[01]] translation

iff ∀x ∈ Z E[0][x] ⊆ R
[0]
�

[x] Lemma 4 since R� is E-compatible

iff Ec ⊆ Rc
�

(2)

iff R� ⊆ E.
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6.

∀p [^p ≤ p]

iff ∀p∀ j∀m[( j ≤ p & p ≤ m)⇒ ^ j ≤ m] first approximation

iff ∀ j∀m[ j ≤ m⇒ ^ j ≤ m] Ackermann’s Lemma

iff ∀ j∀m[ j ≤ m⇒ j ≤ �m] adjunction

iff ∀m[m ≤ �m] J completely join-generates F+

i.e ∀x ∈ Z E[0][x] ⊆ R
[0]
�

[x[01]] translation

iff ∀x ∈ Z E[0][x] ⊆ R
[0]
�

[x] Lemma 4 since R� is E-compatible

iff Ec ⊆ Rc
�

(2)

iff R� ⊆ E.
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