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Abstract. In this paper, we introduce partial dependency modality D into

epistemic logic so as to reason about partial dependency relationship in

Kripke models. The resulted dependence epistemic logic possesses decent

expressivity and beautiful properties. Several interesting examples are pro-

vided, which highlight this logic’s practical usage. The logic’s bisimulation

is then discussed, and we give a sound and strongly complete axiomatiza-

tion for a sub-language of the logic.

Keywords: Epistemic logic · Knowing value · Partial dependency.

1 Introduction

Following some previous fundamental work on “knowing value” [15,16,10,4,2],

recent years have seen an abundance of interest in this novel kind of non-
standard epistemic logic. There has been epistemic logic with functional de-

pendency operator [3], which can help us reason about knowing that the value
of certain variable is functionally decided by some other variables. For instance,

the agent knows that y = x2, so he knows that y functionally depends on x even

if without knowing the exact values of x or y.

Nevertheless, the real world is never so ideal as a simple parabola. As a
matter of fact, in a lot of practical cases, the value of a dependent variable y

is usually influenced by thousands of independent factors as x1, x2, . . . in a

quite complicated way, such that it is virtually impossible to obtain a detailed
function to precisely determine the value of y. Therefore, in both scientific and

social study, the method of control variable gets widely used. We often set the

values of all the other variables rigid, only change the value of an independent
variable x and observe the change of the dependent variable y. If the value of

y varies with the value of x, then we conclude that y partially depends on x.
In this paper, we introduce modality D in order to express this kind of partial

dependency relationship.

There have also been dependence and independence logics dealing with de-

pendency relationship between variables [13,9,8,6], and we will discuss our
logic’s connection to them in Remark 2. A similar definition for dependency re-

lationship also appears in Halpern’s recent book, pp. 14-19. [11] However, the

start point of our work is epistemic logic as well as the Kripke model, and we
would like to incorporate partial dependency relationship between variables into

http://arxiv.org/abs/1905.10976v2
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the agent’s knowledge so that we shall obtain an epistemic logic of “knowing

dependency”, which is hence named as dependence epistemic logic. This depen-

dence epistemic logic proves to possess further affluent expressivity as well as
rather straightforward properties.

In the Kripke model for our dependence epistemic logic, besides a usual ∼i

S5 equivalence relation representing the agent’s knowledge, i.e., all the possible

worlds that the agent cannot distinguish, there also exists another ≈ S5 equiv-

alence relation representing the physical probability, i.e., all the possible worlds
that share the same set of physical laws with the current world. Generally speak-

ing, these two equivalence relations do not have to have any correlation, and

thus in the language, the former is characterized by an S5 modality K, while
the latter is characterized by another independent S5 modality A. This kind of

framework is first introduced by another recent work [14], and so readers who
get confused with the conception of two independent equivalence relations in

the model are strongly recommended to refer to that paper.

Then the partial dependency relationship is valuated in the ≈ equivalence
class, since dependency relationship between variables is in fact related to some

universal physical law and thus concerns not only the current exact world but

also all the other worlds that are physically potentially possible. Actually, we in-
troduce two different modalities Dg and Dl to characterize partial dependency

relationship. Their respective semantics is both based on the discussion in the
beginning about what modality D should be like, except for that, the former Dg

is valuated globally in a whole ≈ equivalence class, while the latter Dl fixes one

reference point as the current exact world and so is valuated locally. Readers will
soon become clear about what Dg and Dl mean respectively through the follow-

ing Section 2 on preliminaries including the language, model and semantics, and

the correlation between these two modalities also gets discussed in Remark 1.
Examples in Section 3 illustrate that Dg is helpful in analyzing universal physical

laws while Dl is useful in expressing counterfactual assumptions, in surprising
accordance with our very intuition as well as commonsense, so the practicality

of Dg and Dl counts to why we introduce both modalities.

The rest of the paper is organized as follows. We lay out the basics of the
language and the semantics in Section 2. Several interesting examples are illus-

trated in Section 3. A bisimulation notion for this dependence epistemic logic

then gets thoroughly discussed in Section 4, followed by a sound and strongly
complete axiomatization for a sub-language in Section 5. We finally conclude

this paper and propose future research directions in Section 6.

2 Preliminaries

Definition 1 (Language EDL). For a fixed countable set of propositions P, and a

fixed countable set of variables V, the language EDL of dependence epistemic logic

is defined recursively as:

ϕ ::= ⊤ | p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Aϕ | Dg(X,Y ) | Dl(X,Y )
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where p ∈ P, and X as well as Y are finite subsets of V. Dg(X,Y ) reads as Y

depends on X globally, while Dl(X,Y ) reads as Y depends on X locally. We define

⊥, ∨ and → as usual.

Important Notation In the following parts of this paper, when some property
applies to both Dg and Dl, we will simply omit the subscript and write down

only one theorem, lemma, axiom, etc. concerning D for convenience, and the

omitting is also similar for other notations derived from D.
If X = {x}, we will also denote D({x}, Y ) as D(x, Y ) for simplicity, and

likely for Y if Y = {y}.

Definition 2 (Model). A dependence epistemic model M is 〈S, T, V, U,∼i,≈〉:

– S is a set of possible worlds.
– T : S × P → {0, 1}.
– V ⊇ V is a countable set of variable objects.
– U : S × V → N.
– ∼i is an equivalence relation over S.
– ≈ is an equivalence relation over S.

As the convention in first-order logic, while V in the language are names for

variables, V in the model interpret each name with a concrete object and also may

consist of other variable objects whose names are not included in the language.

Since the language EDL excludes the equal sign =, every name in V can be man-

aged to be interpreted differently in V , so we simply let V ⊇ V and do not make

explicit distinctions between names and objects in the following without causing any

confusion. Then U is the function that assigns each variable on each possible world

with a (countably possible) value, which is supposed to be uniformly numbered by

N for convenience.

Sometimes we apply another extra stipulation on the model in order to satisfy

our practical needs: for any proposition p ∈ P, it may have its corresponding vari-

able p ∈ V. If so, we then stipulate that ∀s ∈ S, U(s, p) = T (s, p). The following
Subsections 3.1 and 3.3 present examples of this kind.

Definition 3 (Semantics). We define that ∀s, t ∈ S, ∀ subset X ⊆ V , Xs = Xt iff

∀x ∈ X,U(s, x) = U(t, x), while of course, Xs 6= Xt iff ∃x ∈ X,U(s, x) 6= U(t, x).
A pointed model M, s is a dependence epistemic model M with a possible world

s ∈ S.

M, s � ⊤ ⇐⇒ always

M, s � p ⇐⇒ T (s, p) = 1
M, s � ¬ϕ ⇐⇒ not M, s � ϕ

M, s � (ϕ ∧ ψ) ⇐⇒ M, s � ϕ and M, s � ψ

M, s � Kϕ ⇐⇒ ∀t ∈ S, t ∼i s,M, t � ϕ

M, s � Aϕ ⇐⇒ ∀t ∈ S, t ≈ s,M, t � ϕ

M, s � Dg(X,Y ) ⇐⇒ ∃u, v ∈ S, u ≈ v ≈ s,

(V \(X ∪ Y ))u = (V \(X ∪ Y ))v, Xu 6= Xv, Yu 6= Yv
M, s � Dl(X,Y ) ⇐⇒ ∃t ∈ S, t ≈ s,

(V \(X ∪ Y ))t = (V \(X ∪ Y ))s, Xt 6= Xs, Yt 6= Ys
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When it is not that M, s � ϕ, we denote it as M, s 2 ϕ.

Remark 1 (Expressivity of Dg and Dl). We are able to perceive through Definition
3 that Dg is actually definable using ¬, A and Dl, demonstrated as the following:

Dg(X,Y ) ↔ ¬A¬Dl(X,Y )

In fact, Dl is strictly more expressive than Dg, which will become clear to
readers through our discussion for bisimulation in Section 4. Nevertheless, due

to Dg ’s simplicity and usefulness, we will take the language with Dg but without

Dl as a sub-language of EDL.

Definition 4 (Language EDG). For a fixed countable set of propositions P, and a

fixed countable set of variables V, the language EDG is defined recursively as:

ϕ ::= ⊤ | p | ¬ϕ | (ϕ ∧ ϕ) | Kϕ | Aϕ | Dg(X,Y )

where p ∈ P, and X as well as Y are finite subsets of V.

The model and semantics are the same.

Remark 2 (Connection to Independence Logic). If the total set of variables V is
finite and explicitly known, then modality Dg can be expressed in inclusion logic,

a sub-language of independence logic [5], as the following:1

Dg(X,Y ) ⇐⇒ ∃−→w1
−→x1

−→y1∃
−→w2

−→x2
−→y2(

−→w1
−→x1

−→y1 ⊆ (V \(X ∪ Y ))XY ∧
−→w2

−→x2
−→y2 ⊆ (V \(X ∪ Y ))XY ∧−→w1 = −→w2 ∧ ¬−→x1 = −→x2 ∧ ¬−→y1 = −→y2)

However, this form puts too many restrictions and becomes too lengthy, while
we actually want the total set V to be clear from our language so that we can

reason with simple and compact logic. In fact, the team model on which inde-

pendence logic is based is quite different from the Kripke possible world model
[12], both in technique and in philosophical explanation, and hence they are

very unlike logics. While independence logic, inherited from first order logic, al-

ways reasons globally, epistemic logic, rooted from modal logic, usually reasons
locally, which is demonstrated by this obvious fact that local modality Dl can

surely not be defined in independence logic.

3 Examples

3.1 An Open Door

Let p denote that the door of the room is open now, q denote that the agent

possesses the key of the door, and r denote that the agent is able to enter the

1 As for the notation, we prefer to use X and Y instead of −→x or −→y . Anyway, their

respective meanings in this specific context should be clear to readers.
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room. Let us suppose that the agent has perfect knowledge, so ∼i relation is only

reflexive. Then we have:2

s : p, q, r
p = 1
q = 1
r = 1

≈

p,¬q, r
p = 1
q = 0
r = 1

≈

¬p, q, r
p = 0
q = 1
r = 1

≈

¬p,¬q,¬r
p = 0
q = 0
r = 0

It is not difficult to observe that M, s � KDg(p, r) and M, s � K¬Dl(p, r).
The former says that the agent knows whether he is able to enter the room is

somewhat related to whether the door is open now – if he did not possess the
key. And the latter says that under the present situation, since the agent does

possess the key, he surely knows that if this precondition is kept unchanged,

then he was still able to open the door to enter the room even if the door was
now closed. Namely, whether he is able to enter the room does not depend on

whether the door is open now, which provides us with a fancy way to express

counterfactual assumptions.

3.2 Error-included Experiment

Suppose we are carrying out an experiment, and we know from theory that

there are two independent variables x and y which may influence the value
of the dependent variable z, where the value of x is well under control but y

represents some random experimental error, and so of course, we cannot control

or even measure the value of y. The only thing we know about y is that it will
be either 1 or 2 during every experiment.

Now we have done this experiment twice. When x = 1, z = 1. When x = 2,

z = 2. By combining all kinds of possibilities, we can have the model as:

x = 1
y = 1
z = 1

i

≈

x = 1
y = 1
z = 1

i

≈

x = 1
y = 2
z = 1

i

≈

x = 1
y = 2
z = 1

≈

x = 2
y = 1
z = 2

i
x = 2
y = 2
z = 2

i
x = 2
y = 1
z = 2

i
x = 2
y = 2
z = 2

Can we be confident that z depends on x? Certainly not, because the change

of z may be brought about by the change of y. As a matter of fact, on every

possible world s there is M, s 2 KDg(x, z).
However, if we have further done the third experiment, and when x = 3, z =

3. Now can we be confident that z depends on x? Indeed we can. This fact can
be easily observed through the following huge model, where M, s � KDg(x, z)
on every possible world s:

2 When drawing all these figures in this paper, for brevity we will omit some relation

lines which can be deduced from S5 equivalence class requirements.



6 X. Wang

x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 1
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

i
x = 1
y = 2
z = 1

≈

x = 2
y = 1
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 1
z = 2

≈

i
x = 2
y = 2
z = 2

≈

i
x = 2
y = 2
z = 2

≈

x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

i
x = 3
y = 1
z = 3

i
x = 3
y = 2
z = 3

Whatever values y may be in the three experiments, there must be at least

two experiments in which y is the same, so we can only explain the difference

between z in these two experiments as caused by the difference between the
value of x. This scenario clearly explains why in all the natural science experi-

ments, despite the universal existence of errors, we can still manage to obtain
useful conclusions concerning our interested variables, by multiple experiments

with relatively large data range.

3.3 Judging a Case

We have seen that global modality Dg can help us analyze complicated experi-

mental results, while local modality Dl is very helpful in expressing counterfac-

tual assumptions. And there are still trickier things worth examining. Until now,
we have only proposed examples including modality D affecting solely on sin-

gletons. It may seem by intuitive guess that D({a, b}, c) tells very similar thing as
D(a, c) ∨ D(b, c). Nevertheless, these two expressions are not exactly the same,

and in fact, they may result in quite opposite epistemic consequences, as demon-

strated by the following scenario.

Unfortunately, Charles got killed in a tragedy (c), which was related to Alan
having done something (a) and/or Bob having done something (b). Firstly, let

us suppose that either a or b could happen so as to cause c, and only one of them

could have happened to be c’s indeed cause. However, on the current world s

we are yet not sure whether a or b actually happened to be the exact cause of c.

This can be modeled as the following:

s : a,¬b, c
a = 1
b = 0
c = 1

i,≈

¬a, b, c
a = 0
b = 1
c = 1

≈

¬a,¬b,¬c
a = 0
b = 0
c = 0

It is not difficult to observe that M, s � KDl({a, b}, c)∧K(Dl(a, c)∨Dl(b, c)).
This is to say, it is within our knowledge that not only the whole group event
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{a, b} is related to c, but also either a or b itself is alone related to c, namely, their

influences on c can be separated in concept. Hence, unless we obtain further

evidence to pin down our knowledge in order to determine whether Alan or
Bob was the real criminal, by presumption of innocence neither of them can be

sentenced guilty for Charles’ death.

Now let us turn to a second phenomenon, where b’s happening was a direct
consequence of a’s happening. For instance, let b denote that Bob killed Charles,

and a denote that Alan compelled Bob to kill Charles, either by threatening

that he would have killed Bob otherwise or by Alan’s mind control over Bob
through magic or science fiction. In other words, we restrict ourselves to only

consider possible worlds on which a → b holds in our Kripke model. Under this
circumstance, we can model our knowledge as the following:

s : a, b, c
a = 1
b = 1
c = 1

≈

¬a, b, c
a = 0
b = 1
c = 1

≈

¬a,¬b,¬c
a = 0
b = 0
c = 0

At present, even physically speaking b should be the only direct cause of
c, which is demonstrated by A(b ↔ c) holding throughout the model, to our

little surprise KDl(b, c) does not hold on the current world s. As a matter of

fact, we have M, s � KDl({a, b}, c) ∧ K(¬Dl(a, c) ∧ ¬Dl(b, c)), a direct contrast
against the former scene. This time we not only know that c locally depends

on {a, b} as a whole, but also know that this dependency relationship should

be viewed as an entirety instead of conceptually separable, and therefore, both
Alan and Bob should be responsible for Charles’ death. Further considering that

KA(a → b) holds on s, a legal and rational sentence ought to be that Alan is the
principal criminal while Bob is the coerced criminal, which precisely captures

the meanings of all the formulae mentioned above.

4 Bisimulation

Definition 5 (∆(u, v)). For any two possible worlds u, v ∈ S, we define:

∆(u, v) =

{

{x | x ∈ V, U(u, x) 6= U(v, x)}, if (V \V)u = (V \V)v
∅, otherwise

Definition 6 (Evidence). For any three sets W , X and Y , W is called an evidence

of 〈X,Y 〉, iff W ∩X 6= ∅, W ∩ Y 6= ∅, and W ⊆ X ∪ Y .

Compared with the original semantics defined in Definition 3, we manage to

rewrite part of it in an equivalent form as the following:

Lemma 1 (Evidence Lemma I).

M, s � Dg(X,Y ) ⇐⇒ ∃u, v ∈ S, u ≈ v ≈ s,∆(u, v) is an evidence of 〈X,Y 〉
M, s � Dl(X,Y ) ⇐⇒ ∃t ∈ S, t ≈ s,∆(t, s) is an evidence of 〈X,Y 〉
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Proof. Directly from the semantics defined in Definition 3. �

Definition 7 (P(s)). For any possible world s ∈ S, we define:

Pg(s) = {nonempty finite set ∆(u, v) | u, v ∈ S, u ≈ v ≈ s}

Pl(s) = {nonempty finite set ∆(t, s) | t ∈ S, t ≈ s}

It is obvious that ∀s ∈ S, Pl(s) ⊆ Pg(s) ⊆ {nonempty finite set W |W ⊆ V}.

We again manage to rewrite part of the semantics in another equivalent form
as the following, making use of the newly defined P(s):

Lemma 2 (Evidence Lemma II).

M, s � Dg(X,Y ) ⇐⇒ ∃W ∈ Pg(s),W is an evidence of 〈X,Y 〉
M, s � Dl(X,Y ) ⇐⇒ ∃W ∈ Pl(s),W is an evidence of 〈X,Y 〉

Proof. By Lemma 1. �

Definition 8 (Generative). ∀s ∈ S, any nonempty finite set W ⊆ V is called
generative from P(s), iff for any two finite sets X,Y ⊆ V, such that W is an

evidence of 〈X,Y 〉, there exists W ′ ∈ P(s), such that W ′ is also an evidence of

〈X,Y 〉.

Theorem 1 (Equivalence Theorem I). For any two pointed models M, s and

M′, s′, they satisfy exactly the same D(X,Y ) formulae for any two finite sets

X,Y ⊆ V iff:

– Zig: ∀W ∈ P(s),W is generative from P(s′).
– Zag: ∀W ∈ P(s′),W is generative from P(s).

Proof. For the direction from left to right, we first concentrate on the Zig con-
dition. If there exists W ∈ P(s), such that W is not generative from P(s′),
then by definition, there exist two finite sets X,Y ⊆ V, such that W is an ev-

idence of 〈X,Y 〉, but there does not exist W ′ ∈ P(s′), such that W ′ is an ev-
idence of 〈X,Y 〉. By Lemma 2, this is equivalent to that M, s � D(X,Y ) but

M′, s′ 2 D(X,Y ), a contradiction. The Zag condition follows by symmetry.

The other direction can also be verified similarly and easily. �

Definition 9 (G(s)). For any possible world s ∈ S, we define:

G(s) = {W |W is generative from P(s)}

It is obvious that ∀s ∈ S, Gl(s) ⊆ Gg(s) ⊆ {nonempty finite set W |W ⊆ V}.
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Theorem 2 (Equivalence Theorem II). For any two pointed models M, s and

M′, s′, they satisfy exactly the same D(X,Y ) formulae for any two finite sets

X,Y ⊆ V iff G(s) = G(s′).

Proof. Similar to the proof of Theorem 1. �

Actually, the set G(s) is the existent and the only greatest generative set

from the original P(s) while keeping satisfying the same formulae for modality
D. Therefore, it is worthwhile investigating what characteristics G(s) possesses,

since it precisely determines the modal property of the pointed model M, s. In

the following theorem, we manage to express the generative condition for a
nonempty finite set W from P(s) in several different equivalent forms.

Theorem 3 (Generative Theorem). ∀s ∈ S, for any nonempty finite set W ⊆ V,
we define Σ(s,W ) = {W ′ |W ′ ∈ P(s),W ′ ⊆W}, then:

W is generative from P(s)
⇐⇒

⋃

Σ(s,W ) =W, ∀Z ⊂W such that Z 6= ∅,
∃W ′ ∈ Σ(s,W ) such that W ′ ∩ Z 6= ∅ ∧W ′ ∩ (W\Z) 6= ∅

⇐⇒
⋃

Σ(s,W ) =W, ∀Γ ⊂ Σ(s,W ) such that Γ 6= ∅,
(
⋃

Γ ) ∩ (
⋃

(Σ(s,W )\Γ )) 6= ∅
⇐⇒

⋃

Σ(s,W ) =W, ∀W ′
1,W

′
2 ∈ Σ(s,W ), define RW ′

1W
′
2 iff W ′

1 ∩W
′
2 6= ∅,

then ∀W ′
1,W

′
2 ∈ Σ(s,W ),W ′

1 connects to W ′
2 by a chain of R relations

Proof. Let us concentrate on the following crucial lemma, from which the proof

of this theorem follows not difficultly. �

Lemma 3 (Generative Lemma). ∀s ∈ S, for any nonempty finite set W ⊆ V, W

is generative from P(s) iff:

– if |W | = 1, then W ∈ P(s).
– if |W | > 2, then ∀Z ⊂ W such that Z 6= ∅, ∃W ′ ∈ P(s) such that W ′ is an

evidence of 〈Z,W\Z〉.

Proof. The direction from left to right is immediate. For the direction from right
to left, we only have to make use of one simple fact about evidence:

– If W is an evidence of 〈X,Y 〉 and X ⊆ X ′, thenW is an evidence of 〈X ′, Y 〉.

which, as a matter of fact, can be correspondingly written into a sound axiom

regarding modality D:

D(X,Y ) → D(X ′, Y ), given X ⊆ X ′ (Weakening Rule)

Full axiomatization will later be discussed in the following Section 5. �
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The last equivalent condition in Theorem 3 is to say, we can construct an

undirected graph over P(s) by its elements’ intersection relation, and all the
generative sets are exactly union of some connected nonempty finite subgraph.

This provides us with a clear picture and an intuitive understanding about where
every generative set comes from and what G(s) looks like. Hence given P(s),
there is an explicit algorithm to calculate all the generative nonempty finite sets

W ⊆ V so as to obtain G(s).
Finally, taking into account all the modalities including K, A, Dg and Dl, we

are able to define the full bisimulation relation between two models M and M′:

Definition 10 (Bisimulation). A nonempty binary relation B ⊆ S × S′ is called

a bisimulation between two models M and M′ iff:

– If sBs′, then ∀p ∈ P, T (s, p) = T (s′, p).
– If sBs′, then Gg(s) = Gg(s

′).
– If sBs′, then Gl(s) = Gl(s

′).
– Zig for K: if sBs′ and s ∼i t, then ∃t′ ∈ S′ such that tBt′ and s′ ∼i t

′.

– Zig for A: if sBs′ and s ≈ t, then ∃t′ ∈ S′ such that tBt′ and s′ ≈ t′.
– Zag for K: if sBs′ and s′ ∼i t

′, then ∃t ∈ S such that tBt′ and s ∼i t.

– Zag for A: if sBs′ and s′ ≈ t′, then ∃t ∈ S such that tBt′ and s ≈ t.

When B is a bisimulation between two models M and M′, we write B :
M ↔ M′. Furthermore if sBs′, we write B : M, s ↔ M′, s′. If there is a bisimu-

lation B such that B : M, s↔ M′, s′, we write M, s↔ M′, s′.

We write M, s ! M′, s′, when for any EDL-formula ϕ, M, s � ϕ iff M′, s′ �

ϕ.

Theorem 4 (Hennessy-Milner Theorem). For any two m-saturated models M
and M′, ∀s ∈ S, ∀s′ ∈ S′, M, s↔ M′, s′ iff M, s! M′, s′.

Proof. See [1]. The definition of m-saturated models also appears as Definition

2.53 in that book. It is only the cases for modalities Dg and Dl that are added,

which just follow from Theorem 2. �

5 Axiomatization

We only provide a sound and strongly complete axiomatization for language

EDG. Nevertheless, the same as the assumed routine in this paper, axioms with-
out subscripts attached to D are sound with respect to both Dg and Dl.

To start with, we may notice some obviously sound axioms to characterize

the properties of modality D:

1. D(∅, X) ↔ ⊥ (Empty Set Rule)
2. D(X,Y ) ↔ D(Y,X) (Symmetry Rule)
3. D(X,Y ) → D(X ′, Y ), given X ⊆ X ′ (Weakening Rule)
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4. D(X,Y ) ↔ D(X\Y, Y ) ∨ D(X ∩ Y, Y ) (Separation Rule)

Although these näıve axioms indeed look very similar to those in indepen-
dence logic [7], pitifully in our dependence epistemic logic, they alone are away

from being complete. The good news is that, we can instead find some conciser
axioms, which entirely grasp the full properties of modality D itself, and from

which all the above sound axioms can surely be deduced.

For brevity, let us first define an auxiliary notation:

Definition 11 (Q(W )). For any nonempty finite set W ⊆ V, we define:

Q(W ) ::=

{

D(W,W ), |W | = 1
∧

Z⊂W,Z 6=∅

D(Z,W\Z), |W | > 2

Recall Lemma 3, readers should be aware that this Q(W ) precisely depicts
the minimum necessary D(X,Y ) formulae, such thatW is an evidence of 〈X,Y 〉.
Taking advantage of this notation, we can write down rather concise sound ax-

ioms about modality D so as to obtain a complete axiomatization, as the follow-
ing Q and E Axioms for D in Theorem 5:

Theorem 5 (Axiomatization). The following proof system is sound and strongly

complete with respect to language EDG.

TAUT all instances of tautologies

MP from ϕ and ϕ→ ψ infer ψ

NEC for K from ϕ infer Kϕ
DIST for K K(ϕ → ψ) → (Kϕ→ Kψ)

T for K Kϕ→ ϕ

4 for K Kϕ→ KKϕ
5 for K ¬Kϕ → K¬Kϕ

NEC for A from ϕ infer Aϕ
DIST for A A(ϕ→ ψ) → (Aϕ→ Aψ)

T for A Aϕ→ ϕ

4 for A Aϕ→ AAϕ
5 for A ¬Aϕ→ A¬Aϕ
Q for D D(X,Y ) ↔

∨

X′⊆X,Y ′⊆Y,X′,Y ′ 6=∅

Q(X ′ ∪ Y ′), given X,Y 6= ∅

E for D D(∅, X) ↔ D(X, ∅) ↔ ⊥
4 for Dg Dg(X,Y ) → ADg(X,Y )

Proof. We only show completeness. The proof is almost routine, so we concen-
trate on how the canonical model is built and on the Truth Lemma for modality

Dg. Notice that the Axiom of Choice has to be made use of in the proof. �

Definition 12 (Canonical Model). For a fixed language with a set of propositions

P and a set of variables V, we first expand this language to P
C and V

C , such that
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P
C = P, V

C ⊇ V, and that V
C is countably infinite. Obviously, if an MCS is

satisfied in the canonical model of the expanded language, its restriction down to

the original language will also be satisfied in the same model.
The canonical dependence epistemic model MC is 〈SC , TC , V C , UC ,∼C

i ,≈
C〉:

– SC is the set of all MCSs.
– TC : SC × P

C → {0, 1}. ∀s ∈ SC , ∀p ∈ P
C , TC(s, p) = 1 iff p ∈ s.

– V C = V
C .

– ∼C
i is an equivalence relation over SC . ∀s, t ∈ SC , s ∼C

i t iff {Kϕ | Kϕ ∈ s} =
{Kϕ | Kϕ ∈ t}.

– ≈C is an equivalence relation over SC . ∀s, t ∈ SC , s ≈C t iff {Aϕ | Aϕ ∈ s} =
{Aϕ | Aϕ ∈ t}.

– UC : SC × V C → N. For each fixed ≈C equivalence class S≈ ⊆ SC , we assign

V C ’s values on every possible world s ∈ S≈ as the following procedure:

By the 4 Axiom for Dg in Theorem 5, it is easy to see that if s ≈C t, then

{Dg(X,Y ) | Dg(X,Y ) ∈ s} = {Dg(X,Y ) | Dg(X,Y ) ∈ t}. So suppose arbitrary
s ∈ S≈, W≈ = {nonempty finite set W | W ⊂ V

C ,Qg(W ) ∈ s} is a well defined

set, regardless of which possible world s we choose from S≈.

Claim. W≈ is countable. Therefore, we can suppose a well order <W
∼= ω on it.

We define a constant function f0 : V C → N, ∀x ∈ V C , f0(x) = 0.

Lemma 4 (Canonical Assignment). For every W ∈ W≈, we can simultaneously

find two corresponding functions fW
1 : V C → N and fW

2 : V C → N such that:

– {fW
1 (x) 6= fW

2 (x) | x ∈ V C} =W ;
– if W1,W2 ∈ W≈, W1 6= W2, then {fW1

i (x) 6= fW2

j (x) | x ∈ V C} is countably

infinite, i, j ∈ {1, 2};
– {fW

i (x) 6= f0(x) | x ∈ V C} is countably infinite, i ∈ {1, 2}.

Proof. Noticing that there are countably infinite variables in V C which can be
assigned to countably infinite values, while W≈ is also countable and all the sets

W ∈ W≈ are finite, we are sure that these requirements can be satisfied. For

example, we manage to designate fW
1 and fW

2 for every W ∈ W≈ one by one,
along the well order <W . Since everyW is finite, to satisfy the first requirement,

the ranges of fW
1 and fW

2 can be controlled to be both finite. For the second
requirement, if W1 <W W2, we let the ranges of fW2

i and fW1

j not intersect. For

the third requirement, we let 0 not be in fW
i ’s range. �

We collect all these functions as F≈ = {fW
i |W ∈W≈, i ∈ {1, 2}} ∪ {f0}.

Claim. F≈ is countable. Therefore, we can suppose a well order <F on it.

Then by the Well-ordering Theorem, we can also suppose a well order <S on
S≈. By correlating these two well orders<F and<S , we can use function f ∈ F≈

to assign V C ’s values on possible world s ∈ S≈, such that ∀x ∈ V C , UC(s, x) =
f(x). As any two well orders can be compared, during this correlating procedure,
one and only one of the following three conditions will occur:
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– If <F
∼=<S , done.

– If we first run out of functions from F≈, then we use f0 to assign V C ’s values
for all the other left possible worlds in S≈.

– If we first run out of possible worlds from S≈, then we arbitrarily choose
one possible world s ∈ S≈, and copy it many times so as to match all the

other left functions in F≈. All these copies of s, along with the original one,

of course share the same TC , and are in the same ∼C
i and ≈C equivalence

classes. Obviously, this copy will not cause any unpleasant consequences.

Lemma 5 (Truth Lemma for Modality Dg). ∀s ∈ SC , ∀ finite subsets X,Y ⊂
V

C , Dg(X,Y ) ∈ s ⇐⇒ MC , s � Dg(X,Y ).

Proof. The cases when X = ∅ or Y = ∅ follow immediately from the E Axiom for

D in Theorem 5, so we concentrate on the situations when X 6= ∅ and Y 6= ∅. By

Lemma 1, MC , s � Dg(X,Y ) ⇐⇒ ∃u, v ∈ SC , u ≈C v ≈C s, such that ∆(u, v)
is an evidence of 〈X,Y 〉.

For the direction from right to left, from the above assignment procedure
of UC in the canonical model, we have Qg(∆(u, v)) ∈ s. Since ∆(u, v) is an

evidence of 〈X,Y 〉, by making use of the Weakening Rule it is not difficult to

reason that Dg(X,Y ) ∈ s.

For the direction from left to right, considering the Q Axiom for D in Theorem

5, at least one of the Qg(X
′ ∪ Y ′) in the big disjunction is in s, and thus from

the above assignment procedure of UC in the canonical model, ∃u, v ∈ SC ,

u ≈C v ≈C s, such that ∆(u, v) = X ′ ∪ Y ′. Since X ′ ⊆ X,Y ′ ⊆ Y,X ′, Y ′ 6= ∅,

obviously X ′ ∪ Y ′ is just an evidence of 〈X,Y 〉 and hence MC , s � Dg(X,Y ). �

6 Conclusions and Future Work

In this paper, we come up with dependence epistemic logic in order to reason

about partial dependency relationship between variables under an epistemic
scenario. Several interesting examples are proposed, which demonstrate our

language’s affluent expressivity and practical usage. Besides that, the essential

properties of the logic are straightforward to understand, and hence we further
discuss its bisimulation relation and manage to provide a sound and strongly

complete axiomatization system for the simpler sub-language EDG.

Nevertheless, there still remains much work to be done in the future. The

axiomatization of the full language EDL is yet unknown. It will also be helpful

to elaborate on other computational properties of this logic, such as decidability.
Besides, as we only deal with the presence of a single agent in this paper, extend-

ing this dependence epistemic logic to cases with multiple agents may result in
more interesting results. Moreover, it seems to be an exciting idea to add other

modalities into this framework so that we will be able to reason about know-

ing dependency, knowing value, knowing how as well as many other epistemic
assertions all together.
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