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Abstract. We consider a distributed system that stores user sensitive
data across multiple nodes. In this context, we address the problem of
privacy-preserving top-k query processing. We propose a novel system,
called SD-TOPK, which is able to evaluate top-k queries over encrypted
distributed data without needing to decrypt the data in the nodes where
they are stored. We implemented and evaluated our system over syn-
thetic and real databases. The results show excellent performance for
SD-TOPK compared to baseline approaches.
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1 Introduction

Top-k queries are important for many centralized and distributed applications
such as information retrieval [32], sensor networks [38], data stream management
systems [35], crowdsourcing [7], spatial data analysis [29], social networks [16],
etc. A top-k query allows the user to get the k data items that are most relevant
to the query.

We consider a distributed system where users can outsource their sensitive
data and issue top-k queries. The user data are encrypted (for privacy reasons)
and distributed (for performance reasons) across multiple nodes. In this context,
we address the problem of privacy-preserving top-k query processing.

Privacy preserving top-k query processing is a critical requirement for some
distributed applications that outsource sensitive data. For example, consider a
university that outsources the students database in a public cloud, in Infrastructure-
as-a-Service (IaaS) mode, with non-trusted nodes. The database is vertically
partitioned (for performance reasons) and encrypted. Then, an interesting top-k
query over the encrypted distributed data is the following: return the k students
that have the worst averages in some given courses.

There are different approaches for processing top-k queries over plaintext
(non encrypted) data. One of the best known approaches is TA [14] that works
on sorted lists of attribute values. However, there is no efficient solution capable
of evaluating efficiently top-k queries over encrypted data in distributed systems
with non-trusted nodes.
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A naive solution is to retrieve the encrypted database from the distributed
system to the user machine that keeps the secret keys, decrypt it, and then
evaluate the top-k query over plaintext data. This solution is not efficient, be-
cause it does not allow us to take advantage of the distributed system power for
evaluating queries.

In this paper3, we propose a system, called SD-TOPK (Secure Distributed
TOPK), that encrypts and stores user data in a distributed system, and is able
to evaluate top-k queries over the encrypted data. SD-TOPK comes with a
novel top-k query processing algorithm that finds a set of encrypted data that is
proven to contain the top-k data items. This is done without having to decrypt
the data in the nodes where they are stored. In addition, we propose a powerful
filtering algorithm that removes the false positives as much as possible without
data decryption. We implemented and evaluated the performance of our system
over synthetic and real databases. The results show excellent performance for
SD-TOPK compared to TA-based approaches. They show the efficiency of our
filtering algorithm that eliminates almost all false positives in the distributed sys-
tem, and reduces significantly the communication cost between the distributed
system and the user.

The rest of the paper is organized as follows. Section 2 gives the problem
definition. Section 3 describes the architecture of SD-TOPK system. In Section
4, we present two TA-based algorithms for top-k query processing over encrypted
data. In Section 5, we describe the SD-TOPK system, and analyze its security
in Section 6. Section 7 presents the performance evaluation results. Section 8
discusses related work, and Section 9 concludes.

2 Background and Problem Definition

In this section, we give a background about top-k queries, and define the problem
which we address.

2.1 Top-k Queries

By a top-k query, the user specifies a number k, and the system should return
the k most relevant answers. The relevance degree of the answers to the query
is determined by a scoring function. A common method for efficient top-k query
processing is to run the algorithms over sorted lists (also called inverted lists)
[14]. Let us define them formally.

Let D be a set of n data items, then the sorted lists are m lists L1, L2, ..., Lm,
such that each list Li contains every data item d ∈ D in the form of a pair
(id(d), si(d)) where id(d) is the identification of d and si(d) is a value that
denotes the local score (attribute value) of d in Li. The data items in each list
Li are sorted in descending order of their local scores. For example, in a relational
table, each sorted list represents a sorted column of the table where the local
score of a data item is its attribute value in that column.
3 This journal paper is a major extension of [23].
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Let f be a scoring function given by the user in the top-k query. For each
data item d ∈ D an overall score, denoted by ov(d), is calculated by applying
the function f on the local scores of d. Formally, we have ov(d) = f(s1(d), s2
(d), ..., sm(d)).

The result of a top-k query is the set of k elements that have the highest
overall scores among all elements of the database. In this work, we assume that
the scoring function is in the class of linear functions with positive coefficients
(denoted by LFPC ).

The sorted lists model can be used for top-k query processing in many ap-
plications. For example, suppose we want to find the top-k tuples in a relational
table according to some scoring function over its attributes. To answer such
query, it is sufficient to have a sorted list for the values of each attribute, and
return the k tuples whose overall scores in the lists are the highest.

2.2 Distributed System and Adversary Model

We suppose that the sorted lists are stored in the nodes of a distributed system.
We make no specific assumption about the distributed system architecture which
can be very general, e.g., a cluster of nodes. Formally, let P be the set of the
nodes in the distributed system. Each sorted list Li is kept in a node p ∈ P . We
call p the owner of Li.

We consider the honest-but-curious adversary model for the nodes of the dis-
tributed system. In this model, the adversary is inquisitive to learn the sensitive
data without introducing any modification in the data or protocols. This model
is widely used in many privacy preserving solutions [21].

2.3 Problem Statement

The problem we attack in this paper is top-k query processing over encrypted
data in distributed systems.

Let D be a database composed of n data items. We want to encrypt the data
items contained in D, and store the encrypted data items in a distributed system.
Then, our goal is to develop a distributed algorithm A that given any top-k query
q (including a scoring function f) returns the k data items that have the highest
overall scores with regard to f . This should be done without decrypting the data
items in the nodes of the distributed system, while minimizing the response time
and the communication cost of the query execution.

3 SD-TOPK System Architecture

The architecture of SD-TOPK has two main components (see Figure 1):

– Trusted client. It is responsible for encrypting the user data, decrypting
the results and controlling the user accesses. The security keys used for data
encryption/decryption are managed by this part of the system. When a query
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Fig. 1: SD-TOPK architecture

is issued by a user, the trusted client checks the access rights of the user. If
the user does not have the required rights to see the query results, then her
demand is rejected. Otherwise, the query is transformed to a query that can
be executed over the encrypted data.
Note that the trusted client component should be installed in a trusted
location, e.g., the machine(s) of the person/organization that outsources the
data.

– Remote service. It is installed in the nodes of the distributed system, and is
responsible for storing the encrypted data, executing the queries provided by
the trusted client, and returning the results. This component does not keep
any security key, thus cannot decrypt the encrypted data in the distributed
system.

In the trusted client of SD-TOPK, we use two types of schemes. Determin-
istic encryption is an encryption scheme that, for two equal inputs, generates
the same ciphertexts. With a probabilistic encryption, for the same plaintexts
different ciphertexts can be generated, but the decryption function returns the
same plaintext for them [26]. The details of data encryption in SD-TOPK are
described in Section 5.1.

4 TA-Based Algorithms

In this section, we present two basic approaches based on the TA algorithm for
top-k query processing over encrypted data in distributed environments: Remote-
TA and Block-TA. Our main contribution, i.e. SD-TOPK, will be presented in
the next section.
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4.1 Data Encryption

To be able to execute TA-based algorithms over encrypted data, the trusted
client stores the database in the nodes of the distributed system as follows. It
encrypts the pairs 〈d, si(d)〉 of the sorted lists using two encryption schemes: 1)
deterministic to encrypt data identifier d; 2)probabilistic to encrypt local score
of the data, i.e., si(d). The encrypted pairs are sorted in the same order as their
initial order. After encrypting the pairs, the trusted client sends each encrypted
sorted list to one node of the distributed system, which is called the owner of
the list.

4.2 Remote-TA

Given a top-k query containing a number k and a scoring function f , Remote-TA
proceeds as follows:

1. The trusted client asks the list owners to return the encrypted pairs (en-
crypted data id and score) which are in position j of the lists (initially
j = 1). The list owners return the asked data.

2. The trusted client decrypts the received encrypted scores and calculates a
threshold TH by applying the scoring function on the decrypted scores.

3. Let S be the set of encrypted data items returned from the position j of
the lists. The trusted client demands the list owners to return the encrypted
scores of data items in S. Each list owner does random access in its list to
find the encrypted scores of each data item in S, then sends them to the
trusted client.

4. Trusted client decrypts each returned data item d and calculates its overall
score ov(d) = f(s1(d), s2(d), ..., sm(d)). Then, it checks if among the yet
received data items there are at least k data items that have an overall score
greater than or equal to TH. If this is the case, then it stops the algorithm
and returns the k received data items that have the highest overall scores to
the user. Otherwise, it increases j by one and restarts from step 1.

4.3 Block-TA

Block-TA is an improvement of the Remote-TA algorithm where the encrypted
data items are read block by block. Indeed, in order to minimize the communi-
cation cost, in the first step of Block-TA, the trusted client asks blocks of prede-
fined size from the list owners. After decrypting the data items of the block, the
trusted client computes the threshold by applying the scoring function on the
scores of the last data items in the blocks, and stops if among yet received data
items there are at least k data items with overall scores higher than or equal to
the threshold. Otherwise it retrieves the next block, and so on.

Example. Consider Table 1 that represents a database composed of three
encrypted lists. There are three sorted lists, and each list Li is stored in a node.
The user asks for the top-4 data items in the database with SUM as scoring
function.
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List 1 List 2 List 3

encrypted
data item

encrypted
local score

encrypted
data item

encrypted
local score

encrypted
data item

encrypted
local score

E(d3) E(30) E(d3) E(29) E(d6) E(27)

E(d1) E(27) E(d6) E(28) E(d3) E(25)

E(d6) E(26) E(d2) E(26) E(d2) E(22)

E(d5) E(24) E(d1) E(24) E(d5) E(21)

E(d8) E(20) E(d7) E(21) E(d1) E(20)

E(d2) E(15) E(d4) E(19) E(d9) E(18)

E(d4) E(14) E(d5) E(16) E(d8) E(17)

E(d7) E(12) E(d9) E(13) E(d7) E(14)

E(d9) E(11) E(d8) E(10) E(d4) E(11)

... ... ... ... ... ...

Table 1: Example of an encrypted database

Let us run Block-TA on the database of Table 1 by using blocks of size 4. The
trusted client asks the list owners to return the 4 first data items in each list.
The owner of the list L1 returns d3, d1, d6 and d5. It also returns E(24) which
is the encrypted score of the last data item in the block. This is used later to
calculate the threshold. The owner of L2 returns d3, d6, d2, d1 and E(24). The
owner of L3 returns d6, d3, d2, d5 and E(21). Then, the trusted client decrypts
the received data and calculates the threshold TH = 24 + 24 + 21 = 69. The
client asks for the encrypted score of the returned data items d1, d2, d3, d5 and
d6. When it gets the asked scores, it decrypts them and calculates the overall
score of each data item: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) = 61,
ov(d6) = 81. The client finds that only d1, d3 and d6 have an overall score greater
than or equal to the threshold TH, so it asks the next block of four data items
in each list. The owner of L1 returns d8, d2, d4, d7 and E(12). The owner of L2

returns d7, d4, d5, d9 and E(13), and that of L3 returns d1, d9, d8, d7 and E(14).
The trusted client calculates the threshold TH = 12 + 13 + 14 = 39. Then,
the client asks each node to return the encrypted score of the data items and
calculates their overall score: ov(d4) = 44, ov(d7) = 47, ov(d8) = 47, ov(d9) = 42.
The trusted client finds that there are at least 4 data items with overall scores
greater than or equal to TH. Thus, it stops communicating with the list owners,
and returns to the user the data items d1, d2, d3, d6 that have the biggest overall
score among the data items received from the list owners.

5 SD-TOPK

The TA-based algorithms, presented in the previous section, evaluate correctly
the top-k queries over encrypted data. But, as shown by our experiments re-
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ported in Section 7, there may be a high number of false positives which are
sent from the distributed system nodes to the client, and this renders these algo-
rithms inefficient in practice. In this section, we present the SD-TOPK system,
designed for efficient processing top-k queries over encrypted data in distributed
systems. As shown by our experiments, SD-TOPK is much more efficient than
the TA-based algorithms.

The rest of this section is organized as follows. We first describe SD-TOPK’s
method for encrypting the data items and storing them in the distributed sys-
tem. Afterwards, we propose an efficient algorithm for processing top-k queries
over the encrypted data. Then, we propose an algorithm for removing the false
positives from the results of the top-k query processing algorithm, without de-
crypting the data. Afterwards, we discuss how we can update the encrypted data
in the distributed system. Finally, we propose a technique to enforce the security
of data outsourcing in SD-TOPK.

5.1 Data Encryption and Outsourcing

Before outsourcing a database, SD-TOPK creates sorted lists for all important
attributes, i.e., those that may be used in the top-k queries. Then, each sorted
list is partitioned into buckets. There are several methods for partitioning a
sorted list, for example dividing the attribute domain of the list to almost equal
intervals or creating buckets with equal sizes. In the current implementation of
our system, we use the latter method, i.e., we create buckets with almost the
same size where the bucket size is configurable by the system administrator.

Let b1, b2, ..., bt be the created buckets for a sorted list Lj . Each bucket
bi has a lower bound, denoted by min(bi), and an upper bound, denoted by
max(bi). A data item d is in the bucket bi, if and only if its local score (attribute
value) in the list Lj is between the lower and upper bounds of the bucket, i.e.,
min(bi) ≤ sj(d) < max(bi).

We use two types of encryption schemes (methods) for encrypting the data
item ids and the local scores of the sorted lists: deterministic and probabilistic.
The deterministic scheme is used to encrypt the ID of the data items. This allows
us to have the same encrypted ID for each data item in all sorted lists.

We use the probabilistic scheme to encrypt the local scores (attribute val-
ues) of data items. By using probabilistic encryption, if two data items have
the same local scores in a sorted list, their encrypted scores may be different.
This protects the scores against the frequency attacks [24] that decrypt order-
preserved encrypted lists given auxiliary information about the database, such
as the distribution of the plaintext values.

After encrypting the data IDs and local scores of each list Li, the trusted
client puts them in their bucket (chosen based on the local score). Then, the
trusted client sends the buckets of each sorted list to one node in the distributed
system. The buckets are stored in the nodes according to their lower bound
order. However, there is no order for the data items inside each bucket, i.e., the
position of the data items inside each bucket is chosen randomly. This prevents
the nodes to know the order of data items inside the buckets.
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5.2 Top-k Query Processing Algorithm

The main idea behind top-k query processing in SD-TOPK is to use the bucket
boundaries and a new technique to decide when to stop reading the encrypted
data from the lists.

For each top-k query, one of the nodes of the distributed system performs
the coordination between the nodes to execute the query. The coordinator may
be the node that initially receives the user’s query or it can be randomly chosen
among the system nodes.

Let us describe our top-k query processing algorithm. Given a top-k query
with a number k and a scoring function f that is linear with positive coefficients,
i.e., it is in the form of f = a1x1 +a2x2 + . . .+amxm. SD-TOPK chooses a node
as coordinator, and then the following steps are performed to answer the query:

1. The coordinator broadcasts the query in parallel to the nodes, and asks each
node to return the buckets that contain the k first data items in its list. Each
node returns the encrypted identifier of the first k data items, as well as the
lower bound of their including buckets.

2. For each returned data item d, the coordinator calculates its minimum over-
all score defined as follows: ovmin(d) = f(v1(d), v2(d), ..., vm(d)) where vi(d)
is the lower bound of the bucket that contains d in the list Li. If d has not
been returned to the coordinator by the owner of a list Lj then vj(d) = 0.

3. The coordinator sorts the received data items according to their minimum
overall score, and chooses the data item d′ that has the kth minimum overall
score denoted by δ. Then, it uses the minimum overall score of d′ to calculate
a threshold θ as follows: θ = δ∑m

i=1 ai
where a1, . . . , am are the coefficients in

the scoring function.
4. The coordinator broadcasts θ in parallel to the nodes. Each node returns to

the coordinator the buckets that have upper bounds greater than or equal
to θ.

5. Let Y be the set of all data items that are sent to the coordinator by at least
one node. We call Y the set of candidate items. The coordinator sends the
encrypted id of all data items contained in Y to the nodes, and they return
the encrypted score of each data item contained in Y .

6. Finally, the coordinator returns to the trusted client the candidate items and
their encrypted local scores.

When the trusted client receives the candidate items, it decrypts them using
the secret keys. Then, it calculates for each candidate d its overall score, extracts
the k data items that have the highest overall scores, and returns them to the
user.

The following theorem shows that the output of the above algorithm contains
the encrypted top-k data items.

Theorem 1. Given a top-k query with a scoring function f that is linear with
positive coefficients, then the output of the top-k algorithm of SD-TOPK contains
the encrypted top-k results.
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Proof. Let the scoring function be f = a1x1 + a2x2 + . . .+ amxm. Let Y be the
output of the algorithm, i.e., the set of candidate items. To prove the theorem,
it is sufficient to show that each data item d that has not been sent to the
coordinator in the 4th step of the algorithm, has an overall score less than or
equal to the overall score of at least k data items in Y . Let θ be the threshold
value that is sent to the nodes in the 4th step of the algorithm. For each list Li,
let si be the local score of d in the list Li. The overall score of d is computed
as ov(d) = a1s1 + . . . + amsm. Since d has not been sent to the coordinator,
from the 4th step of the algorithm we know that si < θ. Thus, we have ov(d) <
a1×θ+ . . .+am×θ =

∑m
i=1 ai×θ. From the 3rd step of the algorithm, we know

that θ = δ∑m
i=1 ai

. Thus, we have ov(d) < δ. In other words, the overall score of

d is less than the minimum overall score of the data item d′ that is the kth data
item found in the 3rd step of the algorithm. Therefore, the overall score of d is
less than at least k data items found by the top-k algorithm of SD-TOPK, so d
cannot be among the top-k results.

5.3 Filtering Algorithm

In the set Y returned by the top-k query processing algorithm, in addition to the
top-k results there may be false positives. Below, we propose a filtering algorithm
to eliminate most of them in the distributed system nodes, without decrypting
the data items.

Given the set of candidate data items Y , the filtering algorithm executed by
the coordinator proceeds as follows:

1. Calculate the minimum overall score of all candidate data items, sort them
according to their minimum overall score, and take the kth minimum overall
score denoted by δ2.

2. Calculate the maximum overall score of all candidate data items, and elimi-
nate those with maximum overall score less than < δ2. The maximum over-
all score of a data item d is computed as follows: ovmax(d) = f(v1(d), v2(d)
, ..., vm(d)) where vi(d) is the upper bound of the bucket that contains d in
the list Li. If d has not been returned to the coordinator by the node that
keeps Li then vi(d) is equal to the lower bound of the last bucket received
from that node.

The above algorithm eliminates almost all false positives (see the experi-
mental results on filtering rate in Section 7.8), and by doing that it improves
significantly the response time of the queries because the eliminated false posi-
tives do not need to be communicated to the trusted client and should not be
decrypted.

To prove the correctness of the filtering algorithm, we need the following
lemmas.

Lemma 1. Given a top-k query with a scoring function f that is linear with
positive coefficients. The minimum overall score of any data item d is less than
or equal to its overall score.
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Proof. The minimum overall score of a data item d is calculated by applying the
scoring function on the lower bound of the buckets in which d is involved. Let
bi be the bucket that contains d in the list Li. Let si be the local score of d in
Li. Since d ∈ bi, its local score is higher than or equal to the lower bound of
bi, i.e. min(bi) ≤ si. Since f is monotonic, we have f(min(b1), ...,min(bm)) ≤
f(s1, ..., sm). Therefore, the minimum overall score of d is less than or equal to
its overall score.

Lemma 2. Given a top-k query with a scoring function f that is linear with
positive coefficients, then the maximum overall score of any data item d is greater
than or equal to its overall score.

Proof. The proof can be done in a similar way as lemma 1

The following theorem shows that the filtering algorithm works correctly, i.e.,
the removed data are only false positives.

Theorem 2. Given a top-k query with a scoring function f that is linear with
positive coefficients, then any data item removed by the filtering algorithm cannot
belong to the top-k results.

Proof. The proof can be done by considering the fact that any removed data
item d has a maximum overall score that is lower than the minimum overall
score of at least k data items. Thus, according to Lemmas 1 and 2 the overall
score of d is less than or equal to that of at least k data items that are not
removed. Therefore, we can eliminate d.

5.4 Example

To illustrate SD-TOPK, we use the database shown in Table 4 with a top-4 query
and SUM as scoring function. In this example, we suppose that a node n0 is the
coordinator. It sends a messages to all list owners (e.g., n1, n2, n3) and asks for
the 4 first data items in each list (since k = 4), and the minimum of the buckets in
which they are. The node n1 returns 〈d1, 24.6〉 〈d3, 24.6〉 〈d6, 24.6〉〈d2, 14.8〉. The
node n2 returns 〈d6, 25.5〉 〈d3, 25.5〉 〈d2, 25.5〉 〈d1, 18〉 and the node n3 returns
〈d2, 21.9 〉 〈d3, 21.9〉 〈d6, 21.9〉 〈d5, 17.7〉. The coordinator calculates the minimum
overall score of the returned data items by using the minimum of their buckets. It
finds that ovmin(d1) = 24.6 + 18 = 42.6, ovmin(d2) = 14.8 + 25.5 + 21.9 = 62.2,
ovmin(d3) = 24.6 + 25.5 + 21.9 = 72, ovmin(d5) = 17.7 and ovmin(d6) = 72.
After sorting the minimum overall scores, the coordinator finds that the 4th
minimum overall score is 42.6 (that of d3), so it sets δ = 42.6. Then, it calculates
θ = δ/3 = 14.2. Afterwards, it asks each node to return the encrypted id of the
data items that are in buckets bi such that max(bi) ≥ θ. The data items received
from list owners are called candidate data items. The coordinator calculates for
the candidate items their minimum overall score: ovmin(d1) = 60.3, ovmin(d2) =
62.2 , ovmin(d3) = 72, ovmin(d4) = 38.7, ovmin(d5) = 41.5 , ovmin(d6) = 72 ,
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List 1 List 2 List 3

bucket
ID

encrypted
data item

encrypted
local score

bucket
ID

encrypted
data item

encrypted
local score

bucket
ID

encrypted
data item

encrypted
local score

B11 E(d1) E(27) B21 E(d6) E(28) B31 E(d2) E(22)

B11 E(d3) E(30) B21 E(d3) E(29) B31 E(d3) E(25)

B11 E(d6) E(26) B21 E(d2) E(26) B31 E(d6) E(27)

B12 E(d2) E(15) B22 E(d1) E(24) B32 E(d5) E(21)

B12 E(d8) E(20) B22 E(d7) E(21) B32 E(d1) E(20)

B12 E(d5) E(24) B22 E(d4) E(19) B32 E(d9) E(18)

B13 E(d4) E(14) B23 E(d5) E(16) B33 E(d8) E(17)

B13 E(d9) E(11) B23 E(d9) E(13) B33 E(d7) E(14)

B13 E(d7) E(12) B23 E(d8) E(10) B33 E(d4) E(11)

... ... ... ... ... ... ... ... ...

Table 2: Encrypted database, with 3 data items in each bucket. The encrypted scores
inside buckets are not sorted. The boundaries (minimum and maximum) of buckets
are shown below

List 1 List 2 List 3

bucket
ID min max

bucket
ID min max

bucket
ID min max

B11 24.6 32 B21 25.5 31 B31 21.9 28

B12 14.8 24.1 B22 18 24.1 B32 17.7 21.5

B13 10.7 14.2 B23 9 16.5 B33 10 17.3

Table 3: Bucket boundaries

Table 4: Example of an encrypted database, and the information about its buckets.
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ovmin(d7) = 38.7 , ovmin(d8) = 33.8 and ovmin(d9) = 37.4. It also calculates δ2 =
60.3, that is the kth minimum overall score among candidate data items (defined
in the filtering algorithm). Then, it calculates the maximum overall scores of the
candidate data items: ovmax(d1) = 77.6 , ovmax(d2) = 83.1 , ovmax(d3) = 91
, ovmax(d4) = 55.6 , ovmax(d5) = 62.1 , ovmax(d6) = 91 , ovmax(d7) = 55.6 ,
ovmax(d8) = 57.9 and ovmax(d9) = 52.2. According to the filtering algorithm,
the coordinator eliminates the data items that have a maximum overall score
less than 60.3. Then, it remains five data items in the set of candidate items Y =
{d1, d2, d3, d5, d6}. The coordinator asks the list owners to return all encrypted
scores of the candidate items and sends them to the trusted client. When the
client receives the data items, it decrypts them and calculates their real overall
score: ov(d1) = 71, ov(d2) = 63, ov(d3) = 84, ov(d5) = 61, ov(d6) = 81. Finally,
the trusted client finds that the top-4 data items are d1, d2, d3 and d6. It returns
them to the user who had issued the query.

5.5 Update Management

In our system, updating a data item d in the nodes is done by deleting the old
encrypted scores (attribute values) of d and then inserting its new scores.

To delete the old encrypted scores of d from the outsourced database, the
trusted client encrypts the ID of d using the key that has been used for encrypting
the data IDs, and then asks the nodes of the distributed system to find the
encrypted ID in the buckets of their lists and then remove the pairs encrypted
score and encrypted ID of d from the lists.

Inserting the new scores of d is done as follows. The trusted client uses the
metadata of the buckets (i.e., the lower and upper bounds), and for each list Li,
it calculates the bucket of the list to which the data score si should be stored.
Let bi be the corresponding bucket of si. The trusted client encrypts the ID and
scores of d by using the encryption schemes that are used for encrypting the
ID and scores. Then, it asks the nodes to put the encrypted ID and encrypted
scores of d in the corresponding buckets.

5.6 Obfuscating Bucket Boundaries

A drawback of the basic version of SD-TOPK, presented until now, is that the
limits (i.e., lower and upper bounds) of the buckets are disclosed to the nodes of
the distributed system. To strengthen the security of our system, we change the
bucket limits as follows. We choose two random numbers a and c. These numbers
must be kept secret in the trusted client. Before encrypting the database, the
lower and upper bounds of each bucket bi are obfuscated (modified) as follows:

min(bi) := min(bi)× a+ c (1)

max(bi) := max(bi)× a+ c (2)

Thus, the trusted client multiplies the lower (upper) bounds by the secret
number a, and then adds the secret number c to the result. These obfuscated



Privacy-Preserving Top-k Query Processing in Distributed Systems 13

bucket limits are sent to the nodes of distributed system together with the en-
crypted IDs and scores. By the above strategy, we can hide the limits of the
buckets from the nodes.

The following theorem proves that SD-TOPK works correctly if it uses the
obfuscated lower bounds.

Theorem 3. Assume a top-k query with a scoring function f that is linear
with positive coefficients. If we change the lower bound of the buckets by using
Equation 1, then the output of SD-TOPK will involve the top-k results.

Proof. Let the scoring function be f = a1x1 + a2x2 + . . .+ amxm. Let Y be the
output of SD-TOPK algorithm, i.e., the set of candidate items. We show that
each data item d that has not been sent to the coordinator by the list owners,
has an overall score that is less than or equal to the overall score of at least k
data items involved in Y . Let bi be the bucket that contains the data d in the list
Li, and thus max(bi) ∗ a+ c is the new (modified) upper bound of bi. From the
4th step of Sd-TOPK, we know that in each list Li we have max(bi) ∗ a+ c < θ.
Thus, we have a1×(max(b1)∗a+c)+ . . .+am×(max(bm)∗a+c) <

∑m
i=1 ai×θ.

We know that θ = δ∑m
i=1 ai

. Thus, we have the following equation:

a1 × (max(b1) ∗ a+ c) + . . .+ am × (max(bm) ∗ a+ c) < δ (3)

Now, let d′ be the data item that has the kth minimum overall score in
the 3rd step of SD-TOPK. In each list Li, let b′i be the bucket that contains
d′ in Li, and thus min(b′i) ∗ a + c is the new (modified) lower bound of b′i.
From the 3rd step of the algorithm, we know that the minimum overall score
of d′ (computed by using the obfuscated buckets) is equal to δ. Thus, we have
a1 × (min(b′1) ∗ a + c) + . . . + am × (min(b′m) ∗ a + c) = δ. Thus, we have the
following equation:

a1 × (min(b′1) ∗ a+ c) + . . .+ am × (min(b′m) ∗ a+ c) = δ (4)

By comparing Equations 3 and 4, we have: a1× (min(b′1)∗a+c)+ . . .+am×
(min(b′m)∗a+c) > a1×(max(b1)∗a+c)+ . . .+am×(max(bm)∗a+c). Since the
numbers a and c are positive, we can write: a1× (min(b′1) + . . .+ am×min(b′m)
> a1 ×max(b1) + . . . + am ×max(bm). This means that the minimum overall
score of the data item d′ is higher than the maximum overall score of d. In other
words, the data item d could not be among the top-k results.

The following theorem shows that the filtering algorithm works correctly, if
it uses the obfuscated bucket limits.

Theorem 4. Assume a top-k query with a scoring function f that is linear
with positive coefficients. If we change the lower bound of the buckets by using
Equation 1, then the filtering algorithm does not remove any top-k result.
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Proof. Let Y be the output of SD-TOPK algorithm, and d′ be the data item
that has the kth minimum overall score among the data items in the 3rd step of
SD-TOPK. In each list Li, let b′i and s′i be the bucket and local score of d′i in
the list.

We do the proof by contradiction. We assume a top-k data item d has been
removed by the filtering algorithm, and show that this assumption yields to a
contradiction. Let bi and si be the bucket and local score of di in the list Li.
Since, d has been removed from the list, its maximum overall score using the
modified limits is lower than or equal to minimum overall score of d′. Thus, we
have: a1 × (max(b1)× a+ c), ..., am × (max(bm)× a+ c) ≤ a1 × (min(b′1)× a+
c), ..., am× (min(b′1)×a+c). Since the parameters a and c are positive, we have:
a1 ×max(b1), ..., am ×max(bm) ≤ a1 ×min(b′1), ..., am ×min(b′1). This means
that the maximum overall score of the data item d is lower than the minimum
overall score of d′. Thus, d cannot be a top-k result.

6 Security Analysis and Improvement

In this section, we analyze the different types of information that can be leaked
to the adversary (the nodes of the distributed system), and for each type of
leakage, we propose some techniques to reduce the risk of disclosing sensitive
data.

6.1 Partial Order Leakage

In SD-TOPK, we use the bucketization technique for managing the data in the
distributed system. Inside the buckets, no information is leaked because the data
items are not ordered and the local scores are encrypted using a probabilistic
scheme. But a partial order is leaked about the data items that are in different
buckets (since the buckets are ordered).

Even a partial order leakage may help the adversary to obtain rough in-
formation about the sensitive data of individuals if he has some background
information about the data. For example, if the adversary A knows that the age
of a target person u is very high, then A may find the bucket containing u in
the list corresponding to age (i.e., the first bucket of the list). Then, by guessing
the ID of u in the bucket (e.g., if the size of the bucket is too small), A may
find the bucket of u in the salary’s list, and then estimate her salary with some
confidence probability. We show that this probability (i.e., the risk of privacy
violation) is very low, when the size of buckets is not small.

Let u be an individual (data item) in the database, and assume that the
adversary A knows the value of u in some attribute a. We want to compute the
confidence probability that A finds the bucket containing u’s value in a sensitive
attribute s. Let us denote this confidence probability by P (bs,u|a). We assume
that if A finds the bucket of u in the list representing s, then he can make a
good estimation of u’s value, e.g., using some background knowledge about the
values of attribute s.
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To find the bucket of u in the sensitive attribute s, the adversary A needs
to perform the following steps: 1) guessing the lists that represent a and s; 2)
finding the bucket of u in the list representing a; 3) guessing the ID of u in
the found bucket; 4) searching u’s ID in the list representing s, and finding its
bucket.

Let P (L1 = a ∧ L2 = s) be the probability that A guesses correctly the
lists representing the attributes a and s. Let m be the number of lists in the
database. In our system, the metadata of sorted lists (e.g., their identification)
is encrypted, and they have the same size and format. Thus, the probability
of finding the correct list of an attribute is 1

m . Therefore, the probability of
correctly guessing the lists representing both attributes a and s is:

P (L1 = a ∧ L2 = s) =
1

m× (m− 1)
(5)

If the adversary A finds correctly the list representing a, then we assume that
A is able to find the bucket containing u by using the background knowledge
about the value of u in a (and some statistical information). After finding the
bucket, say b, the adversary needs to guess the ID of u. Let size(b) be the number
of encrypted values in the bucket b. Then, the probability of finding u’ ID in the
bucket b, denoted as P (ID = u), is:

P (ID = u) =
1

|size(b)|
(6)

If A guesses correctly the ID of u in the bucket b, then he can find the bucket
containing the ID in the list representing the attribute s (if he guesses correctly
the list of s), and then he can roughly estimate the u’s value in s.

The following theorem provides a formula that calculates the probability that
an adversary finds the bucket of an individual u in the sensitive attribute s by
knowing the value of u in an attribute a.

Theorem 5. Let s be a sensitive attribute, size(b) be the size of the buckets,
and m be the number of sorted lists (attributes). Let P (bs,u|a) be the probability
that the adversary detects correctly the bucket of an individual u in the sensitive
attribute s by knowing the value of u in an attribute a. Then, P (bs,u|a) is:

P (bs,u|a) ≤ 1

size(b)×m× (m− 1)
(7)

Proof. The proof can be done using Equations 5 and 6.

The above theorem shows that when the size of the buckets is not small, the
probability of privacy violation is negligible.

When the bucket size is one (which is equivalent of preserving the total order),
the risk of privacy violation is the highest. We advise at least the size of 10 for
the buckets, in order to make the privacy violation risk very low. For example,
if the number of sorted lists (i.e., attributes) is m = 5, with the bucket size of
10, the privacy violation risk P (bs,u|a) is less than 0.005.
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However, note that choosing very big buckets increases the response time of
query processing (see Section 7.5). Therefore, the size of the buckets should be
taken based on the user privacy requirements (e.g., the maximum acceptable
probability of privacy violation) and performance (e.g., response time).

6.2 Obfuscating the Number of Asked Results

In the basic version of our approach, the information about the number of asked
results, i.e., k, is disclosed to the cloud provider. We can obfuscate this informa-
tion as follows. The trusted client generates a random integer s between 0 and a
predefined (small) value, and adds it to k. Then, it sends k′ = k+ s to the cloud
as the number of required results. After receiving the encrypted results from the
cloud, the trusted client filters the result set and sends only k results to the user.

6.3 Obfuscating the Database Size

Another information which is leaked is the database size (i.e., the number of
tuples). This leakage can be avoided by adding dummy tuples to the database
before sending it to the cloud. But, we have to be careful not to add dummy
tuples which could be returned to the user as a result of top-k queries. For this,
we can proceed as follows. Let n′ be the number of dummy data items that we
want to add to the lists. In each list Li, let si be the last local score in the list.
We generate n′ random data IDs. Then, for each list Li, we generate n′ random
scores smaller than si, and assign them randomly to the n′ data IDs. Afterwards,
we add the generated data IDs and their local scores to the sorted lists. Since
the local scores of the dummy data items are smaller than any real data item,
they have no chance to be returned as a result of top-k queries.

7 Performance Evaluation

In this section, we first describe the experimental setup, and then present the
performance evaluation results.

7.1 Setup

We implemented SD-TOPK and performed experiments on real and synthetic
datasets. As in some previous work on privacy (e.g., [21]), we use the Gowalla
database, which is a location-based social networking dataset collected from users
locations. The database contains 6 million tuples where each tuple represents
user number, time, user geographic position, etc. In our experiments, we are
interested in the attribute time, which is the second value in each tuple. As
in [21], we decomposed this attribute into 6 attributes (year, month, day, hour,
minute, second), and then created a database with the values of those attributes.



Privacy-Preserving Top-k Query Processing in Distributed Systems 17

In addition to the real dataset, we have also generated random datasets using
uniform and Gaussian distributions.

We compared SD-TOPK with the two TA-Based algorithms: Remote-TA and
Block-TA.

In the experiments, the number of nodes is equal to the number of lists, i.e.,
each node stores one of the lists. The coordinator of SD-TOPK is one of the
nodes of the system (randomly chosen).

We study the effect of several parameters: 1) n: the number of data items in
the database; 2) m: the number of lists; 3) k: the number of required top items;
4) bsize: the number of data items in the buckets (or blocks) in SD-TOPK and
Block-TA. The default value for n is 2M items. Unless otherwise specified, m is 5,
k is 50, and bsize is 10. The default database is the synthetic uniform database,
and the latency of the messages is around 50 ms.

To evaluate the performance of SD-TOPK, we measured the following met-
rics:

– Response time: includes top-k query processing time, communication time,
filtering time, and the result post-processing time (e.g., decryption).

– Filtering rate: the number of false positives eliminated by the filtering
algorithm in the distributed system.

– Communication cost: we measure two metrics: 1) the number of mes-
sages communicated between the nodes to answer a top-k query; 2) the total
number of bytes communicated to answer a top-k query.

7.2 Effect of Database Size

In this section, we compare the response time of SD-TOPK, Remote-TA and
Block-TA, while varying the number of data items, i.e., n.

Figure 2 shows how response time evolves, with increasing n, while the other
parameters are set as default values described in Section 7.1. Note that the results
are shown in logarithmic scale. The response time of all approaches increases with
increasing the database size. SD-TOPK is the best; its response time is at least
two orders of magnitude better than the other algorithms. This high difference
between SD-TOPK and TA-based algorithms is mainly due to the high number
of encrypted data items that should be decrypted by TA-based algorithms in the
trusted client, and also the messages needed for communicating them. Block-TA
performs better than Remote-TA, because of reading the lists in blocks, thus it
needs less number of messages.

7.3 Effect of the Number of Lists

Figure 3 shows the response time of SD-TOPK and TA-based algorithms when
varying m (i.e., the number of attributes in the scoring function), and the other
parameters set as default values. We observe that the response time of SD-TOPK
increases slightly comparing to Remote-TA and Block-TA when the number of
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lists increases. The reason is that when we increase the number of lists, more
data (sent by the nodes) should be processed by the coordinator for finding the
candidate items.

7.4 Effect of k

Figure 4 shows the response times of SD-TOPK with increasing k, and the other
parameters set as default values. We observe that with increasing k the response
time increases slightly. The reason is that when k increases, SD-TOPK needs
to get more data items from the list owner nodes in each step. In addition,
increasing k augments the number of data items that the trusted client needs to
decrypt (because at least k data items are decrypted by the trusted client).

7.5 Effect of Bucket Size

Figure 7 reports the response time of SD-TOPK when varying the size of buckets,
and the other parameters set as default values. We observe that the response time
increases slightly when the bucket size increases. The reason is that increasing the
bucket size increases the number of data items to be considered in the different
steps of SD-TOP algorithm. It also increases the number of false positives to be
removed by the filtering algorithm.

7.6 Communication Cost

We measure the communication cost of SD-TOPK, Remote-TA and Block-TA
in terms of the total number of messages exchanged between the different nodes
of the distributed system and the size of the exchanged data.

Figure 5 shows the number of communicated messages while increasing the
number of tuples and fixing the other parameters to the default values. We
observe that SD-TOPK needs to exchange a small number of messages comparing
to the others approaches. The reason is that SD-TOPK runs in only some rounds
of communication, and does not depend on the database size. But for the TA-
based algorithms, the number of messages depends on the position where they
stop in the lists, and that position depends on the database size.

Figure 6 illustrates the size of the communicated data in bytes, while increas-
ing the number of tuples in the database and setting the other parameters to the
default values. We note that the size of the communicated data increases with
the database size. The amount of data transferred by SD-TOPK is less than that
of Remote-TA and Block-TA. The reason is that SD-TOPK uses the obfuscated
bucket boundaries to check the top-k data items and these boundaries have a
size less than the encrypted scores used by other algorithms.

7.7 Performance over Different Datasets

We study the effect of the datasets on the performance of SD-TOPK, Remote-
TA and Block-TA using different datasets: synthetic datasets with uniform and
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Gaussian distributions, and real dataset (Gowalla). Figure 8 shows the response
time of the approaches over different datasets, while other parameters are set as
default values. We see that the performance of all approaches over the Gaussian
database is better than real and uniform databases. The reason is that with the
latter databases, the algorithms need to go deeper into the lists to be sure that
they have found the top-k results.

7.8 Filtering Rate

We study the efficiency of the filtering algorithm of SD-TOPK by using different
datasets. The results are shown in Table 5. The results show that the filtering
algorithm is very efficient over all the tested datasets. However, there is a lit-
tle difference in the filtering rates because of the local score distributions. For
example, in the Gaussian distribution, the local scores of many data items are
very close to each other, thus the filtering rate decreases in this dataset.

Uniform dataset Real dataset Gaussian dataset

filtering Rate 100% 99.995% 99.991%

Table 5: False positive elimination by the filtering algorithm of SD-TOPK over different
databases
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8 Related Work

Efficient processing of top-k queries is important for many applications such
as information retrieval [32], sensor networks [38], data stream management
systems [28, 35], crowdsourcing [7], string matching [34], spatial data analysis
[29], temporal databases [25], graph databases [16, 19], uncertain data ranking
[11, 30], etc.

One of the most efficient algorithms for top-k query processing is the TA
algorithm [13], which models the general problem of top-k using lists of data
items sorted by their local scores and proposes a simple and efficient algorithm.
Several TA-based algorithms have been proposed for processing top-k queries in
different environments, e.g. [3, 1, 8]. However, all these algorithms assume that
the data scores are available as plaintext, and not encrypted.

In the literature, there has been some research work to process keyword
queries over encrypted data , e.g., [5, 31]. For example [5] and [31] propose match-
ing techniques to search words in encrypted documents. However, the proposed
techniques cannot be used to answer top-k queries. There have been also some
solutions proposed for secure kNN similarity search, e.g., [12, 6, 10, 22, 36]. The
problem is to find k points in the search space that are the nearest to a given
point. This problem should not be confused with the top-k problem in which the
given scoring function plays an important role, such that on the same database
and with the same k, if the user changes the scoring function, then the output
may change. Thus, the proposed solutions proposed for kNN cannot deal with
the top-k problem.

The bucketization technique (i.e., creating buckets) has been used in the
literature for answering range queries over encrypted data, e.g., [18, 17, 27]. For
example, in [18], Hore et al. use this technique, and propose optimal solutions
for distributing the encrypted data in the buckets in order to guarantee a good
performance for range queries. However, the techniques for range queries no
longer apply to top-k queries, because in a top-k query, we should find the k
tuples that are most relevant to the query using a given scoring function. In a
range query, the objective is simpler, i.e. only to find the tuples whose attribute
values are in a given range.

In [20], Kim et al. propose an approach for preserving the privacy of data
access patterns during top-k query processing. In [33], Vaidya et. al. propose a
privacy preserving method for top-k selection from the data shared by individuals
in a distributed system. Their objective is to avoid disclosing the data of each
node to other nodes. But, their assumption about the nodes is different from
ours, because they can trust the node that stores the data (this is why the data
are not crypted), but in our system we trust no node of the distributed system.

When we think about top-k query processing on encrypted data, the first
idea that comes to mind is the utilization of a fully homomorphic encryption
cryptosystem, e.g. [15], which allows one to do arithmetic operations over en-
crypted data. Using this type of encryption would allow to compute the overall
score of data items over encrypted data. However, fully homomorphic encryption
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is still impractical for query processing over large databases, particularly due to
the prohibitive computational time [9, 2].

CryptDB [26] is a system designed for processing SQL like queries over en-
crypted data. It is capable to execute several types of queries, e.g., exact-match,
join and range queries. However, top-k queries are not supported by CryptDB.

The Three Phase Uniform Threshold (TPUT) [4] is an efficient algorithm to
answer top-k queries in distributed systems. Like our SD-TOPK algorithm, it is
done in few round-trips between the nodes of the distributed system. However,
TPUT can be used only with the queries in which the scoring function is SUM,
whereas our algorithm can be used for a large range of scoring functions. In
addition, our algorithm finds top-k results over encrypted data, while TPUT
can be used only over plaintext data.

Meng et al [37] propose a solution for processing top-k queries over encrypted
data in clouds. They assume the existence of two non-colluding nodes, one of
which can decrypt the data (using the decryption key) and execute a TA-based
algorithm. Our assumptions about the nodes of the distributed system are dif-
ferent, as we do not trust any node.

9 Conclusion

In this paper, we proposed SD-TOPK, an efficient system to encrypt and out-
source user data in a distributed system. SD-TOPK is able to evaluate top-
k queries over encrypted data, without decrypting them in the nodes of the
system. We evaluated the performance of our solution over synthetic and real
databases. The results show excellent response time and communication cost for
SD-TOPK. They show that the response time of SD-TOPK can be several order
of magnitude better than that of the TA-based algorithms. This is mainly due
to its optimized top-k query processing and filtering algorithms. The results also
show a significant gain in communication cost of SD-TOPK compared to the
other algorithms. They also show the efficiency of the filtering algorithm that
eliminates almost all false positives in the distributed system.
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