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Abstract. Permissioned distributed ledgers have recently captured the
attention of organizations looking to improve efficiency, transparency
and auditability in value network operations. Often the technology is
regarded as trustless or trust-free, resulting in a false sense of security.
In this work, we review the various trust factors present in distributed
ledger systems. We analyze the different groups of trust actors and their
trust relationships to the software layers and inherent components of
distributed ledgers. Based on these analyses, we investigate how insiders
may conduct attacks based on trust in distributed ledger components.
To verify practical feasiblity of these attack vectors, we conduct a techni-
cal study with four popular permissioned distributed ledger frameworks:
Hyperledger Fabric, Hyperledger Sawtooth, Ethereum and R3 Corda.
Finally, we highlight options for mitigation of these threats.

Keywords: trust frameworks · distributed systems security · distributed
ledger technology · insider threat

1 Introduction

Distributed ledger technology (DLT) offers great potential to decentralize op-
erations in collaborative business networks and may even enable new business
models [46]. Benefits include cost reduction and increased transparency in in-
formation sharing between organizations. However, great potential also entails
great risks and potential security issues. Recent reviews regarding the future of
blockchain technology have pointed out the need to study security and trust
aspects of DLT [13,51].

Blockchain and DLT are often described as trustless or trust-free alternatives
to currently established centralized systems (see [29, 30, 36]). In this work, we
take a closer look at the usage of permissioned distributed ledgers and exam-
ine whether it can really be considered ”trustless”. The term ”trustless” orig-
inates from the decentralization of control in distributed ledger networks [29],
which aims to replace trusted third parties. The goal of this work is to estab-
lish a framework for reasoning about trust elements in permissioned distributed



2 B. Putz et al.

ledgers. These trust elements can also be exploited by insiders, who are aware
of them and in control of crucial components of the trust system.

Insider threats are a tough cybersecurity problem, which remains difficult to
detect and prevent due to abuse of legitimate access permissions by the attacker.
According to the roadmap of cybersecurity research by the US department of
Homeland Security, insider threats are one of the ”hard problems” of information
security research [50]. Similarly, the European cybersecurity agency ENISA’s
threat landscape report lists insider threats among the top 10 information secu-
rity threats, with 77% of companies’ data breaches caused by insiders [23].

Insider threats are particularly relevant for distributed ledgers operated by a
network of independent organizations. These networks are called permissioned,
since they are operated by a restricted set of authenticated member nodes. In this
scenario, intra-organizational insiders are supplemented with external insiders
[25] from other organizations, who also have access to information shared on the
network. According to a recent survey on enterprise adoption of DLT, there are at
least 50 corporations with valuations larger than $1 billion looking to implement
DLT to trade digital assets [11]. Many of these are financial institutions looking
to trade high-value assets, leading to an attractive target for insider attacks.

To appropriately assess trust in distributed ledgers, our trust definition is
based on software trust as defined by Amoroso and Watson [3]: ”Software trust
is the degree of confidence that the software will be acceptable for ’one’s needs’. It
is established after one has become convinced, presumably based on a meaningful
set of information, that the software does not include flaws that will prevent it
from meeting its requirements.”

Besides trust in software components, the second form of trust is related
to assessments of the human agents that collectively control the distributed
system (hereafter referred to as trust actors). We follow Gambetta’s definition
of trust [28]: ”Trust (or, symmetrically, distrust) is (...) the subjective probability
with which an agent assesses that another agent or group of agents will perform
a particular action, both before he can monitor such action (...) and in a context
in which it affects his own action.”

The remainder of this work is structured as follows: In Section 2 we give a
short overview of related work concerning trust and insider threats with regard
to distributed ledgers. Subsequently, we analyze trust actors, layers and compo-
nents of permissioned distributed ledgers in Section 3. Based on our assessment
of trust factors we identify relevant attack vectors for the different groups of
insiders in Section 4. In Section 5 we perform a threat analysis for 5 popular dis-
tributed ledger frameworks, examining how insiders might exploit these vectors
in practice. Finally, we wrap up by giving recommendations for future research
in Section 6 and summarize our results in Section 7.

2 Related work

While research on trust in blockchain systems is still scarce, the Global
Blockchain Benchmarking Study by the University of Cambridge points out
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that blockchains always require some degree of trust [32]. Recent blog posts
have highlighted trust factors in public permissionless blockchains [47]. Permis-
sioned blockchains rely on similar trust primitives: trust in application code,
network/cryptographic protocols and hardware. We aim to expand upon these
notions by exploring the trust factors in more detail.

Overall, only partial aspects of trust in blockchain networks have been stud-
ied. Locher et al. [38] create a formal model to examine whether a distributed
ledger may fully replace a trusted third party. In the process, they also evaluate
previously proposed use cases of DLT that still require trust in other organi-
zations and third parties. Hawlitschek et al. [30] review the conceptualization
of trust in the blockchain environment. They argue that it is difficult to as-
sess whether a system is actually trust-free or not. Correspondingly, another
study claims that blockchain shifts trust from central authorities towards algo-
rithms [39]. However, for this shift to be successful, the algorithms need to be
trusted. Smart contracts represent the application-level algorithms, and their
control flow immutability and independence of third parties have been shown
to be lacking [26]. In addition to algorithmic properties, researchers have also
studied user trust of different stakeholder groups from an HCI perspective [45].
In summary, research has established the existence of trust factors that contra-
dict the claim of a trust-free system [30], but a comprehensive model of trust
relationships is still missing.

Despite the severity of insider threats as pointed out by government agency
assessments [23], research regarding insider threats in distributed ledger consor-
tia is still scarce. Numerous surveys on the security of blockchain systems have
been carried out [17,35], but none of them have focused on insiders in particular.
We intend to fill this research gap and provide direction for future research.

In particular, we go beyond existing work by presenting a novel model of
trust actors, their relationships and trusted DLT software components. We use
this model to derive insider threats that organizations face when implementing
permissioned DLT. By analyzing frameworks popular in both industry and re-
search, we show that these attacks are applicable in practice. To protect against
these threats, we outline technical and organizational options to mitigate the
insider threats at hand.

3 Trust factors in permissioned distributed ledgers

Fig. 1. Trust actors and relationships.
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As noted by other researchers, the requirement for trust does not disappear
simply by employing a distributed ledger. Instead, trust shifts from trust in other
organizations to trust in the technology and its operation [38]. In this section
we focus on analyzing the different components of a distributed ledger system
to establish trust actors, layers and components.

Before examining the trust factors in detail, trust actors need to be identi-
fied. There are four types of actors in the DLT ecosystem, three of which directly
contribute to trust relationships in a consortium: software service providers, op-
erators and users [32]. Peripheral actors (i.e. industry initiatives and researchers)
do not directly interact with consortium networks, as they are not involved with
building or operating DLT software. Nevertheless, they contribute by developing
standards, methods and paradigms to solve current technical challenges [32].

An overview of the resulting trust hierarchy is shown in Figure 1. Software
service providers (SSPs) develop the software components of a distributed
ledger consortium. They are trustees responsible for creating trust in the technol-
ogy by developing secure and reliable applications. Operators represent distinct
groups of actors responsible for running the distributed ledger overlay network
and applications built on top of it. They act as both trustors and trustees: they
trust the chosen DLT software to operate as expected and are also trusted by
their users to provide reliable operations. Finally, Users place their trust in
these applications and rely on them to work as advertised, without knowledge
of the lower layers.

Fig. 2. Distributed ledger software layers and components.
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The trust actors in Figure 1 interact using a permissioned distributed ledger
network, which consists of several software layers. Figure 2 shows the layers and
the software components on each layer. They are derived from the three-layer
view of Component Based Systems: platform, middleware and application [43].
The platform in this case consists of various underlying protocols responsible for
storage, cryptography and network communication. Also part of the platform,
but out of scope for this work, are the operating system and hardware layers. The
middleware is represented by an overlay network, which provides configurable
functionality for operations, identity management and distributed consensus.
The applications layer provides replicated application logic (on-chain) and ex-
ternal logic and data (off-chain). These off-chain applications integrate with the
framework by reading/writing data through its APIs. Each of the components
within these layers requires software trust: it should be working correctly and
not be maliciously exploitable. Since layers are built on top of each other, soft-
ware bugs or vulnerabilities may propagate upwards to affect higher layers. In
the following subsections we elaborate in detail on the layers’ components and
how they are involved in creating trust in the distributed ledger.

Figure 3 integrates trust actors from Figure 1 with the layers from Figure
2 by illustrating which trust actors govern each system layer. While software
service providers are involved in the development of all three layers, operators
do not interact with the underlying protocols. They merely configure the network
framework and develop applications on top of it. Meanwhile, users only interact
directly with the application layer.

Fig. 3. Intersection of trust actors and layers.

3.1 Protocols

Storage, cryptographic and network protocols carry out the low-level tasks in-
structed by the distributed ledger framework and its applications. For this rea-
son, they form the trust basis of the network.

Storage. A key property of blockchain-based systems is the goal of main-
taining immutability of the underlying chain of blocks. Transaction and block
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metadata are stored in relational or key-value databases locally on each node.
Replication integrity is assured through distributed consensus. The claimed im-
mutability is a key factor in enabling trust in the technology, but it only holds
if storage and network protocols can be trusted.

Cryptography. A manifold of cryptographic protocols are involved in dis-
tributed ledger operation. They include:

– hash functions for integrity assurance (hash chains, Merkle trees and proofs)
– public key cryptography (authentication of consensus protocol messages and

user-submitted transactions)
– zero knowledge proofs (privacy-preserving transactions)
– symmetric encryption (on-chain confidentiality)

All of these protocols are trusted to not have design or implementation flaws.
Many frameworks assemble their cryptography from a variety of sources, in-
cluding standard libraries, external libraries and custom implementations (see
Section 5). While some developers such as the Hyperledger open-source project
perform third-party security audits [33], even the most diligent audits may miss
vulnerabilities. Operators and users must trust protocol design and implemen-
tation, often without the ability to verify due to lack of cryptographic expertise.

Network protocols. A fundamental trust factor for distributed ledger node
communication is untampered operation of the underlying network. Distributed
ledger networks are overlay networks, so they rely on P2P routing algorithms and
message dissemination protocols for communication. Since all peers are equal,
any single peer may cause disruption in the network by sending anomalous or
malicious traffic. This may cause unexpected behavior and violate the aforemen-
tioned trust assumption.

3.2 Overlay network

A distributed ledger network is a permissioned overlay network that consensu-
ally maintains a replicated ledger. In this overlay network, independent operators
deploy a software framework previously agreed upon (i.e. Hyperledger Fabric).
There are several tasks that each operator is trusted to fulfill by other partic-
ipants: carry out operations tasks, maintain identity and access privileges and
participate in consensus. The network layer also provides virtualization capabil-
ities for replicated deterministic application execution in the application layer.

Operations. These independent organizations trust each other to perform
node setup and operation without malicious manipulation. While there is some
fault tolerance built into distributed ledgers (see Section 3.2), more than two-
thirds of operators must behave honestly if byzantine-fault tolerant protocols
are used.

Operation includes consensual admission/removal of members, on-chain ap-
plication upgrades and framework upgrades. For the latter, all operators must
agree on a coordinated time for system maintenance. Provided that all partners
agree on the schedule, some partners might not be able to upgrade success-
fully [20]. Even if the failure to upgrade is not of malicious intent, it might
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pose considerable challenges to all involved parties, like setting up a new net-
work and migrating data. Overall, the process requires significant trust in other
organizations that cannot be mitigated by technology.

Identity and access control. Since the network is made up of indepen-
dent organizations, each entity must be able to manage its users independently.
This means that every organization must trust the others to properly manage
identities and access rights. Since internal screening and job rotation processes
are usually opaque to others in collaborative business networks [25], this can be
considered blind trust.

Fundamental to permissioned distributed ledgers is an access control mech-
anism that ensures only authorized operators are part of the network. This is
usually realized by assigning each node a public key, which is known to the other
nodes and used to authenticate and secure communication. While admission/re-
moval of node operators is based on majority consensus, other participants must
be trusted to only accept legitimate new members. Additionally, compromise
of a single node’s credentials may undermine the trust assumption of a closed
network.

Consensus. The consensus protocol is the distributed agreement protocol
at the core of a permissioned distributed ledger, allowing all nodes to share
a single replicated state. However, due to fundamental limitations underlying
deterministic replicated state machines, less than one-third of participants may
be malicious at the same time [12]. This limit means that operators must trust
one another to act honestly and to not manipulate the consensus protocol.

3.3 Applications

Applications implement the business logic specific to each network. Next to
on-chain smart contracts, off-chain applications and data are often required to
implement all functionality and integrate with other enterprise systems.

On-chain applications On-chain applications are generally referred to as
smart contracts, although this depends on their implementation (see Section 5.7).
They promise to replace trust through replicated and verifiable deterministic
execution. Since both code and state can be inspected by anyone with access to
the ledger, their execution is predictable to these parties. However, a number of
smart contract vulnerability studies have shown that code is not always law and
may be exploited to an attacker’s advantage. For example, in 2016 a symbolic
execution tool found almost half of all Ethereum contracts at the time to be
vulnerable [40]. In another study, 2 out 5 deployed Ethereum contracts were
shown to require trust in at least one third party, since parts of their control
flow may be changed after deployment [26].

Off-chain applications. One example for off-chain applications are web
applications for user interaction with the distributed ledger. Without a way to
verify what is going on behind the scenes, users must blindly trust that the
application does not manipulate any data sent through it. While this is also the
case for traditional web applications, a distributed system aiming to create trust
should provide stronger guarantees.
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Table 1. Summary of distributed ledger trust components by layer.

Protocols Overlay Network Applications

Storage Operations On-chain applications
Cryptography Identity Off-chain applications
Network Consensus Off-chain data

Off-chain data. Full replication of the blockchain data structure mandates
parsimony w.r.t. transaction sizes. Distributed ledger applications rely on off-
chain storage solutions to manage larger data volumes. In fact, a recent study
found that a majority of DLT operators only include hashes in on-chain transac-
tions [32], which point to off-chain data and serve as integrity timestamps. Op-
erators must trust their peers to maintain sustained availability, since off-chain
data is not fully replicated. If off-chain data is access protected, the storage
operator must also be trusted to maintain correct access privileges.

Besides referenced data, external data may also be needed as input for com-
putation (i.e. currency exchange rates). Since external data sources must re-
turn deterministic results, distributed ledgers rely on trusted external content
providers (oracles) - hereby reintroducing trust elements.

A summary of all identified trust components is shown in Table 1. Overall,
the complexity of the DLT software layers results in a high degree of obscurity.
It becomes increasingly difficult to verify correctness and security of the software
stack. The trust actors (operators, users and software service providers) must
trust both software components and each other to act as expected. In the next
section, we focus on how insiders can exploit these trust assumptions.

4 Insider threats

Given the aforementioned trust elements required for operating a permissioned
distributed ledger network, insider attacks may pose a significant threat. With
the emergence of business networks and blockchain consortia for data sharing,
the partners’ information systems infrastructures are no longer isolated environ-
ments with a protectable logical perimeter. Access to an organization’s resources
is implicitly simplified for outsiders that are part of the consortium. This is a
direct consequence of sharing information with other organizations.

As a result, a holistic security model must also include actors from network
partners. This group of threat actors is also known as external insiders. Ex-
ternal insiders are characterized by having limited access to an organization’s
network as a result of some business relationship [25]. In a distributed ledger con-
text, the relationship may be the result of a collaborative network with multiple
organizations.

Subsequently, we describe the various insider threats to distributed ledgers by
analyzing each group of trust actors. Irrespective of an insider’s group, there are
generally four types of consequences an insider might achieve in an attack [37]:
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Table 2. Overview of insider threats and consequences.

Insider type Threat MO DE DI DU

Software service provider Vulnerability injection x x x x

Operator Denial of service x
Data manipulation x x x
Credential compromise x x x
Malicious misconfiguration x x

User Unauthorized operations x x

All Vulnerability abuse x x x x
Information leakage x

– Modification (MO)
– Destruction (DE)
– Disclosure (DI)
– Denial of use (DU)

Insiders may exist in any of the three groups of trust actors stated in Figure
1. Depending on the group, there are different ways to exploit their privileges.
Table 2 lists the major categories of insider threats and their consequences in
distributed ledger consortia. While many of these threats are also applicable to
existing information systems, distributed ledgers are particularly vulnerable due
to the large number of software components and cross-organizational users.

Permanent modification or destruction of data are generally difficult to
achieve with DLT due to built-in fault tolerance and replication. Nevertheless,
collusion-based data manipulation or software vulnerabilities may cause data
manipulation on all nodes. Disclosure of information and denial of use are the
more likely consequences of an insider attack on a distributed ledger. They are
significantly easier to accomplish and may be achieved with user or operator
level permissions. We elaborate on these threats in detail hereafter.

4.1 Software service providers

If an insider is in the role of an internal software developer with full code access,
there is significant threat potential for any of the four consequences to happen.
Collins et al. [15] have surveyed a variety of methods that programmers acting as
malicious insiders have used in the past. Common methods are code modification
or injection of malicious code, causing vulnerabilities. Characteristic for this type
of manipulation is a time delay between injection and impact of the attack, since
software builds go through testing and deployment phases. In large software
projects without strict code review procedures, these types of manipulations
may easily go under the radar of other developers. Vulnerabilities can then be
abused by the programmer or colluding operators/users. They may corrupt the
integrity and availability guarantees that a distributed ledger provides, leading to
manipulation or loss of information. Intentionally timed bugs may cause network
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unavailability. Backdoors (either for outsiders or insiders) could be inserted that
lead to disclosure of confidential information.

The potential attack vectors depend on the developer’s area of responsibil-
ity (protocol/framework/application level). Currently, distributed ledger proto-
cols and overlay-level frameworks are often provided by open-source initiatives.
If an open-source project is subject to peer-review and security audits, these
parts of the software are unlikely to be affected by insider attacks threatening
a single organization. However, applications built on these frameworks must be
customized to specific business requirements — either by employees or third
party developers. For this reason, the application level is more prone to software
development insider threats. Business networks may collaboratively develop ap-
plications, which extends this attack vector to external insiders.

4.2 Operators

Overall operators have the largest number of insider attack options at their dis-
posal, since they directly control a network node. Even though a single operator
controls only one node, malicious behavior may have powerful denial-of-service
effects on networks with few participants, as mentioned in Section 3.2.

In larger networks, operators could take advantage of their knowledge about
the current consensus leader. A malicious operator may launch a targeted denial
of service attack to cause network interruptions (see Section 5.6). Additionally,
collusion of operators from other organizations (i.e. by external insiders) might
result in denial of service, if it leaves the network unable to reach consensus.
Generally, network operators have a common goal and should not be inclined
to collude against others. This might change if goals shift, or partners feel that
they contribute more to the network than they gain in return.

An insider might attempt to accomplish modification of stored data by co-
ordinating an attempt to replace ledger data in collusion with other nodes. This
type of attack is known as a 51%-attack for permissionless blockchains [35]. Gen-
erally this is only feasible if consensus is stochastic, while permissioned networks
usually rely on deterministic consensus. Nevertheless, availability of off-chain
data with low replication factors is still at risk.

System administrator insiders have access to all relevant credentials for node
operation. These credentials can be leaked, or misused by adding/removing users
or manipulating access control privileges at will.

Another way to subvert data integrity is configuration manipulation. Suc-
cessful configuration manipulation requires collusion, since such changes need to
be approved by a majority of operators in properly configured networks. With-
out automated punishment mechanisms, a single misbehaving node may however
still cause temporary service disruption.

4.3 Users

Users have only a limited number of options for exploiting the distributed ledger
network. Nevertheless, due to external insiders the number of potential attackers



Trust Factors and Insider Threats in Permissioned Distributed Ledgers 11

is higher than in intra-organizational applications. Improperly managed access
rights for these users may enable leakage of confidential information.

Another attack vector are vulnerabilities in custom-developed contracts.
They could enable insiders to carry out unauthorized asset transfers or even
shut down an application. Insiders might have increased knowledge about ap-
plication internals such as access to source code and technical documentation,
enhancing their ability to discover programming flaws and carry out unautho-
rized operations.

It is important to note that threats are not strictly restricted to a specific
group of trust actors. For example, operators may also impersonate users if
they control the identity component. Conversely, users may gain operator-level
privileges through improper access right management.

In fact, some threats are exploitable by any actor with access to the dis-
tributed ledger network. Whether intentional or inadvertent, vulnerabilities can
be abused by any insider with the required knowledge and skills. Since all nodes
of the network likely run the same software, remote code execution vulnerabil-
ities may lead to irreversible manipulation or loss of data. Similarly, any par-
ticipant with access to distributed ledger data may leak data to parties outside
the network. The extent of information leaked depends on the insider’s access
privileges.

5 Insider threat analysis of popular frameworks

To demonstrate applicability of the identified insider threats to permissioned
blockchain frameworks, we conduct a technical threat analysis of several pop-
ular blockchain frameworks. Frameworks were selected based on a survey of
industry and research support conducted in July 2019. Regarding industry sup-
port, the Ethereum Enterprise Alliance (240 members), the Hyperledger project
(249 members) and R3 (92 members and 294 partners) were the largest en-
terprise consortia working on open-source permissioned DLT frameworks. To
gauge research interest, we searched several literature databases for mentions of
permissioned distributed ledger frameworks. We used fulltext search since some
framework names are ambiguous and might be used with a different meaning in
a distributed systems context (i.e. Quorum). The search result counts totaling
close to 1000 academic publications are shown in Figure 4. As a result of this
survey we decided upon the four frameworks detailed below.

We briefly describe each framework below and summarize the technological
components in Table 4. To future-proof our analysis, we mainly analyze threats
resulting from architectural design choices, which are unlikely to change in the
future. We assume that operators strive for a secure configuration, which includes
a byzantine-fault tolerant (BFT) consensus algorithm to prevent byzantine ma-
nipulations.

Hyperledger Fabric is a blockchain framework relying on a novel execute-
order-validate architecture. This architecture was created to rule out source of
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Fig. 4. Research popularity of distributed ledger frameworks (search result count by
search term and academic database).

non-determinism during consensus and improve performance [4]. We assume that
the BFT-SMaRt consensus algorithm1 [9] is used for ordering service consensus,
since it is to our knowledge the only currently available BFT consensus module
for Fabric.

Hyperledger Sawtooth [49] is a blockchain framework, which modularizes
transaction processing with so-called transaction families. They include prede-
fined families for permissioning and on-chain settings management. Consensus
is also modular, but we assume that the Practical Byzantine Fault Tolerance
(PBFT)2 [12] module is used.

Ethereum [18,24] is a popular permissionless blockchain framework, which
runs smart contracts written in the Solidity language in an isolated environment
called the Ethereum Virtual Machine. The go-ethereum client can also be set
up as a permissioned network with Clique Proof-of-Authority (PoA) consensus.
PoA is a leader-based consensus protocol with stochastic consensus, which only
provides eventual consistency as opposed to strong consistency provided by BFT
algorithms. It only requires 50% for a consensus majority, trading consistency
for availability.

R3 Corda [31, 44] is based on a DAG data structure and only shares data
with other nodes when needed. To prevent double spending, mutually agreed
upon notary service clusters are used for consensus. We assume that BFT-SMaRt
consensus is used among notaries, since it is the only built-in consensus algorithm
which tolerates byzantine faults.

All of these frameworks have unique differences in their architecture and
the way applications are built on them. While some threats are applicable to
all frameworks, others apply only to specific frameworks due to architectural
choices. Subsequently, we survey each framework’s trust components and analyze
where insiders may abuse architectural flaws.

1 github.com/bft-smart/fabric-orderingservice
2 github.com/hyperledger/sawtooth-pbft
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Table 3. Mapping of insider threats to abused distributed ledger trust components.

Threat 5.1 5.2 5.3 5.4 5.5 5.6 5.7 5.8 5.9

Vulnerability injection x x x x x

Denial of service x x
Data manipulation x x x
Credential compromise x
Malicious misconfiguration x x x

Unauthorized operations x x

Vulnerability abuse x x x x
Information leakage x x x

Table 3 highlights which framework components that each type of threat
exploits. The columns represent the subsections corresponding to the affected
trust components. Corresponding to the trust actors that each threat applies to
(Table 2) and their ability to access various trust layers (Figure 3) some cells
are marked gray (not applicable). Vulnerability injection does not result in a
vulnerability abuse threat if the vulnerability can only be effectively abused by
the software service provider. Hereafter, we explain per component how each
threat may occur. Threats are italicized when they refer to a table entry.

5.1 Storage

The surveyed distributed ledger frameworks mostly rely on existing key-value
databases for data storage (i.e. LevelDB and CouchDB). None of these databases
offer encryption-at-rest, which means anyone with access to the database can
read all historical data contained in the ledger. Corda marks the exception: it
relies on relational databases, some of which offer encryption. Nevertheless, the
database itself is an attractive attack vector for operator insiders, who may
circumvent framework-level access control by directly accessing the underlying
database (information leakage).

5.2 Cryptography

Currently, distributed ledgers almost exclusively use public key cryptography
for authentication. The reviewed frameworks use NIST-recommended ECDSA
curves in combination with SHA2 for digital signatures, with some also offering
EdDSA and RSA. These algorithms are vulnerable to quantum attacks based on
Shor’s algorithm [6] (vulnerability abuse). Such attacks threaten the authenticity
of transactions and network messages (see Section 5.5). If symmetric keys were
encrypted using public key cryptography, this may also result in information
leakage. Once quantum computers reach sufficient computational power, current
ledgers will have to be rebuilt from scratch with new identity schemes. Instead
of relying on a single cryptographic primitive, developers should instead adopt a
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more future-proof approach. For example, quantum-proof hash-based signature
schemes use hash combiners, which remain secure if at least one of the input
hash functions is secure [6]. In our review, only Corda offers such a scheme
with SPHINCS2563. Still, no framework provides guidance for migration between
signature schemes.

Due to the unique challenges of trust in distributed environments, some
distributed ledger frameworks rely on new variants of cryptographic protocols
with unproven implementations (especially novel non-interactive zero-knowledge
proofs such as zk-STARKs [8]). While we are not aware of any cryptographic
flaws in the reviewed permissioned frameworks, there are examples among per-
missionless blockchains. Recently, a zero-knowledge proof vulnerability in the
permissionless blockchain Zcash was publicized, which had been kept secret by
the development team for more than 11 months [48]. In this case the developer
that discovered the bug did not have malicious intentions and worked on fixing
the bug instead of exploiting it. But the incident shows that open-source code is
not immune to longstanding hidden vulnerabilities. These may even be inserted
into the code intentionally by members of the development team (vulnerability
injection). If discovered by malicious actors, they could be kept secret for con-
tinued exploitation. Overall, trust in the security of cryptographic protocols is
not guaranteed and may be undermined at any time.

5.3 Network protocols

The reviewed frameworks rely on different network protocols for node-to-node
communication. The ZeroMQ protocol4 used in Sawtooth and the AMQP proto-
col5 used in Corda have experienced denial of service and remote code execution
vulnerabilities in the past6. External insiders, who know about the underlying
protocols, may abuse these vulnerabilities to cause damage to specific competi-
tors in the network (vulnerability abuse).

Consensus protocols require constant network communication between all
involved nodes. For this reason, they are vulnerable to network-partitioning at-
tacks such as Border Gateway Protocol (BGP) hijacking and Eclipse attacks [35].
These attacks have so far mainly been observed and studied on permissionless
blockchains. In permissioned blockchains, manipulations of the routing proto-
col or network traffic interception can also lead to network partitions [22]. If
none of the partitions are large enough to reach consensus, the network will stop
processing incoming transactions (deterministic algorithms) or create competing
forks (stochastic algorithms) [21]. For some consensus algorithms, these network
partitions can even allow malicious double-spending transactions (see Section
5.6).

3 sphincs.cr.yp.to
4 zeromq.org
5 www.amqp.org
6 cve.mitre.org



Trust Factors and Insider Threats in Permissioned Distributed Ledgers 15

T
a
b
le

4
.

O
v
er

v
ie

w
o
f

so
ft

w
a
re

co
m

p
o
n
en

ts
u
se

d
in

p
o
p
u
la

r
d
is

tr
ib

u
te

d
le

d
g
er

fr
a
m

ew
o
rk

s

H
y
p

e
rl

e
d
g
e
r

F
a
b
ri

c
v
1
.4

H
y
p

e
rl

e
d

g
e
r

S
a
w

to
o
th

v
1
.1

G
o
-E

th
e
re

u
m

v
1
.9

C
o
rd

a
v
4
.1

O
n

-c
h

a
in

c
o
n
tr

a
c
ts

C
h
a
in

co
d
e

(G
o
,
n
o
d
eJ

S
,
J
av

a
)

T
ra

n
sa

ct
io

n
P

ro
ce

ss
o
r

(s
ee

b
e-

lo
w

)
S
m

a
rt

C
o
n
tr

a
ct

(S
o
li
d
it

y
)

C
o
rD

a
p
p
s

(J
av

a
)

O
ff

-c
h
a
in

a
p
p

li
c
a
ti

o
n
s

G
o
,

J
av

a
,

n
o
d
eJ

S
,

P
y
th

o
n

G
o
,

J
av

a
,

n
o
d
eJ

S
,

P
y
th

o
n
,

C
+

+
,

C
#

,
S
w

if
t

W
eb

3
(n

o
d
eJ

S
)

J
av

a

O
ff

-c
h
a
in

d
a
ta

-
-

S
w

a
rm

O
ra

cl
es

O
p

e
ra

ti
o
n
s

R
eS

T
O

p
er

a
ti

o
n
s

S
er

v
ic

e,
C

L
I

S
et

ti
n
g
s

T
P

,
C

L
I

R
P

C
C

L
I

R
P

C
C

L
I

Id
e
n
ti

ty
M

em
b

er
sh

ip
S
er

v
ic

e
P

ro
v
id

er
Id

en
ti

ty
T

ra
n
sa

ct
io

n
P

ro
ce

ss
o
r

A
cc

o
u
n
ts

H
ie

ra
rc

h
ic

a
l

P
K

I,
D

o
o
rm

a
n

S
er

-
v
ic

e

C
o
n
se

n
su

s
E

n
d
o
rs

em
en

ts
(c

u
st

o
m

),
O

r-
d
er

in
g

(K
a
fk

a
,

B
F

T
-S

M
a
R

t)
J
o
u
rn

a
l

(P
o
E

T
,

R
a
ft

,
P

B
F

T
)

P
o
A

,
IB

F
T

N
o
ta

ry
(R

a
ft

,
B

F
T

-S
M

a
R

t)

S
to

ra
g
e

L
ev

el
D

B
,

C
o
u
ch

D
B

L
M

D
B

L
ev

el
D

B
,

R
o
ck

sD
B

H
2
,

P
o
st

g
re

s,
S
Q

L
S
er

v
er

C
ry

p
to

g
ra

p
h
y

Z
K

P
:

id
em

ix
S
ig

n
a
tu

re
:

E
C

D
S
A

P
2
5
6
/
3
8
4
,

H
a
sh

:
S
H

A
2
5
6
,

S
H

A
3

E
n
cr

y
p
ti

o
n
:

A
E

S

H
a
sh

:
S
H

A
2
5
6
/
5
1
2

S
ig

n
a
tu

re
:

li
b
se

cp
2
5
6
k
1

H
a
sh

:
K

ec
ca

k
S
ig

n
a
tu

re
(u

si
n
g

S
H

A
2
5
6
/

3
8
4
/
5
1
2
,

A
E

S
):

E
C

D
S
A

P
2
5
6
,

P
3
8
4
,

P
5
2
1
,

S
2
5
6
,

b
n
2
5
6

H
a
sh

:
S
H

A
2
5
6

S
ig

n
a
tu

re
(u

si
n
g

S
H

A
2
5
6
/
5
1
2
,

A
E

S
):

R
S
A

;
E

C
D

S
A

se
cp

2
5
6
r1

,
se

cp
2
5
6
k
1
;

E
d
D

S
A

-e
d
2
5
5
1
9
;

S
P

H
IN

C
S
2
5
6

N
e
tw

o
rk

G
R

P
C

,
G

o
ss

ip
a

Z
er

o
M

Q
d
ev

P
2
P

a
A

M
Q

P

a
cu

st
o
m

p
ro

to
co

l



16 B. Putz et al.

5.4 Operations

Regarding operational tools, the frameworks offer little in terms of monitoring
capabilities. Only command-line interfaces (CLI) and transaction types for on-
chain settings (Hyperledger Fabric and Sawtooth) are offered to retrieve metrics
and update settings. Without significant effort by the operators, this may lead
to manipulations of configuration settings going undetected (malicious miscon-
figuration). Additionally, intentional manipulations of consensus network traffic
are nearly impossible to detect without proper monitoring. For example, TCP or
UDP flooding attacks reduce transaction throughput to a small fraction of peak
throughput [14]. Lack of monitoring facilities effectively allows operator (exter-
nal) insiders to control network throughput by launching attacks when desired
(denial of service).

Despite their initial immutability, smart contracts can be upgraded in all
surveyed frameworks7. If only bytecode is available for inspection, there is no
easy way to tell what part of the contract was changed. Since smart contracts
may contain vulnerabilities or require feature extension, upgrades cannot be re-
garded as unusual per default. Individual operator insiders may abuse this fact
by upgrading a contract with malicious functionality (vulnerability injection).
Requiring signatures of multiple operators for a successful upgrade is a poten-
tial mitigation, but the contract needs to be set up with multiple owners for
this to apply (Ethereum, Fabric). Corda requires all participants that share a
state to sign contract upgrades, but contract signature constraints also permit
custom rules that require less signatures for an upgrade [44]. Sawtooth offers
no mechanism for coordinated upgrades. Transaction processors run as indepen-
dent processes next to the validator network and are upgraded by each operator
individually.

5.5 Identity and access control

All permissioned networks must admit identities through some form of a gate-
keeper. Distributed ledger frameworks attempt to decentralize admission of val-
idating nodes by voting on new members. This does not apply to users, who
must receive a certificate through a validating node or its certificate authority.
In Ethereum and Sawtooth, there is no certificate infrastructure integration:
users either create accounts themselves or request them from a node administra-
tor. However, account pseudonyms need to be mapped to real-world identities
for many applications. A lack of certificates complicates permission revocations,
which then need to be performed on the application level. Lack of a single source
of truth for identity also leads to excessive access rights over time, which enable
insider abuse [27]. A potential consequence of unchecked access rights is infor-
mation leakage.

Conversely, Hyperledger Fabric and Corda rely on traditional hierarchical
PKIs with a root authority. In these systems, each node operates its own certifi-

7 Ethereum only allows upgrades if the contract has been set up in a modular way
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cate authority. Certificates are then shared across the network through a feder-
ation service. As a result, each validator node recognizes the identities issued by
its peers. From an insider perspective, this means that any employee with access
to the gatekeeper of a participating organization can create valid identities for
the entire network. By subverting the local certificate authority, operator insiders
may replace associated node’s certificate and impersonate it (credential compro-
mise). Accordingly, a collusion between CA operators can subvert multiple node
identities and overtake the network, thus enabling data manipulation.

Fundamentally, the identity component relies on the underlying crypto-
graphic signature protocols. If a cryptographic primitive is broken, credentials
can be forged by issuing fake signatures. Fake signatures in turn enable data
manipulation and malicious misconfiguration through malicious transactions.

5.6 Consensus

The surveyed permissioned distributed ledger frameworks rely on crash fault-
tolerant (CFT) or byzantine fault-tolerant (BFT) algorithms. CFT algorithms
do not tolerate any malicious activity and are built only to tolerate crashes [10].
As a result they are prone to manipulation by any one operator and not well
suited for usage in semi-trusted environments like business networks. Despite
this, most frameworks in our survey recommend CFT protocols and mark BFT
consensus implementations as experimental.

If operators use BFT algorithms, up to f malicious nodes among n = 3f + 1
total nodes are tolerated without ceasing operation. Byzantine failures encom-
pass all possible failure modes of a system. The performance of most BFT algo-
rithms is however heavily impacted by the presence of failures and no consensus
is reached with more than f failures. As a result, a single operator can signif-
icantly decrease throughput in PBFT-based networks with n < 7 independent
nodes (3f + 1 = 7 | f = 2) by flooding the network with messages [14]. Collu-
sion between two operators can even shut down network consensus and prevent
new transactions (malicious misconfiguration). Therefore, smaller permissioned
networks are especially at risk of denial of service by a minority of participants.
In addition to flooding-based denial of service, malicious consensus leaders can
also degrade performance in most BFT consensus protocols [5].

The PoA algorithm used by permissioned Ethereum networks is vulnerable
to the Attack of the Clones [22]. In the attack, a single malicious node can
double spend with high probability. By cloning itself and intercepting messages,
a network partition is created. The victim partition is deceived by submitting
a conflicting transaction to the other partition, which is later accepted as the
canonical transaction (data manipulation). Based on the authors’ assessment,
the only viable countermeasures are switching to a BFT algorithm or requiring
a two-thirds majority instead of the current 50%.

In addition to protocol flaws, vulnerability injection in the consensus protocol
implementation may lead to nodes accepting invalid or malicious transactions.
This could be abused by SSP insiders to circumvent on-chain access permissions
and transfer assets or tokens.
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Fig. 5. Illustration of injection and delayed abuse of a vulnerability by a SSP insider.

5.7 On-chain applications

Transparency is an often-cited advantage of smart contracts. In the surveyed
frameworks, contract code is rarely transparent to all operators, and never to
users. In Hyperledger Fabric, chaincode source code is only known to the peers
specified in its endorsement policy. For Sawtooth, bytecode is deployed when us-
ing the Seth (Solidity), Sabre and Java SDKs. For transaction processors based
on the Python and nodeJS SDKs the source code is transparent, since they are
interpreted languages. In Ethereum, only compiled Solidity bytecode is visible
to blockchain node operators. Corda’s CorDapps are only shared by peers con-
cerned with the application, who need to compute the state changes for notary
consensus. A lack of transparency can lead to undetected manipulations, for
example through covert contract upgrades.

To demonstrate how this might occur in practice, Figure 5 illustrates the
three steps of vulnerability injection and subsequent vulnerability abuse. First,
the SSP insider injects a vulnerability into an on-chain or off-chain application
(1). With the next scheduled operational software upgrade, operators deploy the
vulnerable version of the software to the production network (2), permitting the
insider to abuse the vulnerability (3).

For Hyperledger Fabric, the two most popular SDKs on GitHub are based
on nodeJS and Go. Both languages allow package imports from public version
control sites such as GitHub. This method could be abused by a software service
provider to conceal malicious functionality in the chaincode or insert a backdoor.
By changing the code of a self-controlled dependency, the developer gains the
ability to manipulate dependent code sections, while obscuring the changes from
the client. Additionally, existing vulnerabilities in packages may be knowingly
included by a SSP insider to be exploited later on. Due to the large number
of transitive dependencies, the nodeJS dependency management system npm is
especially prone to attacks based on existing vulnerabilities [19]. For Ethereum
smart contracts, many vulnerability classes are known [35] due to public scrutiny
and open source application bytecode. For Sawtooth and Corda there are not
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many production deployments yet, so to the best of our knowledge we are not
aware of any vulnerabilities.

To summarize, chaincode and smart contract vulnerabilities may manipu-
late the output state of a contract (data manipulation), prevent consensus by
introducing non-determinism (denial of service), and leak secrets by sending con-
fidential data to parties outside the network (information leakage). Additionally,
users may be able to conduct unauthorized operations due to a smart contract
permission management vulnerability.

5.8 Off-chain applications

Production deployments of DLT must include a client software, since direct
interaction with a blockchain node is not user-friendly and requires command
line skills. This client software relies on Software Development Kits (SDKs)
published by software service providers. Table 4 shows the diverse programming
languages that these SDKs use. For SDKs using package managers, the same
attack vector from Section 5.7 applies (vulnerability injection). SSP insiders may
abuse SDKs or client software to hijack user identities and thus gain access to
the distributed ledger network (credential compromise).

5.9 Off-chain data

For referenced off-chain data, the reduced replication factor exposes data avail-
ability to collusion attacks. Depending on the replication factor r of items stored
off-chain, r operators may collude to irreversibly delete a key-value pair stored
off-chain (data manipulation).

Off-chain events providing external data are not natively supported by the
surveyed frameworks. The requirement for code determinism runs counter to
uncertain responses from external sources. Consequently, external data is often
integrated via trusted applications that attempt to guarantee response integrity.
These applications are referred to as validation oracles [52]. They act as auto-
mated arbitrators that sign transactions referencing external data on demand.
Corda is the only framework that provides built-in integration with centralized
oracle services for this purpose. They are accepted as an authoritative source
of data by a set of peers. An insider may compromise that service and manipu-
late transactions at will, without needing access to the distributed ledger (data
manipulation). Depending on the application, such attacks can be hard to dis-
cover, since the oracle service is not transparent to all operators. Alternative
proposals that avoid relying on a centralized provider include secure hardware
architectures such as Town Crier [53], and cryptocurrency-based decentralized
blockchain oracles such as Astraea [1].

6 Mitigations and future research

The previous sections have shown how various types of trust actors in a dis-
tributed ledger system may abuse trust components and carry out insider at-
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tacks. Based on these insights, we now elaborate how DLT adopters can better
assess which components they trust, and how they can mitigate resulting insider
threats.

6.1 A realistic view of trust in distributed ledgers

Instead of regarding blockchain as ”trustless”, DLT adopters should be aware
of the technological components that their trust relies on. First and foremost,
software trust management processes should be established to ensure that trust
is warranted. The inherent failure modes and consequences should be integrated
into organizational risk management.

Regarding trust in the various software components of distributed ledgers,
software trust research has established trust principles and an ordered set of
classes for software trust measurement [3]. The classes range from Untrusted
(T0) to Trusted (T5) and require a progressively larger set of trust principles to
be fulfilled. Classes T4 and T5 aim to prevent malicious activity and could be
used to certify components for inclusion in trusted distributed ledgers.

To reduce the implicit trust resulting from allowing others to manage iden-
tities and access rights, trust-based distributed access control models could be
used. Such frameworks include risk assessment processes that dynamically adapt
to users’ behavior [7]. Additionally, next generation decentralized blockchain-
based identity management could enable consensus-based trust in external users,
instead of relying on federated membership schemes.

To increase trust in smart contracts, a number of approaches have been
proposed. Business and legal smart contract specification languages based on
formal reasoning can help reduce ambiguity for programmers and lock down
edge cases [2].

To make user interaction with distributed ledgers more transparent, ”decen-
tralized applications” (DApps) may be used. DApps are web applications relying
solely on an on-chain application backend. DApp frontends should be distributed
as client-only applications, with code only served from, but not executed on a
centralized web server. This ensures that code execution is fully transparent to
end-users. Transaction submission to the blockchain can be explicitly authorized
using open source browser extensions (i.e. MetaMask [42]).

6.2 Insider threat mitigation

Techniques for insider threat mitigation have been studied extensively in the
past [16]. They require an interdisciplinary mitigation approach, combining in-
sights from computer science, psychology and other fields. Correspondingly, mit-
igation techniques can be classified as technical or organizational. We have an-
alyzed mitigation techniques in the literature and applied them to the threats
mentioned in Table 2. The result of this analysis is shown in Table 5. We empha-
size technical measures, but organizational mechanisms are sometimes required
and often beneficial.
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Table 5. Overview of potential mitigations for insider threats. O: organizational, T:
technical.

Threat Mitigation O/T

Software service provider Vulnerability injection Software trust management
Code review and transparency
Vulnerability scanners

O
O,T
T

Operator Denial of service Legal agreements
Robust consensus algorithms

O
T

Data manipulation Automated detection and punishment T
Credential compromise Credential revocation mechanisms T
Malicious misconfiguration Configuration integrity checks T

User Unauthorized operations Activity monitoring
Anomaly detection

O,T
T

All Information leakage Granular Identity and Access Management
Granular encryption

T
T

Vulnerability abuse Software update management T

To counter injection of vulnerabilities or flaws by software service
providers, code review processes help assure sufficient oversight and reduce the
probability for malicious activity to go unnoticed. From a framework perspective,
transparency should be assured by embedding on-chain application code into the
distributed ledger framework. Participants should be able to retrieve source code
for a contract at any given time. Re-compiling source-code from a repository is
too time-consuming and error-prone to serve as a verification method for smart
contract bytecode.

Additionally, dedicated vulnerability scanners exist specifically for dis-
tributed ledger on-chain applications [40]. Whether these scanners are suitable
for detecting insider-induced intentional manipulations of program flow has yet
to be shown. Future empirical research may also analyze specific programming
techniques that insiders use to attack distributed ledgers, similar to the study
conducted by Collins et al. [15].

Intentional denial of service caused by a collusion of operators may be
mitigated through legal agreements and incentives. While research on collusion
in distributed ledger networks is still scarce, trust-based reputation algorithms
could help. They may prevent collusion attempts or at least minimize their im-
pact on network availability by punishing colluding peers. In the past, reputation
systems based on peer-to-peer networks have also faced the issue of collusion [41].
Future research could thus transfer insights on collusion prevention from peer-
to-peer reputation systems research and related areas to distributed ledgers.

Regarding consensus attacks targeting network availability and throughput,
robust consensus algorithms such as RBFT [5] can help. Robust protocols sacri-
fice some throughput compared to traditional algorithms [14], but maintain high
availability and throughput regardless of attacks.

Activity monitoring tools and corresponding organizational processes assist
with timely detection of data manipulation. The threats listed in this work can
serve as guidance for activities to monitor. To prevent insider abuse by unchecked
node administrators, monitoring should be part of IS security management and
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organizationally separated from operational IS administration. Similarly, certifi-
cate authority and DLT node should be managed by separate entities. If any
entity attempts to manipulate node settings, automated configuration integrity
checks should raise alerts in security monitoring units across the network. In
case of external insiders, attack attempts should be punished either through
legal agreements or a built-in incentive system.

Transaction anomaly detection could help spot unauthorized operations. If
anomalies are detected in time, further abuse of permissions can be prevented.
For traditional database systems, tools have been developed that automatically
determine profiles of normal activity based on application profiles [34]. Similar
security analytics tools can be developed to detect anomalous smart contract
transactions.

One of the main countermeasures for information leakage by users is granu-
lar identity and access management (IAM) [27]. If users cannot send transactions
or access ledger data without first being authorized by an application owner, the
attack surface becomes significantly smaller. For authorized users, automated
detection and timely removal of access privileges helps limit permission buildup
and impact of insider attacks. Still, it remains challenging to ensure that each
operator of the network keeps its individual permissions and access rights up-
dated. Future work could examine how to enforce granular IAM network-wide,
for example through automated checks or incentives.

Another tool to limit malevolent information disclosure is granular encryption
of data, ensuring that users are only able to view data they need to access. Or-
ganizations must correctly decide where to encrypt data on the application level.
Additionally, they should be parsimonious regarding confidential data stored on
the ledger. Symmetric encryption keys may eventually be leaked, but on-ledger
data cannot be deleted.

Overall, we observe that a holistic security monitoring concept is necessary
for each organization participating in a distributed ledger network. A set of
standardized monitoring metrics is a necessary prerequisite to detect manipula-
tions of the various trust components. Due to unique differences in distributed
ledger architectures, the metrics need to be customizable to the specific appli-
cation context. One metric should be vulnerabilities in framework components,
with automated software update processes attempting to minimize the number
of vulnerabilities. Future work should focus on creating and evaluating such a
security management framework for permissioned distributed ledger networks.

7 Conclusion

While distributed technology offers great benefits, organizations planning to take
advantage of it should be aware of the trust relationships they enter. In this
work, we established key trust actors and components for distributed ledgers to
provide a better understanding of hidden trust factors and security risks. On
the one hand, software trust in the components of a distributed ledger system
is a key factor. If there are vulnerabilities or bugs, trust assumptions may be
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violated with grave consequences. Additionally, operators must still trust one
another to some degree to cooperatively run a network. If this trust turns sour
during operation, the distributed ledger network may become subject to denial
of service or collusion attacks.

These attacks may be especially severe if carried out by insiders. They pos-
sess unique access to organizational resources that may facilitate subversion of
distributed ledger trust assumptions. Insiders involved in application develop-
ment may willingly inject vulnerabilities or malicious code. Node administrator
insiders have elevated access rights to credentials and configuration. Malicious
manipulation of these components may result in denial of service for the entire
network. Modification or destruction of data are also possible in some cases (see
Section 4), despite the integrity guarantees that distributed ledgers normally
provide. Both internal and external insiders may leak data or abuse vulnerabil-
ities in the distributed ledger software stack.

Due to the current lack of productive deployments of distributed ledger net-
works, this work focused on analyzing the potential impact of insider attacks
from a theoretical perspective. To reinforce these claims, we elaborated on how
insiders may exploit the architecture of popular distributed ledger frameworks.
Future research may conduct case studies with real deployments of these frame-
works to validate the listed insider threats and to further develop mitigations.
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