Skip to main content

A Probabilistic Model for Detecting Gerrymandering in Partially-Contested Multiparty Elections

  • Chapter
  • First Online:
Book cover Transactions on Computational Collective Intelligence XXXIV

Part of the book series: Lecture Notes in Computer Science ((TCCI,volume 11890))

  • 319 Accesses

Abstract

Classic methods for detecting gerrymandering fail in multiparty partially-contested elections, such as the Polish local election of 2014. A new method for detecting electoral bias, based on the assumption that voting is a stochastic process described by Pólya’s urn model, is devised to overcome these difficulties. Since the partially-contested character of the election makes it difficult to estimate parameters of the urn model, an ad-hoc procedure for estimating those parameters in a manner untainted by potential gerrymandering is proposed.

Supported by the Polish National Science Center (NCN) under grant no. 2014/13/B/HS5/00862, Scale of gerrymandering in 2014 Polish township council elections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Under the rules in place for the election, parties are registered at the district level, and every independent candidate is counted as a distinct party, thence the unusually large number of parties.

  2. 2.

    We use the probit-transformed kernel density estimator instead of a standard Gaussian density estimation to ensure that the resulting estimator is of bounded support and that \(\varphi _{m}\) is surjective onto \(\left[ 0,1\right] \).

References

  1. Altman, M.: Modeling the effect of mandatory district compactness on partisan gerrymanders. Polit. Geogr. 17(8), 989–1012 (1998). https://doi.org/10.1016/S0962-6298(98)00015-8

    Article  Google Scholar 

  2. Altman, M., Amos, B., McDonald, M.P., Smith, D.A.: Revealing preferences: why gerrymanders are hard to prove, and what to do about it. Technical report, SSRN 2583528, March 2015. https://doi.org/10.2139/ssrn.2583528

  3. Altman, M., McDonald, M.P.: The promise and perils of computers in redistricting. Duke J. Const. Law Public Policy 5(1), 69–159 (2010)

    Google Scholar 

  4. Ansolabehere, S., Leblanc, W.: A spatial model of the relationship between seats and votes. Math. Comput. Model. 48(9–10), 1409–1420 (2008). https://doi.org/10.1016/j.mcm.2008.05.028

    Article  MathSciNet  MATH  Google Scholar 

  5. Apollonio, N., Becker, R.I., Lari, I., Ricca, F., Simeone, B.: The sunfish against the octopus: opposing compactness to gerrymandering. In: Simeone, B., Pukelsheim, F. (eds.) Mathematics and Democracy: Recent Advances in Voting Systems and Collective Choice, pp. 19–41. Springer, Berlin-Heidelberg (2006). https://doi.org/10.1007/3-540-35605-3_2

    Chapter  Google Scholar 

  6. Aras, A., Costantini, M., van Erkelens, D., Nieuweboer, I.: Gerrymandering in three-party elections under various voting rules (2017)

    Google Scholar 

  7. Athreya, K.B.: On a characteristic property of Polya’s urn. Stud. Sci. Math. Hung. 4, 31–35 (1969)

    MathSciNet  MATH  Google Scholar 

  8. Bachrach, Y., Lev, O., Lewenberg, Y., Zick, Y.: Misrepresentation in district voting. In: Proceedings of the Twenty-Fifth International Joint Conference on Artificial Intelligence, pp. 81–87 (2016)

    Google Scholar 

  9. Balinski, M.L., Demange, G.: Algorithms for proportional matrices in reals and integers. Math. Program. 45(1–3), 193–210 (1989). https://doi.org/10.1007/BF01589103

    Article  MathSciNet  MATH  Google Scholar 

  10. Balinski, M.L., Demange, G.: An axiomatic approach to proportionality between matrices. Math. Oper. Res. 14(4), 700–719 (1989). https://doi.org/10.1287/moor.14.4.700

    Article  MathSciNet  MATH  Google Scholar 

  11. Barthélémy, F., Martin, M., Piggins, A.: The architecture of the Electoral College, the house size effect, and the referendum paradox. Electoral. Stud. 34, 111–118 (2014). https://doi.org/10.1016/j.electstud.2013.07.004

    Article  Google Scholar 

  12. Berg, S.: Paradox of voting under an urn model: the effect of homogeneity. Public Choice 47(2), 377–387 (1985). https://doi.org/10.1007/BF00127533

    Article  Google Scholar 

  13. Blais, A.: Turnout in elections. In: Dalton, R.E., Klingemann, H.D. (eds.) Oxford Handbook of Political Behavior, pp. 621–635. Oxford University Press, Oxford (2007). https://doi.org/10.1093/oxfordhb/9780199270125.003.0033

    Chapter  Google Scholar 

  14. Brookes, R.H.: Electoral distortion in New Zealand. Aust. J. Polit. Hist. 5(2), 218–223 (1959). https://doi.org/10.1111/j.1467-8497.1959.tb01197.x

    Article  Google Scholar 

  15. Butler, D.E.: Appendix. In: Nicholas, H.G. (ed.) The British General Election of 1950, pp. 306–333. Macmillan, London (1951)

    Google Scholar 

  16. Cain, B.E.: Assessing the partisan effects of redistricting. Am. Polit. Sci. Rev. 79(02), 320–333 (1985). https://doi.org/10.2307/1956652

    Article  Google Scholar 

  17. Campbell, C.D., Tullock, G.: A measure of the importance of cyclical majorities. Econ. J. 75(300), 853 (1965). https://doi.org/10.2307/2229705

    Article  Google Scholar 

  18. Chen, J., Rodden, J.: Unintentional gerrymandering: political geography and electoral bias in legislatures. Q. J. Polit. Sci. 8(3), 239–269 (2013). https://doi.org/10.1561/100.00012033

    Article  Google Scholar 

  19. Chen, J., Rodden, J.: Cutting through the thicket: redistricting simulations and the detection of partisan gerrymanders. Election Law J. Rules Politics Policy 14(4), 331–345 (2015). https://doi.org/10.1089/elj.2015.0317

    Article  Google Scholar 

  20. Cirincione, C., Darling, T.A., O’Rourke, T.G.: Assessing South Carolina’s 1990s congressional districting. Polit. Geogr. 19(2), 189–211 (2000). https://doi.org/10.1016/S0962-6298(99)00047-5

    Article  Google Scholar 

  21. Coleman, J.S.: Introduction to Mathematical Sociology. Free Press, New York (1964)

    Google Scholar 

  22. Eggenberger, F., Pólya, G.: über die Statistik verketteter Vorgänge. Zeitschrift für Angewandte Mathematik und Mechanik 3(4), 279–289 (1923). https://doi.org/10.1002/zamm.19230030407

    Article  MATH  Google Scholar 

  23. Enelow, J.M., Hinich, M.J.: The Spatial Theory of Voting: An Introduction. Cambridge University Press, Cambridge (1984)

    MATH  Google Scholar 

  24. Engstrom, R.L., Wildgen, J.K.: Pruning thorns from the thicket: an empirical test of the existence of racial gerrymandering. Legis. Stud. Q. 2(4), 465–479 (1977). https://doi.org/10.2307/439420

    Article  Google Scholar 

  25. Fifield, B., Higgins, M., Imai, K.: A new automated redistricting simulator using Markov Chain Monte Carlo. Working Paper, Princeton University, Princeton, NJ (2015)

    Google Scholar 

  26. Foos, F., John, P.: Parties are no civic charities: voter contact and the changing partisan composition of the electorate. Polit. Sci. Res. Methods 6(2), 283–298 (2018). https://doi.org/10.1017/psrm.2016.48

    Article  Google Scholar 

  27. Friedman, J.N., Holden, R.T.: Optimal gerrymandering: sometimes pack, but never crack. Am. Econ. Rev. 98(1), 113–144 (2008). https://doi.org/10.1257/aer.98.1.113

    Article  Google Scholar 

  28. Fryer, R.G., Holden, R.: Measuring the compactness of political districting plans. J. Law Econ. 54(3), 493–535 (2011). https://doi.org/10.1086/661511

    Article  Google Scholar 

  29. Garand, J.C., Parent, T.W.: Representation, swing, and bias in U.S. Presidential Elections, 1872–1988. Am. J. Polit. Sci. 35(4), 1011 (1991). https://doi.org/10.2307/2111504

  30. Geenens, G.: Probit transformation for kernel density estimation on the unit interval. J. Am. Stat. Assoc. 109(505), 346–358 (2014). https://doi.org/10.1080/01621459.2013.842173

    Article  MathSciNet  MATH  Google Scholar 

  31. Gehrlein, W.V., Fishburn, P.C.: Condorcet’s paradox and anonymous preference profiles. Public Choice 26(1), 1–18 (1976). https://doi.org/10.1007/BF01725789

    Article  Google Scholar 

  32. Gelman, A., King, G.: Estimating the electoral consequences of legislative redistricting. J. Am. Stat. Assoc. 85(410), 274–282 (1990)

    Article  Google Scholar 

  33. Gelman, A., King, G.: A unified method of evaluating electoral systems and redistricting plans. Am. J. Polit. Sci. 38(2), 514–554 (1994)

    Article  Google Scholar 

  34. Gibbs, A.L., Su, F.E.: On choosing and bounding probability metrics. Int. Stat. Rev. 70(3), 419–435 (2002). https://doi.org/10.1111/j.1751-5823.2002.tb00178.x

    Article  MATH  Google Scholar 

  35. Grofman, B.: Measures of bias and proportionality in seats-votes relationships. Polit. Methodol. 9(3), 295–327 (1983)

    Google Scholar 

  36. Grofman, B.: Criteria for districting: a social science perspective. UCLA Law Rev. 33(1), 77–184 (1985)

    Google Scholar 

  37. Grofman, B., King, G.: The future of partisan symmetry as a judicial test for partisan gerrymandering after LULAC v. Perry. Election Law J. Rules Polit. Policy 6(1), 2–35 (2007). https://doi.org/10.1089/elj.2006.6002

  38. Gudgin, G., Taylor, P.J.: Seats, Votes, and the Spatial Organisation of Elections. Pion, London (1979)

    Google Scholar 

  39. Issacharoff, S.: Gerrymandering and political cartels. Harvard Law Rev. 116(2), 593–648 (2002). https://doi.org/10.2307/1342611

    Article  Google Scholar 

  40. Jamison, D., Luce, E.: Social homogeneity and the probability of intransitive majority rule. J. Econ. Theory 5(1), 79–87 (1972)

    Article  MathSciNet  Google Scholar 

  41. Johnson, N.L., Kotz, S.: Urn Models and Their Applications: An Approach to Modern Discrete Probability Theory. Wiley, New York (1977)

    MATH  Google Scholar 

  42. Johnston, R.: Manipulating maps and winning elections: measuring the impact of malapportionment and gerrymandering. Polit. Geogr. 21(1), 1–31 (2002). https://doi.org/10.1016/S0962-6298(01)00070-1

    Article  Google Scholar 

  43. Johnston, R.J.: Political, Electoral, and Spatial Systems: An Essay in Political Geography. Contemporary Problems in Geography. Clarendon Press; Oxford University Press, Oxford; New York (1979)

    Google Scholar 

  44. Karvanen, J.: Estimation of quantile mixtures via L-moments and trimmed L-moments. Comput. Stat. Data Anal. 51(2), 947–959 (2006). https://doi.org/10.1016/j.csda.2005.09.014

    Article  MathSciNet  MATH  Google Scholar 

  45. Katz, J.N., King, G.: A statistical model for multiparty electoral data. Am. Polit. Sci. Rev. 93(1), 15–32 (1999). https://doi.org/10.2307/2585758

    Article  Google Scholar 

  46. Kendall, M.G., Stuart, A.: The law of the cubic proportion in election results. Br. J. Sociol. 1(3), 183–196 (1950). https://doi.org/10.2307/588113

    Article  Google Scholar 

  47. King, G., Browning, R.X.: Democratic representation and partisan bias in Congressional elections. Am. Polit. Sci. Rev. 81(4), 1251 (1987). https://doi.org/10.2307/1962588

    Article  Google Scholar 

  48. Kuga, K., Nagatani, H.: Voter antagonism and the paradox of voting. Econometrica 42(6), 1045–1067 (1974). https://doi.org/10.2307/1914217

    Article  MathSciNet  MATH  Google Scholar 

  49. Lepelley, D., Merlin, V., Rouet, J.L.: Three ways to compute accurately the probability of the referendum paradox. Math. Soc. Sci. 62(1), 28–33 (2011). https://doi.org/10.1016/j.mathsocsci.2011.04.006

    Article  MathSciNet  MATH  Google Scholar 

  50. Linzer, D.A.: The relationship between seats and votes in multiparty systems. Polit. Anal. 20(3), 400–416 (2012). https://doi.org/10.1093/pan/mps017

    Article  Google Scholar 

  51. Mattingly, J.C., Vaughn, C.: Redistricting and the will of the people. Technical report, arXiv: 1410.8796 [physics.soc-ph], October 2014

  52. McClurg, S.D.: The electoral relevance of political talk: examining disagreement and expertise effects in social networks on political participation. Am. J. Polit. Sci. 50(3), 737–754 (2006). https://doi.org/10.1111/j.1540-5907.2006.00213.x

    Article  Google Scholar 

  53. McGhee, E.: Measuring partisan bias in single-member district electoral systems: measuring partisan bias. Legis. Stud. Q. 39(1), 55–85 (2014). https://doi.org/10.1111/lsq.12033

    Article  MathSciNet  Google Scholar 

  54. Mcleod, J.M., Scheufele, D.A., Moy, P.: Community, communication, and participation: the role of mass media and interpersonal discussion in local political participation. Polit. Commun. 16(3), 315–336 (1999). https://doi.org/10.1080/105846099198659

    Article  Google Scholar 

  55. Merrill, S.: A comparison of efficiency of multicandidate electoral systems. Am. J. Polit. Sci. 28(1), 23–48 (1984). https://doi.org/10.2307/2110786

    Article  Google Scholar 

  56. Niemi, R.G.: Relationship between votes and seats: the ultimate question in political gerrymandering. UCLA Law Rev. 33, 185–212 (1985)

    Google Scholar 

  57. Niemi, R.G., Deegan, J.: A theory of political districting. Am. Polit. Sci. Rev. 72(4), 1304–1323 (1978). https://doi.org/10.2307/1954541

    Article  Google Scholar 

  58. Niemi, R.G., Fett, P.: The swing ratio: an explanation and an assessment. Legis. Stud. Q. 11(1), 75–90 (1986). https://doi.org/10.2307/439910

    Article  Google Scholar 

  59. Nurmi, H.: Voting Paradoxes and How to Deal with Them. Springer, New York (1999). https://doi.org/10.1007/978-3-662-03782-9

    Book  MATH  Google Scholar 

  60. O’Loughlin, J.: The identification and evaluation of racial gerrymandering. Ann. Assoc. Am. Geogr. 72(2), 165–184 (1982). https://doi.org/10.1111/j.1467-8306.1982.tb01817.x

    Article  Google Scholar 

  61. Penrose, L.S.: On the Objective Study of Crowd Behaviour. H.K. Lewis, London (1952)

    Google Scholar 

  62. Polsby, D.D., Popper, R.D.: The third criterion: compactness as a procedural safeguard against partisan gerrymandering. Yale Law Policy Rev. 9(2), 301–353 (1991)

    Google Scholar 

  63. Pólya, G.: Sur quelques points de la théorie des probabilités. Ann. l’inst. Henri Poincaré 1(2), 117–161 (1930)

    Google Scholar 

  64. Pukelsheim, F.: Biproportional scaling of matrices and the iterative proportional fitting procedure. Ann. Oper. Res. 215(1), 269–283 (2014). https://doi.org/10.1007/s10479-013-1468-3

    Article  MathSciNet  MATH  Google Scholar 

  65. Regenwetter, M., Grofman, B., Tsetlin, I., Marley, A.: Behavioral Social Choice: Probabilistic Models, Statistical Inference, and Applications. Cambridge University Press, Cambridge (2006)

    MATH  Google Scholar 

  66. Sano, F., Hisakado, M., Mori, S.: Mean field voter model of election to the House of Representatives in Japan. In: APEC-SSS2016, p. 011016. Journal of the Physical Society of Japan (2017). https://doi.org/10.7566/JPSCP.16.011016

  67. Stanton, R.G.: A result of Macmahon on electoral predictions. Ann. Discrete Math. 8, 163–167 (1980). https://doi.org/10.1016/S0167-5060(08)70866-5

    Article  MathSciNet  MATH  Google Scholar 

  68. Steerneman, T.: On the total variation and hellinger distance between signed measures; an application to product measures. Proc. Am. Math. Soc. 88(4), 684–688 (1983). https://doi.org/10.2307/2045462

    Article  MathSciNet  MATH  Google Scholar 

  69. Stephanopoulos, N.O., McGhee, E.M.: Partisan gerrymandering and the efficiency gap. Univ. Chicago Law Rev. 82(2), 831–900 (2015)

    Google Scholar 

  70. Szufa, S.: Optimal gerrymandering for simplified districts. Working Paper, Jagiellonian Center for Quantitative Research in Political Science, Kraków (2019)

    Google Scholar 

  71. Tideman, T.N., Plassmann, F.: Modeling the outcomes of vote-casting in actual elections. In: Felsenthal, D.S., Machover, M. (eds.) Electoral Systems. Paradoxes, Assumptions, and Procedures, pp. 217–251. Springer, Heidelberg (2012). https://doi.org/10.1007/978-3-642-20441-8_9

    Chapter  Google Scholar 

  72. Tomz, M., Tucker, J.A., Wittenberg, J.: An easy and accurate regression model for multiparty electoral data. Polit. Anal. 10(1), 66–83 (2002). https://doi.org/10.1093/pan/10.1.66

    Article  Google Scholar 

  73. Tufte, E.R.: The relationship between seats and votes in two-party systems. Am. Polit. Sci. Rev. 67(2), 540–554 (1973). https://doi.org/10.2307/1958782

    Article  Google Scholar 

  74. Upton, G.: Blocks of voters and the cube ‘law’. Br. J. Polit. Sci. 15(3), 388–398 (1985). https://doi.org/10.1017/S0007123400004257

    Article  Google Scholar 

  75. Wildgen, J.K., Engstrom, R.L.: Spatial distribution of partisan support and the seats/votes relationship. Legis. Stud. Q. 5(3), 423–435 (1980). https://doi.org/10.2307/439554

    Article  Google Scholar 

  76. Yamamoto, T.: A multinomial response model for varying choice sets, with application to partially contested multiparty elections. Working Paper, Massachusetts Institute of Technology, Cambridge, MA (2014)

    Google Scholar 

  77. Young, H.P.: Measuring the compactness of legislative districts. Legis. Stud. Q. 13(1), 105–115 (1988). https://doi.org/10.2307/439947

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Stolicki .

Editor information

Editors and Affiliations

A Appendix

A Appendix

We have developed two proof-of-concept tests to evaluate the correctness of the proposed method for detecting gerrymandering. First, for any set of jurisdictions to which we seek to apply the proposed method we can test whether the empirical marginal distribution of \(X_{m}\), \(m=1,\dots ,11\), agrees with the theoretical marginal distribution expressed by (). We have run such test for our primary data set of interest, Polish local election of 2014, producing, for the following values of parameters \(\kappa _{m}\) and \(\theta _{m}\) (fitted in accordance with the procedure described in Sect. 3.5), the following total variation distances \(\varvec{d}_{\mathbf {TV}}\) between the theoretical density function and the kernel density estimator of the empirical density (Fig. 3):

figure a
Fig. 3.
figure 3

The theoretical (red) and empirical (black) densities of \(v_{i}^{k}\) for different values of m. The empirical density is a kernel density estimate with the number of points and the bandwidth given below each plot. (Color figure online)

Even if the probabilistic model underlying the test is correct, it remains to be seen if the method is sensitive enough to detect actual gerrymandering (or other instances of electoral bias) and specific enough to keep the level of false positives low. Ideally, we would test the above using an empirical dataset that includes some known instances of gerrymandering, but our main dataset included none. Therefore, we have tested the sensitivity and specificity of the method against an artifical dataset, although one based on empirical data. We have algorithmically created a sample of 1024 districting plans for our home city of Kraków, each having 43 seats (as is the case in reality). Of those, 1020 were generated randomly using a Markov chain Monte Carlo districting algorithm developed by [25] and implemented in R package redist. The remaining four have been generated using two algorithms from [70], designed to produce districting plans gerrymandered in favor of one of the two largest parties (the first algorithm has also been designed to try to keep the districts relatively compact, while the second has been freed of all compactness constraints). Under each of those districting plans, we have calculated simulated election results using the 2014 precinct-level data. We treat each of such simulated elections as a single jurisdiction for which we carry out the procedure described in the article to obtain \(\pi \). There are 12 distinct outcomes arising in simulated elections. As under all 1024 plans, all seats are won by the two largest parties, those outcomes are uniquely characterized by \(s_{1}\) (or \(s_{2}\)). We list all of them, with corresponding \(\pi \) values, in the table below (the outcomes arising under the four intentionally gerrymandered plans are identified by the bold font):

\(s_{1}\)

\(s_{2}\)

No. of plans

% of plans

\(\pi \)

\(\mathbf {36}\)

\(\mathbf {7}\)

\(\mathbf {1}\)

\(\mathbf {0.10\%}\)

\(\mathbf {7.8E-06}\)

\(\mathbf {31}\)

\(\mathbf {12}\)

\(\mathbf {1}\)

\(\mathbf {0.10\%}\)

\(\mathbf {0.39\%}\)

26

17

1

\(0.10\%\)

\(13.67\%\)

25

18

3

\(0.29\%\)

\(21.53\%\)

24

19

43

\(4.20\%\)

\(31.47\%\)

23

20

226

\(22.07\%\)

\(42.94\%\)

22

21

433

\(42.29\%\)

\(55.04\%\)

21

22

262

\(25.59\%\)

\(44.96\%\)

20

23

48

\(4.69\%\)

\(33.32\%\)

19

24

4

\(0.39\%\)

\(23.09\%\)

\(\mathbf {13}\)

\(\mathbf {30}\)

\(\mathbf {1}\)

\(\mathbf {0.10\%}\)

\(\mathbf {0.48\%}\)

\(\mathbf {6}\)

\(\mathbf {37}\)

\(\mathbf {1}\)

\(\mathbf {0.10\%}\)

\(\mathbf {4.4E-07}\)

As can be seen from the above table, for all four intentionally gerrymandered plans the value of \(\pi \) are small enough to identify them as suspect, while none of the unbiased plans are so identified.

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer-Verlag GmbH Germany, part of Springer Nature

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Stolicki, D., Słomczyński, W., Flis, J. (2019). A Probabilistic Model for Detecting Gerrymandering in Partially-Contested Multiparty Elections. In: Nguyen, N., Kowalczyk, R., Mercik, J., Motylska-Kuźma, A. (eds) Transactions on Computational Collective Intelligence XXXIV. Lecture Notes in Computer Science(), vol 11890. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-60555-4_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-662-60555-4_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-662-60554-7

  • Online ISBN: 978-3-662-60555-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics